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ABSTRACT

Essays on Matching and Weighting for
Causal Inference in Observational Studies

Maŕıa de los Angeles Resa Juárez

This thesis consists of three papers on matching and weighting methods for causal

inference. The first paper conducts a Monte Carlo simulation study to evaluate the

performance of multivariate matching methods that select a subset of treatment and

control observations. The matching methods studied are the widely used nearest

neighbor matching with propensity score calipers, and the more recently proposed

methods, optimal matching of an optimally chosen subset and optimal cardinality

matching. The main findings are: (i) covariate balance, as measured by differences in

means, variance ratios, Kolmogorov-Smirnov distances, and cross-match test statis-

tics, is better with cardinality matching since by construction it satisfies balance re-

quirements; (ii) for given levels of covariate balance, the matched samples are larger

with cardinality matching than with the other methods; (iii) in terms of covariate dis-

tances, optimal subset matching performs best; (iv) treatment effect estimates from

cardinality matching have lower RMSEs, provided strong requirements for balance,

specifically, fine balance, or strength-k balance, plus close mean balance. In standard

practice, a matched sample is considered to be balanced if the absolute differences

in means of the covariates across treatment groups are smaller than 0.1 standard

deviations. However, the simulation results suggest that stronger forms of balance

should be pursued in order to remove systematic biases due to observed covariates

when a difference in means treatment effect estimator is used. In particular, if the

true outcome model is additive then marginal distributions should be balanced, and



if the true outcome model is additive with interactions then low-dimensional joints

should be balanced.

The second paper focuses on longitudinal studies, where marginal structural mod-

els (MSMs) are widely used to estimate the effect of time-dependent treatments in the

presence of time-dependent confounders. Under a sequential ignorability assumption,

MSMs yield unbiased treatment effect estimates by weighting each observation by the

inverse of the probability of their observed treatment sequence given their history of

observed covariates. However, these probabilities are typically estimated by fitting

a propensity score model, and the resulting weights can fail to adjust for observed

covariates due to model misspecification. Also, these weights tend to yield very unsta-

ble estimates if the predicted probabilities of treatment are very close to zero, which

is often the case in practice. To address both of these problems, instead of modeling

the probabilities of treatment, a design-based approach is taken and weights of min-

imum variance that adjust for the covariates across all possible treatment histories

are directly found. For this, the role of weighting in longitudinal studies of treatment

effects is analyzed, and a convex optimization problem that can be solved efficiently

is defined. Unlike standard methods, this approach makes evident to the investigator

the limitations imposed by the data when estimating causal effects without extrapo-

lating. A simulation study shows that this approach outperforms standard methods,

providing less biased and more precise estimates of time-varying treatment effects in

a variety of settings. The proposed method is used on Chilean educational data to

estimate the cumulative effect of attending a private subsidized school, as opposed to

a public school, on students’ university admission tests scores.

The third paper is centered on observational studies with multi-valued treatments.

Generalizing methods for matching and stratifying to accommodate multi-valued

treatments has proven to be a complex task. A natural way to address confound-

ing in this case is by weighting the observations, typically by the inverse probability

of treatment weights (IPTW). As in the MSMs case, these weights can be highly



variable and produce unstable estimates due to extreme weights. In addition, model

misspecification, small sample sizes, and truncation of extreme weights can cause the

weights to fail to adjust appropriately for observed confounders. The conditions the

weights need to satisfy in order to provide close to unbiased treatment effect estimates

with a reduced variability are determined and the convex optimization problem that

can be solved in polynomial time to obtain them is defined. A simulation study

with different settings is conducted to compare the proposed weighting scheme to

IPTW, including generalized propensity score estimation methods that also consider

explicitly the covariate balance problem in the probability estimation process. The

applicability of the methods to continuous treatments is also tested. The results show

that directly targeting balance with the weights, instead of focusing on estimating

treatment assignment probabilities, provides the best results in terms of bias and root

mean square error of the treatment effect estimator. The effects of the intensity level

of the 2010 Chilean earthquake on posttraumatic stress disorder are estimated using

the proposed methodology.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

“Correlation does not imply causation,” yet determining causality is the main goal of

a considerable amount of studies. The gold standard to perform this type of inference

are randomized studies, however, for many reasons, this is not always an available

option and in these cases researchers can only rely on observational data. The prob-

lem with this data is that, since the treatment assignment is not random, there could

be systematic differences between the people who received one treatment and the

other, which may result in intrinsically different outcome values and consequently

biased estimates of treatment effects. Causal inference is concerned with establishing

assumptions, that combined with some methods, will allow researchers to correctly

infer causality. The most common assumptions made include no unmeasured con-

founders, where it is assumed that there are no unobserved variables that predict

the treatment assignment while at the same time affect the outcome variable, and

positivity, where it is assumed that every subject for which inference is being made

should have a positive probability of receiving any treatment. For the first assump-

tion to be satisfied, it is important to collect enough covariates so that the treatment

assignment appears to be random given the observed covariates.

One of the greatest advances in this field was the introduction of the propensity

score (Rosenbaum and Rubin, 1983), which is a scalar that represents the probability
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of a subject to get treated given his observed covariates. For its attractive ability

to balance covariates, researchers have focused on developing methods based on the

propensity score, like matching, weighting, and stratification, and on proposing dif-

ferent ways to estimate it. Despite its useful properties, implementing methods that

rely on it imply engaging in an iterative process in which first the propensity score

has to be estimated, then the particular method is applied, then balance is checked,

and depending on the balance attained, the propensity score might need to be esti-

mated again and the rest of the process repeated until a satisfactory level of balance is

achieved. In light of balance being the main goal, researchers have started developing

methods that directly balance the covariates, avoiding excessive iteration.

Given the rise of these balancing methods, a natural question that needs to be

answered is, how should we balance covariates in order to obtain unbiased estimates

of the treatment effects? The second chapter of this thesis provides some guidance

with respect to this matter, using matching. The goal of matching is to find samples

of treated and control units with similar or balanced observed covariate distributions

(Stuart, 2010). When the distributions of the observed covariates are substantially

different between treated and control samples before matching, as it tends to hap-

pen in observational studies, matching methods need to remove observations that do

not have an appropriate counterpart on the other treatment group. Commonly used

approaches to do this are to trim the sample before matching, discarding the observa-

tions outside the overlap region between the propensity score ranges of the two groups

(see, e.g., Dehejia and Wahba (1999)) or to restrict the possible matches to be within

a propensity score caliper. Neither of these approaches discards observations in an

optimal way, but there are recently proposed methods that incorporate the selection

of observations into their design and offer optimal solutions in some sense. One of

these methods is optimal matching of an optimally chosen subset (Rosenbaum, 2012).

This method pursues two specific goals: to minimize the total sum of covariate dis-

tances between the matched pairs, and to match as many pairs of treated and control
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units as possible. Another method is optimal cardinality matching (Zubizarreta et al.,

2014). This method finds the largest matched sample of treated and control units for

which the covariate distributions are balanced as required by the researcher. Here we

conduct a simulation study to evaluate the performance of the latter two methods

and the widely used nearest neighbor matching with propensity score calipers. Our

comparisons make emphasis on the covariate balance achieved by the methods, while

considering also how covariates should be balanced. In particular, we are interested

in determining when mean balance is sufficient to remove biases when estimating

the treatment effect with a simple difference in means and when stronger forms of

covariate balance should be pursued.

On the third chapter of this thesis we contemplate the setting where the obser-

vational study is longitudinal. Many applications in the health and social sciences

are interested in evaluating the effect of a treatment or exposure that is assigned

multiple times. The main particularity of this type of data is the possible presence

of time-dependent confounders. Typical methods for covariate adjustments, such as

matching or regression methods, fail to provide unbiased estimates of treatment ef-

fects when this is the case. For this reason, a popular alternative to these methods in

the presence of time-dependent confounders is marginal structural models (MSMs).

Under a sequential ignorability assumption, MSMs yield unbiased treatment effect

estimates by weighting each observation by the inverse of the probability of their

observed treatment sequence given their history of observed covariates. However,

these probabilities are typically estimated by fitting a propensity score model, and

the resulting weights can fail to adjust for observed covariates due to model misspec-

ification. Also, these weights tend to yield very unstable estimates if the predicted

probabilities of treatment are very close to zero, which is often the case in practice.

To address both of these problems, instead of modeling the probabilities of treatment,

we take a design-based approach and directly find the weights of minimum variance

that adjust for the covariates across all possible treatment histories. We first analyze



CHAPTER 1. INTRODUCTION 4

the role of weighting in longitudinal studies of treatment effects and then we define

the convex optimization problem that incorporates that information. We conduct a

simulation study to compare the proposed methodology to standard methods used

in this setting and present an application in which we analyze the effect that the

total number of years a student spends in a private voucher school in Chile during

secondary education has on the scores he obtains on the University Selection Test, as

opposed to spending those years in a public school.

The fourth chapter of this thesis considers again the cross-sectional setting, in

which the treatment is received only once, but focusing on the case where the treat-

ment can take multiple values. While the binary case has been studied for many years

and common practices are well known and widely used across different disciplines, the

methods for multi-valued treatments have not reached that level of popularity. Many

methods proposed are based on the generalized propensity score (Imbens, 2000), how-

ever, generalizing matching and stratification methods to this setting has proved to

be a difficult task. One method that extends naturally to multi-valued treatments is

weighting observations to address confounding, which has typically be done by using

the inverse probability of treatment weights (IPTW). As with MSMs, the presence of

extreme weights can induce large variability on the treatment effect estimator. Addi-

tionally, if the probabilities are not modeled correctly, which is more likely when there

are more than two treatments, or if the weights are truncated to reduce variability

of the estimates, the balancing properties of these weights will not hold. Considering

these drawbacks of the common weighting estimator, we determine conditions that

the weights need to satisfy to provide close to unbiased treatment effect estimates

that also have low variability. Based on these conditions, we describe the convex op-

timization problem that needs to be solved to obtain the desired weights and conduct

a simulation study to compare the proposed method with other IPTW methods for

multi-valued treatments that have been recently proposed (Fong et al., 2017; McCaf-

frey et al., 2013, 2004). Finally, we present an application of the method where we
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estimate the effects that different levels of intensity of an earthquake have on post-

traumatic stress disorder, using data from Chile’s 2009 national socioeconomic survey

and the 2010 post-earthquake survey that was carried out after the February 2010

earthquake.
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Chapter 2

Evaluation of Subset Matching

Methods and Forms of Covariate

Balance

2.1 Introduction

In observational studies, matching methods are often used to approximate the ideal

randomized experiment that would have been conducted if controlled experimenta-

tion had been feasible (Cochran and Rubin, 1973). In these settings, the ultimate

goal of matching is to free the comparisons of the outcomes in the treatment and

control groups from biases due to differences in their observed covariates (Cochran

et al., 1983). To achieve this goal, matching methods find samples of treated and

control units with similar or balanced observed covariate distributions (Stuart, 2010).

Ideally, these matched samples will include all the available treated and control ob-

servations. However, if the distributions of the observed covariates are substantially

different between treated and control samples before matching, as it tends to hap-

pen in observational studies, then including all the observations will result in poor

covariate balance.
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To address this problem, matching methods typically rely on the propensity score

to remove observations that do not have an appropriate counterpart on the other

treatment group.1 One way to do this is to trim the sample before matching, discard-

ing the observations outside the overlap region between the propensity score ranges

of the two groups (see, e.g., Dehejia and Wahba (1999)). Another commonly used ap-

proach is to restrict the possible matches to be within a prespecified propensity score

value, called caliper. While these methods provide a broad solution to the problem,

they are additions to methods for which discarding observations was not incorporated

in the design of the problem.

Two recently proposed methods incorporate the selection of observations into their

design and offer optimal solutions in some sense. The first method is optimal matching

of an optimally chosen subset, or optimal subset matching for short (Rosenbaum,

2012). This method pursues two specific goals: to minimize the total sum of covariate

distances between the matched pairs, and to match as many pairs of treated and

control units as possible. Often these two goals are at odds with each other, and the

trade-off between them is regulated by means of a tuning parameter discussed and

interpreted by Rosenbaum (2012).

The second method is optimal cardinality matching or, simply, cardinality match-

ing (Zubizarreta et al., 2014). This method finds the largest matched sample of

treated and control units for which the covariate distributions are balanced as re-

quired by the researcher. With this method different forms of covariate balance can

be achieved by design, including balance of means and higher order moments (Zu-

bizarreta, 2012), balance of marginal distributions or fine balance (Rosenbaum et al.,

2007), and balance of low dimensional joints or strength-k balance (Hsu et al., 2015).

1As argued in Stuart and Rubin (2007), dropping units results in a smaller sample size and, it

may appear, in a larger variance of the estimator, however better covariate balance may actually

improve the efficiency of the estimator (see section 18.2 of Snedecor and Cochran (1980)). Also, as

argued in Rosenbaum (2005b), dropping units may help to increase unit homogeneity which in turn

can reduce sensitivity to biases due to unobserved covariates.
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While there have been a number of simulation studies comparing different match-

ing methods, most of these studies are centered on methods that rely on the propensity

score, and to our knowledge none of them have examined these two optimal match-

ing methods. For this reason perhaps is that these methods are not used much for

research in medicine and other related disciplines, where they can play an impor-

tant role because of their optimality guarantees in terms of covariate distances and

balance. Furthermore, while there have been studies evaluating algorithms, calipers,

distances, and structures in matching, few have placed emphasis on how covariates

should be balanced. In practice, a widely used rule of thumb is to consider a matched

sample to be balanced if the absolute standardized differences in means of the co-

variates across treatment groups are smaller than 0.1. However, we are not aware

of a systematic study of this rule. Also, there are reasons to think that the balance

criteria should be data- and estimator-specific. In particular, we are interested in

studying questions like, in which cases would balancing only the means of the co-

variates be sufficient to remove biases when estimating the treatment effect with a

simple difference in means? When should stronger forms of covariate balance, such as

balance of marginal or low-dimensional joint distributions, be pursued? Although we

believe these questions should ultimately be addressed with formal statistical theory,

in this chapter we conduct a Monte Carlo simulation study to provide initial answers.

For this, in Section 2 we describe with more detail the matching methods that will

be compared. In Section 3, we explain the specifics of the simulation study, and in

Section 4 we show and discuss the simulation results. In Section 5 we explore addi-

tional considerations regarding the results. Finally, in Section 6 we conclude with a

summary and remarks.
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2.2 Matching methods

2.2.1 Greedy matching

Propensity score matching (Rosenbaum and Rubin, 1983) is, in all likelihood, the

most frequently used matching method in medicine and related sciences. Accord-

ingly, it has been studied extensively in the past (e.g., Austin (2009, 2011, 2014);

Dehejia and Wahba (2002); Gu and Rosenbaum (1993)), and thus, we considered it

in our simulation study as a benchmark. A commonly used algorithm for propensity

score matching is greedy or first-best nearest neighbor matching (Rubin, 1973). In

its most basic form, this algorithm first sorts the treated units in terms of the es-

timated propensity score (from highest to lowest, lowest to highest, or randomly),

and then matches the first treated unit to the closest available control, making it no

longer available for matching for the rest of the treated units. Closeness here may

be defined as the propensity score distance, which is the absolute difference of the

estimated propensity scores for two units (Rosenbaum and Rubin, 1985b). To avoid

poor matches, a caliper may be added to the propensity score distance so that a

control unit is matched to a treated unit only if it is within the caliper, and treated

units for which there are no controls available within the caliper are discarded. In

this manner, only a subset of the treated units are matched to controls. Simulation

studies by Austin (2009, 2011, 2014) suggest that the best way to implement greedy

nearest neighbor matching is by matching the treated units in random order and

without replacement, using a linear propensity score distance, and imposing a caliper

of 0.2 times the standard deviation of the linear propensity score. We followed these

recommendations in our implementation of this method.

2.2.2 Optimal subset matching

Greedy matching does not, in general, minimize the total sum of distances between

matched units (see chapter 10 of Rosenbaum (2002) for an example). In contrast,
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optimal matching (Rosenbaum, 1989) finds the assignment of treated and control units

that minimizes this global distance. In observational studies, the optimal matching

problem can be cast as an assignment problem (Burkard et al., 2009), a special case

of the minimum cost flow problem (Ahuja et al., 1993), that in turn can be written

as a linear program (Bertsimas and Tsitsiklis, 1997). While it is possible to solve

the assignment problem using the simplex algorithm, there exist specific algorithms

such as the Hungarian algorithm (Kuhn, 1955) or the auction algorithm (Bertsekas,

1981) that can better exploit the assignment problem’s particular structure. This

is important because these algorithms can be solved “quickly,” or more formally, in

polynomial time; that is, in a number of arithmetic operations that is characterized

by a polynomial function of certain parameters of the problem (as opposed to, say,

an exponential function (Papadimitriou, 1994)).

Typically, optimal matching uses all the available treated units and does not

have the flexibility to discard some treated units in the case where they are very

hard to match. A recently proposed matching method that selects a subset of units

is optimal subset matching (Rosenbaum, 2012). This is an elegant solution to the

optimal subset matching problem, which consists of formulating the problem as an

assignment problem on a modified matrix of distances between treated and control

units; see Rosenbaum (2012) for details. As mentioned in the introduction, this

method pursues two specific goals: to minimize the total sum of covariate distances

between the matched units, and to match as many pairs of treated and control units

as possible. Often these two goals are at odds with each other, but this trade-off is

regulated by means of a prespecified covariate distance threshold δ̃. For a given δ̃,

this method “prefers more treated subjects if their average increase in distance is less

than δ̃ and prefers fewer treated subjects if their average increase in distance is more

than δ̃, so δ̃ is the distance at which there is indifference” (Rosenbaum, 2012).2

2This is achieved by solving the assignment problem with an augmented distance matrix, in which

a certain number of columns, all with the value δ̃, are added to the original treated-control distance
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In our simulation study we used optimal subset matching with the prespecified

covariate distance threshold δ̃ set up at the 20% quantile of the distance matrix

before adding the caliper. For comparability with greedy matching we used the linear

propensity score distance. We implemented this method using the R functions in the

supplementary materials of Rosenbaum (2012), which in turn uses the R function

pairmatch in the optmatch package (Hansen and Klopfer, 2006).

2.2.3 Cardinality matching

The third matching method we studied was cardinality matching (Zubizarreta et al.,

2014). Cardinality matching is an optimal matching method that maximizes the

cardinality or size of the matched sample subject to constraints on covariate balance.

As described in Zubizarreta et al. (2014), the covariate balance constraints can be

quite general. In their weakest form, they can require the means to be balanced (see

Zubizarreta (2012) for details), but they can also require other forms of distributional

balance such as fine balance (Rosenbaum et al., 2007) and strength-k balance (Hsu

et al., 2015). To be precise, fine balance is a constraint on a nominal covariate that

forces its marginal distributions to be identical, but does not require treated and

control units to be matched within each of the categories of the nominal variable,

as in exact matching (see Chapter 10 of Rosenbaum (2010) for details). Strength-

k balancing provides a stronger form of balance by forcing low dimensional joint

distributions of a nominal covariate to be identical; specifically, out of K nominal

covariates, each of the
(
K
l

)
possible interactions of covariates is finely balanced for all

l ≤ k, so the joint distributions of each of the
∑k

l=1

(
K
l

)
combinations of covariates is

perfectly balanced. Clearly, strength-k balancing implies fine balance on each of the K

nominal covariates. By imposing these constraints on covariate balance, cardinality

matrix. These columns can be thought of as additional controls for which the distance to every

treated unit is δ̃, and the pairs that involve any of these controls will not be used. The number of

columns added is the number of treated subjects that will be allowed to be discarded.
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matching directly balances the original covariates and does not require estimation

of the propensity score or another summary of the covariates. Of course, stronger

requirements on covariate balance tend to yield smaller matched samples.3

From a computational standpoint, cardinality matching solves a linear integer pro-

gramming problem, and, while a polynomial time algorithm to solve the cardinality

matching problem has not been found, many instances of this problem can be solved

in time comparable to the user time of the two previous methods. In addition, if

finding an exact solution for an instance of the cardinality matching problem is too

demanding, then it is possible to find an approximate solution by solving a relaxation

of the integer programming problem (Zubizarreta and Kilcioglu, 2016). This approx-

imate solution may violate to some extent the covariate balancing constraints, but it

will be found in polynomial time. In some settings, the balancing constraints can be

formulated to require tighter balance than needed in view of the approximation.4

In our simulation study, we evaluated six types of covariate balance constraints

with cardinality matching: (i) the widely used rule of absolute standardized differ-

3 In cardinality matching, finding the largest balanced matched sample is followed by re-pairing

the treated and control units that constitute the matched sample to minimize their total sum of

covariate distances. It is known that the heterogeneity of the matched pair differences in outcomes

affects the sensitivity of results to biases due to unobserved covariates Rosenbaum (2005b). In

cardinality matching, if the covariates used in the re-pairing are predictive of the outcome, this will

reduce heterogeneity within matched groups and therefore sensitivity to biases due to unobserved

covariates (see Baiocchi (2011) for a general approach using the prognostic score, Hansen (2007)).

4At the present, exact and approximate solutions to the cardinality matching problem can be

found with the package designmatch for R Zubizarreta (2012); Zubizarreta and Kilcioglu (2016).

This package includes functions for the construction of matched samples that are balanced by design

which can be used, among others, for matching in observational studies with treated and control

units, as in this study, but also in settings with cases and controls (where the propensity score typi-

cally cannot be estimated) and under weaker identification assumptions with instrumental variables

(e.g., Yang et al. (2014)) and discontinuity designs Keele et al. (2015).
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ences in means, |d̂|,5 smaller than 0.1, |d̂| < 0.1; (ii) |d̂| < 0.01; (iii) |d̂| < 0.001;

(iv) fine balance by discretizing continuous covariates into 10 categories; (v) both fine

balance and |d̂| < 0.01; (vi) and both fine balance and |d̂| < 0.001. In some instances,

we considered strength-2 balancing using 10 categories to discretize the continuous

variables to balance their marginal distributions and 5 categories to balance the two-

dimensional joint distributions together with |d̂| < 0.001. We studied strength-2

balancing with 10 categories to balance both marginal and two-dimensional joints in

the additional considerations section.

2.3 Simulation study design

2.3.1 Data generating mechanisms

Our simulation study design combines elements of the designs in Gu and Rosenbaum

(1993) and Austin (2009). Each simulated dataset consisted of n = 250(1 + r) ob-

servations, where r is the number of controls available for each treated unit, so there

were 250 treated units and 250r controls. The variables in each dataset consisted

of three continuous outcomes and eight covariates, four of them continuous and four

dichotomous. More specifically, the dichotomous covariates were two rare and two

common Bernoulli random variables, all of them conditionally independent from each

other and from the continuous covariates given the treatment assignment indicator

Z. The continuous covariates followed a multivariate normal distribution with co-

variance matrix Σt and mean vector µt for the treated group, and Σc and µc for the

control group. The means of the eight covariates were selected in such a way that the

true standardized differences in means, given by d = µt−µc√
σ2
t+σ2

c
2

for the Normal variables

and d = pt−pc√
pt(1−pt)+pc(1−pc)

2

for the Bernoulli random variables (Rosenbaum and Rubin,

5d̂ refers to the standardized difference in means in the matched sample, while d refers to the

true standardized difference in means in the data generating mechanism.
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1985b), were either 0.2 or 0.5.

For the covariance matrices of the Normal random variables, we examined three

different scenarios of increasing complexity:

– Scenario 1, same variances in the treated and control groups with independent

covariates in both groups;

– Scenario 2, different variances between treated and control groups with inde-

pendent covariates in both groups;

– Scenario 3, different variances between treated and control groups with indepen-

dent covariates in the control group and correlated covariates in the treatment

group.

We generated the outcome Y from Y = f(X) + Z + ε where ε ∼ N (0, 4), and so

here the true treatment effect is one. We considered three different forms of f :

– Linear, f(x) = 3.5x1 + 4.5x3 + 1.5x5 + 2.5x7;

– Additive, f(x) = 3.5x1 + 4.5x3 + 1.5x5 + 2.5x7 + 2.5sign(x1)|x1|1/2 + 5.5x2
3;

– Additive with interactions, f(x) = 3.5x1 + 4.5x3 + 1.5x5 + 2.5x7 +

2.5sign(x1)|x1|1/2 + 5.5x2
3 + 2.5x3x7 − 4.5

∣∣x1x
3
3

∣∣.
The reader may notice that in each of these models only half of the covariates

were included. This mimics the fact that in practice the investigator does not know

exactly which covariates affect the outcome. As a consequence, in order to avoid

discarding a potentially relevant covariate, it is often preferable to match for more

rather than fewer covariates (see section 6.2 of Stuart (2010)).

To assess the performance of the matching methods when there is different compe-

tition among the treated units for controls, we considered two values for the number of

controls available per treated unit, r = 1, 2.6 We generated a total of 1000 replications

of each dataset and matched them with each method.

6We decided to fix the number of treated and control subjects, as in Gu and Rosenbaum (1993),
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2.3.2 Performance measures

We compared the performance of the matching methods on the grounds of four crite-

ria. First, we examined their ability to balance covariates. For this we used absolute

standardized differences in means, variance ratios, Kolmogorov-Smirnov distances,

and cross-match test statistics. More specifically, it has been said that absolute stan-

dardized differences in means smaller than 0.1 is evidence of covariate balance (Nor-

mand et al., 2001), but the fact that two covariates have distributions with similar first

moments does not imply that differences in other moments do not introduce bias in

the effect estimates (see sections 2.4 and 2.5; a related formal argument is proposition

4.2 of Zubizarreta (2015)). It is for this reason that we also calculated the variance

ratio and the Kolmogorov-Smirnov distance between the empirical distributions of

the continuous covariates across the treatment and control groups. Furthermore, to

evaluate balance of the joint distributions we also calculated the standardized cross-

match statistic (Rosenbaum, 2005a). Other interesting multivariate balance measures

are discussed in Franklin et al. (2014); Hansen and Bowers (2008); Iacus et al. (2012);

Imai et al. (2008), but the cross-match statistic yields an exact, distribution free

test for comparing two high-dimensional distributions, with close connections to the

procedures used to construct a matched sample and a nice interpretation in terms

of the propensity score (Heller et al., 2010). To calculate this statistic we used the

R package crossmatch (Heller et al., 2010) with the same propensity score distance

used to match with nearest neighbor and optimal subset matching.

The second criterion by which we compared the matching methods was sample

size. For a given level of covariate balance (that is, for a given level of bias reduction),

the largest matched sample should be preferred since this directly translates into more

efficient estimates (Haviland et al., 2007).

instead of randomly assigning to treatment each unit by means of another Bernoulli random variable,

as in Austin (2009), to have a fixed number of maximum possible pairs and be able to better compare

the number of units matched across simulations.
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Next we used covariate distances. Though covariate distances play a secondary

role in matching (they are often instrumental to achieve covariate balance), these

distances can have an intrinsic importance depending on the statistical methods to

be used after matching. If these methods explicitly use the matched-pair structure,

then reducing covariate distances between matched pairs will increase efficiency and

also reduce sensitivity to biases due to unobserved covariates (Rosenbaum, 2005b).

To make cardinality matching comparable to the other matching methods in terms

of distances, we re-paired the treated and control units initially selected by cardinal-

ity matching using optimal matching with a propensity score distance (as discussed

in Zubizarreta et al. (2014), re-pairing is actually the second stage of cardinality

matching).

Finally, we compared the matching methods in terms of simple treatment effect

estimates. We estimated the treatment effects using the difference in outcome means

between the treatment and control groups and recorded the estimated bias and RMSE

of these estimates. When looking at these values, it is important to keep in mind that,

even if a matching method managed to perfectly balance the covariate distributions

and consequently completely eliminate the bias due to observed covariates, the RMSE

of the estimator would still be
√

2V ar(ε)
m

= 2
√

2
m

, where m is the number of pairs

selected when matching. This also explicitly shows why, for a fixed level of covariate

balance, a larger sample size is preferable.

2.4 Results

2.4.1 Covariate balance

In this section we compare the matching methods in terms of covariate balance.

Figure 2.1 summarizes the distribution of absolute standardized differences in means

across simulated datasets in scenario 2 with r = 1 for four representative covariates.

Other scenarios, group sizes ratios, and covariates presented a similar pattern. In
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the boxplots, we can see that the differences in means after matching with nearest

neighbor and optimal subset matching varied to a fair extent from data set to data

set, in many occasions being even over the 0.1 standard deviations threshold. On the

other hand, with cardinality matching the absolute standardized differences in means

were always smaller than 0.1, 0.01 or 0.001, as designed by the investigator. The

evident performance difference takes place because with cardinality matching it is

possible to finely-tune covariate balance adjustments, while with the other matching

methods, covariate balance is attained indirectly, by matching on the propensity score

and hoping that this will result in the desired covariate balance.

Figure 2.1: Boxplots of absolute standardized differences in means in scenario 2 when

r = 1.
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Table 2.1 shows summaries of balance for marginal distributions. In particular, it
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shows the averages of the variance ratios and Kolmogorov-Smirnov distances for each

type of continuous covariate in every scenario when r = 1. The rest of the continuous

covariates presented a similar pattern, as well as the case of r = 2. We observe

that cardinality matching with fine balance constraints presented the variance ratios

closest to 1 and the smallest K-S distance values in all the scenarios. This suggests

that these are the best methods to balance the complete distribution of the covariates.

This advantage was even more evident when the distributions before matching differed

in more than just the mean (scenarios 2 and 3). When the variance ratio was originally

one (scenario 1), all the resulting matches ended up with a variance ratio close to one.

However, when the variances were different before matching, the only methods that

corrected this were the ones involving fine balance; the rest of them kept the same

ratio as before matching.

In short, the best marginal balance was obtained with cardinality matching when

we combined fine balance and tight mean balance constraints. This resulted in a

matching method that gave the best results on all marginal balance measures, in

practically every scenario and control sample size. It is important to note that only

requiring |d̂| < 0.1 was the worst method in all cases and measures. In some sense,

this calls into question the rule of absolute standardized differences in means smaller

than 0.1. Optimal subset was better than nearest neighbor in attaining marginal

balance, but both of them were worse than the other methods that required fine

balance.

Table 2.2 compares the values observed for the cross-match statistic in all the

simulation settings studied. For this measure we can distinguish three performance

groups in all settings: distance driven methods, mean balance only methods, and

fine balance methods. Fine balance methods produced the best results in terms of

multivariate covariate balance, despite the fact that they did not explicitly include

multidimensional balance constraints (such as strength-k balancing). The next best

group was the mean balance only group, with values that were at least closer to zero
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Table 2.1: Balance measures: variance ratio and Kolmogorov-Smirnov distance, r = 1

Matching method Scenario 1 Scenario 2 Scenario 3
σt
σc

K-S σt
σc

K-S σt
σc

K-S

X1 Before matching 1.0021 0.1196 0.5066 0.1636 0.5050 0.1636

Nearest neighbor 1.0065 0.0834 0.5128 0.1297 0.4999 0.1316

Optimal subset 1.0039 0.0823 0.5125 0.1291 0.5002 0.1315

Cardinality |d̂| < 0.1 1.0054 0.0886 0.5095 0.1354 0.4967 0.1350

Cardinality |d̂| < 0.01 1.0056 0.0721 0.5110 0.1214 0.4937 0.1249

Cardinality |d̂| < 0.001 1.0052 0.0724 0.5103 0.1216 0.4930 0.1251

Cardinality fine balance 1.0015 0.0574 0.9549 0.0654 0.9533 0.0655

Cardinality |d̂| < 0.01

+ fine balance 1.0008 0.0546 0.9543 0.0614 0.9528 0.0620

Cardinality |d̂| < 0.001

+ fine balance 1.0013 0.0542 0.9542 0.0613 0.9521 0.0615

X3 Before matching 1.0065 0.2292 0.5020 0.2602 0.5035 0.2622

Nearest neighbor 1.0175 0.0845 0.5450 0.1237 0.5136 0.1286

Optimal subset 1.0142 0.0833 0.5434 0.1234 0.5138 0.1281

Cardinality |d̂| < 0.1 1.0063 0.0931 0.5200 0.1361 0.5033 0.1416

Cardinality |d̂| < 0.01 1.0110 0.0727 0.5263 0.1179 0.5036 0.1233

Cardinality |d̂| < 0.001 1.0113 0.0724 0.5261 0.1180 0.5029 0.1233

Cardinality fine balance 0.9999 0.0595 0.9472 0.0684 0.9522 0.0670

Cardinality |d̂| < 0.01

+ fine balance 0.9999 0.0553 0.9471 0.0638 0.9512 0.0619

Cardinality |d̂| < 0.001

+ fine balance 0.9982 0.0550 0.9481 0.0635 0.9506 0.0618

Note: The values presented are the averages of the variance ratios and Kolmogorov-Smirnov dis-

tances observed with each method in each of the 1000 repetitions. Case r = 2 presents a similar

pattern.
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than before matching. The worst group was the distance driven methods group. This

group had the largest deviations from zero, in some occasions even larger than before

matching, even though these methods focused on the same distance used to compute

the cross-match statistic. Within this group, nearest neighbor was the best.

The ideal way to obtain k-dimensional balance would be to directly add this kind

of constraints in the optimization problem, that is, to perform strength-k balancing.

However, with 8 covariates, trying to obtain strength-2 balance for all the observed

covariates using fine categories for the continuous covariates can be very demanding

and leave us with very few observations in this simulation setting. In a posterior

section we discuss some results obtained when we perform strength-2 balancing on

relevant covariates, in a situation in which we have more information on the relation-

ship between the covariates and the outcome.

2.4.2 Sample sizes

Table 2.3 presents the average number of pairs matched with each method on every

scenario and control sample size. Naturally, when there were more controls available

per treated subject, every method was able to obtain a larger sample size. In our

example, the number of matched pairs when r = 2 was between approximately 30%

to 45% larger than the number of pairs matched when r = 1. The comparison among

matching methods was similar for both values of r.

Cardinality matching with |d̂| < 0.1 was always the matching method that pro-

duced the largest sample sizes, followed by the other mean balance methods, de-

creasing the sample size as the mean balance was tightened. For the other matching

methods, the comparison depended on the type of imbalances in the covariate dis-

tributions before matching. When they differed only by their means (scenario 1),

cardinality matching with fine balance methods kept more or a similar amount of

observations than the distance driven methods. This changed when the observed co-

variates were more imbalanced before matching (scenario 2 and 3). In these cases,
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Table 2.2: Cross-match test statistic

Matching method Scenario 1 Scenario 2 Scenario 3

r = 1 Before matching −3.8466 −3.8693 −3.5923

Nearest neighbor 2.4963 2.1126 2.2819

Optimal subset 4.1896 4.2104 4.1977

Cardinality |d̂| < 0.1 −1.2758 −1.2974 −1.1795

Cardinality |d̂| < 0.01 −1.5434 −1.4843 −1.4886

Cardinality |d̂| < 0.001 −1.5388 −1.4903 −1.4661

Cardinality fine balance −0.1898 −0.0293 0.0150

Cardinality |d̂| < 0.01 + fine balance −0.1922 0.0131 −0.0058

Cardinality |d̂| < 0.001 + fine balance −0.1665 −0.0352 −0.0086

r = 2 Before matching −4.3518 −4.1156 −3.9883

Nearest neighbor 4.4745 3.9573 4.3405

Optimal subset 5.4422 5.0051 5.2760

Cardinality |d̂| < 0.1 −2.0475 −1.1871 −1.6029

Cardinality |d̂| < 0.01 −2.3067 −1.7510 −2.0163

Cardinality |d̂| < 0.001 −2.2674 −1.7854 −2.0042

Cardinality fine balance −0.6880 −0.1225 −0.2265

Cardinality |d̂| < 0.01 + fine balance −0.6204 −0.1633 −0.2100

Cardinality |d̂| < 0.001 + fine balance −0.6092 −0.1872 −0.2291

Note: The values presented are the averages of the standardized cross-match statistics observed

with each method in each of the 1,000 repetitions. The values are standardized by subtracting the

expectation under the null hypothesis of equal distribution in SE units.
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the latter methods had larger sample sizes (between 8% and 20% higher) than the

fine balance methods. This happened because the fine balance methods had to dis-

card more observations in order to correct important distributional imbalances which,

as studied on the covariance balance section, the distance driven methods failed to

accomplish. Again, in all scenarios, the sample size for cardinality matching with

fine balance was smaller as tighter mean balance was required. Also, in every case,

optimal subset matched more pairs than nearest neighbor, although the difference

was small (less than 2%).

As we have seen, direct comparison of the sizes of the subsets selected by each

method is rather unfair. A more valuable comparison would be to observe the sample

sizes at a certain covariate balance level. This balance level cannot be set beforehand

with nearest neighbor and optimal subset matching. Nevertheless, we can notice that

cardinality matching with |d̂| < 0.01 and |d̂| < 0.001 produced a similar but better

covariance balance than those methods and they provided sample sizes at least 10%

larger than those observed with nearest neighbor or optimal subset matching. This

suggests that at certain level of covariate balance, the sizes of the subsets that result

from cardinality matching are larger than with the other methods.
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Table 2.3: Sample size

Matching method Scenario 1 Scenario 2 Scenario 3

r = 1 Nearest neighbor 145.39 144.92 148.84

Optimal subset 148.16 147.71 151.44

Cardinality |d̂| < 0.1 182.88 182.80 184.89

Cardinality |d̂| < 0.01 164.50 164.46 167.82

Cardinality |d̂| < 0.001 163.44 163.44 167.01

Cardinality fine balance 149.72 126.40 128.25

Cardinality |d̂| < 0.01 + fine balance 148.79 125.40 127.31

Cardinality |d̂| < 0.001 + fine balance* 147.30 124.36 126.29

r = 2 Nearest neighbor 192.49 200.13 199.95

Optimal subset 195.80 203.42 203.12

Cardinality |d̂| < 0.1 241.83 243.95 244.12

Cardinality |d̂| < 0.01 222.51 226.83 228.41

Cardinality |d̂| < 0.001* 220.57 224.90 226.73

Cardinality fine balance 208.11 185.24 186.89

Cardinality |d̂| < 0.01 + fine balance 207.12 184.13 185.83

Cardinality |d̂| < 0.001 + fine balance * 205.71 182.93 184.69

Note: The values presented are the averages of the sample sizes observed with each method in each

of the 1,000 repetitions.

* For some of the simulated datasets, these methods did not find a solution in the allotted time.

The averages do not include those cases.

2.4.3 Distances

Table 2.4 shows the average propensity score distance between matched pairs ob-

tained by each method. As expected, in terms of distances, the method that per-

formed the best was optimal subset matching, followed by nearest neighbor match-

ing. Optimal subset matching is designed precisely to minimize the global distance

between matched pairs while matching as many pairs as possible. In contrast, car-

dinality matching maximizes the number of observations that satisfy some balance

constraints. This explains the large difference between nearest neighbor matching
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Table 2.4: Average propensity score distance

Matching method Scenario 1 Scenario 2 Scenario 3

r = 1 Nearest neighbor 0.0377 0.0405 0.0367

Optimal subset 0.0241 0.0242 0.0223

Cardinality |d̂| < 0.1 0.3547 0.3606 0.3258

Cardinality |d̂| < 0.01 0.2444 0.2494 0.2315

Cardinality |d̂| < 0.001 0.2401 0.2450 0.2281

Cardinality fine balance 0.1417 0.1250 0.1154

Cardinality |d̂| < 0.01 + fine balance 0.1361 0.1208 0.1129

Cardinality |d̂| < 0.001 + fine balance 0.1305 0.1171 0.1114

r = 2 Nearest neighbor 0.0238 0.0251 0.0227

Optimal subset 0.0192 0.0196 0.0180

Cardinality |d̂| < 0.1 0.4341 0.3442 0.3612

Cardinality |d̂| < 0.01 0.3196 0.2570 0.2826

Cardinality |d̂| < 0.001 0.3117 0.2509 0.2764

Cardinality fine balance 0.2064 0.1133 0.1268

Cardinality |d̂| < 0.01 + fine balance 0.2023 0.1099 0.8898

Cardinality |d̂| < 0.001 + fine balance 0.1963 0.1082 0.1241

Note: The values presented are the averages of the average propensity score distance observed with

each method in each of the 1000 repetitions.

and cardinality matching with fine balance and |d̂| < 0.001 constraints, which was

the next best method. The average distance for the latter was between 3 to 8 times as

large as nearest neighbor, depending on the scenario and the control sample size. The

average distance increased as the distributional constraints to which the cardinality

matching method was subject to were relaxed, resulting in the following order from

best to worst: fine balance and |d̂| < 0.01, fine balance, |d̂| < 0.001, |d̂| < 0.01, and,

lastly, |d̂| < 0.1. The results hold for all the scenarios and for both control sample

sizes analyzed.
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2.4.4 Treatment effect estimates

We now study which method provided the best treatment effect estimates for each

form of relationship between the outcome and the observed covariates. Table 2.5

shows the bias and root mean square error (RMSE) for each method when r = 1.

Results for r = 2 were slightly better for all the matching methods than when r = 1;

however, the comparison among methods was similar.

When the outcome is a linear combination of the observed covariates, balancing

the means of the covariates suffices to remove systematic biases in the treatment effect

estimates. This means that the smaller the absolute standardized differences in means

are, the less biased is the treatment effect estimate. For instance, if we compare Table

2.5 with Figure 2.1, we notice that the methods with lower and less variable absolute

standardized differences in means were the ones that showed a closer and more precise

estimate. In this case, cardinality matching with |d̂| < 0.001 had the best results,

followed by |d̂| < 0.01. In some instances, these two showed a greater bias than

those obtained by distance driven methods; nonetheless, their variability was lower

and consequently the RMSE was, in some cases, half the RMSE obtained with the

distance driven methods. In general, when the outcome is linear, it appears to be

advisable to balance the means as closely as possible, as long as enough observations

are matched. Note that in our setting we were able to tighten the balance constraints

from |d̂| < 0.01 to |d̂| < 0.001 with practically no reduction in sample size.

When the outcome is not a linear combination of the observed covariates, which

will most likely be the case in practice, it appears that a stronger form of covariate

balance is needed. In this case, balancing only the means is not enough to remove

systematic biases, unless the distributions of the covariates only differ by their means

before matching (like in scenario 1) and the rest of the distributions remain balanced

after matching. In our simulation we can see that even though the bias of cardinality

matching with only |d̂| < 0.001 was among the smallest, its RMSE was more than

2.5 times the RMSE of cardinality matching that in addition to |d̂| < 0.001 required
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Table 2.5: Treatment effect estimation performance, r = 1

Matching method Scenario 1 Scenario 2 Scenario 3

Bias RMSE Bias RMSE Bias RMSE

Linear

Before matching 3.6210 3.6649 4.2477 4.2979 4.2741 4.3333

Nearest neighbor 0.0416 0.3601 −0.0058 0.4177 0.0506 0.4090

Optimal subset 0.0322 0.3414 0.0072 0.4053 0.0563 0.3887

Cardinality |d̂| < 0.1 0.8790 0.9086 1.0269 1.0537 0.9627 1.0062

Cardinality |d̂| < 0.01 0.0531 0.2299 0.0535 0.2244 0.0599 0.2302

Cardinality |d̂| < 0.001 0.0063 0.2233 −0.0042 0.2164 0.0115 0.2178

Cardinality fine balance 0.0857 0.2762 0.1074 0.3203 0.1018 0.3241

Card. |d̂| < 0.01 + fine balance 0.0248 0.2340 0.0219 0.2521 0.0285 0.2649

Card. |d̂| < 0.001 + fine balance 0.0038 0.2163 0.0010 0.2220 0.0094 0.2343

Card. |d̂| < 0.01 + strength-2* 0.2002 0.3887 0.1958 0.4347 0.1803 0.4469

Additive

Before matching 5.4213 5.5432 1.3089 1.9695 1.3327 2.0644

Nearest neighbor 0.0777 1.0287 −4.4930 4.7318 −4.8763 5.0937

Optimal subset 0.0479 0.9863 −4.4849 4.7225 −4.8469 5.0582

Cardinality |d̂| < 0.1 1.3111 1.5378 −3.0667 3.3076 −3.4446 3.6783

Cardinality |d̂| < 0.01 0.0790 0.8214 −4.5232 4.6963 −4.8355 5.0088

Cardinality |d̂| < 0.001 0.0051 0.8082 −4.6309 4.8011 −4.9353 5.1064

Cardinality fine balance 0.1312 0.4070 −0.1644 0.5608 −0.1507 0.5695

Card. |d̂| < 0.01 + fine balance 0.0323 0.3334 −0.3241 0.5544 −0.2963 0.5501

Card. |d̂| < 0.001 + fine balance −0.0123 0.2981 −0.3635 0.5173 −0.3419 0.5217

Card. |d̂| < 0.01 + strength-2* 0.2807 0.5872 −0.0950 0.7035 −0.1518 0.7392

Additive with interactions

Before matching 3.9501 4.1854 15.8023 16.2399 14.7405 15.2330

Nearest neighbor 0.0966 1.4362 10.7838 11.7255 10.7544 11.6885

Optimal subset 0.0829 1.4655 10.7368 11.6525 10.7005 11.6010

Cardinality |d̂| < 0.1 1.1222 1.6874 11.5650 12.2497 11.2694 11.9708

Cardinality |d̂| < 0.01 0.1338 1.2818 10.5861 11.3906 10.5498 11.3333

Cardinality |d̂| < 0.001 0.0822 1.2882 10.5860 11.4048 10.5906 11.4058

Cardinality fine balance 0.1022 1.0648 0.6323 2.3448 −0.8431 2.4767

Card. |d̂| < 0.01 + fine balance 0.0246 1.0653 0.6041 2.3249 −0.8564 2.5347

Card. |d̂| < 0.001 + fine balance 0.0219 0.9926 0.5875 2.1095 −0.8707 2.3721

Card. |d̂| < 0.01 + strength-2* 0.2649 0.7434 0.7491 1.6680 0.5846 1.4790

Note: The bias and RMSE observed with each method with r = 2 present a similar pattern as

shown in this table.

* Matches were obtained using the approximation algorithm in designmatch Zubizarreta and Kil-

cioglu (2016).
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fine balance. This occurred because the magnitude of the differences of the complete

matched distributions varied from dataset to dataset, which translated into differences

in the nonlinear part of the outcome and therefore in the treatment effect estimate.

When the covariate distributions differed in more ways than in their means (sce-

narios 2 and 3), the only methods that corrected these differences were the ones

involving fine balance and strength-2 balance. It is clear from Table 2.5 that these

distributional differences can affect to a great extent the bias and RMSE of the treat-

ment effect estimates. This depends on the importance and level of nonlinearity of

the nonlinear part of the outcome, but in our simulation we observed RMSEs 5 to 10

times higher on the rest of the methods compared to cardinality matching with fine

balance and strength-2.

In general, when the outcome is an additive function without interactions, the

ideal way of matching is with fine balance plus tight mean balance constraints,

whereas when the outcome is an additive function with interactions, it is best to

match with strength-k balancing, again with tight mean balance. As we mentioned

earlier, stronger requirements on covariate balance tend to yield smaller matched sam-

ples, and thus, matching with strength-k can be very demanding in terms of sample

size. Here, the strength-2 balancing considered for all the possible pairs of the eight

covariates resulted in matched samples that ranged in size between 35% and 40% of

the original number of treated units available when r = 1 and between 57% and 62%

when r = 2. However, if we had used 10 categories to balance both marginal and

two-dimensional joint distributions, sample sizes could have been as small as 5 obser-

vations, which would be unacceptable. In practice, the decision to require stronger

forms of covariate balance must be weighed against the resulting sample size.

In summary, if the outcome is known to be a linear function of the observed co-

variates, balancing the means would be enough. A good way to do this is to use

cardinality matching to directly balance the means as closely as the data allows with-

out sacrificing too much sample size. However, it is quite unlikely that this will be the
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case, so it is important to always consider the possibility that there are nonlineari-

ties. Not doing this can result in extremely biased estimations. Thus, if the treatment

effect is estimated with no further covariate adjustments, it is recommended to use

cardinality matching with both fine balance and tight mean balance constraints if the

outcome model is believed to be additive, and with strength-k balancing and tight

mean balance constraints if the model is conjectured to be additive with interactions.

2.5 Additional considerations

2.5.1 Incorporating prior knowledge about the relationship

between the observed covariates and the outcome

In this section we analyze the effect estimates when the investigator has different

levels of knowledge about the true functional form that relates the outcome and

the covariates, and this knowledge is included in the matching process by imposing

different forms of covariate balance. Here we focus on cardinality matching since

this method gives the investigator the flexibility to directly obtain different forms of

covariate balance. From the previous simulation results section, for each functional

form we selected the form of covariate balance that provided the best treatment effect

estimates and compared these estimates with the ones obtained when different levels

of knowledge were incorporated into the matching process. These levels of knowledge

will be referred to as “no,” “weak,” “strong,” and “complete knowledge” about the

true function that relates the covariates to the outcome.

Specifically, no knowledge refers to the situation where the investigator does not

know which covariates affect the outcome nor in which way (this is, linearly, non-

linearly without interactions, or nonlinearly allowing for interactions between the

covariates). Weak knowledge refers to the case where the investigator knows which

covariates are relevant in terms of the outcome, but does not know if they relate to the

outcome linearly, nonlinearly without interactions, or nonlinearly with interactions.
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Strong knowledge is the case where one knows not only which covariates are relevant,

but also, to some extent, the role they play in the outcome model. For example, this

would be the case if one knew which covariates were relevant in a non-linear way and

which covariates interacted between each other, but without specifically knowing the

non-linear functional form or how they interacted. Finally, complete knowledge refers

to the utopic situation where the investigator knows the true functional form of the

model that relates the covariates and the outcome. This case is only considered as

a benchmark to evaluate the rest of the matches. The forms of covariate balance

considered for each of these situations are described in Table 2.6.

Table 2.7 and Table 2.8 summarize the main results in terms of treatment effect

estimation and sample sizes. The results show that, when the outcome is linear,

having more previous knowledge does not necessarily translate into better treatment

effect estimation. However, having more information allows the distributional balance

constraints to be relaxed as needed, obtaining, as a consequence, larger sample sizes

and therefore more precise estimates. When the outcome is additive, again, the

RMSEs of the treatment effect estimate are close between each other when there is no

complete knowledge. Nonetheless, in our case, these RMSEs were between 50% larger

to more than twice the size obtained when there was complete knowledge. This is due

to the fact that continuous covariates were approximately balanced by balancing their

categorized versions instead of being perfectly balanced. When there are interactions,

it is possible to appreciate the great advantage of reducing the number of covariates we

match on, especially when only strength-2 balancing of a coarsely discretized version

of the continuous covariates is feasible, which was the case in this simulation setting.

Being able to perform strength-2 balancing with finer categories on the variables that

interact, significantly improved the estimation of the treatment effect compared to the

performance when only fine balance or a coarse version of strength-2 was obtained.

In short, if we want to minimize our estimates’ dependence on model assumptions,

the most appropriate choice is to match with the strongest constraints, that is, to
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require tight mean balance, fine balance, and strength-2 balance. Doing this will

result in smaller sample sizes, but the consequences of this will depend on the original

number of observations available. However, if relevant covariate distributions are not

properly balanced, the matching process will fail to remove an important part of the

original bias. If the available data does not allow the researcher to obtain this degree

of balance, some relaxation of constraints will be needed. It would be ideal if the

researcher had more information about the relationship between the outcome and the

covariates in order to use it to determine which constraints to relax. For instance, this

knowledge could be obtained by splitting the sample into a small planification sample

to learn features of the outcome model (for instance, by using LASSO regression with

the original covariates and transformations of them) and a larger analysis sample to

conduct the actual matching and outcome analyses (see Heller et al. (2009); Zhang

et al. (2011) for related ideas).

2.5.2 Larger number of covariates

We explored the performance of cardinality matching with a larger number of covari-

ates using approximation algorithms. With 50 covariates, we were not able to find an

exact solution within a one-hour time window, whereas by using the approximation

algorithm in designmatch (Zubizarreta and Kilcioglu, 2016) we typically found a so-

lution in a few minutes. This approximate solution occasionally violated some of the

covariate balancing constraints, but the resulting balance was systematically better

than the attained with the distance-based methods. In general, the outcome results

were qualitatively similar than with 8 covariates. We also explored the case with 100

covariates, but we were not able to find a solution because of memory constraints. In

general, for matching problems with large number of covariates, a practical way to

proceed is to use the approximate algorithm in designmatch and then either tighten

the balancing requirements if the balancing constraints are violated by too much, or

use this approximate solution as a “warm start” to find an exact solution in shorter
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amount of time. Broadly, the use of approximation algorithms has not been explored

much in matching in observational studies and it is an interesting area of research.

2.5.3 Heterogenous effects

When the effects are homogeneous, as in our simulation study, the average treatment

effect on the treated units is the same as the average treatment effect on the matched

treated units, but this is not necessarily the case when the effects are heterogeneous.

When the effects are heterogeneous, if the estimand is the average treatment effect

on the matched treated units, then all our results carry over, as the only source of

bias is that of imbalances in the functions of the covariates that intervene in the

true outcome model. If the estimand is the average treatment effect on the treated

units, and all the treated units cannot be matched due to limited overlap in covariate

distributions between the matched groups, then, in addition to the previous bias

due to imbalances, there will be another source of bias due to incomplete matching

(Rosenbaum and Rubin, 1985a). In settings where there is limited overlap in covariate

distributions, we find more meaningful to target the average treatment effect on the

matched treated units, as any estimate of the average treatment effect on the treated

units will rely to some extent on extrapolation. In view of this limitation imposed by

the data, one way to make progress without making further modeling assumptions is

by describing both the matched and unmatched samples (Hill, 2008). This gives a

basic understanding of the population to which the results of the matched analysis

can be generalized in principle (see Traskin and Small (2011) and Fogarty et al. (2016)

for related methods).

2.5.4 Correct specification of the propensity score model

Throughout we have estimated the propensity score using logistic regression, includ-

ing all the covariates as linear terms in the propensity score model (Austin, 2009,

2011, 2014). We also explored the changes that would be observed if the propensity
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score was estimated in a more flexible way, for example, by including higher order and

interaction terms of the covariates that intervene in the true outcome and propensity

score models. When the true outcome model was additive, it made a substantial

difference to include these terms in the propensity score model, as both bias and

RMSE were considerably reduced in scenarios 2 and 3 for the distance-based meth-

ods. Something similar happened when the true outcome model was additive with

interactions. In some of these instances, when the propensity score model was speci-

fied in accordance with the true outcome and propensity score models, bias was the

lowest with the distance-based methods, however the estimates were quite variable

and cardinality matching with fine balance still achieved lower RMSEs. In practice,

a good alternative for distance driven matching methods may be to estimate the

propensity score using a more flexible approach than logistic regression, for example,

by using ensemble methods as in Lee et al. (2010).

2.5.5 Limited overlap in covariate distributions

Assessing limited overlap or lack of common support in covariate distributions is a

common practice in observational studies. Its goal is to avoid extrapolating or fab-

ricating results from models that assume specific functional forms (see Section 18.2

of Rosenbaum (2010) and Chapter 14 of Imbens and Rubin (2015) for related dis-

cussions). This assessment is typically done, first, by trimming the sample on the

propensity score, and second, by checking balance (see, for instance, Crump et al.

(2009) and Imbens (2015)). In contrast, cardinality matching directly trims the sam-

ple by selecting the largest matched sample that satisfies the investigator’s require-

ments for covariate balance. Certainly, if there is no overlap in a given covariate, then

this matched sample will be empty. In a sense, since cardinality matching maximizes

the size of the matched sample that is balanced, the sample it finds constitutes the

portion of the data set of “maximal” overlap of the covariates distributions given the

requirements for covariate balance.



CHAPTER 2. EVALUATION OF SUBSET MATCHING METHODS AND
FORMS OF COVARIATE BALANCE 36

2.5.6 Sensitivity to hidden biases

In standard practice, the construction of a pair-matched sample is done in a single

step, by selecting pairs of treated and control units that are similar in terms of a

summary of the covariates and hoping that these paired groups will be balanced on

aggregate, in terms of each of the covariates. By contrast, in cardinality matching

the tasks of balancing and pairing are separated into two steps. First, the method

finds the largest pair-matched sample that is balanced, and then, with the balanced

sample in hand, it re-pairs the treated and control units minimizing the total sum of

distances in some of the covariates. It is known that reducing heterogeneity in pair

differences in outcomes results in reduced sensitivity to hidden bias (Rosenbaum,

2005b). Therefore, if the covariates used in re-pairing are strong predictors of the

outcome, this second stage will result in reduced sensitivity. This is something that

can be exploited in practice either by relying on substantive knowledge of which

covariates are predictive of the outcome or by learning them from the data itself (see

Baiocchi (2011) for an interesting related method).

2.5.7 Exploring the trade-off between covariate balance and

sample size

With any matching method that selects a subset of treated and control observations

there is a tension between covariate balance and sample size; this is, a bias-variance

trade-off between removing biases due to imbalances in observed covariates and using

a larger matched sample to thereby reduce variance. In this study, we have called

into question the extensively used rule of thumb of balancing covariates so that their

differences in means are not greater than 0.1 standard deviations, and gave broad

recommendations to balance covariates under general outcome models. Of course,

the applicability of these recommendations will depend on the available data and

the resulting sample size after matching. To select a particular balance-size matched
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design, one way to proceed in the spirit of King et al. (2017) is to plot the covariate

balance-sample size pairs in a two-dimensional plot to explore this trade-off and select

a design in the plot. Since this selection does not require the outcomes, it does not

affect the objectivity of the study nor the validity of the statistical tests (Rubin,

2008). As we mentioned in the introduction, how to optimally balance covariates is

an open question to which this simulation study has given some answers, and which

we believe should ultimately be addressed with formal statistical theory.

2.6 Summary and remarks

We presented a Monte Carlo simulation study of three multivariate matching methods

that select a subset of treatment and control observations: the widely used nearest

neighbor matching with propensity score calipers, and the more recently proposed,

optimal subset matching and cardinality matching. We evaluated the performance

of these methods according to four different criteria: covariate balance, sample size,

covariate distances between matched pairs, and treatment effect estimates. The main

findings are the following.

In terms of covariate balance, cardinality matching had the best performance

among the three methods. As shown in Figure 2.1, cardinality matching gives the

investigator a precise degree of control over covariate balance adjustments. For ex-

ample, the investigator can require the absolute standardized differences in means to

be smaller than 0.1, 0.01, 0.001, and so on, and at the same time directly balance

marginal and k-way joint distributions via fine balance and strength-k balancing. In

principle, if the investigator assigns more importance to some covariates than others,

he or she can balance these covariates more tightly by imposing stronger mean bal-

ance or distributional balance constraints on them. Unlike most matching methods,

with cardinality matching the propensity score is not needed to balance the covari-

ates because it directly balances the original covariates; however, with cardinality
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matching the propensity score may as well be balanced as an additional covariate.

In terms of the size of the matched samples, the results show that, for a given level

of covariate balance (e.g., for absolute standardized differences in means smaller than

0.01), cardinality matching systematically selects a larger subset of the observations.

Certainly, for stronger forms of covariate balance, the size of the matched sample will

be smaller.

In terms of covariate distances, optimal subset matching exhibits the best perfor-

mance among the three methods. While often considered an instrumental objective in

order to balance covariates, reducing covariate distances between matched pairs can

be an objective per se because it results into reduced heterogeneity between matched

pairs. This, in turn, translates into reduced sensitivity to biases due to hidden co-

variates under certain models of analysis (see chapter 4 of Rosenbaum (2002)).

The previous findings should not be surprising because cardinality matching is

designed to explicitly optimize sample size and directly constrain covariate balance,

and optimal subset matching is designed to minimize the covariate distances be-

tween matched pairs given a threshold distance. On the other hand, nearest neighbor

matching is a greedy method with no optimality guarantees regarding any of the three

previous comparison criteria (covariate balance, sample size, and covariate distances).

In terms of treatment effect estimates, our simulation study results suggest that,

with a simple differences in means estimator, better covariate balance translates into

better estimates. In general, the estimates obtained with cardinality matching have

lower RMSEs, except for the case in which it only requires the means to have absolute

standardized differences smaller than 0.1. In particular, when the outcome is known

to be exactly a linear combination of the observed covariates, tight mean balance ap-

pears to be enough to remove systematic biases. However, in practice the investigator

does not really know this, and the covariates may affect the outcome in a nonlinear

way, so it is preferable to match with fine balance for all the covariates in addition

to a tight mean balance constraint. The inclusion of strength-2 balance constraints
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for all covariates could significantly improve the estimation when there are important

interaction terms affecting the outcome. However, the number of these type of restric-

tions grows quickly with each additional covariate, and this could be very demanding

for some datasets. Thus, it is advised that if the researcher conjectures a possible

interaction term between some specific covariates, strength-k balancing for those co-

variates should be performed if feasible. Note that even when strength-k balancing is

not used, fine balance with mean balance constraints provides the best results when

estimating a treatment effect under all the scenarios and outcomes examined.

A last but important point observed in this simulation study is the relatively

poor performance in every aspect evaluated of the matching that only requires the

standardized differences in means of all covariates to be below 0.1. This suggests that

the common rule of thumb of balancing covariates so that their absolute standardized

differences in means are not greater than 0.1 is typically not enough, and that stronger

forms of balance should be pursued in practice when using a simple difference in means

effect estimator.
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Chapter 3

Stable Balancing Weights for

Marginal Structural Models

3.1 Introduction

Many of the most important questions in the health and social sciences relate to the

effect of exposures or treatments that are applied not once but in multiple occasions

through time. For example, what is the effect of AZT treatment on CD4 counts of

HIV patients? What is the impact of antirheumatic drugs on disability and death of

the elderly? What are the consecuences of experiencing poverty during childhood on

later life outcomes? In these settings, typical methods of adjustment for covariates,

such as standard matching or regression methods, fail to yield unbiased estimates

of treatment effects, since they would be conditioning on post treatment covariates

(Rosenbaum, 1984). A popular alternative to these methods is marginal structural

models (MSMs) (Robins et al., 2000).

Under a sequential ignorability assumption (Robins and Hernan, 2008), MSMs

yield unbiased treatment effect estimates by weighting each observation by the inverse

of the probability of receiving their observed treatment history given their history of

observed covariates. However, these probabilities are typically estimated by fitting a
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model, and the resulting weights can fail to adjust for observed covariates due to model

misspecification. Also, the resulting weights tend to yield very unstable estimates if

the predicted probabilities of treatment are very close to zero, which is often the case

in practice. To address both of these problems, instead of modeling the probabilities of

treatment, we take a design-based approach and directly find the weights of minimum

variance that adjust for the covariates across all possible treatment histories. As we

show, the proposed approach outperforms standard methods both in terms of bias

and variance across a variety of settings.

This chapter is organized in seven sections including this introduction. In Section 2

we provide the setup and notation, and review marginal structural models. In Section

3 we analyze the role of weighting in longitudinal studies. In Section 4 we present the

proposed methodology, and in Section 5 we test it, comparing it to standard and recent

approaches. In Section 6 we apply the proposed methodology to Chilean educational

data. Finally, in Section 7 we conclude with a summary and some remarks.

3.2 Overview of marginal structural models

3.2.1 Setup and notation

We assume that we have a random sample of n individuals that are followed over

a total of T + 1 time periods. In each period t = 1, 2, ..., T , subject i = 1, ..., n

receives a time-dependent binary treatment Zit and, before the treatment is received,

a set of time-dependent covariates Xit (usually a vector) is recorded. When the

time-dependent covariates predict future treatment assignments and outcome, while

also being affected by previous treatment assignments, they are referred to as time-

dependent confounders. Treatments and covariates take values from the sets Zt and

Xt respectively. The outcome Yi is observed at the end of follow up at time T +1. Let

Z̄it = {Zi1, ..., Zit} and X̄it = {Xi1, ..., Xit} be the treatment and covariates histories

up to time t, so Z̄it takes values from Z̄ t = Z1×· · ·×Zt and X̄it from X̄ t = X1×· · ·×Xt.
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Following the potential outcomes framework formalized by Rubin (1978) and ex-

tended to the longitudinal case by Robins (1986), we denote by Yi(z̄T ) the potential

outcome that subject i would have observed if he had received, possibly contrary to

fact, treatment history z̄T , for any z̄T ∈ Z̄T . In an analogous way, Xit(z̄t−1) rep-

resents the potential value of the covariates at time t for subject i under treatment

history z̄t−1 ∈ Z̄ t−1. This notation also implies that we are assuming no interference,

this is, the treatment assigned to subject j does not affect the potential values of

covariates or outcome of unit i (Rubin, 1980). Additionally, to be able to connect

observed quantities and potential values, we assume consistency, which means that

when subject i actually receives treatment sequence Z̄iT , the observed outcome and

covariates are the potential outcome and potential values of covariates under the ob-

served treatment sequence, this is, Yi = Yi(Z̄iT ) and Xit = Xit(Z̄i(t−1)), for each time

t = 1, ..., T .

3.2.2 Marginal structural models

MSMs are a class of models for some aspect, commonly the mean, of the marginal

distribution of potential outcomes (Robins et al., 2000). There are many potential

outcome variables Yi(z̄T ), so a parametric model is used to describe the relationship

between the treatment sequences z̄T and the potential outcomes

E[Yi(z̄T )] = g(z̄T ;β) (3.1)

where g is some known function and β is the parameter that needs to be estimated.

This model is different from the associational model

E[Yi | Z̄iT = z̄T ] = g(z̄T ;γ) (3.2)

and β and γ will be the same only when there are no observed or unobserved con-

founders. However, Robins et al. (2000) show that under the assumption of no un-

measured confounding (also called sequential ignorability),

Yi(z̄T )q Z̄it | X̄it, Z̄i(t−1) ∀z̄T ∈ Z̄T , ∀t ∈ 1, ..., T (3.3)
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and the positivity assumption,

f(z̄t−1, x̄t) > 0⇒ f(z̄t | z̄t−1, x̄t) > 0 (3.4)

it is possible to obtain an asymptotically unbiased estimator of the causal parameter

β by weighting the observed outcomes with the subject-specific weights

SWi =
T∏
t=1

f(Zit | Z̄i(t−1))

f(Zit | Z̄i(t−1), X̄it)
(3.5)

and getting the weighted regression estimator of γ. This estimator is called inverse-

probability of treatment weighted (IPTW) estimator and is called this way because

the denominator can be interpreted as the probability for subject i of receiving his

observed treatment sequence Z̄iT . In fact, if instead of SWi we use the weights

Wi =
1∏T

t=1 f(Zit | Z̄i(t−1), X̄it)
, (3.6)

the IPTW estimator will still be consistent and asymptotically normal (Robins et al.,

2000). However, these weights are quite unstable and an estimator based on them

may have a very large variance. For this reason, it is common to follow the suggestion

of using the stabilized weights, SWi. Unfortunately, even though these weights have

an improved variance performance compared to the Wi’s, as we discuss below, they

are still quite unstable themselves.

3.3 On the role of weighting in longitudinal studies

When the probabilities f(Zit | Z̄i(t−1), X̄it) are known or are modeled correctly, the

stabilized weights SWi will, on average, remove the confounding. This is, in the

weighted sample, the treatment assignment mechanism will be unrelated to the time-

dependent confounders. But what are we specifically trying to achieve with the

weights used to estimate a MSM? Ideally we would want to create a pseudo-population

in which the treatment assignment is not confounded, not only on average across



CHAPTER 3. STABLE BALANCING WEIGHTS FOR MARGINAL
STRUCTURAL MODELS 44

repeated samples, but in any given sample. So, what does this mean in the case where

we have time-dependent confounders that are also affected by previous treatment

assignments? In terms of a causal graph like the ones presented in Robins et al.

(2000) we would want to go from the structure in Figure 3.1(a) to the structure in

Figure 3.1(b), that is, to create a pseudo-population in which the red lines in Figure

3.1(a) are removed.

X1 X2

Z1 Z2

Y

U1 U2

(a) No unobserved confounders

X1 X2

Z1 Z2

Y

U1 U2

(b) No unobserved or observed confounders

Figure 3.1: Causal graphs

A common way to think about an unconfounded assignment mechanism is to

compare it with a randomized experiment, where, at each time t, the treatment as-

signment Zit does not depend on any of the previous covariate values Xit. Another

way to look at this is from the covariate balance standpoint. In the setting where we

have a binary point exposure, if the distribution of any covariate related to the out-

come is the same under both treatment groups, then we could say that the treatment

assignment mechanism is not related to these covariates, and conclude that there is no

confounding. In the longitudinal case, the balance requirements needed to conclude

unconfoundedness are not as straightforward and we need to see what would the goal

be in terms of covariate balance in this case.

When using marginal structural models, what we need is a population in which

E[Yi(z̄T )] = E[Yi | Z̄iT = z̄T ], however, to be able to get there we need to first
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analyze the role of the observed confounders in those expectations. Suppose we can

model the conditional expectation of Yi given covariates and treatment assignments

as E[Yi | X̄iT , Z̄iT ] = h(X̄iT , Z̄iT ;α), where h is a known function parametrized by α,

so that

E[Yi | Z̄iT = z̄T ] = E
[
E
[
Yi
∣∣ X̄iT , Z̄iT

] ∣∣∣ Z̄iT = z̄T

]
= E

[
h(X̄iT , Z̄iT ;α)

∣∣ Z̄iT = z̄T
]
.

(3.7)

For now, lets say h is linear in Xi’s (or that the part of h that involves Xi’s

can be reasonably well approximated by a linear function), this is, h(X̄iT , Z̄iT ;α) =

α0 + ζ(Z̄iT ;αZ) +
∑
t

αXtXit, with ζ a not necessarily known function parametrized

by αZ , then,

E[Yi | Z̄iT = z̄T ] = α0 + ζ(z̄T ;αZ) +
∑
t

αXt E[Xit | Z̄iT = z̄T ]. (3.8)

This way we can see that the key quantities are the conditional expectations E[Xit |

Z̄iT = z̄T ], t = 1, ..., T , and the conditions needed to estimate E[Xit(z̄t−1)], t = 1, ..., T ,

from them.

Now, in a population where there is no confounding, we have that E[Xit(z̄t−1)] =

E[Xit(z̄t−1) | Z̄i(t−1) = z̄t−1] = E[Xit | Z̄i(t−1) = z̄t−1]. So we need to create a pseudo-

population where E[Xit | Z̄iT = z̄T ] = E[Xit | Z̄i(t−1) = z̄t−1, Zit = zt] = E[Xit |

Z̄i(t−1) = z̄t−1] ∀zt which would give us the desired

E[Xt | Z̄T = z̄T ] = E[Xt(z̄t−1)] = E[Xt(z̄T )], (3.9)

where the last equality comes from the fact that an event in the future cannot have

a causal effect on the past.

When there is confounding of the effect of the treatment on the time varying

covariates, we need to proceed in a similar way as we did with the outcome. Let’s

say that E[Xit | X̄i(t−1), Z̄iT ] = hXt(X̄i(t−1), Z̄iT ; ηt) = ηt0 + ζXt(Z̄iT ; ηtZ) +
t−1∑
j=1

ηtXjXij,

with ζXt a not necessarily known function parametrized by ηtZ , then,
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E
[
Xit

∣∣ Z̄iT = z̄T
]

= E
[
E
[
Xit

∣∣ X̄i(t−1), Z̄iT
] ∣∣∣ Z̄iT = z̄T

]
= ηt0 + ζXt(z̄T ; ηtZ) +

t−1∑
j=1

ηtXj E
[
Xij

∣∣ Z̄iT = z̄T
]
.

(3.10)

This will yield the quantities of interest if E[Xij | Z̄iT = z̄T ] = E[Xij(z̄j−1)], j =

1, ..., t− 1, and ζXt(z̄t−1, zt−1; ηtZ) = ζXt(z̄t−1; ηtZ) ∀zt−1.

The first condition will be attained from the “balance” obtained from the previous

time points; the second one needs to be targeted directly. This can be done by forcing

the pseudo-population to satisfy

E

Xit −
t−1∑
j=1

ηtXjXj

∣∣∣∣∣∣ Z̄iT = z̄T

 = E

Xit −
t−1∑
j=1

ηtXjXij

∣∣∣∣∣∣ Z̄i(t−1) = z̄t−1, Zi(t−1) = zt−1


= E

Xit −
t−1∑
j=1

ηtXjXij

∣∣∣∣∣∣ Z̄i(t−1) = z̄t−1

 ∀zt,

(3.11)

for which the parameters ηtXj need to be estimated. Since the variables Vit = Xit −
t−1∑
j=1

ηtXjXij are not confounded by previous covariates, like in the last case, we have

that E[Vit(z̄T )] = E[Vit(z̄t−1)] = E[Vit(z̄t−1) | Z̄i(t−1) = z̄t−1] = E[Vit | Z̄i(t−1) = z̄t−1] =

E[Vit | Z̄iT = z̄T ].

In general, we can say that we need weights that, at each time t, for every past

treatment sequence z̄t−1, will balance the observed covariates through all possible

“future” treatment sequences zt. Figure 3.2 provides a visualization of the number

of conditions that need to be satisfied. As the reader may notice, this number grows

exponentially with T , the total number of periods.

However, this number may be reduced if one chooses a simpler marginal struc-

tural model E[Yi(z̄T )] = g(z̄T ; β). For example, we can use the model E[Yi(z̄T )] =

β0 +β1

∑
t

zt, with which we would be implying that the effect of the treatment on the

outcome depends only on the cumulative amount of treatment and not on the specific
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Figure 3.2: Balancing conditions for different study lengths T
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order in which the treatment was received. This means that we would only be compar-

ing the T +1 possible groups that have been assigned different cumulative amounts of

treatment, this is, E[Yi(z̄T )] could be expressed as E

[
Yi

(∑
t

zt

)]
= E[Yi(sT )] where

sT ∈ {0, 1, ..., T}.

Following the same reasoning as before, we can see that, without making any

further assumption on Xit’s, the balancing conditions that need to be satisfied at each

time t for every sequence z̄t−1 are E

[
Xit

∣∣∣∣∣ Z̄i(t−1) = z̄t−1,
T∑
j=t

Z(ij) = sT −
t−1∑
j=1

zj

]
=

E[Xit | Z̄i(t−1) = z̄t−1] ∀sT ∈ {0, 1, ..., T}, which still grows exponentially with T . If

in addition we assume that, as with the outcome, the observed covariates are affected

by the treatment only through the cumulative amount of treatment received, then

the balancing conditions that the pseudo-population should satisfy would be that,

for each time t and cumulative amount of treatment received before time t, st−1 ∈

{0, 1, ..., t− 1}, E

[
Xit

∣∣∣∣∣ t−1∑
j=1

Zij = st−1,
T∑
j=t

Zij = sT − st−1

]
= E

[
Xit

∣∣∣∣∣ t−1∑
j=1

Zij = st−1

]
,

∀sT ∈ {0, 1, ..., T}. The same applies for the Vit variables when the effect of the

treatment on covariates is confounded by other covariates.

Certainly, if we add lag structure assumptions, the number of conditions that need

to be satisfied will decrease considerably. On the other hand, if the model for the

conditional mean of the outcome is not linear in the observed covariates, or want

to use a higher order approximation of the function, then we would have to balance

higher order moments or obtain fine balance for a discretized version of the continuous

covariates.

3.4 Stable balancing weights in longitudinal stud-

ies

As stated before, inverse probability of treatment weights can be highly unstable,

which results in a large variance estimator and wide confidence intervals. In addi-
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tion, we can also fail to adjust for observed covariates due to model misspecification.

To address these problems, instead of modeling the conditional probability of each

subject receiving their own treatment history given its observed covariates, we take

a design-based approach and directly find the weights of minimum variance that bal-

ance covariates as determined by the researcher, following the analysis developed in

Section 3.3. To obtain the weights, we solve the convex optimization problem

minimize
w

‖w −w‖2
2

subject to

∣∣∣∣∣∣
∑

i∈Iz̄t−1
∩Izt

wiXitp∑
i∈Iz̄t−1

∩Izt

wi
−

∑
i∈Iz̄t−1

Xitp

|Iz̄t−1 |

∣∣∣∣∣∣ ≤ δz̄t−1p

∀z̄t−1∈Z̄t−1
∀zt∈Zt
t=1...,T
p=1,...,P∑

i∈Iz̄T
wi = 1

n

∣∣Iz̄T ∣∣ ∀z̄T ∈ Z̄T
wi ≥ 0 i = 1, ..., n

(3.12)

where w is the n-dimensional vector of weights wi’s, w is a vector with all entries

equal to the mean of the weights, Xitp is covariate p at time t for subject i, Iz̄t = {i ∈

{1, ..., n} : Z̄it = z̄t} and Izt = {i ∈ {1, ..., n} : Zit = zt} are the corresponding index

sets, and δz̄t−1p is a scalar determined by the researcher.

With the objective function in (3.12) we are minimizing the variance of the weights,

thus obtaining the most “stable” weights for a given level of covariate balance. The in-

equality constraints correspond to the balance conditions E[Xit | Z̄i(t−1) = z̄t−1, Zit =

zt] = E[Xit | Z̄i(t−1) = z̄t−1] from Section 3.3. With this, we are forcing the ex-

pectation on the left hand side in the pseudo-population to be close to the expec-

tation on the right hand side, which comes from the original population. Notice

that if we want to balance higher order moments of the covariates, or obtain fine

balance, we only need to augment the covariate matrix X with the corresponding

transformations of the covariates. When there are variables that confound the rela-

tionship between the time-dependent treatment and the time varying confounders,

then we would replace Xit’s for Vit’s, for t = 2, ..., T , after estimating the parame-

ters of the models E[Xit | X̄i(t−1), Z̄i(t−1)] = hXt(X̄i(t−1), Z̄iT ; ηt). Furthermore, the
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lag-structure and the “simplifications” of the marginal structural model would be

incorporated in the definition of the index sets. For example, when we assume

that both outcome and time-varying covariates are affected by the treatment only

through the total amount of treatment received, the index sets would be defined

as Ist =

{
i ∈ {1, ..., n} :

t∑
j=1

Zij = st

}
, for st ∈ {0, 1, ..., sT}, instead of Iz̄t , and

IsT =

{
i ∈ {1, ..., n} :

T∑
j=1

Zij = sT

}
, sT ∈ {0, 1, ..., T}, instead of IzT . This way

we can incorporate our structural assumptions in a convex quadratic programming

problem, which means that, if the problem has a solution, it can be found quickly.

It is important to note that when the problem is not feasible, we are still obtaining

relevant information about the data. In a certain way, this would be telling us that

the data cannot be balanced as tightly as we might need it to be. Moreover, even

though we could increase the δ’s to obtain a solution, we would know that we should

be cautious about the conclusions we draw from our analysis. It is always crucial

to check the balance obtained with any covariate adjustment method that does not

balance covariates directly, and this is generally performed for the one-time treatment

case. However, in the longitudinal case, this step is usually not performed. When

using marginal structural models, researchers are not used to evaluate the covariate

balance reached after weighting. In this regard, Jackson (2016) discusses the lack

of tools available for this kind of assessments and develops diagnostics to describe

residual confounding after weighting, along with a companion R package.

3.5 Simulation study

In this section we conduct two simulation studies to evaluate the performance of

the proposed method. Here, we compare the estimates obtained using the proposed

weighting method with the ones obtained using the inverse probability of treatment

weights in terms of bias, root mean square error (RMSE), and interval coverage and
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length. The probability of treatment is estimated using both, maximum likelihood

estimation and the robust estimation in Imai and Ratkovic (2015).

3.5.1 Data generating mechanism

The first simulation setup considered followed one of the scenarios studied in Imai

and Ratkovic (2015), where the treatment assignment model was correctly specified.

However, instead of using T = 3 time periods, we set T = 2 so that an acceptable level

of covariate balance (Chapter 2) could be achieved in most samples. Figure 3.3 shows

graphically the data structure in this simulation. Here, Xt refers to a 4-dimensional

continuous time-varying covariate, Zt is a binary treatment at each time point, and

Y is a continuous outcome at the end of the T = 2 time periods. Specifically, let

X ′itk ∼ N (0, 1), i = 1, ..., n, t = 1, 2, k = 1, 2, 3, 4,

Xit =
(
CitX

′
it1, CitX

′
it2,|CitX ′it3| ,|CitX ′it4|

)
, where Ci1 = 1 and Ci2 = 2 + 2Zi1−1

3
,

logit
(
P (Zit = 1)

)
= −Zi(t−1) +Xit1− 1

2
Xit2 + 1

4
Xit3 + 1

10
Xit4 +

(
−1

2

)t
, where Zi0 = 0,

and

Yi = 250 − 10
2∑
t=1

Zit +
2∑
t=1

(27.4Xit1 + 13.7Xit2 + 13.7Xit3 + 13.7Xit4) + εi, where

εi ∼ N (0, 25).

The marginal structural model used was E[Yi(z̄2)] = β0+β1z1+β2z2, that is, treat-

ment at different times could have different effects on the outcome. It is important to

notice that in this scenario, the relationship of the treatment and time-varying con-

founders is not confounded by other covariates. This means that we can use directly

the covariates Xt’s (and the desired transformations) as input in the optimization

problem without first obtaining their corresponding Vt variables.

The second design was constructed based on the first one and modified accordingly

to follow the data structure shown in Figure 3.4. Here we can see the following three

main differences with respect to the previous setting:

• There is an unobserved variable Ui that influences both the observed covariates
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X1 X2

Z1 Z2

Y

Figure 3.3: Data structure for simulation 1

and the outcome. In health related examples, a variable like this is sometimes

thought of as a “general health status” of individual i.

• The observed covariates at time t are influenced by their value at time t− 1.

• T = 3 time periods.

Specifically, again, let X ′itk ∼ N (0, 1), i = 1, ..., n, t = 1, 2, 3, k = 1, 2, 3, 4, and

Ui ∼ U(1, 5), i = 1, ..., n,

Xi1 =

(
1
Ui
X ′i11,

1
Ui
X ′i12,

∣∣∣ 1
Ui
X ′i13

∣∣∣ ,∣∣∣ 1
Ui
X ′i14

∣∣∣), with the following definitions for t = 2, 3,

Xitp = Xi(t−1)p + 1
Ui
X ′itp + Zi(t−1) for p = 1, 2, and

Xitp = Xi(t−1)p + min

{
Xi(t−1)p,max

{
−Xi(t−1)p,

1
Ui
X ′itp

}}
+ Zi(t−1) for p = 3, 4.

Treatment assignment is the same as in the previous setting and the outcome is given

by

Yi = 250− 10
2∑
t=1

Zit− 58.5Zi3 + 27.4Xi31 + 13.7Xi32 + 13.7Xi33 + 13.7Xi34 + εi, where

εi ∼ N (0, 25).

The marginal structural model used in this case was E[Yi(z̄3)] = β0 + β1

3∑
t=1

zt,

that is, the effect of the treatment on the outcome is a function of the total amount

of treatment received.

In both simulations, three different sample sizes were considered, n = 500, 1000,

and 2500. Finally, each data set was generated 2500 times.
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Figure 3.4: Data structure for simulation 2

3.5.2 Estimation

For each repetition in the simulations, four sets of weights were obtained:

• LSBW: stable balancing weights with all standardized differences in means

smaller than 0.01.

– Scenario 1: no further assumptions were made, so the original covariates

Xitp were balanced through all possible corresponding future treatment

sequences Zit given the past treatment history Z̄i(t−1).

– Scenario 2: since there is dependance between Xit and Xi(t−1), we need

to model the part in E[Xit | X̄i(t−1), Z̄iT ] that refers to this dependence

structure . The model used was E[Xit | X̄i(t−1), Z̄iT ] = ξ0
0 + ξ0

1Xi(t−1) when

Zi(t−1) = 0, and E[Xit | X̄i(t−1), Z̄iT ] = ξ1
0+ξ1

1Xi(t−1) when Zi(t−1) = 1. With

this model we are assuming that Xit is affected by X̄i(t−1) only through

Xi(t−1) and we are allowing this relationship to depend on the previous

treatment assignment Zi(t−1). Notice that since we do not need to specify

a functional form for the model ηt0 + ζXt(Z̄iT ; ηtZ) or any part of the hXt

that do not include Xit’s, these parts are incorporated in the coefficients ξ0
0

and ξ1
0 . After estimating the relevant parameters of the model, we balanced

the variables Vitp = Xitp − ξ̂
Zi(t−1)

1 Xi(t−1)p through all possible cumulative

amounts of treatment from time t to time T , given Zi(t−1). This is, we
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assumed that only the immediate previous treatment assignment, Zi(t−1),

has a direct causal effect on Xit.

• GLM: stabilized version of inverse probability weights using a logistic regression

model fitted separately for each time period for the denominator, and the sample

proportion of each treatment sequence for the numerator. The logistic regression

models were fitted using the glm function in R.

• CBPS: the corresponding robust estimation weights were obtained with the R

function CBMSM from the CBPS package (Fong et al., 2016) for the same logistic

regression model as in GLM. The twostep argument was set to TRUE, for a

two-step estimator, and msm.variance was set to “approx”, for the low-rank

approximation of the variance. Setting twostep = TRUE and msm.variance =

"full" was also explored, but the performance of the previous function argu-

ments was better and therefore those are the results presented in Subsection

3.5.3.

• True: stabilized inverse probability weights using the true probability of treat-

ment.

The parameters of the marginal structural model were estimated via weighted

LS regression using these four sets of weights. The parameters were also estimated

without weights (Unwt) to give an idea of how confounded the original data was.

95% confidence intervals using the robust sandwich variance estimator were recorded

to assess their coverage and average length.

3.5.3 Results

Figure 3.5 summarizes the distribution of the estimated parameters of the MSM,

β̂0, β̂1, and β̂2, across simulated datasets in the first simulation design. Here we

can observe that for inverse probability weights, using both the true probability and
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the GLM estimated probability, the distribution is indeed centered around the true

parameter value. However, the estimator is quite variable and in many instances,

the estimated value is very far from the true value, even farther than every point in

the unweighted estimator distribution. In these boxplots, we can also notice that the

estimates of the LSBW are quite stable, since, in addition to being approximately

unbiased, they also present a low variability, with practically no outliers, and all of

them still close to the true value of the parameters. Table 3.1, which complements

the boxplots, shows that its root mean square error (RMSE) is the lowest of all the

methods for every sample size. Regarding the performance of CBPS, we can see that

the estimates are less variable than with standard IPTW, with fewer outliers, but

more biased than without weighting. Due to this large bias, its RMSE is the largest

among all methods. We can also observe from Figure 3.5 and Table 3.1 that every

weighting method improves as the sample size increases, being the standard IPTW

methods the most benefited from the increase in sample size.

Table 3.2 shows how the previous performance analysis translates into confidence

intervals. We can see that, even using the robust sandwich variance estimator, the

actual coverage of the intervals obtained using the standard IPTW is lower than the

nominal coverage of 95%. From these two methods, the coverage of the intervals

obtained with the estimated probability was higher than when the true probability

was used, while their average length was only slightly bigger. We can also say that

the intervals obtained using LSBW are quite conservative, since its actual coverage is

higher than 99% for all the three parameters and with the 3 sample sizes. Moreover,

these confidence intervals are narrower than the standard IPTW ones. The intervals

obtained using CBPS practically never covered the true value of the parameters.

The results obtained for the second setting are rather similar to the first one.

Figure 3.6 shows the corresponding boxplots that summarize the distribution of the

estimates of the two parameters of the marginal structural model used in the second

setting, β̂0 and β̂1. Again, the estimates obtained using inverse probability weights
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Figure 3.5: Boxplots of the estimated parameters in the first setting
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Table 3.1: Bias and RMSE of the estimated parameters of the MSM in the first

setting

Method β̂0 β̂1 β̂2

Bias RMSE Bias RMSE Bias RMSE

n = 500 Unwt -38.54 38.91 23.79 24.63 49.78 50.19

True -3.55 15.41 1.19 18.55 4.93 18.31

GLM -3.46 14.12 1.14 18.05 4.70 15.68

CBPS -54.19 54.66 34.31 35.19 67.00 67.54

LSBW -0.73 3.72 0.43 6.06 0.92 1.19

n = 1000 Unwt -38.19 38.37 23.69 24.10 49.34 49.54

True -2.28 11.36 1.35 13.98 2.98 13.98

GLM -2.25 10.70 1.33 13.72 3.00 12.34

CBPS -54.02 54.25 34.72 35.20 66.63 66.91

LSBW -0.68 2.66 0.31 4.29 1.00 1.12

n = 2500 Unwt -38.31 38.38 23.89 24.05 49.53 49.61

True -1.02 9.16 0.83 11.87 1.55 11.23

GLM -0.97 8.53 0.76 11.49 1.49 10.10

CBPS -54.13 54.23 35.10 35.28 66.79 66.91

LSBW -0.78 1.79 0.54 2.73 1.09 1.14

Note: In the case where n = 500, in four of the 2500 repetitions the optimization problem of the

LSBW was infeasible. These cases were not included in the bias and RMSE computations.
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Table 3.2: Coverage (%) and average length of 95% confidence intervals using the

robust sandwich variance estimator in the first setting

Method β0 β1 β2

Coverage Length Coverage Length Coverage Length

n = 500 Unwt 0.00 20.66 4.24 24.81 0.00 24.43

True 81.60 42.47 89.12 51.11 79.88 50.16

GLM 84.60 42.87 90.96 51.61 86.44 50.78

CBPS 0.00 23.07 0.48 27.20 0.00 26.48

LSBW 99.92 30.56 99.60 36.55 100.00 35.99

n = 1000 Unwt 0.00 14.62 0.00 17.58 0.00 17.30

True 83.64 34.36 90.80 41.77 81.64 40.99

GLM 87.36 34.61 92.92 41.95 88.16 41.24

CBPS 0.00 16.31 0.00 19.31 0.00 18.76

LSBW 99.92 21.02 99.52 25.14 100.00 24.74

n = 2500 Unwt 0.00 9.25 0.00 11.12 0.00 10.94

True 86.04 25.85 91.40 31.81 84.60 31.13

GLM 88.88 26.00 93.20 31.94 89.52 31.27

CBPS 0.00 10.28 0.00 12.22 0.00 11.84

LSBW 99.92 13.09 99.64 15.70 100.00 15.43
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with the true probability and the probability estimated using GLM, were centered

around the true values of the parameters, but with substantial variability and many

outliers. On the other hand, LSBW estimates were also centered around the true

values of the parameters while achieving reduced variability with very few outliers.

The RMSEs shown in Table 3.3 quantify this comparison. Here we can see that

the RMSEs from the former methods were, in this case, more than 2.5 times those

of LSBW. It is interesting to note that this difference became more pronounced as

the sample size increased. CBPS estimates presented less outliers than the standard

IPTW methods, however, in this setting they were in general more variable than the

latter and more biased than the unweighted estimates.

As an alternative way to study the accuracy and precision of the methods, Table

3.4 shows the coverage of the intervals and their average length. Like in the first

setting, we can see that the actual coverage of the standard IPTW was lower than

the 95% nominal coverage, with the GLM method being better than when the true

probability was used. LSBW achieved a coverage greater than 95%, while presenting

the shortest intervals of all the weighting methods. The intervals obtained using the

CBPS weights were slightly narrower than the other IPTW ones, but only covered

the true parameter values in very few occasions.

In general, from the two simulations we can see that, in these settings, the pro-

posed LSBW managed to reduce the variability of the MSM parameter estimates

compared to the other methods, while staying approximately unbiased.
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Figure 3.6: Boxplots of the estimated parameters in the second setting
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Table 3.3: Bias and RMSE of the estimated parameters of the MSM in the second

setting

Method β̂0 β̂1

Bias RMSE Bias RMSE

n = 500 Unwt -9.62 9.86 6.30 6.43

True -0.69 4.19 0.37 2.37

GLM -0.67 4.23 0.34 2.26

CBPS -14.36 14.78 9.98 10.20

LSBW -0.04 1.64 0.06 0.81

n = 1000 Unwt -9.59 9.71 6.29 6.36

True -0.26 3.95 0.14 2.19

GLM -0.26 4.44 0.14 2.16

CBPS -14.61 14.83 10.19 10.30

LSBW -0.03 1.16 0.06 0.58

n = 2500 Unwt -9.63 9.68 6.31 6.33

True -0.27 2.79 0.12 1.58

GLM -0.26 2.61 0.12 1.47

CBPS -14.89 14.99 10.38 10.43

LSBW -0.06 0.73 0.07 0.36
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Table 3.4: Coverage (%) and average length of 95% confidence intervals using the

robust sandwich variance estimator in the second setting

Method β0 β1

Coverage Length Coverage Length

n = 500 Unwt 0.60 8.50 0.20 5.02

True 88.48 12.86 88.64 7.15

GLM 90.16 13.00 91.92 7.23

CBPS 0.92 12.25 0.04 7.35

LSBW 99.48 9.74 99.92 5.49

n = 1000 Unwt 0.00 6.04 0.00 3.56

True 88.08 10.40 88.92 5.78

GLM 90.80 10.43 91.68 5.85

CBPS 0.00 8.86 0.00 5.31

LSBW 99.56 6.78 99.88 3.82

n = 2500 Unwt 0.00 3.83 0.00 2.26

True 89.40 7.36 89.48 4.14

GLM 90.84 7.41 91.68 4.16

CBPS 0.00 5.76 0.00 3.45

LSBW 99.60 4.27 99.84 2.40

3.6 Case study: education voucher system in Chile

To show how the proposed stable balancing weights work on a real application, we

implement the method on a controversial matter on Chilean education. The education

reform in Chile in the 80’s introduced a voucher system where public and private

schools would receive a payment that depends on the number of students they have

and their daily attendance. Since the establishment of this system, the number of

students in private schools has been increasing, especially in the last decade. In this

period, the percentage of students in public schools decreased from 51% in 2014 to

37% in 2015, while the percentage of students in subsidized private schools increased
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from 42% in 2014 to 55% in 2015 (MINEDUC, 2016). The rest of the students attend

private non-subsidized schools that are entirely funded by student tuition, this is,

they don’t receive any public funding.

Following these changes, there has been an open debate on whether subsidized

private schools, also referred to as voucher schools, provide a better education than

their public counterpart. This question has been analyzed and discussed from dif-

ferent angles in several studies (Anand et al., 2009; Hsieh and Urquiola, 2006; Lara

et al., 2011; McEwan, 2001; Mizala and Romaguera, 2001; Sapelli and Vial, 2002,

2005; Zubizarreta and Keele, 2017), arriving at different conclusions. For instance,

in Zubizarreta and Keele (2017) the outcome used was the 2006 language and math

SIMCE scores from tenth grade students and use student level data from 2004, when

students were in eighth grade, and school level measurements from 2003 to do a multi-

level matching. They conclude that the hypothesis that attending a private subsidized

school has no effect on test scores cannot be rejected. Lara et al. (2011) compare 2006

test scores from tenth grade students that moved at the end of the eighth grade from a

public school to a private voucher school with those of the students who stayed in the

public school system. They use propensity score methods and the changes-in-changes

approach (Athey and Imbens, 2006) using the test scores of the same students in

2004, when they were in eighth grade. This is, they study the effect of being two

years in private voucher school after being in a public school. From both approaches,

they conclude that the effect is positive but very small and can be non statistically

significant depending on the method used. Alternatively, other studies (Anand et al.,

2009; Mizala and Romaguera, 2001) that use cross sectional data from students in

tenth grade had found that attending a private voucher school has a positive effect

of 15% to 20% of a standard deviation on test scores.

Unlike the previous studies, in our case study we explicitly consider the fact that

education is cumulative, so we analyze the effect that the total number of years a

student spends in a private voucher school during secondary education (from eleventh
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year to twelfth year) has on the scores they obtain on the University Selection Test

(PSU, Prueba de Selección Universitaria in Spanish).

3.6.1 Data

SIMCE standardized tests are administered to students in fourth year every year and

is alternated between students in eighth year and tenth year each year. In 2013,

the students that took the eighth grade exam in 2011, also took the tenth grade

exam, providing another set of test scores for the same students. Using student’s

unique identifiers, SIMCE data from 2011 to 2014 were merged to the PSU data from

2015. This way, we have panel data for the students who presented the PSU on 2015

that includes their SIMCE test scores when they were in eighth (2011) and tenth

(2013) grades, as well as other background characteristics collected in those years.

Yearly data from MINEDUC, including student’s GPA and school attendance, was

also included in the panel.

Only students that remained in urban Santiago City area from 2011 to 2015 were

considered in the study. Students that at any point of this period switched to a

private non-subsidized school or for which school dependency was not available were

excluded, as well as those without observed math and language PSU scores. The

exclusion criteria was satisfied by 26,389 observations.

The baseline covariates that were balanced were father’s education (5 categories),

mother’s education (5 categories), household income (7 categories), and gender. The

time varying covariates to be balanced were, from 2011 and 2013, school’s socioeco-

nomic group (5 categories), language score, and math score, and for every year from

2011 to 2014, student’s GPA and attendance.

3.6.2 Results

The outcomes in this study were the 2015 PSU language score and math score. Both

were analyzed separately but using the same marginal structural model, E[Y (z̄T )] =
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β0 + β1

4∑
t=1

zt, where zt = 1 indicates going to a private voucher school on year t and

t = 1 represents the year 2012. The observed covariates were balanced in accor-

dance with this model. SIMCE language and math scores from 2013 were assumed

to depend on previous treatment assignments in a cumulative way and linearly on

the 2011 corresponding score. Imposing mean balance for all the covariates repre-

sented a total of 205 balance conditions. The general balance achieved was absolute

standardized differences in means lower than 0.05. Figure 3.7 shows a summary of

the improvement of balance for all covariates for all times and Tables 3.5 and 3.6

show in detail the balance of the demographic covariates before weighting and after

weighting, respectively. Table 3.5 shows that in many instances, the balance was good

in the unweighted data. However, in other cases, in particular for the students who

spent two years in a private voucher school, the absolute standardized differences in

means were higher, but balanced after weighting. In Figure 3.7, we can observe that

for every covariate, time, and total of years in a voucher school, a tight balance was

obtained, even for the most unbalanced cases.

Using these weights, the effect of each additional year in a private voucher school

on PSU language and math scores was estimated (Table 3.7). According to these

estimates, each additional year a student from urban Santiago City area spends in

a private voucher educational institution in middle school has a significant positive

average effect of 3.85 points (3.5% of a standard deviation) on their PSU language

score and a significant positive average effect of 4.83 points (4.4% of a standard

deviation) on their PSU math score. These results represent a small effect that may

not be deemed relevant when we consider the effect of one year at a time. However,

if we compare four years of continuous private voucher education to four years of

continuous public education, the cumulative effect of attending a voucher school is an

average increase of 15.40 points in the language score and 19.32 in the math score.

This represents 14.0% and 17.6% of a standard deviation, which is close to what some

consider a meaningful effect.
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Figure 3.7: Boxplots of absolute standardized differences in means before and after

weighting
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Table 3.5: Absolute standardized differences in means of baseline demographic covari-

ates for each possible number of total years spent in private voucher school without

weighting

Years spent in a private voucher school

Covariate 0 1 2 3 4

Father’s education

Primary 0.1118 0.0415 0.3962 0.2692 0.1163

Secondary 0.0374 0.082 0.0168 0.0431 0.0107

Technical 0.0975 0.0732 0.2288 0.1539 0.0755

College 0.0496 0.1199 0.2928 0.2395 0.0985

Missing 0.0509 0.0204 0.0240 0.0194 0.0059

Mother’s education

Primary 0.1839 0.012 0.4332 0.302 0.1354

Secondary 0.0868 0.0882 0.0153 0.004 0.0078

Technical 0.1067 0.0993 0.2887 0.1803 0.0900

College 0.0613 0.0838 0.2101 0.1788 0.076

Missing 0.0521 0.0345 0.0420 0.0357 0.0017

Household income category (in 1000 pesos)

[0,100) 0.0994 0.0043 0.1596 0.1588 0.0658

[100-200] 0.1637 0.0792 0.3717 0.2454 0.1191

(200-400] 0.0070 0.0557 0.0650 0.0755 0.0272

(400-600] 0.1021 0.0039 0.1915 0.1039 0.0554

(600-1400] 0.1533 0.1331 0.2684 0.2361 0.1120

>1400 0.0636 0.1279 0.1639 0.1610 0.0720

Missing 0.0603 0.0365 0.0411 0.0363 0.0004

Female 0.1540 0.0439 0.0236 0.0204 0.0156
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Table 3.6: Absolute standardized differences in means of baseline demographic co-

variates for each possible number of total years spent in private voucher school after

weighting

Years spent in a private voucher school

Covariate 0 1 2 3 4

Father’s education

Primary 0.0143 0.0406 0.0472 0.0218 0.0190

Secondary 0.0382 0.0451 0.0412 0.0179 0.0099

Technical 0.0259 0.0500 0.0351 0.0441 0.0207

College 0.0500 0.0284 0.0393 0.0500 0.0421

Missing 0.0468 0.0134 0.0045 0.0470 0.0212

Mother’s education

Primary 0.0470 0.0500 0.0092 0.0500 0.0457

Secondary 0.0500 0.0475 0.0338 0.0320 0.0109

Technical 0.0257 0.0089 0.0500 0.0433 0.0274

College 0.0056 0.0398 0.0500 0.0321 0.0325

Missing 0.0328 0.0361 0.0197 0.0384 0.0126

Household income category (in 1000 pesos)

[0,100) 0.0344 0.0154 0.0500 0.0227 0.0283

[100-200] 0.0414 0.0048 0.0457 0.0361 0.0458

(200-400] 0.0094 0.0418 0.0500 0.0268 0.0020

(400-600] 0.0500 0.0366 0.0500 0.0202 0.0208

(600-1400] 0.0500 0.0406 0.0262 0.0500 0.0458

>1400 0.0064 0.0500 0.0325 0.0500 0.0342

Missing 0.0500 0.0461 0.0500 0.0327 0.0147

Female 0.0500 0.0500 0.0500 0.0500 0.0112
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Table 3.7: Estimated effect of each additional year in a private voucher school on

PSU test scores

Outcome β̂1 95% C.I. p

Language 3.85 (1.68,6.02) 5.17e-04

Math 4.83 (2.64,7.02) 1.55e-05

It is important to acknowledge the fact that the assumption of no unobserved

confounders may not be completely satisfied. For instance, voucher private schools

are allowed to charge additional tuition (copayment) to students. This additional

payment that is different for each school could lead schools with higher fees to be more

similar to private non-subsidized schools, and schools with lower fees more similar to

public schools. These could attract different types of students among private voucher

schools but could also affect the quality of the education in each school. It would be

interesting to analyze not only the effect of the type of school attended, but also the

effect of the total amount of tuition paid by students. However that information was

not available to use in this study.

3.7 Summary and concluding remarks

Marginal structural models are a widely used tool to estimate the causal effect

of a time-dependent treatment on some outcome variable in the presence of time-

dependent confounders. The inverse-probability of treatment weights, when known

or modeled correctly, appropriately adjust for these type of confounders without in-

troducing post-treatment bias. However, a main concern with these weights is that

they tend to be somewhat unstable, which leads to MSM parameter estimators with

large variance.

In this work we introduced a new method to obtain weights for estimation of

MSM parameters that are stable and at the same time hold balancing properties. We
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studied the role of weighting in the longitudinal setting and what the weighted sample

needs to satisfy in order to, in some sense, unveil the distribution of the potential

outcomes. This gives some guidance into the type of covariate balance a researcher

needs to target to obtain unbiased estimates of the MSM parameters and eventually

determine how valid his conclusions are.

A set of simulations were conducted to compare the performance of the proposed

method with standard and more recently proposed estimation methods. In these

settings, the stable balancing weights outperformed the other methods considered,

both in bias and RMSE. This shows estimation of MSM parameters can improve

when the specific goal is considered into the process of obtaining the weights, which,

in this case, was reduced variability and balance as specified by the researcher. The

simulation shows that some of the other methods are indeed unbiased, which is an

attractive property for an estimator. However, since in most cases we can only run

an experiment or collect data once, we cannot rely on a property that only tells us

that in average the estimator will be close to the true value. We need the estimated

value to be close for every possible realization. Furthermore, the proposed method

can help the researcher decide if the available data is adequate to estimate the MSM

that he is using or if further assumptions or a simpler model are needed.

In addition to the simulations, an application on Chilean educational data was

presented to show how the proposed method works with real data. The causal ques-

tion of interest was to determine the effect that each additional year a student spends

in a private voucher school has on the student’s University Selection Test scores. The

estimated effect for each additional year was positive and significant, but small and

possibly not relevant in educational policy. However, when we considered the cumu-

lative effect that four years of continuous voucher school education have on PSU test

scores, the effect size was close to what some consider a meaningful effect.
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Chapter 4

Optimal Weighting for

Observational Studies with

Multi-Valued Treatments

4.1 Introduction

To estimate causal effects in observational studies when the treatment is binary,

researchers typically rely on the propensity score to balance observed covariates, either

by matching, weighting, or stratifying. While it has the attractive property of being

the coarsest balancing score (Rosenbaum and Rubin, 1983), the propensity score

usually has to be estimated and will not yield the desired results if the model is

misspecified. Additionally, the propensity score balances covariates on average across

repeated samples, not on any given sample. To address these limitations, other

methods for binary treatments that directly balance observed covariates have been

proposed (Imai and Ratkovic, 2014; Zubizarreta, 2012, 2015).

Generalizing the propensity score to multiple treatments is more complicated and

there is no standard way of using it in matching and stratification. Lopez and Gut-

man (2017) provide a review on estimation methods for causal effects with multiple
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treatments and describe methods that go from using the binary propensity score to

compare pairs of treatments (Lechner, 2001, 2002) to their proposed method of vector

matching. Vector matching is an algorithm in which subjects with similar values on

the complete vector of generalized propensity scores are matched using available soft-

ware. An alternative approach to matching is to use inverse probability of treatment

weights (IPTW) (Imbens, 2000). However, the presence of extreme weights that re-

sult from conditional treatment assignment probabilities that are very close to zero

can generate unstable estimates with large variance. Additionally, as in the binary

case, if the probabilities are not modeled correctly, which is more likely when there

are more than two treatments, or if the weights are truncated to reduce variability of

the estimates, the balancing properties of these weights will not hold.

To address the latter problems that may arise when using inverse probability

weights, different methods to estimate the treatment probabilities have been pro-

posed. Imai and Ratkovic (2014) introduced the covariate balancing propensity score

(CBPS) in which balance conditions are incorporated in the estimation process within

the generalized method of moments or empirical likelihood framework (Fong et al.,

2017). Another approach that has been proposed is the use of generalized boosted

models (GBM) to estimate the treatment assignment probabilities (McCaffrey et al.,

2013, 2004). GBM is a flexible nonparametric model that iteratively fits multiple

regression trees and has the advantage that it can incorporate the covariate balance

into that process by means of a tuning parameter. Neither of these methods, however,

considers in the estimation process the problem of the variability and extremeness of

the weights.

In this chapter we derive robust weights for observational studies with multi-valued

treatments. In particular, we generalize the stable balancing weights of Zubizarreta

(2015) from the binary treatment case to the case in which there are multiple treat-

ment categories. Stable balancing weights (SBW) address the high variability problem

while balancing at the same time the observed covariates directly without the need
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to estimate treatment assignment probabilities.

The remainder of the chapter is organized as follows. In Section 2 we establish the

setup, notation, and assumptions used throughout the chapter. Section 3 describes

the proposed method and explains the rationale behind it. Section 4 presents a sim-

ulation in which the proposed methodology is compared to other currently available

methods and in Section 5 we obtain the proposed weights to estimate the effect that

the 2010 earthquake in Chile had at different levels of ground movement intensity on

posttraumatic stress disorder. Finally, Section 6 provides concluding remarks and a

summary of the work.

4.2 Setup, notation, and assumptions

Let Yi be the observed outcome in a sample with n independent observations indexed

by i = 1, ..., n, Xi be the vector containing its P observed pretreatment covariates,

and Zi the treatment assigned to that subject. Using the potential outcomes frame-

work (Holland, 1986; Neyman, 1990; Rubin, 1974, 1978), we define the set of potential

outcomes of subject i as Yi = {Yi(z), z ∈ Z}, where Z is the set of all possible treat-

ment values, and Yi(z) refers to the outcome that subject i would have observed if

he had received treatment z. We will assume that the stable unit treatment value

assumption or SUTVA is satisfied (Rubin, 1980, 1986). Only the potential outcome

of the actual treatment received will be observed, Yi = Yi(Zi), and the other potential

outcomes are counterfactual values. For categorical and ordinal treatments, |Z| = K,

with K the total number of treatment levels.

To be able to identify causal effects from observed data, we will assume positivity,

and weak ignorability (Imbens, 2000), this is,

p(Zi = z |Xi) > 0 and Yi(z)q 1{Zi=z} |Xi ∀z ∈ Z. (4.1)

The positivity assumption is requiring that every subject in the target population

has a positive probability of receiving any given treatment. Without this assumption,
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there could be “types” of subjects for which there is no potential outcome information

under some treatments and we would not be able to estimate treatment effects without

relying on extrapolation. Additionally, in practice, observed subjects with a very low

probability of receiving the treatment they received would be very influential in the

analysis and the variance of the estimates.

The ignorability assumption means that the treatment assignment is practically

random given observed covariates. This is, there are no other variables that are

both predictors of treatment assignment and outcome: no unmeasured confounders.

Unfortunately, this is not a testable assumption, so subject matter knowledge is

needed to ensure that Xi includes the necessary covariates to satisfy it.

4.3 Stable balancing weights for multiple treat-

ments

When there are multiple treatments, we would like to estimate the mean of the poten-

tial outcomes distribution under each possible treatment E[Yi(z)]. This is equivalent

to say that we want to estimate the parameters of the marginal structural model

E[Yi(z)] = g(z;β) (Robins et al., 2000), where, for categorical and ordinal treat-

ments, g represents the means model

g(zT ;β) =
K∑
k=1

βk1{z=k}. (4.2)

In randomized studies, by design we have that Yi(z) q Zi for all z, and therefore

E[Yi | Zi = z] = E[Yi(z) | Zi = z] = E[Yi(z)]. This means that we can unbiasedly

estimate the mean of each potential outcome by the sample mean of each group. In

other words, we can estimate the parameters of the causal model (4.2) by estimating

the parameters of the associational model

E[Yi | Zi = z] =
K∑
k=1

γk1{z=k} (4.3)
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using OLS, for example. When the data in hand does not come from a randomized

experiment but we collect enough variables such that the assumption of strong or

weak ignorability is plausible, we can still estimate the causal parameters if we use

weights to create a pseudo-population in which treatment assignment is independent

of the observed covariates. In practice, this can be accomplished by balancing the

empirical distributions of the observed covariates across all treatments.

As mentioned before, the typical ways of weighting generally yields highly variable

estimates, so, in addition to balancing covariates in order to unbiasedly estimate the

causal parameters, it is also desirable that those weights provide the least variable

estimator given the desired level of balance.

The weighted least squares estimator for each parameter in model (4.2) is given

by

β̂k =

n∑
i=1

wiYi1{Zi=k}

n∑
i=1

wi1{Zi=k}

, k = 1, ..., K, (4.4)

and its corresponding variance is

Var(β̂k) = σ2

n∑
i=1

w2
i 1{Zi=k}(

n∑
i=1

wi1{Zi=k}

)2 , k = 1, ..., K. (4.5)

Since the β̂k’s are independent, the variance of any linear combination of them is just

a positive linear combination of the variances of the β̂k’s. From this we can see that,

to minimize the variance of the estimators, we need to minimize the sum of squares

of the weights, given the total sum of weights for each treatment.

Now, how should the pseudo-population look like in order to estimate the causal

parameter of interest without bias? Let βSk = 1
n

n∑
i=1

Yi(k) be the (unobserved) average

potential outcome in the sample under treatment k. If we have the conditional mean

model

E[Yi(z) |Xi] =
K∑
k=1

hk(Xi)1{z=k}, (4.6)
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then, in terms of Xi, the parameters in model (4.2) are given by βk = E[hk(Xi)].

Hence,

∣∣∣∣E [β̂k − βSk |X, Z
]∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
E


n∑
i=1

wiYi1{Zi=k}

n∑
i=1

wi1{Zi=k}

− 1

n

n∑
i=1

Yi(k)

∣∣∣∣∣∣∣∣∣X, Z


∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
n∑
i=1

wi E[Yi(k) |Xi,1{Zi=k}]1{Zi=k}

n∑
i=1

wi1{Zi=k}

− 1

n

n∑
i=1

E[Yi(k) |Xi,1{Zi=k}]

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
n∑
i=1

wihk(Xi)1{Zi=k}

n∑
i=1

wi1{Zi=k}

− 1

n

n∑
i=1

hk(Xi)

∣∣∣∣∣∣∣∣∣ .
(4.7)

This means that the closer we force

n∑
i=1

wihk(Xi)1{Zi=k}

n∑
i=1

wi1{Zi=k}

to be to 1
n

n∑
i=1

hk(Xi), the

smaller the bias will be. If we assume hk(x) is linear in the covariates, then this

simplifies to forcing

n∑
i=1

wiXip1{Zi=k}

n∑
i=1

wi1{Zi=k}

to be close to 1
n

n∑
i=1

Xip for all p = 1, ..., P , where

Xip is the p-th observed covariate for subject i.

Explicitly, if hk(xi) = αk0 +
P∑
p=1

αkpxip and we impose a maximum distance between

the previous quantities of δp > 0, that is,

∣∣∣∣∣∣
n∑
i=1

wiXip1{Zi=k}

n∑
i=1

wi1{Zi=k}

− 1
n

n∑
i=1

Xip

∣∣∣∣∣∣ < δp for all

p = 1, ..., P , we can easily see that the absolute bias of β̂k with respect to βsk will be

bounded by
P∑
p=1

δp
∣∣αp∣∣:
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∣∣∣∣E[β̂k − βSk ∣∣∣ Z = z
]∣∣∣∣ ≤ E

[∣∣∣∣E[β̂k − βSk ∣∣∣X, Z
]∣∣∣∣
∣∣∣∣∣ Z = z

]

= E



∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

wi

(
αk0 +

P∑
p=1

αkpXip

)
1{Zi=k}

n∑
i=1

wi1{Zi=k}

− 1

n

n∑
i=1

αk0 +

P∑
p=1

αkpXip


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ Z = z



= E


∣∣∣∣∣∣∣∣∣∣
P∑
p=1

αkp


n∑
i=1

wiXip1{Zi=k}

n∑
i=1

wi1{Zi=k}

− 1

n

n∑
i=1

Xip


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
Z = z


≤

P∑
p=1

δp|αkp|,

(4.8)

where conditioning on Z = z means conditioning on the observed treatment assign-

ments in the sample.

It is important to notice that this is a bound for the absolute bias with respect

to the corresponding sample average potential outcome. The bias with respect to

the target population will depend on how well the sample represents that population.

To avoid additional sampling bias, we need either to sample Xi’s from the marginal

distribution of Xi in the target population or to know the marginal treatment assign-

ment distribution in the target population.

When hk’s are not linear, we could balance auxiliary covariates to approximately

balance the whole distribution of the observed covariates. See Zubizarreta (2015) and

Chapter 2 for a discussion on how to balance non-linear functions.

Having established the conditions we would like the weights to satisfy, we solve the

following convex optimization problem to find the weights that minimize the variance

of the estimator given imbalance bounds and total sum of weights determined by the
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researcher

minimize
w

‖w‖2
2

subject to

∣∣∣∣∣∣
n∑
i=1

wiXip1{Zi=k}

n∑
i=1

wi1{Zi=k}

− 1
n

n∑
i=1

Xip

∣∣∣∣∣∣ ≤ δp
k=1...,K
p=1,...,P

n∑
i=1

wi1{Zi=k} = 1
n

n∑
i=1

1{Zi=k}

wi ≥ 0 i = 1, ..., n,

(4.9)

where w is the n-dimensional vector of weights wi’s and δp is a scalar determined by

the researcher that represents the desired level of covariate balance.

Alternatively, instead of including the bias term as restrictions, we can incorporate

them in the objective function. Doing this would imply sacrificing balance control in

favor of ensuring feasibility

minimize
w,p

λ‖w‖2
2 + (1− λ)

∥∥∥∥∥∥
n∑
i=1

wiXip1{Zi=k}

n∑
i=1

wi1{Zi=k}

− 1
n

n∑
i=1

Xip

∥∥∥∥∥∥
2

∞

subject to
n∑
i=1

wi1{Zi=k} = 1
n

n∑
i=1

1{Zi=k}

wi ≥ 0 i = 1, ..., n.

(4.10)

where λ ∈ (0, 1) is a tuning parameter that can be chosen by cross validation (Athey

et al., 2016) and explicitly represents the trade-off between bias and variance.

In both representations of the problems we are suggesting fixing the sum of weights

for each treatment group to be equal to the sample proportion of subjects in each

group, giving a total sum of weights of one. Roughly speaking, this is analogous to

the use of the stabilized version of the IPTW.

4.4 Simulation study

In this section we conduct a simulation study with two different settings to compare

the performance of the proposed weighting method with the standard approach of
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using the generalized propensity score (Hirano and Imbens, 2005; Imbens, 2000) to

construct these weights. Three methods are used to estimate the generalized propen-

sity score: maximum likelihood, CBPS, and GBM.

4.4.1 Data generating mechanisms

4.4.1.1 Categorical treatment

The first simulation setting was based on one of the designs in Yang et al. (2016).

Here the treatment variable had three levels and there were six covariates that were

included in the outcome model, as well as in the treatment assignment model. Specif-

ically, Xi = (Xi1, Xi2, Xi3, Xi4, Xi5, Xi6) was generated as Xi1, Xi2, Xi3 ∼ N3(µ,Σ),

with µ = (0, 0, 0)>, σjj = 2, 1, 1 for j = 1, 2, 3 respectively, σ12 = σ21 = 1, σ13 = σ31 =

−1, and σ23 = σ32 = −0.5; Xi4 ∼ U [−3, 3]; Xi5 ∼ χ2
1; and Xi6 ∼ Bernoulli(0.5).

The treatment variable Zi with three levels was constructed from the treatment

indicators (1{Zi=1},1{Zi=2},1{Zi=3}) ∼ Multinom(p(1|Xi), p(2|Xi), p(3|Xi)), where

p(z|Xi) =
exp(X>i ηz)∑3
ζ=1 exp(X

>
i ηζ)

, with η1 = (0, 0, 0, 0, 0, 0)>, η2 = 0.7×(1, 1, 1,−1, 1, 1)>, and

η3 = 0.4× (1, 1, 1, 1, 1, 1)>. The outcome was given by

Yi(1) |Xi = −1.5 +Xi1 +Xi2 +Xi3 +Xi4 +Xi5 +Xi6 + εi

Yi(2) |Xi = −3 + 2Xi1 + 3Xi2 +Xi3 + 2Xi4 + 2Xi5 + 2Xi6 + εi

Yi(3) |Xi = 1.5 + 3Xi1 + 1Xi2 + 2Xi3 −Xi4 −Xi5 −Xi6 + εi,

where εi ∼ N (0, 1). With this generating mechanism, the true dose-response function

was E
[
Yi(z)

]
= E

[
E
[
Yi(z) |Xi

]]
= 0 for all z = 1, 2, 3, and therefore the average

effect was zero when comparing any two treatment levels.

To compare the methods’ performance under misspecification of the outcome and

treatment models, we simulated data under a second scenario. Here we introduced

non-linearities in both models by using the transformed covariates X ′
i, where X ′i2 =

sign(Xi2) ×|Xi2|
1
2 , X ′i5 = 1

exp(Xi5)
, and X ′ij = Xij for j = 1, 3, 4, 6 as the observed

covariates used to obtain the weights. The true treatment effect remained the same.

We generated a total of 1000 replications for both scenarios, each one with a sample
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size of n = 1500.

4.4.1.2 Continuous treatment

The goal of including this second simulation setting was to evaluate the performance

of the proposed method when the treatment is continuous, comparing it with the

continuous version, when available, of the same methods as before. For this, we

generated data as in Fong et al. (2017) and used two of the scenarios studied in

their simulation: both treatment assignment and outcome models linear in the co-

variates, and both having non-linearities. This design considered covariates that

were not related to the outcome and/or the treatment assignment. Specifically,

Xi = (Xi1, ..., Xi10) ∼ N10(0,Σ), with σjj = 1 for j = 1, ..., 10 and σjq = 0.2 for

j 6= q. In the first scenario, outcome and treatment were given by:

Zi = Xi1 +Xi2 + 0.2Xi3 + 0.2Xi4 + 0.2Xi5 + εi

Yi(z) |Xi = Xi2 + 0.1Xi4 + 0.1Xi5 + 0.1Xi6 + z + εi,

where εi ∼ N (0, 9) and εi ∼ N (0, 25). This means that the true dose-response

function was E
[
Yi(z)

]
= E

[
E
[
Yi(z) |Xi

]]
= z and thus, the value of the relevant

parameter was one.

In the second scenario,

Zi = (Xi2 + 0.5)2 + 0.4Xi3 + 0.4Xi4 + 0.4Xi5 + εi

Yi(z) |Xi = 2(Xi2 + 0.5)2 + 0.5Xi4 + 0.5Xi5 + 0.6Xi6 + z + εi.

Here, the true dose-response function was E
[
Yi(z)

]
= E

[
E
[
Yi(z) |Xi

]]
= 2.5 + z

so the relevant parameter remained equal to one. Again, 1000 replications were

generated with sample size n = 1500.

4.4.2 Estimation methods

The first method we used to estimate the generalized propensity score is GLM. In

the categorical treatment setting, we fit the linear multinomial logistic regression

model with the R function multinom from the nnet package, while in the continuous
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treatment setting, we fit the linear model with the lm function. Once the necessary

probabilities were estimated, the stabilized versions of the weights were computed.

The second method is CBPS and we used the R function CBPS from the CBPS package

(Fong et al., 2016). The weights were obtained directly from the function output.

The third method is GBM and it was fit using the function mnps from the twang

package (Ridgeway et al., 2016) and the corresponding weights were obtained applying

the get.weights function to the output from mnps. For these methods, the model

included the covariates linearly, which in the first scenario in each setting means that

the model was correctly specified and in the second scenario, misspecified. All the

functions used were set to their default values.

For the stable balancing weights, the weights were obtained solving the version of

the optimization problem that includes the covariate balance in the objective function

with λ = 1
2
. For the first scenario in both simulation settings, only mean balance was

required, while in the second scenario, both mean and fine balance with ten categories

were required.

Since twang package does not include an option for a continuous treatment and

our method is designed to accommodate categorical treatments, the treatment in the

second setting was approximately balanced by dividing it into a categorical variable

with ten levels created from the treatment deciles. Additionally, the naive estimator

where no weights were used was also included in the comparison as a measure of

original bias.

In the first setting, the estimated quantities were τ1,2 = E[Yi(2) − Yi(1)], τ1,3 =

E[Yi(3)−Yi(1)], and τ2,3 = E[Yi(3)−Yi(2)], and in the second, β0 and β1 from the MSM

E[Yi(z)] = β0 + β1z. The methods were compared by the bias and root mean square

error (RMSE) of the estimators of these parameters, as well as the average length and

coverage of the 95% confidence intervals obtained using the robust sandwich variance

estimator.



CHAPTER 4. OPTIMAL WEIGHTING FOR OBSERVATIONAL STUDIES
WITH MULTI-VALUED TREATMENTS 82

4.4.3 Results

4.4.3.1 Categorical treatment

Figure 4.1 shows the distributions of the estimated treatment effects across repetitions

for each method and Table 4.1 their bias and RMSE. The dashed line denotes the true

parameter value. There we can see that the estimated treatment effect of treatment

3 over treatment 1 was not heavily biased in the unweighted sample and non of the

methods exacerbated this bias. However, given the instability of the GLM weights,

the variability of its corresponding estimator was increased considerably, resulting

in a RMSE twice as large as the one of the unweighted (Unwt) estimator. For the

other two treatment effects where the unweighted estimator provided more biased

results, GBM improved in terms of bias and RMSE, but not quite as much as the

other methods. In terms of bias, GLM performed better than CBPS, but the larger

variance represented larger RMSE. SBW provided the lowest bias and RMSE on all

three parameter estimators. These results are transferred to the confidence interval

performance (Table 4.2). As we can see, the actual coverage of the intervals obtained

using GBM reached values as low as 56.80%. On the other hand, the SBW interval

covered the true parameter value in every simulation repetition, while preserving the

shortest lengths. The interval coverage for GLM and CBPS was closer to the nominal

95%.
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Figure 4.1: Boxplots of the estimated parameters in the first setting, first scenario
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Table 4.1: Bias and RMSE of the estimated parameters in the first setting, first

scenario

Method τ̂1,2 τ̂1,3 τ̂2,3

Bias RMSE Bias RMSE Bias RMSE

Unwt 1.05 1.09 0.18 0.30 −0.87 0.93

GLM 0.08 0.51 0.05 0.59 −0.02 0.48

GBM 0.67 0.71 0.09 0.27 −0.58 0.65

CBPS 0.19 0.39 0.03 0.41 −0.16 0.43

SBW 0.01 0.14 0.00 0.17 −0.01 0.20
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Table 4.2: Coverage (%) and average length of 95% confidence intervals using the

robust sandwich variance estimator in the first setting, first scenario

Method τ1,2 τ1,3 τ2,3

Coverage Length Coverage Length Coverage Length

Unwt 14.40 1.48 98.90 1.57 22.80 1.23

GLM 97.90 2.06 97.80 2.20 97.80 2.23

GBM 56.80 1.45 98.90 1.35 75.20 1.57

CBPS 97.00 1.88 98.50 1.96 97.40 2.06

SBW 100.00 1.44 100.00 1.30 100.00 1.48

Figure 4.2 and Tables 4.3 and 4.4 show the results for the scenario with model

misspecification in this setting. The general trend of these was similar to the pre-

vious scenario, except for GBM. The flexibility of these models made them robust

to model misspecification, providing practically the same results when the original

covariates were observed or when only a non linear transformation of them was ob-

served. Nonetheless, the bias and RMSE for this method were still the largest for

τ̂1,2 and τ̂2,3, which were the ones with larger bias on the unweighted sample. The

other three methods behaved similarly among each other with respect to original bias,

obtaining better results in bias, RMSE, and coverage with SBW than with the other

two methods.
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Figure 4.2: Boxplots of the estimated parameters in the first setting, second scenario
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Table 4.3: Bias and RMSE of the estimated parameters in the first setting, second

scenario

Method τ̂1,2 τ̂1,3 τ̂2,3

Bias RMSE Bias RMSE Bias RMSE

Unwt 1.06 1.10 0.18 0.31 −0.88 0.93

GLM 0.54 0.66 0.31 0.52 −0.24 0.54

GBM 0.67 0.71 0.10 0.28 −0.57 0.65

CBPS 0.59 0.68 0.22 0.42 −0.37 0.56

SBW 0.42 0.46 0.23 0.30 −0.18 0.30
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Table 4.4: Coverage (%) and average length of 95% confidence intervals using the

robust sandwich variance estimator in the first setting, second scenario

Method τ1,2 τ1,3 τ2,3

Coverage Length Coverage Length Coverage Length

Unwt 14.30 1.48 99.30 1.57 20.50 1.23

GLM 82.00 1.85 96.40 1.89 94.70 2.19

GBM 60.60 1.45 98.50 1.34 73.50 1.57

CBPS 77.40 1.75 97.70 1.74 91.80 2.04

SBW 99.80 1.92 99.70 1.53 100.00 2.05

4.4.3.2 Continuous treatment

The results for the setting with a continuous outcome in the correctly specified sce-

nario are presented in Figure 4.3 and Tables 4.5 and 4.6. The general observations

are similar to those in the previous setting. Bias and RMSE were lowest with SBW,

followed by both GLM and CBPS, with lower bias but higher variance for GLM, and

the most biased estimator was the one that used the weights obtained using GBM.

Interval coverage was close to the nominal 95% on all methods except for GBM,

providing SBW the second largest coverage with the shortest lengths.

In the second scenario of this setting, where treatment probability and outcome

models were misspecified, non of the methods was able to provide the desired results

(Figure 4.4, Table 4.7, 4.8). GLM and CBPS were the most sensitive to model

misspecification, while the flexibility of GBM and the fine balance requirement of

SBW allowed them to perform slightly better. Bias and RMSE were comparable

among these two methods, however, the GBM 95% confidence intervals covered the

true parameter value only on 4.80% of the repetitions, while SBW had a – still low

– 14.90% coverage. It is worth noting that these last two methods were balancing

covariates on the 10-levels categorical version of the treatment variable, and not
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directly on the continuous treatment as the other two methods.

Figure 4.3: Boxplots of β̂1 in the second setting, first scenario
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Table 4.5: Bias and RMSE of the estimated parameters of the MSM in the second

setting, first scenario

Method β̂0 β̂1

Bias RMSE Bias RMSE

Unwt −1.00 1.01 0.12 0.13

GLM −1.00 1.02 0.00 0.07

GBM −0.99 1.01 0.05 0.07

CBPS −1.00 1.01 0.01 0.06

SBW −1.00 1.01 0.00 0.05
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Table 4.6: Coverage (%) and average length of 95% confidence intervals using the

robust sandwich variance estimator in the second setting, first scenario

Method β0 β1

Coverage Length Coverage Length

Unwt 95.20 0.52 9.00 0.15

GLM 94.60 0.68 93.90 0.25

GBM 95.00 0.63 84.80 0.19

CBPS 94.30 0.64 92.90 0.22

SBW 93.90 0.59 93.60 0.20

Figure 4.4: Boxplots of β̂1 in the second setting, second scenario
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Table 4.7: Bias and RMSE of the estimated parameters of the MSM in the second

setting, second scenario

Method β̂0 β̂1

Bias RMSE Bias RMSE

Unwt 0.79 0.80 0.57 0.57

GLM 0.99 1.02 0.59 0.70

GBM 0.77 0.79 0.22 0.23

CBPS 0.74 0.76 0.39 0.40

SBW 0.95 0.97 0.20 0.21

Table 4.8: Coverage (%) and average length of 95% confidence intervals using the

robust sandwich variance estimator in the second setting, second scenario

Method β0 β1

Coverage Length Coverage Length

Unwt 0.00 0.63 0.00 0.17

GLM 0.10 0.81 4.80 0.55

GBM 0.00 0.72 2.30 0.22

CBPS 0.00 0.64 0.10 0.21

SBW 0.00 0.72 14.90 0.26

These simulations seem to indicate that GLM and CBPS are more sensitive to

probability model misspecifications, giving close to unbiased, although variable, esti-

mates when correctly specified but largely biased ones when not. Contrary to this,

GBM seems to perform comparatively better than the previous methods when the

transformed covariates were used, but seems to fail to balance covariates correctly

even when the correct model is assumed. SBW was able to outperform the rest of

the methods in these simulation settings, both in bias and variance reduction, even

though the difference was small in the misspecified scenario of the second setting.
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In this case, fine balance with finer categories could be required in the optimization

problem or the tuning parameter λ could be changed to try to improve the results.

4.5 Case study: 2010 earthquake effects on post-

traumatic stress in Chile

To illustrate the use of the method both on a multi-valued categorical treatment and

a continuous treatment, we use available data before and after the 2010 earthquake in

Chile. This magnitude 8.8 earthquake took place on February 27, 2010, shortly after

the 2009 national socioeconomic survey (CASEN) had been completed. Being an

earthquake of such a large magnitude, followed by a tsunami, the catastrophic event

provoked economic losses of $30 billion USD, including the destruction of houses,

schools, and hospitals, and killed more than 500 people (USGS, 2011b).

Survivors of disasters commonly experience mental health consequences (Norris

et al., 2002). One of the most frequently observed and studied effects is posttraumatic

stress disorder (PTSD). Studies suggest that the severity and type of symptoms that

survivors present may differ due to the intensity of the earthquake experienced, as

well as to socioeconomic and cultural backgrounds (USDVA, 2016).

To study the impact the earthquake had on the affected population, the Ministry

of Planning (MIDEPLAN) reinterviewed between May and June of 2010 a subsample

of 22,456 households from the 71,460 households interviewed for CASEN in 2009. This

postearthquake survey provides the opportunity to study posttraumatic stress symp-

toms well before they disappear, while also providing, in conjunction with CASEN

data, a set of pre-exposure variables for the same subjects without introducing recall

bias.

While Zubizarreta et al. (2013) use matching to compare, in terms of PTSD, res-

idents of areas that experienced high degree of shaking to those that were similar to

them but lived in areas that were almost untouched by the earthquake, in this study
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we evaluate the effect of the earthquake on PTSD as a function of the earthquake

intensity. This intensity was measured using peak ground acceleration values from

the United States Geological Survey (USGS, 2011a, 2014). Two versions of the treat-

ment were considered, intensity as a categorical variable with low [0,0.08), medium

[0.08,0.25), and high levels (≥0.25), and as a continuous variable using directly the

observed peak ground acceleration.

4.5.1 Data and design

The outcome used to assess PTSD level was the score obtained from the self-rated

Davidson Trauma Scale (Davidson et al., 1997) questions included in the postearth-

quake survey. These included two items rated on a five-point scale for each one of the

17 symptoms of PTSD from the Diagnostic and Statistical Manual of Mental Disor-

ders, Fourth Edition. Of each pair of items, one referred to frequency (1 = “not at

all” to 5 = “every day”) and the other referred to severity (1 = “not at all distressing”

to 5 = “extremely distressing”). Adding the responses of every item, the total score

ranged from 34 to 170.

Table 4.9 shows the pre-earthquake covariates that were balanced. Mean balance

with an absolute standardized difference in means lower than 0.001 for the treatment

with three levels and 0.005 for the continuous treatment was required for all the

covariates. For continuous covariates (Age, Household size, Education, Individual

work income, Household own per capita income, and Household total per capita

income) fine balance restrictions of a 10-levels categorical version of the variables

were included in addition to the mean balance ones. Subjects for which no outcome

or treatment variables were available were excluded from the study, leaving a sample

size of n = 23, 322.

Since the categorical version of the treatment is an ordinal variable, the parameters

of interest to be estimated were τ1,2 = E[Yi(2)− Yi(1)] and τ2,3 = E[Yi(3)− Yi(2)] for

the categorical version of the treatment, and β0 and β1 from the model E[Yi(z)] =
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β0 + β1z for the continuous version, where Yi represents the PTSD score of subject

i. Again, balance for the continuous treatment was approximated by transforming

the continuous variable into a 10-levels categorical variable constructed using deciles.

95% confidence intervals were obtained using the robust sandwich variance estimator.

4.5.2 Results

Figure 4.5 summarizes the balance of the pre-earthquake covariates before and after

weighting in the categorical setting. It shows the absolute standardized differences

in means of the 45 covariates in the three treatment groups. We can see that even

though the unweighted sample was not drastically unbalanced, there were several

instances in which the absolute standardized differences in means were well beyond

acceptable levels. The stable balancing weights were able to obtain a very tight mean

balance for all covariates.

Having achieved that level of balance, the treatment effects and their correspond-

ing 95% confidence intervals were estimated (Table 4.10). We can see that experi-

encing the earthquake with the second intensity level increased on average the PTSD

score by 7.70 points compared to the lowest intensity level. The increase is slightly

higher when changing from the second category to the third one, with an estimated

average increase of 8.27 points on the PTSD score. This means that the average

accumulated increase when changing from the first to the third level would be 16.07

points.

Figure 4.6 shows a summary of the covariate mean balance before and after weight-

ing for the case where the treatment was transformed into a 10-levels categorical

variable. With ten treatment categories, the pre-earthquake covariates had more im-

balances across treatment levels. These were practically removed by weighting the

sample with the SBW obtained. Table 4.11 shows the estimated treatment effect

and its corresponding 95% confidence interval. Each additional intensity unit on the

earthquake has an estimated average effect of 60.88 points on the PTSD score. The
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Table 4.9: Pre-earthquake covariates

Demographic covariates Housing structure

Age (years) Acceptable

Women Reparable

Indigenous ethnic group Irreparable

Household size Overcrowding

Marital status No

Married or cohabitating Medium

Divorced or widow Critical

Singe Health before the earthquake

Socioeconomic covariates Health problem (last month)

Education (years) Hospitalized (last year)

Employment status Has a psychiatric problem

Employed Self-rated health

Unemployed Poor

Inactive Fair

Individual work income (1000 pesos) Good

Household own per capita income (1000 pesos) Missing

Household total per capita income (1000 pesos) Health insurance

Poor Public (FONASA)

Housing before the earthquake Private (ISAPRE)

Housing status Other

Own housing or paying to own it No

Rented housing Unknown

Ceded housing Disability

Irregular use of housing Self-sufficient or low

Housing rent per year (pesos) Moderate or severe

0-25,000 No

25,001-50,000 Other

50,001-75,000 Rural zone

>75000
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range of the earthquake intensity variable was 0-0.32, with a mean value of 0.2 and a

standard deviation of 0.1. This represents a maximum average increase of 20 points

on the PTSD score for that particular earthquake.

Figure 4.5: Boxplots of absolute standardized differences in means before and after

weighting for the treatment with three categories
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Table 4.10: Estimated effect between incremental earthquake intensity categories on

posttraumatic stress

τ1,2 τ2,3

Estimate 7.70 8.37

95% C.I. (6.95,8.45) (7.49,9.26)
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Figure 4.6: Boxplots of absolute standardized differences in means before and after

weighting for the continuous treatment
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Table 4.11: Estimated effect of earthquake intensity as a continuous variable on

posttraumatic stress

β0 β1

Estimate 3.37 60.88

95% C.I. (2.86,3.88) (58.04 ,63.72)

Given that the original treatment variable was continuous, the last results provide

a more detailed behavior of the effect of earthquake intensity on PTSD. However,

when we use less categories, we get larger bins and therefore more observations are

assigned to each category, which allows to achieve better balance. For this reason,

the approach employed should depend on the real question of interest.
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4.6 Summary and concluding remarks

The problem of estimating causal effects in observational studies with a binary treat-

ment has been studied for many years, and the methods available are widely used

in applications. Some advances have been made in generalizing these methods to

the multiple treatment case, however, it is still common practice to dichotomize the

treatment and analyze it using methods designed for binary treatments.

One method that is naturally extended to the multiple treatment case is weighting

observations to address confounding, and this has typically be done by using the

IPTW. The main drawback of these methods is the large variability in the estimates

that result from having extreme weights. Additionally, these weights can fail to

balance covariates when the probability model is misspecified, when samples are small,

or when extreme weights are truncated.

In this chapter we extended the stable balancing weights of Zubizarreta (2015) to

the case with multiple treatments, including a suggestion on how to use them in the

continuous case. We determined the conditions the weights need to satisfy in order

to provide close to unbiased treatment effect estimates with a reduced variability and

defined the convex optimization problem that can be solved to obtain them.

A simulation study was implemented to compare the proposed method with the

most common way to estimate the generalized propensity score (GLM) and other

recent methods that incorporate the covariate balance in the estimation process in

different ways (GBM and CBPS). The simulation included two different settings,

one with a categorical treatment with three categories and one with a continuous

treatment. Both settings were analyzed in a scenario where the probability and/or

outcome model were correctly specified and a scenario where they were misspecified.

From this simulation we found that the flexibility of GBM made it more robust to

model misspecification, but its performance depended directly on how biased was the

unweighted data. Results from CBPS were similar to the ones obtained when esti-

mating the generalized propensity score with GLM, with some reduction in variability
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and bias in some instances. SBW produced the least biased and variable estimates

in practically every setting, even when the treatment was continuous, for which these

weights were not specifically designed.

Finally, we applied the proposed method to Chilean data available from before

and after the 2010 earthquake to estimate the effect that different levels of earth-

quake intensity have on posttraumatic stress disorder. The earthquake intensity was

considered both as a multi-valued categorical variable and a continuous variable. In

both cases, it was concluded that there was a statistically significant positive effect

of the intensity level of the earthquake on posttraumatic stress.
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