
THE MULTICAST POLICY AND ITS RELATIONSHIP TO 
REPLICATED DATA PLACEMENT 

Amir Milo, Ouri Wolfson 

Columbia University 
Dept of Computer Science 

Technical Report CUCS-462-89 



The Multicast Policy and Its Relationship to 
Replicated Data Placement l 

Amir Milo 
Department of Computer Science 

The Technion - Israel Institute of Technology 
Haifa 32000, Israel 

Ouri Wolfson 
Department of Computer Science 

Columbia UniYersity 
New York, NY 10027. 

ABSTRACT 

In this paper we consider the communication complexity of maintaining the replicas of a logical data-item, 
in a database distributed over a computer network. We propose a new method, called the minimum span­
ning tree write, by which a processor in the network should multicast a write of a logical data-item, to all 
the processors that store replicas of the item. Then we show that the minimum spanning tree write is 
optimal from the communication cost point of view. We also demonstrate that the method by which a 
write is multicast to all the replicas of a data-item, affects the optimal replication scheme of the item, Le., at 
which processors in the network the replicas should be located. Therefore, next we consider the problem 
of determining an optimal replication scheme for a data item, assuming that each processor employs the 
minimum spanning tree write at run-time. The problem for general networks is shown NP-Complete, but 
we provide efficient algorithms to obtain an optimal allocation scheme for three common types of network 
topologies. They are completely-conncctcd, tree, and ring networks. For these topologies, efficient algo­
rithms are also provided for the case in which reliability considerations dictate a minimum number of repli­
cas. 

Categories and Subject Descriptors: H.2.4 [Database Management]: Transaction Processing; C.4 [Com­
puter Systems Organization]: Performance of Systems; Col.4 [Computer-Communication Networks]: Dis­
tributed Systems; D.2.S [Software Engineering]: Metrics 

General Terms: Algorithms, Performance, Theory 

Additional Key Words and Phrases: File allocation, Replicated data, Complexity, NP-Complete. Com­
puter network. Message passing. 

1 This research was supported in part by DARPA research grant #F-29601·87-C-
0074, and by the Center for Advanced Technology at Colwnbia University under contract NYSSTF-CAT(89)-S. 



- 2 -

1. Introduction 

Consider a replicated database that is distributed among the processors in a communication network. 

We model the communication network by a connected undirected graph; the nodes represent processors. 

and the edges represent two-way communication links. A logical data-item is a file. a relation, or part of a 

relation. and each such item is physically replicated at one or more processors in the network. When a 

transaction writes the logical data-item, the write has to be propagated to all its physical replicas. The first 

question we address in this paper is: what is the optimal write-multicast-policy, i.e., way of multicasting a 

write of a logical data-item to all its physical replicas? By an optimal write-multicast-policy, or simply an 

optimal write-policy, we mean a propagation scheme that puts the minimal load on the communication net-

work. 

I 
.. ~ 

" 

:> 0 

I 

\ 
Q s "-

'--. 
03 

·1 

a b 

figure 1.1: A communication network. The shaded processors store replicas of a data-item. 

For example, assume that six processors are interconnected in a ring, as in figure 1.1a. The shaded 

processors represent the residence set of a data-item, i.e., the processors that store replicas of the data-item. 

Suppose that processa 6 is the writer, i.e., has to send the data-item to all the processors of the residence 

set The most efficient way for processor 6 to propagate the write is the following. It sends the data-item to 

processor 1. which then sends the data-item to processor 2; processor 2, in tum, sends the data-item to pro-

cessor 3. Overall, the data item traverses three communication links. This is clearly a lower load on the 

communication network than the one put by the write policy that we call naive, in which processor 6 pro-

pagates the write in three messages: from 6 to I, from 6 to 2. and from 6 to 3. In this case the data item 

traverses 1+2+3 communication links. 



- 3 -

In this paper we first establish the optimal write-policy for an arbitrary communication network, an 

arbitrary residence set, and an arbitrary writer processor. It is the policy that we call the 

minimum-spanning-tree write, in which the writer propagates the data-item along the edges of a 

minimum spanning three of the distance graph; it is a complete weighted graph in which the nodes, or the 

participants, are the writer and the processors of the residence set. and each edge represents the distance in 

the communication network between every pair of participants. When using the minimum-spanning-tree 

write-policy, processor 6 in figure l.la will indeed propagate the logical data-item to processors 1,2, and 3 

in the efficient way suggested above. 

Of course, efficient multicast algorithms have been studied previously2 (e.g. [CD, CZ, De, D, DM, 

Pl). However, the following question. that arises in the database context. has not been addressed. Does the 

write policy used by the writers affect the optimal residence set, i.e., the choice of the residence set. for 

which the total load on the communication network is minimized? The answer is yes. For example. con-

sider the ring network of figure I, and assume that each processor performs two reads and one write of the 

logical data-item, per time unit Each read is, expectedly, performed from the closest (in terms of links-

distance in the network) processor of the residence set If each processor propagates each write that it per-

forms using the minimum-spanning-tree policy, then the optimal residence set is the one illustrated in 

figure 1.1a (obviously, any string of three processors is optimal). The total number of transmissions of the 

data-item along a communication link is 24 per time unit. On the other hand. if each processor uses the 

naive-write policy, as the previous works have assumed, then the optimal residence set is the one in figure 

l.lb (26 link-transmissions per time unit). Moreover, the residence set of figure l.la is not optimal for the 

naive-write policy (35 link-transmissions), and the residence set of figure 1.1 b is not optimal for the 

minimum-spanning-tree write policy (26 link-transmissions). 

Therefore, after establishing that the minimum-spanning-tree write-policy minimizes communication 

at run time. we assume that each processor uses it, and we examine the optimal residence set problem. It is 

the problem of determining where the replicas of a data-item should be placed, in order to minimize the 

2 The underlying assumptions are often different Ihan ours, since Ihey did not assume a distributed lhubue environ­
ment as we do. For example in [OM] each processor in Ihe networlc knows iu own identity, but not necessarily Ihe identity 
of its neighbon. In contrast, notice Ihat • processor usually does know at which processors Ihe database is distributed. 



- 4 -

communication load. We take what Ceri eL al. call the user viewpoint ([CMP]), by assuming that the net­

work topology, and the read/write activity at each processor, are predefined. 

The optimal residence set problem, also called the file-allocation problem, has been studied exten­

sively in the literature (see [DF] for a survey). Most existing works attempt to minimize the communica­

tion cost, as well as other parameters, such as storage costs ([C, ML)), communication channels capacity 

([MR)). or the communication network topology ([IK)). Concentrating on the communication cost alone 

makes our model relatively simple. Additionally, and more importantly, all the previous works that we are 

aware of, have assumed a naive write policy (e.g .. [C, DF, FH, MIMH, RW]). The naive-write policy 

assumption is implied by the formulation of the total communication cost of a multicast transmission, as 

simply the sum of the communication costs between the sender and each one of the receivers. As the 

above example demonstrates. when using the minimum-spanning-tree write, the cost of a multicast from 

processor 6 to processors 1,2, and 3 is not the sum 1+2+3. The observation that the write policy affects the 

optimal residence set, leads us to believe that the optimal residence set problem must be reconsidered from 

this new angle. i.e. assuming other write-multicast policies. Since the optimal residence set is determined 

with the purpose of minimizing the communication cost, it makes sense to assume that each processor 

minimizes the communication cost at run-time. 

In this paper we determine that when the minimum spanning tree write is used, the problem of 

finding an optimal residence set is NP-complete for general communication networks. However, our simple 

problem formulation enables us to provide efficient algorithms for solving the problem in the following 

widely used network topologies: completely connected, tree and ring. Moreover, for general networks, the 

problem is NP-complete even if the number of reads of the data item is identical at all the processors, and 

so is the number of writes (the balanced-load case). On the other hand, for the special topologies the prob­

lem can be solved efficiently. even if different processors have different access patterns to the data-item 

(the unbalanced-load case). 

So far we discussed replicated data from the performance point of view. However. one of the main 

purposes for replicating data in computer networks is improved reliability; if some, but not all. of the pro­

cessors of the residence set fail, the applications should still be able to access the data-item. Therefore, 



- 5 -

often the communication cost has to be optimized subjcct to the constraint that the number of replicas in 

the network is not lower than some threshold. t. This threshold is calculated a priori by means outside the 

scope of this paper. such as the failure probability of a processor. Consequently. for the special topologies. 

i.e .• completely-connected. tree. and ring. we also provide efficient algorithms for the the problem of 

finding the t-reliable optimal residence set, i.e. the optimal residence set in which the number of replicas is 

at least t. We do so for the balanced- and unbalanced-load cases. 

The rest of the paper is organized as follows. In section 2 we establish that the minimum-spanning­

tree write policy achieves the minimum communication cost. The optimal residence set problem is defined 

and shown in NP -Complete for general networks. in section 3. In section 4 we present the positive results. 

i.e .• the algorithms that solve the optimal residence set problem for completely-connected. tree. and ring 

networks. In section 5 we discuss the effect that reliability considerations have on the results presented in 

section 4. In section 6 we conclude. and discuss future work. 

2. Read and Write Message-Costs. 

Read and write operations for logical entities (or data-items) are issued at each processor in a 

computer-network. Each such operation is eventually translated inlO zero or more information messages 

transmitted in the network; they carry the data-item to or from the processors storing the physical replicas 

of the logical data-item. In this section we establish the minimal number of network messages required for 

an arbitrary read and write by a processor. The read case is simple. the write case slightly more involved. 

We start with some definitions. A communication network. or network for short. is an undirected con­

nected graph. G =(V.E). V represents a set of processors. and an edge in the network between processors v 

and w represents a bidirectional communication link between them. Given a network we define a 

residence set to be a subset of V. It represents the processors where some arbitrary fixed data-item is repli­

cated. We assume that reading of a data-item by a processor is implemented by transferring the closest 

replica lO it Therefore. for a given network and residence set. the read cost of a processor v. denoted r •• is 

the length (in edges) of the shortest path in the network between v and a processor of the residence set. It 

represents the number of information messages required for the data-item transfer. Obviously. if v is in the 

residence set. then the read cost is zero. 



- 6 -

Next we establish the write cost for a processor, given a residence set, R. We assume that processor 

V E V writes the logical data-item, and call it the writer; it mayor may not belong to the residence set The 

processors in R u {v} are the participants in the write protocol, and are denoted by P. A write instance is 

a directed graph, 1 =(P.A). Each arc of A represents a replica transfer between two participants. and its cost 

is the shortest path in the network between the processors at its endpoints. Since the data-item sent by the 

writer reaches every other participant, we require that there is a path in 1 from v to each processor in R. The 

write -instance cost is the total cost of its arcs. We are interested in establishing the minimal cost of a 

write instance. Clearly. for this purpose the only instances to be considered are acyclic. A possible algo-

rithm which sends exactly the messages of a given acyclic instance. I, is the following (assuming 1 is 

known to all participants): the writer sends the data-item to its sons, and each processor after receiving the 

data-item forwards it to its sons and so on, until the data-item reaches the leaves of I. 

A 

For the next proposition we need to define the distance graph, DG(V), for an arbitrary subset of pro-

A A A 

cessors V ~ v. DG(V) is a complete weighted graph with the set of nodes V. The weight of an edge 

A 

between j and kin DG(V) is the length of the shortest path in G between j and k. Denote by mst (DG(V) a 

A 

minimum-spanning-tree of DG(V)' 

Proposition 2.1: Let G be a network:, R a residence set, and v a writer. Denote the setR u {v} by P. Then 

the necessary and sufficient cost of a write instance is the total weight of mst (DG(P». 

Proof: (necessary) By the definition of a write instance the underlying graph of any write instance is a con-

nected subgraph of DG(P) that spans all the processors of P. The minimal weight of such a graph is the 

weight of MST(DG(P». 

(sufficient) Given an MST(DG(P» we can build the required write instance whose cost is equal to the 

weight of MST(DG(P», by directing the edges of the MST(DG(P» to form a rooted-tree, rooted at the 

writer. 0 

Therefore. given a residence-set. R, we define the write cost of processor v, denoted Wvo to be the total 

weight of mst (DG(P». Denote by dv , the length of the shortest path in G between v and (some processor 

of) R. The next lemma will be used extensively in our proofs. 



- 7 -

Lemma 2.1: Let G =(V,E) be a network, R a residence set, and i E Va processor. If R induces a connected 

subgraph of G, then wj=dj+ I R 1-1. 

Proof: We prove first that any spanning tree of DG(R u (i)) is of weight at least dj + I R 1-1. The I R 1+1 

nodes of the distance graph require IR I edges in order to fonn a spanning tree. The lightest edge that is 

connected to i in DG(R u (i)) is obviously of weight di . Each of the other I R 1-1 edges is at least of 

weight one, therefore there is no spanning tree whose weight is less than dj + I R 1-1. 

Now we prove that a spanning tree of such weight exists. R induces a connected subgraph, thus, there are 

I R 1-1 edges of weight one, and this set of edges spans !.he nodes of R in the distance graph. Also, there 

exists an edge of weight dj between node i and some node of R. Therefore there exists a spanning tree 

whose weight is dj+ I R 1-1. 0 

3. The residence set problem 

In this section we define the residence set problem, namely the problem of placing the replicas of a 

given data item to minimize overall message traffic in a computer-network. Then its complexity is esta-

blished. We assume that the transaction processing load is balanced in the following sense. The number of 

data-item read operations per time unit, #R, is equal at all the processors, and the same holds for the 

number of write operations per time unit, #W. We denote the ratio #RJ#W by cx. In other words, for each 

write there are cx reads at each processor. We assume that cx is well defined (i.e. #W > 0), and positive. 

Given a residence set, R, and cx, the residence set cost, denoted cost (R), is defined as L Wj + cx· L rio We 
j e V j e V 

shall refer to the first sum in the expression as the total -write -cost, and to the last sum multiplied by a, as 

the total-read-cost. Intuitively, L Wj + cx· L ri represents the total communication cost when R is the 
jE v j E V 

residence set and the time unit is chosen such that #W = 1. (or, it can be looked at as #W' L Wj + #R· L rj 
jeV ieV 

divided by #W). We would like to find an optimal residence set, i.e. a residence set with the minimal cost. 

The residence set problem, denoted RS. is defined as follows: 

InpUJ: A communication network graph G =(V,E), and two positive real numbers. cx and C. 

Question: Is there a residence set R ~ V. such that L Wi + CX· L " < C? 
j e Vie V 

Theorem 3.1: RS is NP-Complete. 



- 8 -

Proof: See Appendix. 

Although the problem is NP -Complete in general, for cerL<l.in input parameters it can be solved efficiently. 

Theorem 3.2: Let G = (V,E) be a network, and assume that the read-write ratio, a, is bigger than I VI-I. 

Then there is a unique optimal residence set, and it is the set of all processors. 

Proof: Suppose that ReV is an optimal residence set Let k be a processor in V -R, which has a neighbor 

in R. It is easy to see that cost (R u (k}) < cost (R), as follows. The total read-cost for R u {k} is lower 

than the total read-cost for R, by at least a.. For each i ~k, Wj for R u {k} is higher than Wj for R, by at 

most one. Therefore, the total write-cost for R u {k} is higher than the total write cost for R, by at most 

I VI-I. Overall, since a. > I VI-I. cost(R) > cost(R u (k}), contradicting the optimality of R. 0 

In the next section we show that for certain common network topologies the problem can be solved 

efficiently for any read-write ratio. 

4_ Special topologies 

In this section we present the positive results concerning completely-connected. tree. and ring net­

works. Each topology is treated in its own subsection. in which we provide an algorithm for finding the 

optimal residence set, and prove its correctness. The algorithm deals with the balanced-load case. At the 

end of each subsection we discuss the extension of the algorithm to efficiently solve the problem if the load 

is unbalanced. This is the case in which processor i in the network performs HRj>O reads per time-unit, 

and HWj>O writes per time unit. For different processors. i and j, #R j may be different than HRj • and simi­

larly, HWj may be different from HWj • 

4.1 Completely Connected Network 

In this subsection we provide a formula for computing in constant time, the optimal residence set in a 

completely connected network (i.e. a clique), denoted G (V,E). We show that if 0.< I VI-I, then the optimal 

residence set consists of one processor, and if (£ I V I-I, then the optimal residence set consists of all pro-

cessors. 



- 9 -

The proof for this fact is as follows. Given a residence set, R, for every processor j in R, 'j=O; for 

every processor k that is not in R, 'k= 1. Thus, the total read cost, L'j = I V I-I R I . For every processor j 
ie V 

in R, wj=IRI-l and for every processor k that is not in R, w,t=IRI. Thus, the total write cost, 

1: Wi = (I VI-IR I)·IR I+IR I·(IR 1-1) = (I VI-I)·IR I. Overall, 
ie V 

cost(R)= 1:wi+a'1:ri= IRI'(IVI-a-I)+ IVI·a. 
i e Vie V 

(1) 

Expectedly, the actual residence set is irrelevant. only its size detennines the communication cost If 

a < I VI-I then the minimum of the cost(R) function is obtained when IR 1=1, and if a> I VI-I then the 

minimum is obtained when I R I = I V I. If a = I V I-I then the costs of all possible residence sets are equal. 

Obviously, the size of the optimal residence set can be computed in constant time. 

Unbalanced load: Let R be some residence set Consider how the cost of R changes, when adding to it a 

processor, i, that does not belong to R. The total write cost, increases by L #Wj , since the cost of 
j e V-{i} 

each write by all the processors, except i, increases by one. The total read cost decreases by #R j • There-

fore, the total increase in cost is 1: #Wj - (#R j + #W;). Consequently, the optimal residence set is: 
j e V 

(k I 1: #Wj ~ (#Rk +#Wk) } 
j e V 

If there is no processor which satisfies the condition, then the optimal residence set consists of one proces-

sor, the one for which #Rk + #Wk is maximal. The optimal residence set can obviously be found in linear 

(although not constant) time. 

4.2 Tree Network 

In this subsection we first present a simple algorithm, called TREE-RS, which detennines the optimal 

residence set in a tree-network, T(V,E). Then we prove the correctness of the algorithm, and finally, we 

show that the algorithm works in linear time. 

In the algorithm TREE-RS we use the tenn median of a tree. The median is the node for which the 

sum of distances to the other nodes is minimal. Note thal generally the median of a tree is different than its 

center. The laner is the node for which the maximal distance is minimal. Fonnally, in a tree let Iv .. denote 



- 10 -

the length of the simple path between v and u. A median is a node, m, for which 'L,l"", is minimal. It can be 
u 

shown that in a tree there are one or two medians ([Z]). 

The algorithm 1REE-RS is given as parameters a tree network, and a read-write ratio ex. Starting 

from some median, it incrementally constructs the optimal residence set, RS, by adding a processor to RS if 

it does not increase the cost of the set. The algorithm colors a processor blue if it is not in RS, and red if it 

is in RS, or has not been checked yet 

TREE-RS [T(V,E), ex]: '* Algorithm/or finding the optimal residence set 
o/tree T and read-write ratio ex *' 

1. init: color all the processors of V by red; initialize RS to a median, m. 
2. while there exists a processor in RS with at least one red neighbor, j, do: 
3. if cost (RS u (j) ~cost (RS) then add j to RS; else color j by blue. 
4. end while. 
5. output: RS. 

Next we prove that RS is an optimal residence set The proof is concluded by Theorem 4.2.1, and uses 5 

lemmas. The first states that the optimal residence set must induce a connected subgraph of the network. 

Lemma 4.2.0: Assume that a residence set R induces a disconnected graph in a tree network. Then there is 

another residence set, R', such that cost (R,) < cost (R), and IR 1 > IR'I. 

Proo/: The construction of R' proceeds as follows. Since the graph induced by R is not connected, there 

must be at least two processors of R, i and j, such that if we denote the unique path between them by 

i,b b ... ,bj;,j for k ~ 1, then the bi's do not belong to R. Take the pair i,j of such processors, with minimal 

distance between them. To obtain R' we add to R all the processors on the path between i and j. The total 

read cost for R' is less than the total read cost for R, since R c R'. The write cost of a processor I, for R' is 

equal to its write cost for R, for the following reason. There is a minimum spanning tree of DG(R u (l}) in 

which the path between i and j is either i - j, or i -I-j. In both cases, the path can be replaced by 

i,b I , .... ,bbj or i,b! , .... ,b",l,bll+! , .... ,bt,j. respectively, to obtain an equal weight minimum spanning tree of 

DG(R' u (l}). 0 

Denote the processors of a graph G by V (G). For the rest of this subsection, let R be a residence set that 

induces a connected subgraph of the tree-network, and assume that processor i is not in R, but is a neighbor 

of some processor in R. Consider the removal of the edge between i and its neighbor in R. It disconnects 



- 11 -

the network into two subtrees: a subtree that contains i, denoted Tj , and a subtree that contains R, denoted 

TR • Figure 4.2.1 illustrates the description. 

,--""-- - -- ...... 
,,/ "-

/- '\ 
( ~ \ 

\ 

./ -, 
I 

/ 

Q
--"" 

I 1. \ 

I 1:: I 
\ ~ I 
\ \~ / 

'- ./ 

figure 4.2.1. 

Lemma 4.2.1: cosl(R u (i) = cosl(RMx·IV(Tj)l+ I V(TR) I. 

Proof: Observe that adding i to R decreases the read cost of each processor of Tj by one, and does not 

change the read cost of TR 's processors. Also, adding i to R increases the write cost of each processor of 

TR by one, and does not change the write cost of Tj ' s processors. The lemma follows. 0 

Lemma 4.2.2: Let lj be a subtree of the network such that i E V(lj) and V(lj) n R=0 (see figure 4.2.1). 

Then, COSI (R u {i)>COSI (R) implies that COSI (R u V (lj»>COSI (R). 

Proof: Consider how the addition of V (lj) to R changes costs. It decreases the read cost of each processor 

of Ti by at most 1 V (lj) I, and does not change the read cost of TR 's processors. It also increases the write 

cost of each processoc of TR by I V(tj) I (by lemma 2.1), and does not decrease the write cost of Ti'S pro-

cessors. Note that cost (R u V (Ii» = cosl (R) - [decrease in read cost] + [increase in write cost]. Thus, 

cost (R)+ I V (tJ 1'( I V (TR) I-a' I V (TJ I). Since it is given that cost (R u (i}»COSI (R), then by lemma 4.2.1, 

I V (TR ) I-a' I V (Tj ) I >0, and the lemma foUows. 0 

Lemma 4.2.3: Let R' be a residence set that induces a connected subgraph, and assume that Rr;;;.R'. 



- 12 -

Furthennore, assume that processor i, the neighbor of some processor in R, is not in R' (see fig. 4.2.2). 

Then cost(R u {i})Scost (R) if and only if cost(R' u {i})~cost (R'). 

Proof: Straightforward from Lemma 4.2.1. 0 

- -,,/ "-
I" "'\ 

fiR 
\ 

"-

,.- "I " ,,/ .. "'\ ( 

I 1 \ 
! ( 

\ \. I 

"- L. / 
-.... ./ - -

figure 4.2.2. 

The last lemma indicates that for each median there is an optimal residence set which contains it. It uses 

the following median property (see [Z, KRS]). A node m is a median of a tree T, if and only if for each 

neighbor, W, of m it is true that: if the edge (m,w) is removed, then in the connected component which con-

tains w there are at most half the number of nodes in T. 

Lemma 4.2.4: Let m be a median. If meR then there is another residence set, R', such that R' induces a 

connected subgraph of the tree network. and mER', and IR 1 = 1 R' I, and cosl (R')~COSl(R). 

Proof: Intuitively, the proof shows that if R is "shifted" towards m then the cost cannot increase. For-

mally. consider the unique path in the network from m to the closest member of R. Denote by k the last 

node on this path. which is not in R (see fig. 4.2.3). If R contains more than one member. then denote by j 

a leaf of the subtree induced by R, which is not a neighbor of k. Otherwise let j be the unique member of 

R. Let R' = (R u {k)'r{j}. We shall show that cost (R,) ~ cost(R). Denote by Tk the subtree of the net-

work which contains k, and is obtained by removing the edge between k and its neighbor in R. Similarly, 

we define (again. consult fig. 4.2.3). It is easy to verify that 



- 13 -

cosl(R,) = cosI(R) + I V(Tj ) I - I V(T.I;) I + 0:( I V (Tj ) - I V (T.I;) I). The median property implies that 

I V (T.I;) I ~ IV (Tj ) I , and therefore cost (R') $ cost (R). The procedure can be repeated until m is contained 

inR'. 0 

-------
/ 

/ 
I 

~k ~\,./ 
" / 

...... ---- - - -- ."",./ "~ 
( ,~ \ 

\ /-1> j 
~\ 
i \ 
I 
I 
\ 
I , -. , ) 

figure 4.2.3. 

I 
/ 

/ 

Theorem 4.2.1: For any tree-network and any read-write ratio. the residence set RS output by the algo-

rithm TREE -RS. is optimal. 

Proof: We will prove that RS satisfies the following condition. It is a minimal cost residence set that con-

tains m, with a maximal number of processors. By lemma 4.2.4, a residence set which satisfies the condi-

tion is an optimal residence set. Assume that RS does not satisfy the condition. and denote by RS' a 

residence set which does so. This obviously implies that RS:J:RS'. The set RS' induces a connected sub-

graph of the network (by Lemma 4.2.0). and RS induces a connected subgraph (by the way TREE -RS adds 

nodes to the residence set). We will analyze two cases. 

case 1: RSc,RS'. Observe that the graph induced in the network by RS'-RS is a forest. Consider a tree, Ij, 

of this forest. It contains a processor, i, that has a neighbor in RS. Step 3 of TREE -RS must have been exe-

cuted for i, but it did not add j to R. In other words. adding j would have increased the cost. From Lemmas 

4.2.2 and 4.2.3 we can conclude that by removing the processors of Ii from RS' a lower cost residence set 

can be obtained. Contradiction to the minimality of RS"s cost. 



- 14 -

case 2: RSrZRS'. Let k be the first processor that the algorithm adds, such that k E RS and k f1 RS'. Denote 

by S the residence set that the algorithm TREE-RS has, before adding k. Note that S:;:q> (because at least 

m E S), and S~ RS'. The algorithm adds k to S, so cost (S u {k})~cost (S). The processor k is a neighbor of 

some processor in S. By Lemma 4.2.3, cost (RS' u (k})~COSI(RS'). If cost (RS' u (k})<COSI(RS,) then RS' 

is not an optimal residence set, and if cost (RS' u {k})=cost (RS,) then RS' does not have a maximal 

number of processors. 0 

Now consider the time complexity of TREE-RS. A median can be found by using the 

median property. It necessitates establishing in advance, for each edge e of the tree, how many nodes are in 

each connected component, if e is removed. This can be done in linear time, and then finding the median 

simply involves scanning the nodes. In step 2 of the algorithm every processor of the tree-network is 

examined at most once. For the red processors step 3 is perfonned. By using Lemma 4.2.1, which indi-

cates how the addition of a processor to the residence set changes costs, step 3 can be perfonned in con-

stant time. Specifically, cost (R u {j} S cosI(R) if and only if a·1 V(Tj ) I ~ 1 V(TR ) I. Therefore, the optimal 

residence set can be found in linear time. 

Unbalanced load: The algorithm TREE-RS is still perfonned as given, to obtain the optimal residence set, 

except that the set RS, in step 1, is initialized to a weighted median. It is the node, m, for which 

'L(#R" + #W")'/",,, is minimal. A weighted median can still be found in linear time using the following 

weighted median property. A node is a weighted median if and only if for each neighbor, w, of m it is true 

that.: if the edge (m, w) is removed, then 

(#R" + #W,,). 

The proof that RS is an optimal residence set can be repeated almost verbatim, except that Lemma 4.2.1, 

that is also used in step 3 ofTREE-RS. becomes: cost(R u (i}) = cost(R) - 'L #R j + 'L #Wj • 
j E V (T,) j E VeTo) 

4.3 Ring 

The main result of this subsection is providing in theorem 4.3.1 a fonnula to compute the optimal 

residence set in constant time. First we prove 4 lemmas, enabling us to conclude that for any size ring, and 
.l." . 



- 15 -

for any read-write ratio. there is an optimal residence set that induces a connected subgraph of a ring net­

work. We refer to a connected subgraph of the ring network as a string. The first lemma enables us to 

speak subsequently in more intuitive terms of strings, ruther than the distance-graph. 

Lenvna 4.3.1: Let G be a ring network, R be a residence set, and i be a processor of G. Then Wj, the 'Nrite 

cost of processor i, equals to the number of edges in the shortest string of G that contains all the processors 

ofRu{i}. 

Proof: Obvious. 

Given a residence set, R, in a ring network, consider the subgraph, Q, induced by the processors of the net­

work that do not belong to R. A connected component of Q is a hole. For example, in fig. 4.3.1a, H. and 

Hb are holes. 

Lenvna 4.3.2: For any residence set R which induces three 9r more strings in a ring network, there is a 

residence set having a lower cost 

Proof: Denote by H the set of processors, each of which is not in R, and is not in the two biggest holes of 

R. Since there are more than two holes, H is not empty. Consider the residence set, R', which is R u H (we 

fill all but the two biggest holes). Since R' is a proper superset of R, the total cost of reads for R' is less 

than for R. Consider an arbitrary processor, v. If v docs not belong to in the biggest hole of R, then it is easy 

to see, by Lemma 4.3.1, that its write cost is: 

(number of edges in the network) - (number of edges in the the biggest hole) - 2 

regardless of whether R or R' is the residence set. 

If v belongs to the biggest hole of R, then, given the residence set R', there are two possibilities: either v 

writes by "skipping" part of the biggest hole (fig. 4.3.2a), or it writes by "skipping" the whole second big­

gest hole (fig. 4.3.2b). However, notice that in both cases, if R is the residence set, then v writes in the 

same fashion. Therefore, the total write cost of all the processors given the residence set R, is equal to the 

total write cost of all the processors given the residence set R'. Thus, since the total cost for reads is 

smaller for R', cost (R')<cost(R). 0 



- 16 -

Lemma 4.3.3: If the read-write ratio a> I, then for any residence set that induces two strings, there is a 

residence set that has a lower cost. 

Proof: Let R be a residence set that induces two strings (see fig. 4.3.1 a). Denote by H, and Hb the sets of 

processors of the smaller hole and of the bigger hole, respectively (of course, their size may be equal). 

Consider the residence set, R', which is R u H, (see fig. 4.3.1b). We will show that COSl (R,)<COSl(R). 

. H 
~ ~ 

I .~ , 

a b 

figure 4.3.1: A ring. Shaded processors are members of the residence set 

\ • 

For each processor in R u Hb , the read costs using R and R' are equal. The read cost of a processor of H, 

is zero using R', and nonzero using R. First we compute the total decrease in the cost of reads, when sub-

stituting R' for R. 

case I: I HI I is even. 

IH 1 
Then there are two processors in HI at distance i from R, for each I$iST' The total read cost 

IH,I 

2 IH,I IH,I 
decreases by 2· L i = -2-'(-2-+1). (3) 

i=1 

case 2: 1 H, 1 is odd. 

111,1-1 
Then there are two in H, processors at distance i from R. for each 19< 2 ' and there is one processor 

IH,I+I 
at distance ---

2 
The total read cost when using R' instead of R decreases by 2· 

IH.I-I 

2 

L 
i=1 

1Hsl+I 
i+---

2 



- 17 -

IHsl+1 2 
( 2 ). (4) 

Now consider the write costs. The write cost of a processor in R u lis has not changed, because by 

Lemma 4.3.1 it equals the number of edges in the string induced by R u Hs; and this is the same string (i.e. 

the ring minus the biggest hole) for R or R'. In Hb however, there are two types of processors (see fig. 

4.3.2). 

(b) 

figure 4.3.2: Hb is the biggest hole, and H. is of equal, or smaller, size. 

The first type (fig. 4.3.2a) are processors for which a shortest string that contains them and R, contains the 

whole ring except some processors of Hb • For these processors the shortest string has not changed, and by 

lemma 4.3.1 their write cost has not changed. Therefore, if Hb contains only processors of the first type. 

then the total cost is decreased for R' compared to R, and the proof is completed. 

The second type of processors in Hb (fig 4.3.2b) are processors for which the shortest string contains the 

whole ring, except the processors of Hz. Precisely, let i be the distance from R of a processor in Hb • Then, 

the processor is of type two if I H.I > I Hb I-i, or in other words, i> I Hb I-I Hs I; otherwise it is of type one. 

For a processor of type two, the shortest string that contains it and the processors of R' is longer than the 

shortest string that contains it and the processors of R. Denote by AI the increase in the total write COSt, 



- 18 -

when substituting R' for R. The following two cases give an upper bound on M. From this upper bound, 

the fact that a > 1, and formulas (3) and (4), the lemma follows. 

case 1: IHb I is even. 

Then there are two processors at distance for each 

IHb l 
Given that IHb l2:IHs l>-2-' if 

IHs I IHs I IHs 1+1 
IHs I is even men tll~ --'(1+--), and if IHs I is odd then M~( )2. 

2 2 2 

case 2: I Hb I is odd. 

IHb 1-1 
Then there are two processors at distance i, for each I Hb I-IHI I <i~ 2 ' and one processor at dis-

lance 

(IHs I 

IH.I-I 
-z-

It can be easily verified that tll=(2' L (IHsl+i-IHbl»)+(IHsl 
i=IH.I-IH.I+I 

IHb 1-1 
--)= 

2 

IHb '-1 2 'Hz I IHs I 
2 ). Again, given that IHbl2:IHsl. if IH.I is even then D./~ -2-'(1+-

2
-), and if 

IHsl+1 
I Hs I is odd then D./~( 2 )z. 0 

Lemma 4.3.4: Let the read-write ratio a ~ I, and R be a residence set which induces two strings, and denote 

the smallest hole by HI' Then there is another residence set R' that induces at most two holes, and 

cost(R') S cost (R), and IR'I = IR I, and the smallest hole it induces, H's' is of a smaller size than HI' 

Proof: We shall define R' to be the "shift" of the long string induced by R, closer by one position to the 

short string (thus reducing IHI I by one). Denote by Sb' Ss the big and small strings induced by R. respec-

Lively. Denote by TIs the processor of Hs which is closest to Sb' and by Tlb the processor of Sb which is 

closest to Hb (see Fig. 4.3.3). 



- 19 -

figure 4.3.3. 

Let R' = S .. u (S,,-{n,,}) u {ns}. It is easy to calculate that the total read-cost is higher for R' than for R. by 

Consider now the write costs. We shall show that there is a decrease in the total write cost, and this 

decrease is at least as high as the increase in read costs. Since I H'" I = I H" I + 1 the write cost of a proces-

sor of S .. u H .. u (Sb}-{nb)) is lower by one for R' than for R. For n". the write-cost is equal for the two 

residence sets. Left is only to evaluate the change in write costs for the processors of Hb • Asswne that the 

processors of H" do not change type (see proof of lemma 4.3.3 for the definition of type) when going from 

R to R'. In other words, if a processor of H" writes R by skipping part of Hb (fig. 4.3.2a), then it writes R' 

by skipping part of H'". and if it writes R by skipping II ... then it writes R' by skipping H' ... If all the pro-

r ~l cessors of H" are of type one. then the write cost of 2l processors is lower by one for R' than for R. 

r 
_IH,,--'-l 

Overall, the total write cost is lower for R' than for R by ISs I + 1Hz I + IS" I + +J -1; since (l:S: 1 

< O. and the lemma fol-

lows. 

Suppose now that there are processors of type two in H" (i.e. processors for which their distance from R is 

more than I H" I-I H, I). There are I H" 1-2·1 Hs I such processors. Then the write cost of the I H" I-I Hs I 

processors of type one is lower by one for R' than for R: the write cost of the I H" 1-2·1 H .. I processors of 



- 20 -

type two is higher by one for R'. Then the total write cost is lower for R' than for R by 

ISs 1+ 1Hs I+ISI> I-I+IHI> 1-IHs 1-2'IHs I+IHI> 1= IS,I+ISI> 1+2' 1 HI> 1-1-2·IH,I. 

Overall. since a S I, 

l~ cost(R')-cost(R) S 2l 
We have assumed that the processors of HI> do not change type when going from R to R'. If they do, it is 

because their write cost can be decreased further. and our inequalities obviously continue to hold. 0 

Corollary 4.3.1: If the read-write ratio a S I, then for any residence set R that induces two strings, there is 

another residence set R' that induces only one string, and cost (R,)Scost(R), and 1 R I SIR' I. 

Proof: Immediate from Lemma 4.3.4. since the size of the smaller hole can iteratively be reduced to zero. 

o 

By Lemma 4.3.3 and Corollary 4.3.1. we conclude that for each ring, and for each read-write ratio. there 

exists an optimal residence set with at most one hole; in other words. there exists an optimal residence-set 

that induces a connected subgraph of the network. Because of the ring topology, and the fact that all the 

processors have the same access pattern, it is clear that all the residence sets that induce a string of the 

same size. have the same cost Therefore, we only have to provide a formula for computing the cardinality 

of the optimal residence set This we do in the next theorem. 

Theorem 4.3.1: Let n be the size of the ring, and a be the read-write ratio. Then the cardinality of the 

n·(a-l) 
optimal residence set equals to + I. 

a+1 

Proof: If R is a string of size t, then for v E R the cost w. = k -I and the costr v = 0; for v e R at distance i 

from R, W. = i+k-I and ry = i. Summing up we obtain: cost(R) = n'(k-I) + a;1 ·[(n-k+I)2_cl. where 

c=1 if n-k is even. and c=O if n-k is odd. In both cases, the derivative of cost(R) with respect to k is 

n + ; '(a+I)(k-n -I). This indicates that the minimum of cost (R) is obtained when k = n (a-I) + l. 0 
.:. a+1 

Unbalanced Load: Only lemmas 4.3.1 and 4.3.2 still hold in case each processor has a different access 

pattern (#R, and #WJ. However, lemma 4.3.2 is enough to provide a polynomial (although not constant) 



- 21 -

time algorithm. Specifically. the fact that we know that in an optimal residence set there are at most two 

holes, enables finding the optimal residence set as follows. Assume that the ring is of size n. It is easy to 

see that there are 0 (n4) different residence sets, each with at most two holes. Finding the cost of a 

residence set can be done in 0 (n). Consequently. the time complexity of finding the optimal residence set 

is 0 (n s). 

5. Reliability Considerations 

As mentioned in the introduction, often the number of processors in the residence set should not fall 

below some threshold, t. Therefore, although the optimal residence set contains, for example, one prOces­

sor. this may be unacceptable for reliability reasons. Consequently, we are often interested in finding the 

t-reliable optimal residence set The resulting t-RS problem is fonnally defined as follows, for the 

balanced-load case (unbalanced load is addressed at the end of this section). Given a network. G = (V,E), 

and a read-write ration. a, and a reliability threshold. t < I V I , what is the residence set R ~ V such that 

IR I ~ t and cost(R) is minimal? The problem remains NP-complete (we have proved it NP-complete for 

t = 1) but for the special topologies discussed in Section 4, it can be solved efficiently. 

Consider first a completely connected network. If the cardinality of the optimal residence set is less 

than the threshold t, it means that a < I V 1-1. and that the optimal residence set is of size one. But then. 

based on fonnula (1) in subsection 4.1. it is easy to see that the solution to the t -RS problem is any subset 

of t processors. 

Next, consider a ring network:. Based on Lemma 4.3.3 and on Corollary 4.3.1. we can disregard 

residence sets which induce more than one connected component Then the fonnula developed in the proof 

of Theorem 4.3.1 for cost (R) as a function of the size of the residence set, is a polynomial of rank two hav­

ing a minimum value. Consequently, since t is bigger than the optimal residence set size (otherwise the 

problem is trivial), the solution to the t -RS problem is a string of size t. 

Finally. we consider a tree network. For this network topology the solution is slightly more compli­

cated. We present a quadratic time algorithm, TREE-tRS. which provides a solution to the toRS problem. 

Given a tree T, a residence set R which induces a connected subgraph of T. and a node j of T which is not 



- 22-

in R. but is a neighbor of some node i in R assume that we remove the edge (i,j) from T; then remember 

that we denote by Tj the connected component which includes j, and by TR the other one. The algorithm is 

formally given below, but intuitively. it starts with RS, the optimal residence set output by TREE-RS, and 

iteratively adds to it the neighbor j for which I Tj I is minimal. Obviously. each addition of a node to RS 

increases the communication cost 

TREE -tRS[T(V,E),a.t]; 
1. initialize Rt toRS. the optimal residence set output by TREE -RS[T(V,E).a]; 
2. while IRtl < t do; 
3. add to Rt the neighbor j for which I Tj I is maximal; 
4. end; 
5.outputR t • 

Next we shall prove that the set Rt output by TREE-tRS indeed provides a solution to the toRS problem. 

First we need some notation. Denote by RSr a solution to the t-RS problem which includes the median, m. 

used by TREE-RS (according to Lemma 4.2.4 there is such). and is of maximal size. Obviously. IRStl ~ t. 

By Lemma 42.0, RSt induces a connected subtree of the network. Denote by RS the optimal residence set 

obtained by the procedure TREE -RS. when starting from m. We obviously suppose that IRS I < t, other-

wise RS is a solution to the t -RS problem. 

Lemma 5.1: RS eRSt. 

Proof: Suppose that RS II RSt. Note that RS n RSr ~ 0, because m belongs to both sets. Therefore. con-

sider a processor j E RS -RSr which is a neighbor of a processor in RSt (see Fig. 5.1). By Lemma 4.2.3. and 

the fact that TREE -RS added to the residence set. it is clear that 

cost «RS n RSr) u (i) ~ cost (RS n RSt). Then. again by Lemma 4.2.3, cost (RSt u (i) $ cost (RSr). But 

if cost (RSt u (i}) < cost (RSr) it contradicts the COSt minimality of RSt. and if cost (RSt u (i) = cost (RSt) 

it contradicts the maximality of the size of RSt • 0 



- 23 -

figure 5.1 

Theorem 5.1: cost (RS,) = cost (R,). 

Proof: First we shall show that in RS, there are exactly t processors. By Lemma 5.1 and step 3 of algo­

rithm TREE-RS, the cost of RS, is strictly higher than cost(RS) (remember also that we assumed that 

IRS I <t). Thus, if IRS, I >t, then, by Lemma 4.2.1, at least one processor can be omitted from RS" to obtain 

a residence set of lower cost. that is of size ~ t. This contradicts the cost minimality of RS,. 

Next we shall show that RS, can be transfonned into R, by a sequence of add-processor-drop-processor 

transfonnations. such that each transfonnation is cost preserving. Denote H = R, II RS, (see fig. 5.2). 



- 24 -

figure 5.2 

By Lemma 5.1 H ~ RS, and consequently, H ;t 0. If RS,-H = 0, or R,-H = 0, then RS, = R" since both 

sets are of the same size. Then the theorem trivially follows. Assume that RS,-H ;t 0, and consequently 

R,-H ;t 0. We shall show that every processor in RS,-H is a neighbor of H, and so is every processor in 

R,-H; furthermore, the add-processor-drop-processor cost preserving transformations, consist of dropping 

any node in RS,-H, and adding any node in R,-H. Since RS,-H and R,-H are of the same size, the 

theorem follows. 

Let I be some leaf of the subtree induced by RS" such that I is not in H (see fig. 5.2). Let k be some proces­

sor in R,-RS, which is a neighbor of H (see Fig. 5.2). By Lemma 4.2.1. 

cost(RS,-{l})=a·IV(TI)I-IV(TRS,-flj)1 + cost (RS,). If I is not a neighbor of H, then by step 3 of 

TREE -iRS, I V(TI) I < I V (Ti) I; therefore, cost «RS,-{l}) u (k)) < cost (RS,), and this contradicts the cost 

minimality of RS,. Consequently, I is a neighbor of H. I is an arbitrary leaf of the subtree induced by RS,. 

that is not in H. Therefore any such leaf is a neighbor of H, and consequently, any internal processor of the 

subtree is in H. Thus any processor of RS,-H is a neighbor of H. Now let I denote an arbitrary processor of 

RS,-H. It is easy to see, again by Lemma 4.2.1, that adding k to RS,-{l} gives a residence set, Q, whose 

cost is not higher than the cost of RS,; otherwise step 3 of TREE -iRS would have added / to R, before 

adding k. The cost of Q cannot be lower than the cost of RS" because of the way RS, was defined_ In other 

words,~~y. Lemma 4.2.1, TI has exactly as many nodes as Tk • Suppose that R,-H contains a processor, g, 



- 25 -

that is not a neighbor of H; then in step 3 of TREE -tRS, I would have been selected before the selection of 

g, since I has as many nodes as k. Thus any processor g of R,-H is a neighbor of H, and Tg has exactly as 

many nodes as Tk • Therefore, any processor of RS,-H can be replaced in RS, by any processor of R,-H, to 

obtain a residence set of cost equal to cost (RS,). 0 

Unbalanced load. 

Completely connected network: This case can be resolved based on the case unconstrained by reliability 

considerations (subsection 4.1). The optimal residence set, RS, found there for the unbalanced-load case, 

should be extended by adding to it t- I RS I processors, in the following fashion. Sort the processors that are 

not in RS, in decreasing order of their sum IIR j + IIWj • Then add to RS the first t-I RS I processors in the 

sequence so obtained. As explained in subsection 4.1, this will increase the cost of RS the least. 

Tree network: The algorithm TREE-LRS can be extended to provide the t-reliable optimal residence set, in 

an unbalanced-load environment Assume that processor i in the network performs IIR j reads per time-unit. 

and IIWj writes per time unit. Then the algorithm TREE-LRS can still be executed as given, except that step 

3 becomes: 

add to R, a neighbor j for which fiR" - is maximal. 

Lemma 5.1, and Theorem 5.1 continue to hold. and their proof is identical to the one given for the 

balanced-load case. 

Ring network: This case can be handled in the same fashion, as the case unconstrained by reliability con-

siderations (subsection 4.3). The cost of each residence set of size at least t, and having at most two holes, 

is be computed. The minimal-cost such set is the desired one. 

6. Discussion 

In this paper we first proposed a new method by which a processor should write all replicas of a data 

item for minimizing communication. The processor should construct a minimum spanning tree of what we 

called the distance graph, and then propagate the data item along its edges. The read, as usual, is carried 



- 26-

out from the closest replica. Then we showed that determining a residence set for minimizing overall 

communication is NP-Complete in networks modeled by general graphs. However, we provided constant 

time algorithms for determining the optimal residence set in completely-connected networks and rings, and 

a linear time algorithm for determining the optimal residence in tree-networks. Extensions for the algo-

rithms in case reliability constraints exist, were provided. 

Next, we would like to demonstrate that the communication cost improvement obtained by using the 

residence sets proposed in this paper is significant. Consider, for example, in a ring network of n proces-

sors, how the proposed residence set compares with a trhial residence set consisting of all n processors. 

Denote the number of messages per time unit for this trivial residence set by cost", and the number of mes-

sages per time unit for the optimal residence set (Theorem 4.3.1) by costOpl • Then, if the read-write ratio is 

n2 ex cost" 1 
ex, costopl = --, and cost,,=n(n-l). Furthermore, -------+ 1+-. Therefore, if for example 

ex+ 1 costoPI"~ ex 

ex = 2, then as the number of processors grows, our proposed residence set is 33% better than the trivial 

one. Similarly, one can show that if we consider another trivial residence set, consisting of one processor, 

then cost 1 __ -+ (ex+ 1)2 ,and for ex = 4, a 36% gain is realized. 
costoP1 ,,__ 4ex 

An additional remark is that although the optimal set for the discussed topologies induces a con-

nected graph, this is not necessarily the case in a general network. For example, for the network in fig 6.1 

and for cr.= 1.8 the unique optimal residence set is {4 ,8 } . 



- 27 -

figure 6.1. 

As far as future work is concerned, much remains to be done. First, it would be interesting to gen-

eralize our results to other network topologies, e.g. the hypercube. Second, bounded error approximations 

for general networks should be investigated. Third, what happens when communication time in addition to 

communication cost is an issue (such an analysis was carried out in [SW])? Finally, it would be interesting 

to generalize the results to majority-voting access schemes, as opposed to read-one-write-all. 

Acknowledgement: We wish to thank the referees for helping us improve the focus and presentation of 

this paper. One of the referees also showed us how to solve the optimal residence set problem for com-

pletely connected networks, in the unbalanced-load case. This prompted our extension of all the results, to 

handle the unbalanced-load case. 

References 

[C] R. G_ Casey, "Allocation of Copies of a File in an Information Network", Proc. 1972 Spring 
Joint Computer Conference, AFIPS, 1972. 

[CD] D. Cheriton and S. E. Deering "Hosts Groups: A Multicast Extension for Datagram Internet­
works", Stanford University Manuscript 

[CZ] D. Cheriton and W. Zwaenepoel "Dislributed Process Groups in the V Kernel", ACM Transac­
tions on Computer Systems, 3 :2, 1985. 



- 28 -

[CMP] S. Ceri, G. Martella, and G. Pelagatti, "Optimal File Allocation in a Computer Network: a 
Solution Method Based on the Knapsack Problem", Computer Networks. 6 :5, 1982. 

[D] Y. K. Dalal. "Broadcast Protocols in Packet Switched Computer Networks", Ph.D. Thesis" 
Stanford University, DSL TR 128. 1977. 

[De] S. E. Deering "Multicast Routing in Intemetworks, and Extended LANs", Stanford University 
Manuscript 

[DF] L. W. Dowdy and D. V. Foster, "Comparative Models of the File Assignment Problem", ACM 
Computing Surveys, 14 :2, 1982. 

[DM] Y. K. Dalal and R. M. Metcalfe "Reverse Path Forwarding of Broadcast Packets". Communi­
cations of the ACM. 21: 12, 1978. 

(FH] M. L. Fisher and D. S. Hochbaum. "Database Location in Computer Networks", Journal of the 
ACM, 27 :4. 1980. 

[IK] K B. Irani and N. G. Khabbaz, "A Methodology for the Design of Communication Networks 
and the Distribution of Data in Distributed Supercomputer Systems", IEEE Transactions on 
Computers. C-31 :5, 1982. 

[KRS] E. Korach, D. Rotem, and N. Santoro, "Distributed Algorithms for Finding Centers and Medi­
ans in Networks", ACM Transactions on Programming Languages and Systems, 6 :3,1984. 

[M] A. Milo. M.Sc. Thesis. The Technion - lIT, Jan. 1988 (in hebrew). 

[ML] H. L. Morgan and J. D. Levin "Optimal Program and Data Location in Computer Networks", 
Communications of the ACM. 20 :5, 1977. 

[MIMH] S. Muro, T. Ibaraki. H. Miyajima. and T. Hasegawa. "Evaluation of the File Redundancy in 
Distributed Database Systems" IEEE Transactions on Software Engineering, SE-ll :2, 1985. 

[MR.] S. Mahmoud and J. S. Riordon, "Optimal Allocation of Resources in Distributed Information 
Network", ACM Transactions on Database Systems, 1 : 1, 1976. 

[P] R. Perlman, "An Algorithm for Distributed Computation of a Spanning Tree in an extended 
LAN", Proc. 9th Data Communications Symposium, ACM/IEEE, 1975. 

[SW] A. Segall and O. Wolfson, "Transaction Commitment at Minimal Communication Cost", Proc. 
6th ACM Symp on Principles of Database Systems. 1987. 

[RW] C. V. Ramamoorthy and B. W. Wah. "The Isomorphism of Simple File Allocation", IEEE 
Transactions on Computers, C-32 :3, 1983. 

[2] B. Zelinka, "Medians and Peripherians on Trees", Arch. Math. (Bmo), 1968. 



- 29-

APPENDIX 

Proof of Theorem 3.1 It is easy to see that RS E NP. Guess a subset R \;: V, find Wi and 'i for each i E V, 

and verify that L Wi + Cl' L 'j < C Obviously. this can be done in polynomial time. 
iE v j E V 

Next we show that RS is NP -Hard. This is done by transforming the Steiner Tree (S1) problem to RS. In 

ST the input consists of a graph G'=(V,£,), a subset X ~ V and a positive integer B < I V I. The question is 

whether there exists a subtree of G' that includes all the nodes of X. and such that its number of edges is no 

morethanB. We shall assume without loss of generality that 1 < IXI <B < IVI. 

Given an instance of the ST problem we construct an instance of the RS problem as follows. The graph G 

consists of G', with every node U E X connected to a "crown" of I V 13 new nodes: U 1, U2 • ••• ,U IV'I)' For 

example, in fig. 3.lb there is graph constructed from the graph of fig. 3.1a. where X={a.b.c}. Let Cl=B 

and C = 2·1 VI 3 ·IXI·(B+l). 

e 

d. 

a b 

figure 3.1. 

We claim that there exists a solution to the ST problem if and only if there exists a solution to the RS prob-

lem. In the course of the proof we shall refer to the the nodes of G in G' as old nodes, and to the nodes of 

the "crowns" as new nodes. 

(only if) Assume that there exists a Steiner tree, T, in G' whose weight is no more than B. We choose as the 

.1 • 



- 30 -

residence set R all the nodes of T, and show that it constitutes a solution to the RS problem. Note that for 

every new node, say k, rk= 1 and for every old node, j, r,::; I V I. Therefore, the total cost for reading is 

L ri::; 1V'1 3 ·IXI+IVI 2
• By lemma 2.1, for every new node, k, Wi: ::;B+l. The distance of every old 

ie V 

node from R is at most I V I-B -1, and I R I ~ + I, so WjS; I V I. Therefore, the total cost for writing is 

L Wi::; I VI 3 'IXI-(B+I)+1 V'12. 
ie V 

Totaling, the cost is: L Wi + ex' L ri ::; I V' 13 'IXI'(B+l)+ IVI2+B'( I V 13 'IXI+ I V'12) ::;(1) 
ie Vie V 

(1) IV'I >B. 

(2) IXI > 1. 

Thus, the residence set R is a solution to the RS problem. 

(if) Assume now that the set R constitutes a solution to the RS problem. We use 3 lemmas for this direction 

of the proof. 

Lemma 3.0: There exists a residence set, R', which does not contain any new nodes, and 

cosI(R,)::; cost(R). 

Proof: To obtain R' we will repeatedly perform one of the following two transformations, for each new 

node U E R. 

Case 1: The old node \I, which neighbors u, belongs to R. Then drop U from R. TIle read cost of every pro-

cessor, except u, remains the same, and the read cost of u increases by one. On the other hand, the write 

cost of every node of G, except u, decreases by one, and the write cost of U remains the same. Since 

ex < f V f -I, the cost of the new residence set is lower than cosl (R). 

Case 2: The old node \I, which neighbors u, does not belong to R. Then drop U from R and add \I to R. The 

read cost of any node, except u and \I, obviously does not increase due to the transformation, and the read 

cost of u increases by one, and the read cost of \I decreases by one. Overall, the total read cost does not 

increase. The total write cost also does not increase due to the transformation, because every path from a 

node to u goes through v. 0 

To simplify notation we shall assume that R does not contain any new nodes. 



- 31 -

Lemma 3.1: If R does not contain X, then there exists another residence set, R', for which 

cost (R,) S cost (R), and X ~ R', and R' does not contain any new nodes. 

Proof: Denote the nodes in X-R by {I ,2, ... .k}. To obtain R', first we choose for every node hEX -R a 

shortest path, PI .. from h to a member of R. Then we add to R all the nodes of all PI! 's, and denote this new 

residence set by R'. Obviously, X ~ R' and R' does not contain any new nodes. We denote by dl! the length 

(in arcs) of PI! for h =1,2, ... ,k. Let d=d 1 +d2+ ... +dj;. The total-read-cost for R' decreases by at least B times 

compared to the total-read-cost for R. We add no more than d nodes to R to create R'. Note that for each 

node i, Wi increases by at most d. Since there are I V I + I V' 13 '1 X I nodes in the graph, the total write cost 

of all the nodes increases by at most d·( I V I + I V 13 • I X I ). 

Totaling, cost CR') S cost (R)+( I V I + I V' 13 '1 X I )-d-B·I V 13 'd = 

COSI (R)+ I V 13 ·d·C IXI-B)+ I V I·d S cosl (R)+ I V 13 'd'( IXI-B + 1) S<l) COSI (R) 

(I)B> IXI. 0 

For the next lemma we need the following definition. Given an indirected graph, G. and a subset of the 

nodes, X, the minimal Steiner tree is a subgraph of G which: 1) is a tree, and 2) contains the nodes in X, 

and 3) has a minimal number of edges among all subgraphs which satisfy the first two conditions. 

Lemma 3.2: Let G be a communication network: graph, and X a subset of its nodes. The weight of a 

minimal spanning tree (mst) of the distance graph on X is not smaller than the weight of the minimal 

Steiner tree for X. 

Proof: Obvious. 

Assume that there is no Steiner tree with B or less edges. Lemma 3.2 implies that the total weight of 

msl (DGCX» is at least B + 1. Thus, the cost of a write of a new node for R' (Lemma 3.2), is at least B +2 

(one hop to the closest node in X, and then at least B +1 hops to all the nodes of X through the mst). There-

fore the total write cost for R' is at least (B +2)·1 X 1·1 V 13• The total read cost for R' is at least the read cost 

of the new nodes, i.e., Totaling, 

cosl(R)? cosl(R,) = r Wi + a' r rj? (B+2)·IXI·1 VI 3+B·IX 1·1 VI 3 = 2·1 VI 3 'IX 1'(B+l) = 
i E V iE V 

But this contradicts the fact that R is a solution to the RS problem. 0 


