
RESEARCH ARTICLE

Serial representation of items during working

memory maintenance at letter-selective

cortical sites

Ali Bahramisharif1,2*, Ole Jensen2,3☯, Joshua Jacobs4☯, John Lisman5☯†

1 Department of Psychiatry, Academic Medical Center, Amsterdam, The Netherlands, 2 Radboud

University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands, 3 Centre for

Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom,

4 Department of Biomedical Engineering, Columbia University, New York City, New York, United States of

America, 5 Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States

of America

☯ These authors contributed equally to this work.

† Deceased.

* ali@machine2learn.nl

Abstract

A key component of working memory is the ability to remember multiple items simulta-

neously. To understand how the human brain maintains multiple items in memory, we exam-

ined direct brain recordings of neural oscillations from neurosurgical patients as they

performed a working memory task. We analyzed the data to identify the neural representa-

tions of individual memory items by identifying recording sites with broadband gamma activ-

ity that varied according to the identity of the letter a subject viewed. Next, we tested a

previously proposed model of working memory, which had hypothesized that the neural rep-

resentations of individual memory items sequentially occurred at different phases of the

theta/alpha cycle. Consistent with this model, the phase of the theta/alpha oscillation when

stimulus-related gamma activity occurred during maintenance reflected the order of list pre-

sentation. These results suggest that working memory is organized by a cortical phase code

coordinated by coupled theta/alpha and gamma oscillations and, more broadly, provide sup-

port for the serial representation of items in working memory.

Author summary

In our daily lives, we often have to keep multiple items active in our working memory—

for instance, a series of digits in a phone number. How does the brain perform this task?

In 1995, Lisman and Idiart proposed that multi-item working memory was supported by

a mechanism in which individual memory items are repeatedly activated in sequence. The

temporal coordination of the activation was supported by coupled oscillatory brain activ-

ity in the theta/alpha (7–13 Hz) and gamma range (>30 Hz). Using intracranial record-

ings from the human brain, we now report experimental support for this scheme. In

particular, when subjects remembered a list of working memory items, it activated theta/
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alpha oscillations. Simultaneously, the brain showed item-specific activations of gamma

activity that appeared at a theta/alpha phase corresponding to the item’s position in the

sequence. The work demonstrates that coupled cortical oscillations are important for

coordinating the maintenance of multi-item working memory.

Introduction

There is both functional and physiological evidence that working memory (WM) is mediated

by a different neural system compared to long-term memory (LTM). The capacity of WM is

much smaller than that of LTM [1]. Physiological data indicate that WM and LTM have differ-

ent mechanisms: whereas LTM is supported by changes in synaptic weights, WM representa-

tions involve ongoing neuronal activity [2–7]; but see [8]. However, key aspects of the neural

basis of WM are largely a mystery, and, in particular, we do not understand how a single net-

work can store and then access multiple stimulus representations. Experiments using the

Sternberg paradigm provided some insight into these processes (Fig 1A) by showing that when

subjects answer whether a probe item is on a just-presented list, response time (RT) varied lin-

early with list length. This led to the suggestion that WMs are actively represented in a serial

fashion and that these representations are sequentially scanned during recall [9].

A great deal of physiological work in humans and animals showed that the brain exhibits

oscillations at multiple frequencies during cognition and, moreover, that these oscillations

Fig 1. Schematic that illustrates the Sternberg task and an oscillatory model of multi-item WM. (A) Sternberg task

with 3 letters each presented for 700 ms at an interstimulus interval of 275–350 ms. This was followed by a

maintenance period of 2 s, followed by a 700 ms probe. (B) The dynamics predicted by the LIJ model for the WM

maintenance on a site selective to “Q” with respect to 3 different positions on the list. Each theta/alpha cycle may

contain many (5–8) gamma cycles (slow gamma), but only 3 are shown. The gamma cycle (slow gamma) at which

maximal high-frequency firing occurs (and thus theta phase) corresponds to the order of item presentation. LIJ,

Lisman/Idiart/Jensen; WM, working memory.

https://doi.org/10.1371/journal.pbio.2003805.g001
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interact via a process called cross-frequency coupling (CFC) [10]. According to one model

(Lisman/Idiart/Jensen [LIJ] model) [11,12], interacting oscillations in the gamma range (>30

Hz) (reviewed in [13]) and theta/alpha range (5–15 Hz) [14,15] organize multi-item WM. In

this model, individual items are represented by the spatial pattern of neural activity within

each gamma cycle; different list items are represented sequentially across consecutive gamma

cycles, and this process then repeats on each theta cycle (Fig 1B). Such organization has been

termed the theta–gamma code [11,16] and has been shown to be important in hippocampal

processes that underlie encoding of sequences in both episodic memory [17] and in the replay

of spatial paths [18–20].

Although it is now clear that the theta–gamma code has a critical role in hippocampal func-

tion, there is only limited information about the involvement of this representational scheme

in neocortex [21–23]. Computational models based on the theta–gamma scheme show that

this framework can explain subject reaction times in the Sternberg paradigm [11] and provide

a physiologically plausible account of the ordered serial representation of memory items in

WM. Although recordings of human neuronal oscillations have thus far indicated that these

signals are involved generally in WM [15], these data have not provided specific support for

any particular model of WM function. In particular, there is no evidence from human neocor-

tex that individual WM items were represented on distinct phases of slow oscillations, as pre-

dicted by the theta–gamma model.

We studied the role of oscillations during WM maintenance by analyzing a set of cortical

sites that supported memory for individual stimuli. We identified these sites because they dem-

onstrated a level of stimulus-induced gamma band power that varied according to the identity

of the stimulus that a subject viewed. Such content-dependent sites, primarily in the occipital

and temporal lobes, were identified in recent studies during encoding [14,24], but their role in

WM processes remained unclear. Here, we provide the first analysis of the properties of the

signals during maintenance at the cortical sites that showed stimulus-specific during memory

encoding in a WM task. The results showed a complex regulation of both theta/alpha and

gamma band activity in which, notably, the relative amplitudes of these oscillations differed

between encoding and maintenance. Further, during maintenance, these sites showed CFC

between these oscillations, which we hypothesized indicated the existence of an oscillatory

phase code that organized serial representation of WM items. We tested this idea by measuring

activity at the sites that showed item-specific gamma band activity. Our results show that the

theta/alpha phase of gamma bursts during WM maintenance depend on the order at which

the items were presented during encoding. These results support the hypothesis that multi-

item WM involves serial activation of memories, as first hypothesized by Sternberg [9] and

physiologically implemented in the LIJ model (Fig 1B).

Results

We analyzed intracranial recordings of electrocorticographic activity from subjects as they per-

formed the Sternberg WM task (a total of 1,315 sites in 15 subjects). During the encoding

phase of the task, 3 letters were presented sequentially, each visible for 700 ms followed by an

interstimulus interval of 275–350 ms. After all list items were presented, there was a 2 s mainte-

nance phase. Finally, a probe letter was presented, and subjects answered by indicating

whether the probe was on the just-presented list (Fig 1A). The mean reaction times were

2,011 ± 412 ms, and the mean hit rates were 94.21% ± 1.28%. As in previous work [14,24,25],

we first identified the “letter-selective” electrodes, which showed an increase in the amplitude

of fast-gamma band activity (70–100 Hz; [14]) that varied depended on which letter was pre-

sented. We used a measure of mutual information (MI) in the gamma band to identify sensors

Serial working memory representations
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with significant distinguishability of individual letters (p< 0.05, Bonferroni corrected; permu-

tation test; see the Methods section Letter-selective sites). We then identified the “tuned” and

“untuned” letters for each site. To do this, for each electrode, we first identified the specific

pair of letters with the largest MI, and we then labeled the specific letters in this pair with

higher and lower gamma representations, respectively, as tuned and untuned. As in [14], let-

ter-selective sites were rare (14 sites in 9 subjects; 1 subject had 3 sites, and 3 subjects had 2

sites) and were located in the occipital and temporal lobes, mainly in the fusiform gyrus [26]

(S1 Table and S1 Fig). We focused the subsequent analysis on these letter-selective sites. When

considering the subjects with more than 1 letter-selective site, we found that these sites were

selective to different letters. Therefore, we considered the 14 sites as statistically independent

in the subsequent analysis. The relatively low number of letter-specific electrodes in this elec-

trocorticographic dataset is not unexpected, given the limitations of these types of clinical

recordings, in which electrode coverage is limited and, in particular, rarely includes coverage

in sulci.

Time-frequency analysis of power during encoding

We used time-frequency analysis to understand the role of oscillations in memory representa-

tions at these letter-specific sites. Fig 2 summarizes these results by averaging over 14 sites. The

analysis confirmed that there was an increase in gamma power for letter-selective sites and

only little modulation for other sites. We next examined how the low-frequency oscillations at

these sites were affected by letter presentation (encoding). In contrast to the increased power

in the gamma band, theta/alpha power transiently decreased in the 0.5–1 s interval after letter

presentation (Fig 2A and 2B; two-tailed t test, N = 14; p = 0.0001 for average power at 7–13

Hz). Thus, theta/alpha and gamma power at letter-selective sites are differentially affected by

letter presentation.

Time-frequency analysis of power during maintenance

We next turned to the analysis of the electrophysiological activity during the maintenance

phase of the Sternberg task. As a start, we calculated the average normalized phase–amplitude

Fig 2. TFRs of power during encoding, maintenance, and probe. (A) Average TFRs of power at 14 letter-selective sites. From left to right, the panels of this plot show

the neural responses to baseline, tuned and untuned letters, response during maintenance, and responses to the probe, respectively. During encoding, gamma activity is

elevated by tuned letters; theta/alpha decreases by either the tuned or untuned letter. During maintenance, theta/alpha is elevated, and gamma is low. (B) Average TFRs

of power at 14 non-letter-selective sites, which show little change during encoding or maintenance. Underlying data available at http://orion.bme.columbia.edu/jacobs/

data/. TFR, time-frequency representation

https://doi.org/10.1371/journal.pbio.2003805.g002
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coupling (PAC) over all selective and nonselective sites during maintenance (Fig 3). This

allowed us to preselect the frequency band of interest: the analysis revealed a peak in CFC

between oscillatory phase in the theta/alpha band (7–13 Hz) and power in the high- (75–120

Hz) and low-gamma bands. As noted earlier, some previous work demonstrated continuous

theta/alpha increases during both encoding and maintenance [15].

As shown in Figs 2A and 4C, this was not the case at letter-selective sites. Whereas theta/

alpha power was greatly lowered during encoding, it increased significantly during mainte-

nance compared to the baseline (N = 14; two-tailed t test p = 0.042). Gamma band power was

low during maintenance. We note that similar effects to these were seen previously with elec-

trocorticography (ECoG) [28], electroencephalography (EEG), and magnetoencephalography

(MEG) recordings [29].

Previous work on human cortical oscillations has shown that theta–gamma coupling, a

form of CFC, often occurs during cognitive tasks [21–23]. Because theta–gamma CFC is a cen-

tral assumption of the LIJ model, we tested for this phenomenon, which occurred during the

maintenance phase of the task. We did not calculate PAC during encoding because we were

concerned about contamination from evoked activity. To quantify CFC, we used a measure of

phase–amplitude coupling (PAC) that relates gamma band power to the phase of low-fre-

quency theta oscillations [27,30] (see Methods). As mentioned before, Fig 3 shows the average

normalized PAC over all selective and nonselective sites during maintenance, which we used

to preselect the frequency band of interest. This plot revealed a peak in CFC between oscil-

latory phase in the theta/alpha band (7–13 Hz) and power in the high- (75–120 Hz) and low-

gamma bands. We focused on the high-gamma band for our subsequent analyses rather than

Fig 3. CFC during maintenance. The CFC was calculated by estimating the PAC for the data during the retention

interval [27]. When combining all sensors, a coupling was observed between theta/alpha phase and gamma power.

Note the coupling to slow gamma at 30–40 Hz and fast gamma activity at 75–120 Hz. Based on these results and the

modulations in Fig 2, we focused the subsequent analysis on the theta/alpha band (7–13 Hz) and the gamma band (75–

120 Hz). Underlying data available at http://orion.bme.columbia.edu/jacobs/data/. a.u., arbitrary unit; CFC, cross-

frequency coupling; PAC, phase–amplitude coupling.

https://doi.org/10.1371/journal.pbio.2003805.g003
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slow gamma (see Discussion) because we had already identified letter-specific activity in this

range (see above), consistent with earlier work [14].

CFC during maintenance was greater at letter-selective sites compared to non-letter-selec-

tive sites (Effect size = 0.9, sample size N = 14; two-tailed t test p = 0.006; Fig 4A). Gamma

power did not increase during maintenance but was coupled to the phase of theta/alpha oscil-

lations. Notably, the fast gamma band that showed CFC was the same frequency range in

which we observed letter-selective gamma elevation during encoding (Fig 2A; see also [21]).

Fig 4. Properties of PAC during maintenance. (A) Average (14 sites) PAC is greater at letter-selective than at non-letter-selective sites. In right panel, differences were

calculated for each subject; the average difference is large, showing that PAC is much larger at letter-selective sites (p< 0.012). (B) Average (14 sites) PAC is somewhat

larger for tuned compared to untuned letters. In panel at right, difference for each subject was calculated before averaging. This difference was not statistically

significant. (C) There is a significant difference (two-tailed t test; p = 0.012) of gamma power between letter-selective sites and non-letter-selective sites during the

maintenance period. There is no significant difference between theta and gamma power over letter-selective sites when comparing the tuned letter and untuned letter

during the maintenance period. Underlying data available at http://orion.bme.columbia.edu/jacobs/data/. a.u., arbitrary unit; PAC, phase–amplitude coupling

https://doi.org/10.1371/journal.pbio.2003805.g004
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We next compared the magnitude of CFC between the maintenance of tuned versus untuned

letters. While there was a small difference in CFC here for the theta/alpha by gamma frequency

range, it was not significant (Fig 4B; see Methods). The mean levels of theta/alpha and gamma

band power (Fig 4C right) were similar irrespective of whether a tuned letter was just viewed

(p> 0.25). There was, however, a significant difference in theta/alpha and gamma power

between letter-selective and non-letter-selective sites.

Recent work showed that nonsinusoidal waveforms can produce spurious CFC due to

phase-specific high-frequency power increases from oscillatory harmonics (e.g., [31–33]. We

examined this issue in our data by performing a control analysis in which we calculated the

average traces locked to the theta/alpha peaks (S2 Fig). The resultant traces were largely sinusoi-

dal, without sharp edges or triangular shapes. We therefore argue that the gamma activity

observed in the PAC is not explained by asymmetry in the theta/alpha waveform. In summary,

during WM maintenance, we found stronger PAC between the phase of alpha/theta oscillations

and the power of the gamma band for letter-selective compared to non-letter-selective sites.

Finally, we performed additional analyses to confirm that these effects were not driven by

performance differences across subjects. We used reaction time to assess performance at the

subject and trial level, using a median split to distinguish fast versus slow responses. As the hit

rates were close to ceiling (94%), we did not perform a similar analysis on performance. There

was no significant relationship between the magnitude of PAC during maintenance RTs over

subjects (p> 0.3; N = 15; Fig 5) or between fast and slow trials from individual subjects. It

should be noted that the LIJ model did not predict such a relationship either.

Analysis of item maintenance according to theta/alpha phase

A key prediction of the LIJ model is that different memory items are represented by neuronal

activity at distinct theta/alpha phases (Fig 1B). The broadband gamma signal that we measured

is likely to reflect the spiking activity of individual neurons [34]. Thus, we predicted broadband

gamma power at a letter-selective site would be elevated at the moment when a tuned letter is

represented and, moreover, that the theta/alpha phase of maximum power would vary with

the list position of a tuned letter (Fig 1B). We tested this prediction by measuring fast gamma

band power (75–120 Hz) for tuned letters presented at the 3 list positions (P1, P2, and P3). For

each site, we measured the position-specific deviation of fast broadband gamma band power

from the overall average as a function of the local theta/alpha phase.

As shown in Fig 6A, the preferred phase of the activation for tuned letters depended on the

stimulus’s serial position in the list. Broadband gamma band power was higher at an earlier

theta/alpha phase for items that were presented in P1 than for P2 and at an earlier phase for P2

than for P3 (see Fig 6A). A second way of analyzing these data, which confirmed this conclu-

sion, is shown in Fig 6B. This figure shows the average fast gamma power as a function of

theta/alpha phase over sites, with color indicating the item position that had the maximum

power. Notably, here the color changes systematically with phase. Using a permutation test, we

found that this pattern, consisting of 3 discrete clusters, was unlikely to have occurred by

chance (p = 0.0062; see Methods). A similar phase dependence was not observed for slow

gamma (p> 0.2; permutation test). Thus, item activation during memory maintenance, as

measured by fast gamma power, has a theta/alpha phase that depends on the position in each

list when the item was presented.

Discussion

Historically, understanding human cortical WM processes has been complicated by the diver-

sity of response patterns that appear across the cortex—we confirm that diversity here. To

Serial working memory representations
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overcome this issue, a key step in our effort here to understand the neural basis of WM was

our decision to focus on the cortical sites with demonstrable mnemonic content, as indicated

by letter-selective gamma elevation [14]. By focusing our analyses on such sites, our results

show that the amplitudes of oscillations are strongly affected by the task. Letter-selective sites

showed specific oscillatory patterns during the encoding and maintenance phases of the task—

most notably, increased high-frequency activity in the fast gamma band during encoding and,

inversely, a decrease during maintenance. The opposite pattern was present for theta/alpha

band activity. These gamma and theta/alpha patterns also interacted, which we observed as

CFC between these signals during the maintenance phase of the task. The PAC during mainte-

nance and the existence of letter-selective gamma activity allowed us to test the LIJ theory that

the representation of items held in WM was supported by nested oscillations. Our analysis sug-

gests that WM items are sequentially activated, as reflected by the fast gamma band activity

within a theta/alpha cycle. The original model by Lisman and Idiart [12] suggested that theta

Fig 5. CFC during maintenance. (A,B) CFC in trials with slow or fast RT. (C) Average CFC (PAC) over the white box of A and B. There was no difference

with respect to slow and fast RTs. (D) Theta/alpha and gamma power during maintenance. There was no difference with respect to fast and slow RTs. Error

bars represent SEM. Underlying data available at http://orion.bme.columbia.edu/jacobs/data/. a.u., arbitrary unit; CFC, cross-frequency coupling; PAC,

phase–amplitude coupling; RT, response time

https://doi.org/10.1371/journal.pbio.2003805.g005
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oscillations are responsible for WM maintenance. We identified the effect to the 7–13 Hz

range, which overlaps with both the theta and alpha band range. As a consequence, we refer to

the theta/alpha band. It remains for future work to test if the theta and alpha band oscillations

that fall at different ends of this range have different or similar functional roles in the human

brain [35,36].

These results provide the strongest support to date for the serial organization of WM, as

first proposed by Sternberg [9], and for the proposal (the LIJ model; [11,12]) that this organiza-

tion depends on a gamma activity coupled to theta/alpha oscillations (Fig 1B).

CFC during WM maintenance

CFC between gamma and theta oscillations is visible in the local field potential of the cortex

and hippocampus in rodents and humans [28,37,38]. According to the LIJ model, these dual

oscillations form a general coding scheme (the theta–gamma code; [11,16]), in which each

item is represented by the spatial pattern of network activity that occurs during a gamma

period within of a theta cycle (Fig 1B). While gamma power is relatively weak during the main-

tenance period; it reveals itself when related to theta/alpha phase. Given the complexity of

cortical layers, the changes in total gamma amplitude could arise from many different mecha-

nisms originating in different cell types with different memory functions during encoding and

maintenance. The slow gamma power that we found during maintenance must be viewed in

this light.

Evidence for temporal coding organized by oscillations came from the discovery of theta

phase precession in hippocampal place cells [20] and the evidence that gamma oscillations sub-

divide the theta cycle into discrete phases [16,19,39]. Other work has shown that disruption or

enhancement of theta–gamma oscillations can affect memory, which emphasizes the potential

functional importance of this type of phase coding [40]. There is also evidence in humans sup-

porting the importance of phase-based representations. Intracranial recordings in humans

Fig 6. List position affects the theta/alpha phase that has maximal fast gamma power during maintenance. (A) The deviation of fast gamma band power for each

position from the average measured as a function of theta/alpha phase (Hilbert phase 7–13 Hz). Error bars represent SEM. (B) Average fast gamma power as a

function of theta/alpha phase; the color indicates the item position (P1-P2-P3) yielding the maximum power at that phase bin. We consider this sequence statistically

significant in terms of ordering (p = 0.0062; see Methods). Underlying data available at http://orion.bme.columbia.edu/jacobs/data/.

https://doi.org/10.1371/journal.pbio.2003805.g006
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demonstrated that the hippocampus exhibits CFC during WM [37], and later work showed

that during the encoding of item sequences, items are differentially modulated by theta phase

in the human hippocampus according to their list position [17,41,42]. Together, these studies

support the hypothesis that the hippocampus supports a theta–gamma code for episodic

memory.

A code for cortical WM maintenance organized by coupled oscillations

There has been slower progress in understanding the organization of a neuronal code by

theta/alpha oscillations in neocortex [6,43]. It was shown that the locking of single neuronal

firing to the theta rhythm predicted memory encoding in humans [44]. In neocortex, theta/

alpha oscillations are generated by input from the thalamus and basal forebrain [45], slow

gamma activity is locally generated by interaction of pyramidal cells and interneurons [46],

and fast gamma activity is largely generated by spiking activity [47] (see also below). The exis-

tence of letter-selective sites in cortex has now made it possible to study temporal coding in

more detail and to specifically test predictions of the LIJ model of WM (Fig 1B). The specific

prediction of the LIJ model is that during maintenance, the fast-gamma power that reflects the

neural representation of a stimulus should occur at a theta/alpha phase that depends on the

item’s order in the list. The results shown in Fig 6 provide strong support for this prediction.

This suggests that the brain’s mechanism to keeping multiple items active in WM is by a multi-

plexing mechanism in which different items activate serially at different phases of theta/alpha

oscillations.

A second prediction of the LIJ model is that the serial organization of different memories is

organized in time by ongoing gamma oscillations. This leads to the question of which type of

gamma oscillation has this role. As shown in Fig 4A, left panel, CFC is present both in a broad-

band (fast gamma) range (70–120 Hz) and in a lower (slow gamma) range (30–50 Hz). These

signals could, in fact, be related to each other: notably, broadband gamma correlates with neu-

ronal spiking [10,34,48–53], spiking is phase locked to slow gamma [54,55], and fast gamma

shows CFC with slow gamma [56,57]. Thus, the fact that fast gamma activity is item-specific

(Fig 2A) and has a theta/alpha phase that depends on order (Fig 6) suggests that it reflects the

spiking of cells that represent particular list items. It is notable that slow gamma power does

not itself exhibit substantial letter selectivity (Fig 2A), because it suggests that slow gamma

power does not carry information via amplitude but instead may temporally organize other

neuronal signals, as hypothesized in Fig 1B.

Relationship to behavioral results in the Sternberg task

The classic behavioral results on the Sternberg task were obtained in laboratory setting using

well-trained subjects who were highly motivated to respond as quickly as possible. These

results show that RT varies linearly with set size (S) and has an average slope of 38 ms for sim-

ple list items (letters or numbers) [9]. The exact properties of the RT distributions are known.

The patients from whom we obtained brain recordings were neither trained nor highly moti-

vated, and the experiments were done in a hospital setting. The RTs in these experiments thus

were considerably slower than those obtained in the laboratory. However, it is nevertheless of

interest to consider whether the underlying brain processes we have observed in patients

might relate to the timing processes revealed in laboratory experiments.

The experiments in healthy subjects provided information not only on how the mean RT

depends on S but also on how the standard deviation and skewness depends on S. These data

could be accounted for by either of two computational models [58]. In the “adapting theta

model,” theta frequency was assumed to change with load, a change recently observed in the
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hippocampus [37]. The best fit of this model led to the prediction that the theta frequency for

S = 3 is 8.3 Hz. This frequency is in good agreement with the approximately 9 Hz theta/alpha

signal that we have observed experimentally. In the adapting theta model, the RT slope per

item (38 msec) is 1.5–2 times the period of the underlying gamma oscillations. The model thus

predicts a gamma frequency of 39–52 Hz, which is roughly consistent with the frequency

range of slow gamma (30–50 Hz) that we observed with our CFC analysis (Fig 4). A second

model, which assumes that stimuli reset the phase of theta [59,60], predicts similar frequencies

of 7.2 Hz and 47 Hz for theta and gamma, respectively. Thus, these models, both of which are

based solely on fits to RT distributions in the Sternberg task, make predictions about the fre-

quencies that support WM that are concordant with our results from ECoG data. Following

up our findings, it will be of interest to study how other manipulations, such as varying mem-

ory load, affect the properties of WM-related cortical oscillations to refine our understanding

of how oscillations organize WM.

A successful theory of WM should also be able to explain the remarkable behavioral find-

ings of Cavanagh [61]. He reported that the Sternberg slope increases with item complexity

and, furthermore, that the number of items that could be remembered (span) decreases with

item complexity. Remarkably, the product of span and slope remains constant. As argued in a

recent review [62], the LIJ framework could explain this constancy if it assumed that span is

determined by the number of gamma cycles in each theta cycle and that gamma period

increases with item complexity. Recent physiological findings are relevant here. If complex

items are represented by less sparse activity, as seems reasonable, then the known correlation

between gamma period and mean neuronal activity [63] could explain why gamma period

increases with complexity. Experiments could be conducted to test this relation, potentially

providing a mechanistic basis for Cavanagh’s findings by directly demonstrating a link

between WM span and gamma period. Although such efforts are in their early stage, there are

notable successes [37,64–68].

In the future, it would of great interest to conduct a similar experiment to ours in which

memory-load and memory content were each manipulated (e.g. [37]). This would allow for

relating the individual theta/alpha and gamma frequencies to the “scan rate” of WM retrieval.

Modulating the items’ complexity should be reflected in the gamma frequency. Finally, it

should be mentioned that our results pertain to serial WM. It remains to be determined if sim-

ilar oscillatory mechanisms are at play for multi-item WM when a serial order is not imposed

by the stimulus presentation and if maintenance is still supported by a sequential coding

scheme.

Other models of WM

How does the evidence for a coupled oscillations model relate to other models that offer a dif-

ferent view of WM mechanisms? In the classic studies of single-unit activity during WM, firing

persisted during the entire delay period [3]. However, recent findings indicate that activity can

be discontinuous rather than continuous [8,69–72]. For example, sites in frontal cortex that

have mnemonic activity show brief and sporadic bursts of spiking and gamma oscillations

[73]. According to one theoretical framework [74], these bursts may depend on item-specific

changes in synaptic weights that occur during encoding. If information was encoded in

weights, it follows that persistent firing may not be necessary for the maintenance of stored

information.

One possibility is that this evidence for discontinuous activity and the theta–gamma frame-

work we proposed are in fact compatible and reflect the existence of dual memory mechanisms

(probably in different regions), as suggested by psychological models that were based on
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behavioral data from normal and amnesic patients [75]. According to these models, items are

first stored in a cortical limited-capacity buffer. Output from this buffer then drives synaptic

modification in the high-capacity hippocampal network. Depending on conditions, recall of

lists held in WM may depend on either the cortical buffer or the hippocampus. The network

based on the LIJ model has the properties required to implement the buffer. It can rapidly

store even novel information because information storage does not depend on synaptic modi-

fication, which can take seconds to develop [76]. Rather, in the LIJ model, memories are reacti-

vated on every theta cycle by activity-dependent intrinsic conductances.

Properties and function of low-frequency oscillations

Our results provide new information about the control of theta/alpha oscillations at content-

specific cortical sites. As noted previously, various patterns of activity have been observed at

sites not specifically linked to WM content (see also [23]). For instance, a previous study iden-

tified sites that undergo increases or decreases in theta power, changes that persist during both

encoding and maintenance phases of the task [15]. Here, we show a quite different pattern at

letter-selective sites—theta/alpha power goes down during encoding but up (even above base-

line) during maintenance. The suppression may be related to the spatially nonuniform sup-

pression of theta/alpha power that occurs in visual and sensorimotor cortices when a

subregion is involved in a task [77,78].

We show here that during maintenance, many sites that show elevated theta/alpha power

are nevertheless engaged in WM maintenance, as suggested by the fact that CFC is content-

specific. Interestingly, the theta/alpha oscillations we observed largely resemble the conven-

tional alpha oscillations observed in EEG and MEG recordings [29]: their amplitude is reduced

during item presentation and increased during WM maintenance. In other ways, however,

they seem to take on the role proposed for theta oscillations [11]. During maintenance, they

seem to maintain a phase-organized code. We reconcile these findings by arguing that the

reported theta/alpha oscillations gate external sensory information during item presentation

while suppressing incoming input during maintenance. However, the same oscillations partic-

ipate in an internal mechanism sustaining the WM representation during the maintenance

interval. Consistently, we propose that theta/alpha generators in cortex and thalamus [79]

inhibit the flow of incoming sensory information during maintenance but do not inhibit and

indeed protect [80,81] the information that is already held in WM buffers. In future work, it

would be interesting to directly manipulate the theta/alpha rhythm, for instance, with direct

cortical stimulation to entrain or abolish the oscillations. This would serve to uncover the

causal role of theta/alpha oscillations for WM maintenance, going beyond our current findings

that did not yet demonstrate causality. It should be noted that our current analysis was con-

strained to the location of the intracranial electrodes. Studies based on EEG and MEG have

identified cross-frequency interactions at related frequencies when quantifying neuronal

dynamics at the large-scale network level [82]. In future work, it would be important to relate

the phase-dependent effect we identified here to large-scale network dynamics.

Conclusions

Although theta–gamma coupling appears in many brain regions [83], the generality of the

theta–gamma code nonetheless remains unclear [11]. Early work established that this code

organizes spatial information in the hippocampus [17,18,20,83], and recent work on the hip-

pocampus has shown that it also organizes nonspatial information [17]. Here, by focusing on

sites demonstrably engaged in WM, we showed that such coding occurs in cortex; specifically,

the theta/alpha phase of item representation depends on item order during presentation.
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Furthermore, the estimates of theta/alpha and gamma frequencies that we obtained by measur-

ing this phenomenon are in reasonable agreement with a model of RT distributions based on

behavioral results. Thus, these results provide a coherent view of how the coupled alpha/theta

and gamma oscillations could mediate WM. Taken together, these findings suggest that the

theta/alpha phase code is a general neural coding scheme that helps represent ordered WM

information in both neocortex and hippocampus.

Methods

Ethics statement

The research protocol was approved by Institutional Review Boards at the Hospital at the Uni-

versity of Pennsylvania (Philadelphia, PA, Protocol #802603) and the Thomas Jefferson Uni-

versity Hospital (Philadelphia, PA, Protocol #08F.464R) and adhered to the Declaration of

Helsinki ethical guidelines. Informed written consent was obtained from each patient or their

legal guardians.

Recordings

Data of 15 epileptic patients (6 females, age: 36 ± 9) implanted with ECoG grids were included

in this study. All subjects performed a Sternberg-type WM task [9] in which 3 letters were pre-

sented during encoding, and after 2 s of retention, a probe letter was presented either from

the memory list or not. The details of the experiment and how data were collected have been

previously reported in another paper [25], in which data from 15 patients were selected for

inclusion based on sensor coverage and trial counts. The included data were selected at the

beginning of this study prior to data analysis. Our reasons for excluding data from the earlier

study [25] included the following: (1) Some data came from an unsuitable variant of the task

with a short maintenance period. (2) The clinical recordings for some subjects contained tran-

sient interruptions due to file changes. (3) Some subjects had been recorded at a low sampling

rate that precluded examining CFC. No data were collected during a seizure, and none of the

analyzed sites with letter selectivity had been designated as sites where there had been seizure

activity.

Artifact rejection

We identified sites that were involved in seizure initiation, based on information provided by

clinical teams. However, there were still remaining electrodes with occasional epileptiform dis-

charges. To reduce their impact, we rejected epochs for which such activity was present. We

used kurtosis to identify EEG segments with these epileptiform discharges [84–87], by com-

puting the kurtosis for each individual EEG segment and labeling any segments with kurtosis

above 5 as being potentially epileptogenic. Visual inspection confirmed that this approach

worked correctly, because these periods, although rare, contained unusual EEG such as epilep-

tic spikes or sharp waves. For more detail on this method, see [87]. On average, we used 78% ±
5% of all trials, which amounted to 67 ± 12 trials (the number of trials included/excluded for

the 14 sites were 104/2, 42/10, 174/3, 47/11, 41/5, 49/6, 33/7, 49/14, 24/15, 47/8, 77/12, 73/9,

104/4, 107/1).

Preprocessing

All recordings were resampled to 250 Hz. Furthermore, as commonly done [14,88,89], we re-

referenced the data to the common average over all ECoG electrodes. We chose this method

because it previously proved useful for simultaneously identifying both theta and gamma
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oscillations [14], rather than a different approach such as bipolar referencing, which might

have changed the spatial characteristics of the signals. Alternatively, the analysis could have

been done using the scalp electrodes as reference; however, such procedure could have made

the results difficult to interpret because the scalp electrodes are sensitive to posterior alpha

rhythm. Line noise was removed by using discrete Fourier transform with filtering centered at

60 and 120 Hz.

Time-frequency analysis

Time-frequency analysis of phase and power was performed using a sliding window FFT

approach. To estimate the power, we used sliding time windows (50 ms steps) that varied with

frequency (dT = 3/f; i.e., 3 cycles long) for power estimates from 1 to 30 Hz in steps of 1 Hz.

For power estimates from 30 to 125 Hz, we used a fixed-length time window (dT = 100 ms; in

steps of 5 Hz). The analysis was done in 1–7 s intervals relative to the first letter onset. Prior to

the FFT, the windows were multiplied with a Hanning window of equal length.

For each trial, the power in the baseline (−0.8 to −0.35 s before first letter presentation) was

calculated as the average power. The encoding period was defined as 0.2–0.5 s relative to the

onset of each letter. The maintenance period was defined as −1.85 to −0.3 s relative to the

probe onset.

Letter-selective sites

A primary goal of our statistical analyses was to identify electrodes in which the gamma power

was systematically different for different letters [14]. The letter specificity of each individual

electrode was identified from analyses of data from the encoding period. Subsequently, we

used this information to inform phase and PAC analyses that examined data from the mainte-

nance interval. We used MI to measure the dependence between gamma power and letter

[90]. This procedure identified sites that could distinguish between two letters X and Y in

terms of their resulting gamma power response. In the case of a subject who viewed 16 differ-

ent letters across the task, there were 16 × 15/2 = 120 pairs to be tested for each electrode. High

MI between gamma power and labels consistent over trials would suggest a high selectivity in

terms of gamma power.

We computed this measure as MI([γX, γY];[0nx,1ny]) = H([γX, γY]) − H([γX,γY]|[0nx,1ny]),

where H is the entropy function, and nx and ny refer to the number of trials for X and Y,

respectively. Specifically, entropy was calculated as p(x)log(p(x)). The probability p(γ) was cal-

culated by dividing the gamma power into 256 equal bins and then estimating a distribution

over the number of occurrences of each power bin. The vector [γX,γY] is the baseline-corrected

gamma power (70–100 Hz), and [0nx,1ny] is a binary vector where 0 represents for the first let-

ter and 1 the second. For the statistical assessment, a null distribution was made by permuting

the class labels (all possible combinations) and then recalculating the MI. The p-value corre-

sponded to the fraction of MI values from the permutation distribution that were above the

actual MI to be tested. We Bonferroni-corrected this p-value for the number of electrodes and

120 letter pairs. The procedure allowed us to identify sites with significant selectivity after cor-

rection with respect to p< 0.05 in 14 independent sites in 9 (of 15 subjects); 1 subject had 3

sites, and 3 subjects had 2 sites.

For each electrode, the pair of letters that resulted in the highest MI was selected, and the

one with the higher gamma power was termed the tuned letter, and the other one was termed

the untuned letter. Therefore, when a tuned letter was presented to the patient, the relevant let-

ter-selective site exhibited a relative increase in gamma power during encoding. To examine

letter tuning of content-specific sites during maintenance, for the tuned letters, we only
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considered trials in which at least one of the maintained items was the tuned letter and in

which the untuned letter was not presented. Inversely, for examining the maintenance of

untuned letters at these sites, we considered trials in which at least one of the presented items

was the untuned letter and in which none of them was the tuned letter.

CFC

PAC was calculated as the coherence between low-frequency oscillations and the envelope of

high-frequency activity [27,91]. For each trial, the power envelope of the high-frequency activ-

ity was estimated from the FFT of a frequency-dependent sliding time window (6 cycles long;

i.e., dT = 6/f) multiplied by Hanning taper. This was done from 10 to 125 Hz in steps of 5 Hz.

The PAC was estimated as the coherence between this envelope and the raw signal. The 2 s of

the retention interval was divided into 3 segments of 1 s (centered at 0.5 s, 1.0 s, and 1.5 s in

the retention interval; i.e., 50% overlap). The coherence was first calculated in each of these

segments individually and then averaged over segments and trials.

When comparing the PAC measures between conditions (letter-specific versus non-letter-

specific sites; tuned versus untuned), the values were averaged in frequency-by-frequency

regions of interest (7–13 Hz by 75–120 Hz; see Fig 3). The frequency ranges were obtained

from the PAC combined over all electrodes and trials. These are consistent with the dominant

frequency modulations in Fig 2. To compare PAC over sites, the average PAC values were

compared using a paired t test for the frequencies of interest.

CFC normalization for visualization

The PAC representations were normalized per electrode in the shown grand average (Fig 3).

Here, we computed the complete PAC for each electrode, then normalized each individual

PAC spectrum by dividing by the electrode’s maximum PAC value, and finally averaged the

normalized PAC spectra over sites.

Permutation test for serial ordering

We conducted a permutation procedure to assess the statistical reliability of the observation

that the gamma band representations of individual letters systematically occurred at distinct,

sequential theta-phase bins according to the position of the presented item in the list (Fig 6).

This procedure used a template-matching approach, in which we computed a fit statistic that

measured the similarity between the observed gamma power distribution and our hypothesized

templates. We then computed this fit separately for the observed data and for 10,000 surrogate

datasets, obtained by randomly shuffling the original data. This shuffling was performed by

changing only the trial label of each event, thus, critically, allowing us to assess significance

while preserving the temporal and spectral structure of the underlying neural data.

For the real and shuffled datasets, on each electrode, we computed instantaneous theta/

alpha phase and gamma power during the maintenance period of each trial using the Hilbert

transform, filtering at 7–13 Hz and 75–120 Hz, respectively. We smoothed the measure of

gamma power using a 40 ms Hanning-tapered sliding window. Then, we divided the theta

cycles into 18 equal-sized phase bins (spanning 0 to 2π radians) and computed the mean fast-

gamma power for each bin. Then, to aggregate the results, we averaged the results of this calcu-

lation across trials when the tuned letter was presented in each of the first (P1), second (P2),

and third (P3) positions and then averaged across electrodes. Finally, we converted this

gamma power distribution into a set of 18 labels (one for each theta phase bin), each of which

indicates the list position that was represented in a given bin (i.e., had the highest gamma

power).
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Our primary hypothesis was that the gamma representations of individual list positions

occurred at distinct, monotonically increasing theta-phase bins. We measured the similarity of

a dataset to this pattern by first creating a template in which the 18 phase bins were split equally

to each represent the 3 list positions in 3 contiguous ordered groups. This template contained 6

ones, followed by 6 twos, and then 6 threes. To avoid assumptions about a specific absolute

theta phase in which the representation of a list began, 17 additional templates were created that

were circular rotations of the template. The fit score for each observed gamma power distribu-

tion was the count of the number of bins in which the list position label matched the template’s

corresponding label. Each distribution’s score was taken as the maximum fit score across all 18

templates. This entire approach was repeated by computing the fit scores of surrogate gamma

power distributions that had been computed by shuffling. Finally, we assessed statistical signifi-

cance by measuring the rank (p-value) of the actual gamma power distribution relative to the

distribution of surrogate template fits. The p-value from this procedure indicates the proportion

of surrogate data that better or equally fit the template than the actual dataset. Thus, a small p-

value indicates that we can reject the null hypothesis that shuffled data were likely to produce

the monotonic sequential gamma item distributions we observed (Fig 6).

Supporting information

S1 Table. Location of letter-specific sites.

(DOCX)

S1 Fig. Demonstration that data from Fig 2A are reproducible over the 14 letter-selective

sites of 9 subjects. Time-frequency representation of power of the most selective and the least

selective sites (highest and lowest mutual information) with their corresponding letters over 9

subjects. Average baseline power is subtracted from all time points. Subject number and loca-

tion of electrodes are shown above each plot. The segments between white lines should not be

interpreted as letter order. During different segments, letters with different tuning are pre-

sented. Underlying data available at http://orion.bme.columbia.edu/jacobs/data/. E, encoding;

M, maintenance; P, probe.

(TIF)

S2 Fig. Epochs (approximately 300 ms) of the data were aligned according to the peak in

the theta/alpha band and averaged (black lines). The peaks were identified from the data fil-

tered at 7–13 Hz; however, lower traces (black lines) were the resulting peak-locked averaged

from the unfiltered data. The time-frequency representations of power were calculated for the

phase-aligned epochs and averaged as well. We observed a clear modulation in the gamma

band with respect to the phase of the theta/alpha oscillations. Note that the averaged traces

were largely sinusoidal in shape; i.e., the modulations in the gamma band are not likely to be

explained by harmonic contributions from nonsinusoidal wave shapes. Furthermore, the

high-frequency modulation is primarily constrained to the gamma band (nonsinusoidal effects

will be visible in the full frequency range). Underlying data available at http://orion.bme.

columbia.edu/jacobs/data/.

(TIF)
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