A Late Triassic lake system in East Greenland: facies, depositional cycles and palaeoclimate

Clemmensen, Lars B.; Kent, Dennis V.; Jenkins, Farish A.

The Upper Triassic Fleming Fjord Formation of the Jameson Land Basin in East Greenland contains a well-exposed succession, 200–300 m thick, of lake deposits. The Malmros Klint Member, 100–130 m thick, is composed of cyclically bedded intraformational conglomerates, red siltstones and fine-grained sandstones and disrupted dolomitic sediments (paleosols). The cyclicity is composite with cycles having mean thicknesses of (25), 5.9 and 1.6 m. The overlying Carlsberg Fjord beds of the Ørsted Dal Member, 80–115 m thick, are composed of structureless red mudstones rhythmically broken by thin greyish siltstones. This unit also has a composite cyclicity with cycles having mean thicknesses of 5.0 and 1.0 m. The uppermost Tait Bjerg Beds of the Ørsted Dal Member, 50–65 m thick, can be divided into two units. A lower unit is composed of cyclically bedded intraformational conglomerates or thin sandstones, red mudstones, greenish mudstones and yellowish marlstones. An upper unit is composed of relatively simple cycles of grey mudstones and yellowish marlstones. Recognized cycles have mean thicknesses of 5.6 and 1.6 m. The lake deposits contain evidence of seasonal, orbital and long-term climatic change. Seasonal change is documented by numerous desiccation surfaces especially in the Malmros Klint Member and Carlsberg Fjord beds, orbital change is suggested by the composite cyclicity, and long-term climatic change is indicated by the systematic upwards change in sedimentary characteristics of the lake deposits. The sedimentary features of the Malmros Klint Member suggest lacustrine deposition in a dry climate that fluctuated between desert and steppe conditions, the Carlsberg Fjord beds probably record lacustrine lake deposition in a rather constant dry (steppe) climate, while the Tait Bjerg Beds record lake sedimentation in a climate that fluctuated between dry (steppe) and warm moist temperate. In the Tait Bjerg Beds the upward change in cycle characteristics indicates a shift towards more humid conditions. Climatic deductions from sedimentary facies are in good agreement with climate maps of Laurasia, as simulated by numerical climate models. Palaeomagnetic data indicate a northward drift of East Greenland of about 10° from ca. 25°N to ca. 35°N in the Middle to Late Triassic. The Fleming Fjord Formation which represents ca. 5 m.y. of the Late Triassic interval was deposited during latitudinal drift of 1–2°. It is possible that the observed long-term upward shift in climatic indicators within the formation can be ascribed to plate drift, but southward shift of climatic belts could also have been of importance.

Geographic Areas


  • thumnail for S0031-0182_98_00043-1.pdf S0031-0182_98_00043-1.pdf application/pdf 1.46 MB Download File

Also Published In

Palaeogeography, Palaeoclimatology, Palaeoecology

More About This Work

Academic Units
Lamont-Doherty Earth Observatory
Biology and Paleo Environment
Published Here
January 13, 2012