Theses Doctoral

The Light Response of the XENON100 Time Projection Chamber and the Measurements of the Optical Parameters with the Xenon Scintillation Light

Choi, Bin

The XENON program is a phased project using liquid xenon as a sensitive detector medium in search for weakly interacting massive particles (WIMPs). These particles are the leading candidates to explain the non-baryonic, cold dark matter in our Universe. XENON100, the successor experiment of XENON10, has increased the target liquid xenon mass to 61 kg with a 100 times reduction in background rate enabling a large increase in sensitivity to WIMP- nucleon interaction cross-section.

To-date, the most stringent limit on this cross-section over a wide range of WIMP masses have been obtained with XENON100. XENON100 is a detector responding to the scintillation of xenon and the work of this thesis will mainly focus on the light response of the detector. Chapter 1 describes the evidences for dark matter and some of the detection methods, roughly divided by the indirect and the direct detection. In the section 1.2.2 for direct detection, a treatment of interaction rate of WIMPs is introduced.

Chapter 2 is a description of the XENON100 detector, some of the main characteristics of liquid xenon, followed by the detector design. In Chapter 3, the light response of the XENON100 time projection chamber (TPC) is explained, including the Monte Carlo simulation work that was carried out prior to the main data taking. The Monte Carlo provided the basic idea of understanding the detector in the early stage of design and calibration, but the actual corrections of the light signals were determined later with the real data.

Several optical parameters are critical in explaining the light response, such as the quantum efficiency (QE) of the photomultipliers (PMTs) used in the detector and the reflectivity of the teflon (Polytetrafluoroethylene, PTFE) material that surrounds the liquid xenon target volume and defines the TPC. Since the few existing measurements of reflectivity of PTFE in liquid xenon were performed in different conditions and thus could not be applied, the XENON collaboration put some effort in setting up a reliable and an independent measurement for these parameters. The QE of the Hamamatsu R8520 PMTs at liquid xenon temperature was measured at the Columbia Nevis Laboratory, as described in Chapter 4. A similar but a revised setup was built later at the University of Muenster in Germany for measuring the reflectivity of the PTFE (Chapter 5). These measurements are important for a deeper understanding of XENON100 and the next phase of the program with a XENON1T as well as for other liquid xenon experiments.

Chapter 6 explains the details of the energy scale derived from the measurement of the light signals in XENON100 and the cuts used for the analysis, which has led to the most recent scientific results from this experiments. In 2012, the XENON100 dark matter results from 225 live days set the most stringent limit on the spin-independent elastic WIMP- nucleon interaction cross section for WIMP masses above 8 GeV/c 2, with a minimum of 2 × 10and minus;45 cm 2 at 55 GeV/c 2 and 90% confidence level. With this result XENON100 continues to be the leading experiment in the direct search for dark matter

Files

  • thumnail for Choi_columbia_0054D_11169.pdf Choi_columbia_0054D_11169.pdf application/pdf 10.7 MB Download File

More About This Work

Academic Units
Physics
Thesis Advisors
Aprile, Elena
Degree
Ph.D., Columbia University
Published Here
February 20, 2013