2014 Articles
Coherent Functional Modules Improve Transcription Factor Target Identification, Cooperativity Prediction, and Disease Association
Transcription factors (TFs) are fundamental controllers of cellular regulation that function in a complex and combinatorial manner. Accurate identification of a transcription factor's targets is essential to understanding the role that factors play in disease biology. However, due to a high false positive rate, identifying coherent functional target sets is difficult. We have created an improved mapping of targets by integrating ChIP-Seq data with 423 functional modules derived from 9,395 human expression experiments. We identified 5,002 TF-module relationships, significantly improved TF target prediction, and found 30 high-confidence TF-TF associations, of which 14 are known. Importantly, we also connected TFs to diseases through these functional modules and identified 3,859 significant TF-disease relationships. As an example, we found a link between MEF2A and Crohn's disease, which we validated in an independent expression dataset. These results show the power of combining expression data and ChIP-Seq data to remove noise and better extract the associations between TFs, functional modules, and disease.
Files
- journal.pgen.1004122.PDF application/pdf 885 KB Download File
Also Published In
- Title
- PLOS Genetics
- DOI
- https://doi.org/10.1371/journal.pgen.1004122
More About This Work
- Academic Units
- Biomedical Informatics
- Published Here
- October 18, 2016