Academic Commons

Articles

TREM2 is associated with increased risk for Alzheimer’s disease in African Americans

Jin, Sheng Chih; Carrasquillo, Minerva M.; Benitez, Bruno A.; Skorupa, Tara; Carrell, David; Patel, Dwani; Lincoln, Sarah; Krishnan, Siddarth; Kachadoorian, Michaela; Reitz, Christiane; Mayeux, Richard Paul; Wingo, Thomas S.; Lah, James L.; Levey, Allan I.; Murrell, Jill; Hendrie, Hugh; Foroud, Tatiana; Graff-Radford, Neill R.; Goate, Alison M.; Cruchaga, Carlos; Ertekin-Taner, Nilüfer

Background: TREM2 encodes for triggering receptor expressed on myeloid cells 2 and has rare, coding variants that associate with risk for late-onset Alzheimer’s disease (LOAD) in Caucasians of European and North-American origin. This study evaluated the role of TREM2 in LOAD risk in African-American (AA) subjects. We performed exonic sequencing and validation in two independent cohorts of >800 subjects. We selected six coding variants (p.R47H, p.R62H, p.D87N, p.E151K, p.W191X, and p.L211P) for case–control analyses in a total of 906 LOAD cases vs. 2,487 controls.
Results: We identified significant LOAD risk association with p.L211P (p = 0.01, OR = 1.27, 95%CI = 1.05-1.54) and suggestive association with p.W191X (p = 0.08, OR = 1.35, 95%CI = 0.97-1.87). Conditional analysis suggests that p.L211P, which is in linkage disequilibrium with p.W191X, may be the stronger variant of the two, but does not rule out independent contribution of the latter. TREM2 p.L211P resides within the cytoplasmic domain and p.W191X is a stop-gain mutation within the shorter TREM-2V transcript. The coding variants within the extracellular domain of TREM2 previously shown to confer LOAD risk in Caucasians were extremely rare in our AA cohort and did not associate with LOAD risk. Conclusions: Our findings suggest that TREM2 coding variants also confer LOAD risk in AA, but implicate variants within different regions of the gene than those identified for Caucasian subjects. These results underscore the importance of investigating different ethnic populations for disease risk variant discovery, which may uncover allelic heterogeneity with potentially diverse mechanisms of action.

Files

  • thumnail for 13024_2015_Article_16.pdf 13024_2015_Article_16.pdf binary/octet-stream 782 KB Download File

Also Published In

Title
Molecular Neurodegeneration
DOI
https://doi.org/10.1186/s13024-015-0016-9

More About This Work

Academic Units
Epidemiology
Neurology
Psychiatry
Publisher
BioMed Central
Published Here
July 31, 2015
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.