1999 Articles
Bayesian Model Averaging: a Tutorial (with Comments by M. Clyde, David Draper and E. I. George, and a Rejoinder by the Authors)
Standard statistical practice ignores model uncertainty. Data analysts typically select a model from some class of models and then proceed as if the selected model had generated the data. This approach ignores the uncertainty in model selection, leading to over-confident inferences and decisions that are more risky than one thinks they are. Bayesian model averaging (BMA)provides a coherent mechanism for accounting for this model uncertainty. Several methods for implementing BMA have recently emerged. We discuss these methods and present a number of examples.In these examples, BMA provides improved out-of-sample predictive performance. We also provide a catalogue of currently available BMA software.
Subjects
Files
- euclid.ss.1009212519.pdf application/pdf 512 KB Download File
Also Published In
- Title
- Statistical Science
- DOI
- https://doi.org/10.1214/ss/1009212519
More About This Work
- Academic Units
- Statistics
- Published Here
- May 13, 2014