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Abstract

We propose a new approach to text generation from for-
mal proofs that exploits the high-level and interactive
features of a tactic-style theorem prover. The design
of our system is based on communication conventions
identified in a corpus of texts. We show how to use di-
alogue with the theorem prover to obtain information
that is required for communication but is not explicitly
used in reasoning.

Introduction

The problem of generating text from formal proofs has
become more important as use of theorem provers in
hardware and software verification creates a large body
of formal mathematics (O’Leary et al. 1994; Rushby
1997; Gordon & Melham 1993). There is also indepen-
dent interest in the subject of formalized mathematics
for its own sake (Cederquist, Coquand, & Negri 1997;
Jackson 1995). Some automated reasoning groups are
putting their formal mathematics on the web but it
cannot be searched in its current form by standard web
tools. This kind of material may also play a role in
mathematics education. In each case, there is interest
in making the formal mathematics produced accessible
to an audience that is untrained in the formalism’s spe-
cialized language.

At least two of the theorem provers generating this
large body of mathematics, Coq (Paulin-Mohring &
Werner 1993) and Nuprl, are used to create formal
proofs that are intended to be readable. However, even
these readable formal proofs require training to under-
stand. Consequently, the massive amounts of material
that experts can create with these theorem provers re-
mains less accessible than it should be. While natural
language proofs would increase accessibility, the texts
produced must be faithful to the essential reasoning be-
hind these proofs.

In this paper we describe an approach to providing
faithful natural language proofs where the high-level
nature of the formalism is used to guide the genera-
tion process. The high-level proof representation is an
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accessible source of the information needed in content
planning and sentence construction. We also demon-
strate the usefulness of allowing the generation tool to
query the prover in order to acquire this type of infor-
mation.

The specific technical question that we consider here
is how to generate text from tactic-style formal proofs
created by the Nuprl system. A tactic can be thought
of as a large inference step that is assembled from many
small primitive ones. The Nuprl tactic system was de-
signed to mimic human reasoning. A sample of a formal
Nuprl proof is given in Figure 1. We will give evidence
that tactic steps correspond approximately with human
inference steps. This property of tactic-style proofs will
make the structure of the proof easily accessible.

The tactic proof by itself does not necessarily contain
all of the information needed to generate good proof
text. Some proof content is captured within the gen-
eral mathematical knowledge of the reasoner and is not
included in specific proofs. In addition, there is a gap
between the information that is needed by the reasoner
to determine that an inference is correct and the infor-
mation that is needed to communicate to a person why
that inference is correct. We will show that if the the-
orem prover makes available the primitive proof that
lies beneath the tactic proof and allows queries from
the generation system, we can obtain this additional
semantic information.

Based on these new methods, we generated natural
texts from a collection of tactic-based proofs. We used
the high-level proof structure for discourse planning and
used the mathematics communication conventions that
we identified from the corpus to determine sentence
content in the context of the discourse. Furthermore,
we began to identify knowledge needed for natural lan-
guage communication that is not present in the formal
proof and explored how to use the theorem prover’s rea-
soning capabilities to obtain it. The texts we produced
show that these methods are effective, at least in the
chosen domain of elementary arithmetic.

Previous Work

Previous work on the task of generating text from for-
mal proofs has focused on translating from low-level



Nuprl Proof

*T ndiff_ndiff
` ∀a,b:Z.∀c:N.(a -- b) -- c = a -- (b + c)
|
BY (UnivCD ...a) THEN Unfold ‘ndiff‘ 0
|
1. a: Z

2. b: Z

3. c: N

` imax(imax(a - b;0) - c;0) =
| imax(a - (b + c);0)
|
BY (ArithSimp 0 ...a)
|
` imax(-c + imax(a + -b;0);0) =
| imax(a + -b + -c;0)
|
BY RWN 1 (LemmaC ‘add_com‘) 0 THEMM
| RWH (LemmaC ‘imax_add_r‘) 0 THENA Auto
|
` imax(imax((a + -b) + -c;0 + -c);0) =
| imax(a + -b + -c;0)
|
BY RWH (RevLemmaC ‘imax_assoc‘) 0 THENA Auto
|
` imax((a + -b) + -c;imax(0 + -c;0)) =
| imax(a + -b + -c;0)
|
BY RWN 2 (UnfoldTopC ‘imax‘) 0
| THEN SplitOnConclITE THENA Auto’
|\
| 4. 0 + -c ≤ 0
| ` imax((a + -b) + -c;0) =
| imax(a + -b + -c;0)
| |
1 BY Auto
\
4. 0 < 0 + -c
` imax((a + -b) + -c;0 + -c) =
| imax(a + -b + -c;0)
|

BY Assert dc = 0e THENA Auto’
|
5. c = 0
|
BY HypSubst 5 0 THEN Auto’

Definitions

*A ndiff a -- b == imax(a - b;0)

*T imax_add_r
` ∀a,b,c:Z.imax(a;b) + c = imax(a + c;b + c)

*T imax_assoc
` ∀a,b,c:Z.imax(a;imax(b;c)) =
imax(imax(a;b);c)

Figure 1: A sample Nuprl proof

Theorem: For integers a and b and natural number c,
(a −−b) −−c = a −−(b + c).

Consider that a and b are integers and c is a nat-
ural number. Now, the original expression can be
transformed to imax(imax(a− b; 0) − c; 0) =imax(a −
(b + c); 0). From the add com lemma, we con-
clude imax(−c+imax(a + −b; 0); 0) =imax(a + −b +
−c; 0). From the imax assoc lemma, the goal be-
comes imax(imax((a +−b) +−c; 0 +−c); 0) =imax(a +
−b + −c; 0). There are 2 possible cases. The case
0 + −c ≤ 0 is trivial. Consider 0 < 0 + −c. Now, the
original expression can be transformed to imax((a +
−b) + −c; 0 + −c) =imax(a + −b + −c; 0). Equiv-
alently, the original expression can be rewritten as
imax((a+−b)+−c) =imax(a+−b+−c; 0). This proves
the theorem.

Figure 2: Automatically generated text; associated
Nuprl proof and relevant definitions shown in Figure 1

formal languages, particularly from natural deduction
style formal proofs without tactics. In some cases gener-
ation was based on a low-level proof even when a corre-
sponding high-level proof was available (Coscoy, Kahn,
& Théry 1995). The high-level proof was avoided be-
cause each reasoning step in a high-level proof could in-
corporate trial-and-error techniques or show facts that
may not be necessary in the final proof. There was
also concern that the set of available tactics varies be-
tween theorem proving systems and may change within
a system as it is improved. Though the former is a con-
cern for us, the latter does not seem to be a problem
to us because we believe that a theorem proving system
and its generation component must work together. Fur-
thermore, it was conceded that the higher-level proof
encompassed information about the reasoning process
that was quite valuable for communication.

When generating text from a low-level formal proof,
two major problems arise. The first problem is that
if every low-level step is expressed, the text will be
too verbose and contain many unnecessary or “obvi-
ous” steps. To give an idea of the magnitude of this
problem, in the Nuprl system the low-level primitive
proof underlying the example shown in Figure 1 has 674
steps in it. The EXPOUND system (Chester 1976) ad-
dresses this problem of verboseness by omitting certain
specific low-level inference steps whenever they are en-
countered or indicating their presence while suppressing
the details. The generation system for the Coq theorem
prover takes the approach of generating text for every
step but aggregating the text for multiple proofs steps
into a single sentence when the steps are of the same
logical form and occur adjacent in the proof (Coscoy
1997). In general, though, each low-level step produces
a sentence in the output proof. In the PROVERB sys-
tem (Huang 1994b), before generation is performed the
input natural deduction proof is translated to an inter-



mediate form that combines several low-level inference
steps into one larger high-level step that is intended to
reflect a human reasoning step. Generation then pro-
ceeds using this new representation. This is a time-
consuming process that often requires heuristics to de-
termine what information will be omitted.

The second major problem with low-level proofs is de-
termining the order in which to express the steps of the
proof (discourse planning). In a low-level proof format,
proof steps can be listed in an almost arbitrary order so
long as a step that establishes a precondition of another
step in the proof occurs before that step in the proof
order. Chester (1976) defines a partial order on steps
of a natural deduction proof such that a graph can be
drawn showing these dependencies between proof steps.
From this graph a coherent linear ordering is given to
the proof steps. PROVERB gets its proof step ordering
by organizing its assertion-level steps into a dependency
tree and then using a notion of local focus to determine
a path through the tree (Huang 1994b). In both cases,
the system has to create a tree structure in order to
determine the text’s discourse structure.

We find that by using high-level tactic-style formal
proofs as input both of the above problems can be
solved easily. First, a Nuprl proof is a tree, and it can
be traversed in a depth-first manner to obtain an ap-
propriate linear ordering on the proof steps. Also, we
will show that each proof step is already of approxi-
mately the same size as a human reasoning step; the
proof already resembles the assertion level proof that
Huang claims is necessary for generating a good text
version of a proof.

The Nuprl Theorem Prover
Since 1983, the Nuprl proof development system (Con-
stable et al. 1986; Constable 1997; Jackson 1995) has
been used to help people interactively create formal
proofs in a theory considered adequate as a foundation
for all mathematics, including computational mathe-
matics and programming. The system has been used
to produce thousands of proofs. Most of these have
been by-products of verifying that hardware and soft-
ware systems meet formal specifications.

Nuprl was designed to support the kinds of reason-
ing seen in rigorous mathematical writings in nearly all
mathematical fields, especially computer science. So its
formal proofs tend to resemble nonformal but rigorous
ones, and when users are creating them they are able
to imitate what they would produce in less formal con-
texts.

The Nuprl logic has two separable components, an
assertion language (sometimes called the logical the-
ory) and a proof language (a deductive mechanism).
The proof language includes a procedural language for
building primitive proofs. The programs for building
proofs are called tactics. They can be written as jus-
tifications in proofs. The resulting data structure is a
tactic tree, a sequent proof that allow tactics as justifi-
cations (Allen et al. 1990). Tactic-style proofs can be

represented as a proof tree where each node in the tree
represents a current goal and the children of a node are
the new subgoals remaining after application of a tac-
tic. Some tactics are programs that assemble a large
inference step from many small primitive ones, such as
SplitOnConclITE in Figure 1. However, some tactics
are programs that search for proofs using heuristics. We
will see the impact of these search tactics later. The
proofs that users see are in this high-level tactic proof
language, as in Figure 1.

Building and Evaluating the Corpus
In choosing to generate texts from tactic-style proofs,
we act on the intuition that these proofs are closer to
ones that humans create than are low-level proofs. By
this, we mean that each tactic step corresponds approx-
imately to an inference that a person would take when
proving the same theorem. The steps are at the same
level of granularity as human proof steps. The size of
a proof step is an intuitive notion that indicates how
much reasoning is happening within that step or how
much closer to the goal that step takes the proof.

Among practicing mathematicians it is commonly ac-
cepted that there are a variety of general proof strate-
gies to which specific steps in proofs correspond. There
have been efforts to define and describe these types of
proof steps in order to establish principles for creat-
ing proofs and writing them effectively (Solow 1982;
deBruijn 1994; Constable, Knoblock, & Bates 1984).
We pursue a parallel effort and define categories of proof
steps that are not only part of the same strategy but
are also communicated in the same manner. We call
these categories Mathematics Communication Conven-
tions (MCCs). If our claim that tactic steps approxi-
mate human proof steps holds, we can associate a single
MCC with each step in a formal proof.

In order to verify our intuition that tactic proof steps
closely resemble the proof steps which people would use
to explain a proof, we followed the traditional genera-
tion methodology (McKeown 1985; Lester 1994) and
built a corpus of texts generated by people from for-
mal proofs produced by Nuprl. This corpus is based
on fourteen formal proofs, all of which prove basic facts
about integer arithmetic. We chose to use proofs from
a library that was created with readability in mind.
The proofs are all simple enough that the mathemat-
ics presented was straightforward for the participants
to understand. Study participants were asked to read
these proofs and then write translations of them into
English. The participants ranged from being experts
in the Nuprl system to having never used the system
or seen its formal language before. However, all par-
ticipants had at least a basic familiarity with formal
languages in general.

A brief tutorial on how to read Nuprl proofs and a
guide to the meaning of terms in the proof was available
for novice participants to consult while performing the
translations. The study was administered electronically
on the web with the proofs given in their HTML format



Type of mapping # occurrences % occurrences

1-1 180 64%
1-2 52 19%
1-3 12 4%
2-1 23 8%

3-1, 4-1 8 3%
1-0 4 1%
0-1 1 <1%

1-1, 1-2, 2-1 255 91%
1-1, case split, 232 83%

or analogy

Figure 3: Number and percentage of occurrences of
types of mappings from Nuprl proofs to English sen-
tences in corpus; percentage taken out of 280 total map-
pings

and participants performed the tasks at their own pace.
They were not required to translate all of the proofs.
In all, there were nine participants in the study; the
resulting corpus has 52 translated proofs in it.

Our corpus afforded us the observations we needed
to verify our intuition that Nuprl’s proof steps closely
approximate human reasoning steps in written proofs.
The first hypothesis we wanted to check was that Nuprl
proof steps and English text proof steps are approxi-
mately the same size. To verify this, we compared the
English proofs collected in our study with the Nuprl
proofs on which they were based. Specifically, we noted
whether a single step in the Nuprl proof was reflected in
the corresponding English proofs by a single sentence
or multiple sentences, or whether it and one or more
other Nuprl proof steps were described together in a
single sentence.

In our corpus, there were a total of 352 English sen-
tences, and 280 matchings between Nuprl proof steps
and English sentences. The statistics we collected on
the frequency with which mappings from Nuprl proof
steps to English sentences were one-to-one or of an-
other type are shown in Figure 3. We also consider
how many of the mappings that are not one-to-one in-
volve a case split or analogous reasoning occurring in
the proof. Case splits often involve “set-up” sentences
in English texts to indicate what parameter of splitting
was used, or to show that a case was finished and the
next is being considered. When cases are analogous in a
proof, the Nuprl steps in the analogous case are omitted
form the English proof.

In summary, we observed that 64% of the proof steps
map to exactly one English sentence and that 91% of
the sentences either map one Nuprl proof step to one or
two English sentences or map two Nuprl proof steps to
one English sentence. Furthermore, in looking at the
mappings which are not one-to-one, 52% of these are
due to a case split or an analogy is occurring in the
proof (45% due to case splits, 7% due to analogy).

From these observations we conclude that Nuprl

proof steps are approximately the same size as human
inference steps. Most of the departures from the one-
to-one mapping between Nuprl steps and English sen-
tences are due to case splits in the proof. We con-
clude that it is practical for a generation system, using
a Nuprl formal proof that was built with readability
in mind as input, to plan what content to include in
each sentence on a node-by-node basis. Given the ease
with which case splits can be identified in a proof, it is
straightforward to identify cases in which it might be
suitable to generate multiple sentences.

Having verified that we can treat tactic steps as
approximating human reasoning steps, we would like
to define a set of MCCs such that all proof steps
whose communication involves the same information
presented in the same general structure are grouped to-
gether. We did this by first reading the English proofs
and collecting together all of the sentences that had
the same general content or role in the proof. Hav-
ing done this, we looked at the Nuprl proof steps that
corresponded to these sentences and observed that the
reasoning being done was also similar. By using these
observations we were able to define a set of ten MCCs
(shown in Figure 4) that group together Nuprl proof
steps that can be articulated by similar utterances com-
municating the same content.

In most cases, there was substantial similarity be-
tween all but a small number of the English sentences in
an MCC. For some MCCs, the similarity among its cor-
responding sentences in the corpus was so strong that
we were able to write a regular expression that gener-
ated every one of those English sentences. Therefore,
once one identifies an MCC that covers a given proof
step, one knows what type of sentence should be gen-
erated.

Overview of the System

Using the information that we collected from the cor-
pus, we have built a simple natural language generation
system in order to determine if it is feasible to use the
patterns we discerned as the basis for such a system and
to identify areas where more sophisticated techniques
would be required. Our system is based on the tradi-
tional language generation system architecture (McK-
eown 1985; Hovy 1988). A typical language generator
consists of two main components: a content planner,
which selects the information from the knowledge base
that should be included in the generated text, and a lin-
guistic component, which maps concepts to words and
builds an English sentence from them. The linguistic
component follows the standard structure:

• a lexical chooser, which determines the syntactic
structure of the sentence and the words to realize
each semantic role; and

• a sentence generator, here FUF, which builds a syn-
tactic tree, chooses closed class words, and linearizes
the tree as a sentence.



Statement of Goal — communicates the theorem to be proved — “Show for x, y : Z.|x| = |y| iff x = ±y.”
Variable Declaration — communicates the names of any variables introduced in the proof and possibly their types
— “Consider any two integers a and b.”
Case Statement — communicates that proof will proceed by argument by cases — “It is either the case that
a ∗ b = 0 or it isn’t.”
Case Consideration — introduces one of the cases in an argument by cases, possibly stating the assumption made
in that case — “In the first case, assume that 0 + −c is less than or equal to 0.”
Trivial Case Consideration — introduces a case which can be proved trivially in an argument by cases — “If
a ∗ b 6= 0 the result follows immediately.”
Contradiction — communicates that the conclusion is proved by virtue of a contradiction being reached — “We
conclude that a = 0 and b = 0, which contradicts our initial assumptions.”
Analogy — indicates that two or more cases from a case statement are proved by the same reasoning — “The
second case is symmetric.”
Inference Step — communicates that the reasoning proceeds by an inference on the conclusion or one of the
hypotheses, a generic type of reasoning not covered by one of the previous categories — “By the lemma, either a = 0
or b = 0.”
Transformation — communicates a chain of reasoning steps, usually from the inference step category — “By
lemmas minus imin and add com this reduces to imax(−a,−b) + −c =imax(−(a + c),−(b + c)).”
Trivial Step — an inference step which is either omitted entirely or where “math” or “obviousness” are given as
justification — “It is trivial to see that both sides are equal.”
Statement of Conclusion — communicates that the conclusion has been proved, possibly with a restatement of
that conclusion — “Therefore it must be that a ∗ b is not zero.”

Figure 4: Mathematics Communication Conventions, with sample sentences from corpus

The lexical chooser is implemented in FUF and rep-
resents the lexicon as a grammar following (Elhadad
1993). The main work in this part was building the
domain vocabulary, which maps concepts in the mathe-
matics domain to words according to the context. The
FUF sentence generator, which uses SURGE as its En-
glish grammar, was unchanged.

The major effort in the development of the system
was the construction of the content planner. The con-
tent planner determines what information from the
Nuprl proof tree should be included in the proof text.
Each node in the proof tree represents one step of rea-
soning. A proof node contains the list of assumptions
that are currently active, the conclusion that node is
trying to draw, what tactic is applied at that step and
the set of children of that proof node. It also contains
information that is relevant only for the theorem prover,
such as well-formedness information for each expression
and information needed to transform proofs into exe-
cutable code.

However, as we have noted, there is information that
is needed for communication that is not stored in the
proof tree, either because it is part of the background
mathematics knowledge assumed in the system or be-
cause it was determined by the proof agent in a manner
that did not produce a suitable proof object. This is
the information that we must determine by appealing
to the theorem prover. Adding this capability to the
generation system results in turning the communication
between the content planner and the Nuprl system into
a dialogue, rather than one-directional communication
as is standard in natural language generation systems.

In this section we will show our solutions to two prob-
lems that arose while constructing the system. One
problem was made easy to solve by having high-level
proofs. The other problem was made more complicated
because of Nuprl’s rich type system. We will point out
specific places where dialogue with the theorem prover
can help the generation process and describe the type
of querying that might take place.

The first of these two problems is how to map the
tree structure of Nuprl proofs to a linear structure that
approximates human-written proofs. As we described
before, the step size and ordering of proof steps are very
similar between Nuprl proofs and the human-written
versions in our corpus. Taking advantage of this, we
traverse the tree in a depth-first manner and translating
each proof node to a single sentence (or two sentences,
at the start of a case consideration). The major issue
to address, then, is how to determine which MCC from
Figure 4 covers the step, since the Nuprl proof does
not include this information. The MCC will completely
define what information should be selected from the
Nuprl node for that reasoning step. We discuss MCC
identification further below.

The second problem we address on the content plan-
ner level is what representation of an object in the proof
is most suitable for the current context. Since Nuprl is
system with rich type hierarchy, the type of a variable
may be a subtype of many other types in the system.
As a simple example, a variable x that is a natural num-
ber can be thought of as an integer with the restriction
on it that x ≥ 0. We found from our corpus and math-
ematical literature that the choice of which type to use
is highly determined by the context. So given our vari-



able x ∈ N we might choose to refer to it as a natural
number or as an integer in the text, depending on how
it is being used and its surrounding context. This issue
will be mentioned again later.

A sample of the output that our system generates is
shown in Figure 2. It should be noted that, for tech-
nical reasons, the generation system is as of yet unable
to import the Nuprl formula display forms and lemma
names and these need to be added by hand, though the
generation system does indicate where this information
should be given. We use the lemma names as they are
given in the Nuprl system in order to be consistent with
the library structure that already exists and with which
the users are familiar.

MCC Identification

We have developed a set of rules derived from the cor-
pus that identify the MCC of Nuprl reference steps. For
each of an MCC’s occurrences in the corpus, we ana-
lyzed the node structure, its level in the tree, and the
node’s neighbors in the tree. We found that in some
cases a node’s local information completely determines
its MCC. For example, every node that has more than
one child falls in the case statement MCC, or one
of the two subtypes of this MCC: contradiction and
analogy. Other MCCs require looking at which tactic
is applied. For example, to determine if a lemma appli-
cation has occurred it must be checked whether one of
a set of lemma-application tactics were used.

Generally, more analysis than this is required. A step
falls in the contradiction MCC if after a case split one
of the two cases is proved by obtaining false as a hy-
pothesis. For us, this is not information that is neces-
sarily available in the tactic-tree representation of the
proof. However, Nuprl also stores a second, low-level
representation of the proof: the primitive proof tree.
This representation is not generally accessible by Nuprl
users. Contradictions can be identified by retrieving
the primitive proof tree associated with a leaf of the
tactic-proof tree and checking this piece of the primi-
tive proof tree for an occurrence of false as a hypothesis.
Because our planning is initiated at the tactic-level, we
only have to examine part of the primitive proof tree,
thus saving time.

All of the cases described above can be accurately
identified by examining features of the Nuprl output.
A more difficult MCC to identify is trivial case. In
general, this is a highly subjective judgement that hu-
mans do not agree on. We do not attempt to answer
the most general question here of what does and does
not qualify as being a trivial reasoning step; this is a
significant and difficult open area of research. Instead,
we say that a reasoning step is trivial if it follows from
the Nuprl tactic Auto. This tactic applies simple auto-
mated proof search; it is an example of a heuristic. In
practice, Nuprl users invoke this tactic to finish off lines
of reasoning when the result has become obvious. Be-
cause we are dealing with Nuprl proofs designed to be
readable we make the justifiable assumption that Auto

will have been invoked by the Nuprl user only in cases
they deemed obvious themselves.

One of the MCCs whose identification requires a more
semantic understanding of the proof tree is analogy.
This occurs when the reasoning used to prove each of
the subproofs of a case split is similar, or analogous.
What it means for two cases to be analogous is not well
defined; again, this is a subjective notion. The naive
approach of comparing cases by checking if the same
tactics were used in each reasoning step can result in
wrong predictions. In some instances a tactic, such as
Auto, may have a variety of primitive proof trees it can
generate. It cannot be determined from the tactic level
tree which of the alternatives has been generated. This
means that two instances of the same tactic do not need
to result in the same reasoning, hence leading to non-
analogous cases. Therefore, solely syntactic features of
the subtrees are not sufficient to find similarity between
trees, and the whole problem requires a solution on the
semantic level.

We have developed a method by which Nuprl can
be used to solve this problem. Given two trees, the
Analogy tactic, which runs in the Nuprl system, iden-
tifies whether the reasoning method used in the first
tree can be “re-run” on the second tree to prove its re-
sult. Tactic application of this type is expensive, since
Analogy tries to repeat the whole proof, and therefore
it is unreasonable to invoke this tactic for every proof
step. It is necessary for the content planner to examine
the syntactic context and only apply the tactic if it is
likely that the cases are analogous.

According to an analysis of Nuprl proofs, we find that
there is reason to suspect that the Analogy tactic will
apply if, for each of the first few steps in the two tactic
trees, the set of tactics applied are the same and, when
one of those tactics is a lemma or definition application,
the same argument is given to the tactic in both cases.
By varying how many proof steps need to match before
running the Analogy tactic, the number of times that
the tactic is run and the precision with which the anal-
ogy MCC is detected would vary. The fewer steps that
are compared, the more often the Analogy tactic is run
and the more instances of analogy would be detected.
This is because our technique for saying that two tac-
tic trees are not similar enough occasionally discards
trees that would be judged analogous. However, by be-
ing conservative in this way we only end up omitting
a simplification to the proof; we never add any inaccu-
racy. When we do claim that two proof trees followed
by analogous reasoning, we are certain that this was
the case because the line of reasoning from one proof
tree was explicitly re-run on the other proof tree. De-
termining this requires a dialogue between Nuprl and
the generation system.

Variable Type Representation

Consider a proof that introduces three variables x, y
and z, where x is a natural number and y and z are
integers. According to our corpus, people often prefer



to introduce these variables in the text by saying “Let
x, y and z be integers where x ≥ 0.” Also, if one knows
that a natural number variable is introduced in order
to be used in a lemma that takes integers as input, it is
clearer to state initially that the variable is an integer.
In order to solve this problem, one must know about
the subtype relations in the system. If one has a static
hierarchy of types it is straightforward to check for any
such relations. However, Nuprl does not store a type
hierarchy and because its type system is dynamic and
constantly growing it is not possible to build such a hi-
erarchy outside of the system. This makes the problem
of describing the type of a variable more difficult when
using output from Nuprl.

Our solution is to start another dialogue with Nuprl
to determine whether two types are in a subtype re-
lation with each other. We have designed a tactic for
Nuprl which allows us to check this. This tactic al-
lows us to determine for any two variables whether one
is a subtype of the other and, if it is, what additional
conditions hold for the variable with the more restric-
tive type that do not hold for the other variable. With
this information we can create alterative references for
variables that make our text more concise.

This problem becomes much more serious in more
complicated domains such as algebra and automata the-
ory where the type hierarchy will have many levels. In
these domains, this is an important problem to solve.
Because we solve this problem by appealing to the the-
orem prover, which has a deeper understanding of the
type system than our content planner can, we will be
able to apply our solution to types of any complexity.

Discussion
In this paper, we have presented a simple system which
uses the structure of a tactic-style formal proof and
the Mathematics Communication Conventions defined
for such proofs to guide the generation process. We
implemented and tested our generation system using
a pre-existing Nuprl library about integer mathemat-
ics. We ran our generator on 37 proofs and obtained
an accurate and readable version of the proof in each
case. An example of our output is in Figure 2. More
examples of our output can be seen on the web at
www.cs.cornell.edu/home/hollandm/res3 99.html.

We found that the structure and content of high-
level tactic-style proofs offers a useful starting knowl-
edge representation for use in generation. This rep-
resentation already contains much of the information
needed for the generation process. We have been able
to identify some of the additional knowledge that is not
necessary for the reasoning process, and hence not in-
cluded in the formal proof, but that is critical for com-
munication. We have shown how this information can
be extracted from the proof. As McAllester and Gi-
van (1992) noted, this information affects the ease of
understanding mathematical arguments. We intend to
explore the question of what additional information is
needed for understanding further.

We identified that the advantages obtained by using
a tactic-style theorem prover are balanced by some dis-
advantages not faced when using low-level input proofs.
The dynamic nature of the Nuprl type theory led to
difficulties in identifying what type reference to use for
variables. In addition, because tactics are high-level
abstractions of reasoning there is occasionally low-level
information that is lost and has to be obtained through
the methods we have described here. In some instances
the best solution will be to alter the Nuprl system to
add the information to the formal proof.

We also observed that sometimes the communication
knowledge we need requires mathematical information
that is not present in the proof. We suggest that the
solution to this problem is to directly use the reason-
ing capabilities of the theorem prover. This requires an
adjustment to the standard generation architecture to
allow for interaction between the theorem prover and
the generation system. In this way, the content plan-
ner does not have to make semantic decisions about
the proof. These semantic issues are passed off to the
theorem prover, which is better suited to handle them,
and heuristics are avoided in resolving these questions.
Avoiding heuristics allows our solutions to be fairly do-
main independent and should be able to apply them as
we extend the system.

Our accomplishments here have also helped us verify
that the Nuprl developers were successful in their goal
to create a theorem prover that reflects the reasoning
processes of people.

Future Work
This work has shown that high-level formal proofs are
suitable and even have special advantages as input to a
generation system. Having located some of the places
where the information in high-level formal proofs is not
sufficient for the generation task, and identified the po-
tential for using dialogue between the generation system
and the theorem prover to acquire this information, we
want to incorporate this dialogue into our system and
continue to explore its use in supplying communication
information.

One problem that we will focus on is refining our no-
tion of trivial proof to more closely approximate the
notion of trivial used by people when they write proofs.
We would also like a method for identifying analo-
gous cases in proofs which relies more on determining
whether the differences between the cases would seem
significant to a reader or not. We believe that solving
these problems will require adding a user model to our
generation system, in order to have a specific type of
reader against which our judgements of what type of
reasoning is obvious or significant can be compared.

We also want to approach the problem of determining
the best form for expressions when logically equivalent
options are available; for example, chosing between the
statement that “A implies that B implies C” and “A
and B implies C”. This will require the ability to de-
termine which form is most useful to the reader given



subsequent uses of the expression (McAllester & Givan
1992). It will also require the ability to create alter-
nate forms of expressions in general cases, something
we would be able to do by querying the theorem prover.

Additionally, we want to verify that our approach
affords easy extension to generation from proofs in other
domains of mathematics. Specifically, we want to focus
on Nuprl’s growing library of automata theory. This
library is used in a joint project with the Ensemble
system for verifying code (Hickey, Lynch, & Renesse
1999). The text generated from these proofs could be
used as code explanations.
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