Academic Commons

Articles

Intronic motif pairs cooperate across exons to promote pre-mRNA splicing

Ke, Shengdong; Chasin, Lawrence Allen

A very early step in splice site recognition is exon definition, a process that is as yet poorly understood. Communication between the two ends of an exon is thought to be required for this step. We report genome-wide evidence for exons being defined through the combinatorial activity of motifs located in flanking intronic regions. Strongly co-occurring motifs were found to specifically reside in four intronic regions surrounding a large number of human exons. These paired motifs occur around constitutive and alternative exons but not pseudo exons. Most co-occurring motifs are limited to intronic regions within 100 nucleotides of the exon. They are preferentially associated with weaker exons. Their pairing is conserved in evolution and they exhibit a lower frequency of single nucleotide polymorphism when paired. Paired motifs display specificity with respect to distance from the exon borders and in constitutive versus alternative splicing. Many resemble binding sites for heterogeneous nuclear ribonucleoproteins. Specific pairs are associated with tissue-specific genes, the higher expression of which coincides with that of the pertinent RNA binding proteins. Tested pairs acted synergistically to enhance exon inclusion, and this enhancement was found to be exon-specific. The exon-flanking sequence pairs identified here by genomic analysis promote exon inclusion and may play a role in the exon definition step in pre-mRNA splicing. We propose a model in which multiple concerted interactions are required between exonic sequences and flanking intronic sequences to effect exon definition.

Subjects

Files

  • thumnail for GB-2010-11-8-R84-S1.PDF GB-2010-11-8-R84-S1.PDF binary/octet-stream 1.34 MB Download File
  • thumnail for GB-2010-11-8-R84-S2.XLS GB-2010-11-8-R84-S2.XLS binary/octet-stream 61.5 KB Download File
  • thumnail for GB-2010-11-8-R84-S3.XLS GB-2010-11-8-R84-S3.XLS binary/octet-stream 58 KB Download File
  • thumnail for e86c2ee4ebd9de20cd02d01a1bca1c0d.zip e86c2ee4ebd9de20cd02d01a1bca1c0d.zip binary/octet-stream 5.44 MB Download File

Also Published In

Title
Genome Biology
DOI
https://doi.org/10.1186/gb-2010-11-8-r84

More About This Work

Academic Units
Biological Sciences
Publisher
BioMed Central
Published Here
September 8, 2014