
Director -- An Interpreter for Rule-based Programs

Galina Darskovsky Moerdler
Department of Computer Science

Columbia University
New York, NY 10027

J. Robert Ensor
4F-607

AT &T Bell Laboratories
Holmdel. NJ 07733

ABSTRACT

CUCS-231-86

Programs interacting with users via natural language interfaces generally require more sophisticated

control structures than those needed by programs interacting with users through less flexible mechanisms.

This paper describes our development of Director, an interpreter (inference engine) for rule-based

programs. Providing an efficient combination of forward and backward chaining, heuristic and user

control of inference, and ready access to portions of its internal sttucrure, Director facilitates the

construction of systems with natural language interfaces as well as other rule-based systems in which

queries are expensive.

This research was partially supported by Office of Naval Research grant NOOO 14-82-K-0256.

Director - An Interpreter for Rule-based Programs

ABSTRACT

Programs interacting with users via natural language interfaces generally require more
sophisticated control structures than those needed by programs interacting with users through
less flexible mechanisms. This paper describes our development of Director, an interpreter
(inference engine) for rule-based programs. Providing an efficient combination of forward and
backward chaining, heuristic and user control of inferences, and ready access to portions of its
internal Structure, Director facilitates the construction of systems with natural language
interfaces as well as other rule-based systems in which queries are expensive.

1. /i'v'TRODUCTION

We have been investigating natural language interfaces for rule-based expert systems. During
this study we have seen that programs interacting with users via natural language interfaces
generally require more sophisticated control structures than those needed by programs
interacting with users through less flexible mechanisms. This paper describes our development
of Director, an interpreter (inference engine) for rule-based programs, which provides control
structures facilitating the construction of natural language interfaces.

A typical rule-based expert system is constructed as a knowledge base and an associated
interpreter (inference engine) [Ha 85], as indicated in Figure 1. The knowledge base is a
collection of facts and production rules. A fact is a (name value) pair indicating the value of the
object name; and a production rule is a statement of the form

IF premise THEN action.

Such a rule stores the knowledge that if the premise (left-hand-side) is true then the action
(right-hand-side) should be performed. The interpreter controls the execution of the expert
system by selecting and evaluating rules. As these rules are evaluated, they alter the values of
the facts and generate input and output.

Expert systems commonly receive user input through menus, which are rigid, often stilted
interfaces. "Vhen information is needed, the system typically either requests that the user
supply a specified value or poses a question, with a selection of answers from which the user
chooses the one that he/she thinks best corresponds to the correct answer [Da 84J. In such
systems, information is solicited as it is needed. with little regard for the human user.
Unfortunately, these interfaces are often tedious or awkward and may even limit the capabilities
of associated expert systems [Po 82J.

Natural language interfaces for expert systems are being designed to solve some of the
problems posed by menus, thus providing the user greater flexibility and control during
consultation sessions with the expert system [Da 851. This flexibility, however, may cause some
difficulties in constructing the expert system itself. A program with a natural language
interface may be forced to accept facts in more or less unconstrained order, as the user
volunteers information at arbitrary times. This volunteering of information creates connicts
between two goals we have for our expert systems. The first goal is that the system be
responsive to the user input; and the second goal is that the system maintain reasonable
continuity and focus in interactions despite the unconstrained order of user input. That is, we
want the system to be responsive, but coherent. Additionally, we feel that the system should
ask only necessary questions to arrive at its conclusions. Redundant or irrelevant questions
detract from the system's natural language capabilities.

A rule-based program executes via the evaluation of its rules. The~e evaluations are
con trolled by the program's in terpreler, which chooses wh ic h ru les to evaluate according to
some strategy. The system queries to the user are generated as the rules attempt to determine
the values of various data. In these programs, therefore, our behavior goals can be realized
through suitable control of rule firings. i.e., through an appropriate interpreter. Common
interpreters for rule-based systems are based on sequential statement evaluation (e.g., [80 83]),
forward chaining (e.g., [Fo 81]). or backward chaining (e.g., [va 81]). Sequential control. often
used as the basis for specialized user-programmed control structures, is of little direct assistance
in building rule-based systems. Systems that are restricted to forward chaining inference are
difficult to make responsive to user queries of the form "Could so and so be true?" This is
because forward chaining systems focus on deriving inferences from a set of facts, rather than
investigating hypotheses. Systems restricted to backward chaining often do not allow a user to
volunteer information, ignoring inferences from the new information.

Using a combination of forward and backward chaining. an interpreter can provide the basis
of a flexible control mechanism for building expert systems that carefully control their
input/output activities. However. intelligent control of a system's input/output requires more
than the availability of both forward and backward chaining in its interpreter. The system also
needs to record information describing its input. and then use this information in the control of
the inference process. For example, an inference process might base its rule selection on the
order a set of facts were entered. Finally, if intelligent control of input/output (such as that in
a natural language interface) is to be built outside the interpreter, then the interpreter must
provide appropriate information about itself to this high-level control mechanism. For example,
a natural language interface might require knowledge of various relationships among the facts
and rules available to the in terpreter in order to answer some user queries. \Ve have developed
Director to provide an efficient combination of forward and backward chaining, the use of input
attributes in controlling inferences, and ready access to portions of its internal structure for use
by natural language interfaces.

l\fore generally. Director supports the construction of any rule-based system in which queries
are expensive. For example, a system that serves as a consultation aid for professionals (e.g., an
aid for tax advisers) should not pose redundant or superfluous questions. Some expert systems
for medical diagnosis also need to limit their queries. Often information about a patient can be
obtained only through bothersome or even risky methods. Performing an unnecessary biopsy,
even if it is a routine procedure, may be an expensive mistake and may expose the patient to
the possibility of complications. Similarly, an expert system whose problem domain involves
data from a hostile environment often has difficulty obtaining these data. For example, a
system for diagnosing faults in an undersea cable becomes too expensive if it requests
unnecessary probes.

The remainder of this paper has the following organization: Section 2 outlines the structure
of a rule-based system that uses Director. The implementation of Director is described in
Section 3. Section 4 describes techniques used to control the inferencing of Director, and
Section 5 presents the mechanisms used to display the rules used. Finally, Section 6 presents
the status of our implementation and experimental work, with some concluding remarks.

2. SYSTEM STRUCTURE

In the typical rule-based expert system, program execution proceeds as the interpreter evaluates
the system's rules. That is, the interpreter acts as the program controller by executing a simple
loop: select a rule for evaluation and evaluate it. Since each rule is selected according to the
selection procedure contained within the interpreter, this procedure influences the structure of
the rules and the control information that must be explicitly encoded in to the system. Indeed
there is probably no major expert system in which the rules are independent of their interpreter
[Du 84]. Hence, our description of Director includes a brief description of the rules that it
evaluates.

- 3 -

2.1 Rules

Director is designed to interpret rules that have been defined by a system called Describe
[BI 84]. Each rule is invoked as a function, whose body is an if-then form in which the premise
and the action may be arbitrary Lisp s-expressions. Although the premise and the action of a
rule may have arbitrary side effects, we assume here that the rules have a more restricted form.

Each rule premise is restricted to data base queries, i.e., the examination of the values of
facts. The value of a fact may be added to the data base in only two ways: either through the
action of a rule or through user input. Any fact that is not added by the action of a rule has an
associated query procedure so that the user can supply its values. This query procedure is
invoked if the premise of a rule tries to examine the fact's value, and the value is not present in
the data base. Director automatically maintains the mappings between the rules and the query
procedures for their associated facts.

The action of a rule is restricted to a single data base assignment. The value to be asserted
may be a constant, the value of a datum. or the result of a function evaluation. However, any
input/output performed by such a function is beyond the control of Director. I\"o query
procedure is automatically associated with the fact mentioned in the action of a rule.

2.2 Interpreter

Director uses both forward and backward chaining. When a fact is given to the system, all
possible inferences from the data in the current data base are made using forward chaining.
This means that full consideration is given to the newly entered facts. Forward chaining, then,
promotes a focus of attention according to the facts offered to Director by its user. When a user
query is received, Director establishes a goal. a hypothesis, to confirm or reject. If the goal is
not satisfied by simply examining the data base, backward chaining occurs. The backward
chaining is guided by a heuristic that tries to maintain focus of attention according to both the
user query and the facts recently mentioned (see Section 4.1). During backward chaining
additional data may be input, and forward chaining is performed to determine all inferences of
this new information. This control structure allows Director to shift focus and goals in response
to the user's change of focus and goals.

9. IMPLEMENTATION

This section presents a description of our implementation of Director. v'ie feel that the
efficiency of this implementation is important, for it provides a system that is both responsive
and functionally helpful.

9.1 Maps For Rule Selection

During rule selection the interpreter must know which facts are contained in the left- and
right-hand sides of the rules. This information can be obtained by searching the rule set. Naive
searches, however, could be expensive computationally and could make the response time of the
system unreasonable. To make this searching efficient, Director maintains two maps. These
maps are the rules-add-fact map (RF), and the facts-used-by-rule map (FR). The RF map
provides pointers from each fact to the rules that can add it to the data base. The FR map
provides pointers between each rule and the facts contained in its left-hand-side, thus specifying
which facts have to be true in order for that rule to fire. The maps are built up during a
preprocessing stage, which has to be performed only once for a given set of rules.

9.2 The RF Afap

Suppose that fact C is in the right-hand-side of rule r: (If (AI\B) then C). The RF map entry for
this fact would be (r< --> C), indicating that rule r adds fact C to the data base. The
information in this map is used during the rule selection portion of the backward chaining
phase. For example, if Director is trying to solve goal C, then the RF map provides efficient
access to r. This map also allows Director to suppress the firing of certain rules: ASter a value is

- 4 -

a.ssigned to a fact, the system checks the RF map and tries to mark those rules that would
a.ssert the same value of this fact. (Rules are not evaluated during the marking process, hence
the only rules marked are those that reference this fact by a constant name and assert the same
value a..~ a constant.) The marked rules are not evaluated, thus avoiding rule evaluation and the
superfluous queries to the user that these evaluations might cause. Suppose, in this example,
that rule r assigns a value v to C, which is the present value of C; rule r will be not be selected
for evaluation.

9.9 The FR Map

Similarly, the facts-used-by-rule map would contain an entry for rule r, (.4..B<-·>r), indicating
that rule r depends on facts A and B. The map would also contain entries for A and B showing
that rule r requires their values in order to be evaluated. \Vhen some fact A is added to the
data base, all those rules that use A in a forward chaining inference are readily found. In the
present example, if A and B are in the data base, rule r is found in the FR map to be usable for
forward chaining. This map is also used in the rule selection process of backward chaining.
Having determined that rule r will be used to infer a needed fact C, the system readily
determines that facts A and B need to be known.

4· QUERIES Al\iD FOCUS

\\" e want Director to select rules for evaluation in a way that minimizes the number of queries
posed to the user. Unfortunately, given no semantic information, the problem of choosing the
best rules is NP-complete. To avoid this complexity, we try to suppress unnecessary rule
execution and choose among the eligible rules with a heuristic. Our heuristic for selecting which
rule to evaluate is based on natural language considerations.

4.1 Heuristics for Backward Chaining

Suppose the knowledge base of an expert system contains the following set of rules:

1. IF A THEN B
2. IF Y AND B AND Q THEN D
3. IF Y AI\D B Al'iD W THE~ D

Also suppose the user of the system issues a query which adds facts A and Q to the data ba.se
and states that the goal is to know D. Director first forward chains to make all the possible
inferences given the contents of the data base. In this case rule 1 is evaluated, adding B to the
data ba.se. Now the system backward chains. \Ve want Director to pick the next rule in such a
waya.s to guarantee the most focused conversation. To promote this behavior, Director tries to
select the rule with both the goal in its right-hand-side and the greatest number of facts most
recently added by the user in its left-hand-side. This implies that Director must differentiate
those facts derived by rules and those entered by the user. Furthermore, Director a.ssigns a
time-stamp to each fact added by the user. In the example Director would try rule 2 first,
because it contains Q which was entered by the user. However, if Q were unknown, the system
would choose arbitrarily between the rules 2 and 3. This heuristic is guided by the facts entered
recently and thus does not always give optimal behavior. However, if the user mentions relevant
facts a.s he issues queries (as would be expected if the user understood the problem domain), the
behavior should be quite natural, giving a focused conversation.

4.2 U4I!r Control for Backward Chaining

Sometimes the user of Director has semantic knowledge of the queries and can, therefore, better
direct the selection of rules. Forward chaining can be controlled simply by the facts that are
added to the data base. Backward chaining can be controlled by the facts and the queries
issued to Director. An optional mechanism is provided in Director to allow the user to help
direct the rule selection process. Normally, expert systems use only information in the right
hand-sides of their rules to initiate backward chaining. Director can abo use information in the

- 5 -

left-hand-side of rules when selecting rules to use as a starting point of the backward chaining
process. If the user of Director supplies this left-hand-side information when making a request,
it will be used in the initial rule selection. For example, consider the following set of rules:

1. IF A A.:'-:O B THE:\, D
2. IF A .~'m C TI-IEN D

Suppose a user issues the following query:

"Given B, is m"
Vsing the maps, Director identifies that the general goal is implied by rules 1 and 2. The syst.em
now selects a rule as the starting point of the backward chaining process, choosing rule 1
according to user control. The next section describes .the mechanism prO\'ided for allowing the
user to make such a focused query. We have in mind that the "user" will generally be a
semantic module that translates user questions into requests to Director.

5. SELF DESCRIPTION

So far, we have described what we call Director's inferencing function. The system has another
function. called display. There are many instances when a user wants the system to provide
information without providing inferencing. For example, a user may want to see everything the
system knows about a certain fact A and issue the following request: "Tell me about A." Our
system can handle a query of this sort by using the maps. All the rules that contain A in the
left-hand-sides are found with the help of the FR map. Similarly, all the rules containing A in
the right-hand-side are found with the help of the RF map. All rules containing A are returned
as a response to the above query. Providing this information is done quickly because Director
does not perform inferences, but rather only references the maps.

In the future, we would like to build a semantic module (that uses Director) to handle
queries of the form "Do A and B imply C," where A and B are on the left-hand-side of rules, and
C is on the right-hand-side. If A, Band C are all in the same rule, the query is answered simply
by returning the rule. However, if A,B and C are not in the same rule, the response to this
query could be expensive to compute because it involves tracing all the paths from A and B to
C. Using Director all of this tracing is done with the maps only, which requires less
computation than performing inferences for a similar query. The mechanism needed to handle a
query such as the above, as well as other queries, is currently being developed.

6. CURRENT STATUS AND CONCLUSIONS

Some extant interpreters (e.g., in KEE [In 85]) could be modified to provide the characteristics
of Director. Indeed, our effort can be viewed as an outline of the modifications required.
However, we felt the cost of such alterations would be too large in our environment, thus we are
implementing Director in Zetalisp with rules that are defined using the local tools, Describe
[BI 84] and Portal. We are using Director to build portions of a small expert system called
Taxpert [En 85]' which deals with personal income tax matters. The system contains a number
of agents, which cooperate to solve an assortment of tax problems. Some of the agents gather
information, some fill out tax forms, and others give advice. Director serves as the control
mechanism for the dependency expert, which contains about 50 rules.

The inference engine we have described uses a combination of forward chaining and
backward chaining. It also makes available some descriptions of its rule base and allows for a
limited form of user control over its backward chaining mechanism. This facility allows the user
to ask questions about the information contained in the rules but not normally supplied by
expert systems. Director facilitates construction of rule-based systems with natural language
interfaces, presenting focused dialogue and reducing the number of user queries. This
interpreter is also useful in other domains, where the decisions have to be made quickly, or
where user queries are expensive.

- 6 -

References.

[BI 84] Blumenthal, R.L., Dickinson, A., Ensor, J.R., and Joseph. R.L., "Describe -An
Explanation Facility for Object-based Expert Systems" , in preparation.

[Bo 83] Bobrow, D. G., and Stefik, M., "The LOOPS ~lanual." Xerox Corp., Palo Alto, CA,
1983.

IC183] Clancey, \V.J .. "The Epistemology of a Rule-Based Expert System - a Framework for
Explanation," ArtIficial Intelligence, Vol. ~O, pp. 215-~51, 1983.

IDa 841 Datskovsky, G., "!v[enu Interfaces to Expert Systems: Evaluation and Oven'iew,"
Technical Report CUCS-168-84, Columbia University, New York, I\ry, 1984.

[Da 85] Datskoysky, G., "Natural Language Interfaces to Expert systems," Technical Report
CUCS-169-85, Columbia University, New York, NY, 1985.

[Da 78] Dayis, R, "Knowledge Acquisition in Rule-Based Systems-Knowledge About
Representation as a Basis for System Construction and Maintenance," in Pattern
Directed Inference Systems, Academic Press, New York, r-..l'", 1978.

[Du 79] Duda, R.O., Gaschnig, J., Hart, P.E., "~[odel Design in the PROSPECTOR Consultant
System for Mineral Exploration," in D. Michie (ed.), Expert Systems in the Micro
Electronic Age, pp. 153-167, Edinburgh Univ. Press, 1979.

[Du 84] Duda, Richard. Presentation at the IEEE \Vorkshop on the Principles of Knowledge
Based Systems, Denver, CO, 1984.

[En 851 Ensor, J. R., Gabbe, J. D., and Blumenthal. R L., "Taxpert - A Framework for
Exploring Interactions Among Experts," in preparation.

[Fo 81] Forgy, Charles 1., "OPS5 User's Manual", Carnegie-Mellon University, Pittsburgh, PA,
1981.

[Gr 77] Grosz, B.J., "The Representation and Use of Focus in a System for Understanding
Dialogs," Proc. of the Fifth IJCAI, Vo!' I, pp. 67-73, 19i7.

[Ha 85] Hayes Roth, F., "Rule Based Systems," Oomm. of the A OM, Vol. 28, No.9, pp. 9~1-932,
September, 1985.

[In 85[IntelliCorp, "KEE 2.1 Software Development System Reference Manua!."

[Po 82] Pollack, M., Hirschberg, J., and Webber, B., "User Participation in the Reasoning
Process of Expert Systems," Proc. of National Oonference of AAAI, pp. 358-361, 198~.

[Po 83] Pollack, M.E., "Generating Expert Answers Through Goal Inference", Technical note,
SRI International, Menlo Park, CA., 1983

[va 81] van Melle, W., eI ai, "The Emycin ?vlanual," Technical report STAN-CS-81-885,
Stanford University, Stanford, CA, 1981.

- 1= ~ I- to.- ro u ~

- t=-' ~ I- j:l.1- ~ ~ I-

,

~

ttl

C':l
CIl ttl co
4.J -' - U 4.J

::I C':l ~

"0 a::: tl.. 4.J -
iJ
0

1=

~

