Academic Commons


Detecting and Correcting Syntactic Errors in Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars

Ma, Wei-Yun; McKeown, Kathleen

Statistical machine translation has made tremendous progress over the past ten years. The output of even the best systems, however, is often ungrammatical because of the lack of sufficient linguistic knowledge. Even when systems incorporate syntax in the translation process, syntactic errors still result. To address this issue, we present a novel approach for detecting and correcting ungrammatical translations. In order to simultaneously detect multiple errors and their corresponding words in a formal framework, we use feature-based lexicalized tree adjoining grammars, where each lexical item is associated with a syntactic elementary tree, in which each node is associated with a set of feature-value pairs to define the lexical item’s syntactic usage. Our syntactic error detection works by checking the feature values of all lexical items within a sentence using a unification framework. In order to simultaneously detect multiple error types and track their corresponding words, we propose a new unification method which allows the unification procedure to continue when unification fails and also to propagate the failure information to relevant words. Once error types and their corresponding words are detected, one is able to correct errors based on a unified consideration of all related words under the same error types. In this paper, we present some simple mechanism to handle part of the detected situations. We use our approach to detect and correct translations of six single statistical machine translation systems. The results show that most of the corrected translations are improved.



Also Published In

Computational Linguistics and Chinese Language Processing

More About This Work

Academic Units
Computer Science
Published Here
April 24, 2013