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ABSTRACT

Synthesis and Analysis of Design Methods in Linear Repetitive, Iterative Learning and

Model Predictive Control

Jianzhong Zhu

Repetitive Control (RC) seeks to converge to zero tracking error of a feedback con-

trol system performing periodic command as time progresses, or to cancel the influence of

a periodic disturbance as time progresses, by observing the error in the previous period.

Iterative Learning Control (ILC) is similar, it aims to converge to zero tracking error of

system repeatedly performing the same task, and also adjusting the command to the feed-

back controller each repetition based on the error in the previous repetition. Compared to

the conventional feedback control design methods, RC and ILC improve the performance

over repetitions, and both aiming at zero tracking error in the real world instead of in a

mathematical model. Linear Model Predictive Control (LMPC) normally does not aim for

zero tracking error following a desired trajectory, but aims to minimize a quadratic cost

function to the prediction horizon, and then apply the first control action. Then repeat the

process each time step. The usual quadratic cost is a trade-off function between tracking

accuracy and control effort and hence is not asking for zero error. It is also not specialized

to periodic command or periodic disturbance as RC is, but does require that one knows the

future desired command up to the prediction horizon.

The objective of this dissertation is to present various design schemes of improving

the tracking performance in a control system based on ILC, RC and LMPC. The disserta-

tion contains four major chapters. The first chapter studies the optimization of the design



parameters, in particular as related to measurement noise, and the need of a cutoff filter

when dealing with actuator limitations, robustness to model error. The results aim to guide

the user in tuning the design parameters available when creating a repetitive control sys-

tem. In the second chapter, we investigate how ILC laws can be converted for use in RC

to improve performance. And robustification by adding control penalty in cost function

is compared to use a frequency cutoff filter. The third chapter develops a method to cre-

ate desired trajectories with a zero tracking interval without involving an unstable inverse

solution. An easily implementable feedback version is created to optimize the same cost

every time step from the current measured position. An ILC algorithm is also created to

iteratively learn to give local zero error in the real world while using an imperfect model.

This approach also gives a method to apply ILC to endpoint problem without specifying

an arbitrary trajectory to follow to reach the endpoint. This creates a method for ILC to

apply to such problems without asking for accurate tracking of a somewhat arbitrary trajec-

tory to accomplish learning to reach the desired endpoint. The last chapter outlines a set of

uses for a stable inverse in control applications, including Linear Model Predictive Control

(LMPC), and LMPC applied to Repetitive Control (RC-LMPC), and a generalized form of

a one-step ahead control. An important characteristic is that this approach has the property

of converging to zero tracking error in a small number of time steps, which is finite time

convergence instead of asymptotic convergence as time tends to infinity.
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C 1

I

Motivation and Background

One of the main objectives of control system is to track a desired trajectory. A typical

controller such as proportional, integral and derivative (PID) control, relies solely on the

current tracking error observed in real time to generate corrective action. One problem

with such a feedback system is that the controller continuously reacts to recurring errors

as if they were completely new. Repetitive (RC)(References [1], [2], [3], [4], [5], [6], [7],

[8], [9]) and iterative learning (ILC)[7], [10], [11], [12], on the other hand, make use of

knowledge that the command is periodic or that the disturbance is periodic to ”learning”

from the previous tracking errors, converging to zero tracking error.

The ILC problem considers that the control task is to perform a specific tracking com-

mand many times. Between each command application, the system is returned to the same

initial condition, which is on the desired trajectory. The learning law simply adjusts the

command to the feedback controller from one iteration to the next, in order to decrease

1



tracking error. Tracking error comes from several sources. First, the deterministic repeat-

able errors made in following general tracking commands. Second, there are deterministic

disturbances that occur each time the same command is given. Third, there will always

be some random disturbance errors. In repetitive control, the command to be executed is

a periodic function of time. There may be deterministic disturbances that have the same

period. For example, the period would be the same for gravity torque disturbance on a

robot link performing a periodic motion in the work space. In repetitive control, there is no

returning of the system to the same initial condition before the start of the next period, and

thus transients can propagate across periods.

Model Predictive control (MPC) (Reference [13])is a control technique which uses in-

ternally the plant model to compute the system output predicted over a chosen time horizon

into the future, and determines the optimal input to minimize a chosen cost function. The

computations are made in real time applying the initial result, and then repeating the com-

putation at the next times step. One of the nicest properties of linear MPC is that it can be

tuned by adjusting the simple and intuitive parameters in quadratic cost function.

Thesis Outline

The thesis consists of five chapters. The main body of the original research work is divided

into four major topics and included in Chapters 2 through 5. Chapter 1 offers introductory

information about iterative learning, repetitive and model predictive control.

Chapter 2 studies the optimization of the design parameters in RC, incorporates physical

considerations such as measurement noise, actuator saturation, robustness to model error.

2



Methods of producing a cutoff and of decreasing the size of the gains are considered. The

results aim to guide the user in tuning the design parameters when creating RC control sys-

tems. Chapter 3 presents design approaches in RC problems using control laws generated

for the ILC problem. The decreased learning rate at high frequencies provided by the ILC

laws can be seen to improve robustness to model error when converted to be used in RC

problems.

RC and ILC are examples of control laws that solve an inverse problem, in both cases

by iterating with the real-world response. They can achieve zero error in the real-world

model instead of our model of the world. But a more basic problem is to address the in-

verse problem for any given model, finding that input that will produce the desired output.

In each of these cases, the inverse problem can very often be unstable, limiting the perfor-

mance, and sometimes demonstrating the instability in application. In Chapters 4 and 5,we

present recent results that develop methods of creating a new stable inverse solution are

studied. Chapter 4 creates a method to use the stable inverse method locally, employing

typical feedback control for tracking in much of the desired trajectory, and transitioning to

high precision motion using the stable inverse theory based on one’s system model for a

desired high precision portion of the tracjectory. This is then extended to include ILC to

locally learn to get zero tracking error in the high precision portion of the trajectory in the

real world, eliminating the influence of imperfections in the model used for control design.

ILC is normally a tracking control problem, but people often want to use it to address end-

point control problems. The transitioning to high precision tracking approach developed in

this chapter creates a natural way to make ILC address such endpoint problems. Chapter

5 outlined a set of uses for the stable inverse, including LMPC, LMPC used for RC prob-

3



lems (RC-LMPC), and a generalized form of one-step ahead control. The fact that most

discrete-time physical systems have an unstable inverse has prevented effective use of in-

verse ideas in control design. The presence of new ways to create stable inverses for such

problems offers new opportunities. To within the accuracy of the model, the approach has

the advantage of converging to zero tracking error in a small number of time steps, instead

of convergence to zero error asymptotically as time goes to infinity.
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C 2

I P C

D R

C

This chapter studies the optimization of the design parameters. Because effective repetitive

control designs eliminate all periodic error harmonics up to Nyquist frequency, the FIR

compensator gains can be large. This is studied, in particular as related to measurement

noise. Actuator limitations, robustness to model error, and noise can suggest that one should

cut off the learning process at sufficiently high frequency. Methods of producing a cutoff,

and of influencing the size of the gains are considered, including: adjustment of the sample

rate, penalizing large gains in the FIR design, using a high frequency cutoff in the cost

function for the FIR design, using a zero-phase low-pass filter of the repetitive control

action, and combinations of these. These results aim to guide the user in tuning the design
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parameters available when creating repetitive control systems.

2.1 Introduction

Repetitive control (RC) is a method of control that applies to situations where a feedback

control system is subject to a periodic disturbance of known period, or is given a periodic

command, or both (References [1], [2], [3], [4], [5], [6], [7], [8], [9]). This type of control

can in theory converge to zero tracking error in each case. The simplest form of RC uses

the error measured one period back, and changes the command this period by a gain times

this error, aiming to correct the error. Mathematically it is iterating with the real world

instead of a model. For frequency components having 180 degree phase lag through the

feedback control system at some frequency, this algorithm will add to the error instead of

decrease the error, so one needs to design a compensator to adjust phase. A periodic error

has a fundamental frequency, but also has harmonics that can go up to Nyquist frequency.

So RC initially aims to correct errors at all harmonics to Nyquist. This is completely dif-

ferent than usual feedback control system design that has a bandwidth, and above some

frequency model errors are not important. Note that using the known periodic nature of

the disturbance or command, RC is in theory able to correct such errors far above the feed-

back control system bandwidth, and this offers substantial improvement in the precision of

control systems, achieved in software modification. But asking for zero error all the way

to Nyquist pushes the design and hardware limits. Reference [9] offers a particularly ef-

fective method of designing compensators for repetitive control systems. Here we study

this design method in detail, developing understanding of how to tune each of the design

6



parameters involved.

2.2 The Approach to Design Effective Repetitive Control

Systems

The initial objective of RC is to converge to zero tracking error following a periodic com-

mand in the presence of a periodic disturbance both having the same known period of p

sample time steps. An important special case is that of a constant command in the presence

of a periodic disturbance. The usual repetitive control system structure uses an existing

feedback control system, and the repetitive control is an extra loop around this that adjusts

the command to the feedback system. There are some variations to this structure (see e.g.

Reference [8]) but the basic mathematics remains very similar. The ideal RC law is the

inverse of the feedback control system discrete time transfer function, but this is very often

unstable and cannot be used. Here we study RC design using the very effective approach

from [9] (see also [8] which uses the inverse of the feedback control system steady state

frequency response, generated as a finite impulse response (FIR) function, and this cannot

be unstable.

Figure 2.1 shows the structure considered here which has a continuous time feedback

control system fed by a zero order hold. Similar results would apply if it were a digi-

tal control system with a continuous time plant. The z-transform of the desired output is

YD(z), the repetitive controller R(z) adjusts the command U(z) to the feedback control

system, which can be subject to a periodic disturbance V̄ (s) shown entering at the usual

7
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Figure 2.2: Digital RC system equivalent to Figure 2.1 with equivalent output disturbance
and measurement noise

location. Figure 2.2 introduced the equivalent digital closed loop transfer function G(z)

of the feedback control system, with an equivalent additive periodic disturbance V (z) on

the feedback system output. Introduced in this figure is measurement noise W (z) added to

the sensor measurements used by the repetitive controller. Again, to examine the essence

of the problem without unnecessary complexity, we do not include measurement noise to

the feedback control system model. The actual output of the RC system is YT (z) while the

measured output corrupted by noise is Y (z).

The simplest form of repetitive control law u(k) = u(k − p) + ϕe(k − p + 1) looks

at the error (desired output minus measured output) one period back, but shifted one step

forward assuming the time delay through the feedback control system is one time step. The

8



new command at the current time step is the command one period back plus the gain ϕ

times this error. This is analogous to creating a discrete time integration of the errors for

each time step of the period, and like integral control applied to a constant disturbance, it

either makes the associated error go to zero, or the control system goes unstable. This is

generalized in z-transfer function form

U(z) = zp [U(z) + F (z)E(z)] ; U(z) =

[
F (z)

zp − 1

]
E(z) (2.1)

by introducing a compensatorF (z) in place of ϕz (theH(z) in Figure 2.2 is set to unity until

later). Block diagram algebra produces what can be interpreted as a difference equation

[zp − (1−G(z)F (z))]E(z) = (zp − 1) [YD(z)− V (z)−W (z)] (2.2)

We consider that both YD(z) and V (z) are periodic with p time steps so the right hand

side becomes zero except for the influence of the measurement noise W (z). Stability is a

property of the homogeneous equation which can be rewritten in form

zpE(z) = (1−G(z)F (z))E(z) (2.3)

The factor
[
1−G(eiωT )F (eiωT )

]
looks like a frequency transfer function from the error in

one period to the error in the next period. Requiring that it’s magnitude response be less

than unity for all frequencies up through Nyquist

|1−G(z)F (z)| < 1 ∀z = eiωT (2.4)

9



would suggest monotonic decay of the amplitude of every frequency component of the error,

which indicates asymptotic stability. This is not rigorous because, frequency response is a

steady state property, and if the system is stable then the error on the right and on the left are

both zero. Instead, one can then claim that if the learning is sufficiently slow to consider

it as quasi-steady state, then stability is indicated. Reference [7] and Reference [8] show

that by rigorous arguments that the inequality in Equation 2.4 is a necessary and sufficient

condition for asymptotic stability for all possible periods p. Reference [8] also show that

because p is usually a large number of time steps,
[
1−G(eiωT )F (eiωT )

]
is in fact a very

good estimate of the decay of error for each frequency from one period to the next, even

when the decay is very fast the quasi-static assumption is not normally a limiting factor.

Equation 2.4 suggests that a particularly good compensator would be F (z) set equal

to G−1(z). As mentioned above, the inverse of perhaps most discrete time equivalents of

continuous time transfer functions is unstable, and this precludes using this design. Instead

we design a finite frequency response compensator (FIR), F (z), that mimics that the steady

state frequency response of G−1(z). The compensator takes the form

F (z) =
a1z

n−1 + a2z
n−2 + · · ·+ an

zn−m

= a1z
m−1 + a2z

m−2 + · · ·+ amz
0 + · · ·+ an−1z

n−m−1 + anz
n−m

(2.5)

which represents a linear combination of n errors from the previous period, am is the coef-

ficient of the error one period back, m−1 errors are future to the time step one period back,

and n −m are past time steps from the step one period back. The coefficients are chosen

10



to minimize the cost function

J =
N∑
j=1

[1−G(eiωjT )F (eiωjT )][1−G(eiωjT )F (eiωjT ))]T (2.6)

The ωj form a discrete set of frequencies from zero up to Nyquist frequency, and the upper

limit on the summation N can be chosen to pick the full set, or it can be chosen to cut off

the summation before reaching Nyquist frequency.

The numerical examples presented in this chapter use the following continuous time

system

G(s) =

(
a

s+ a

)(
ω2
1

s2 + 2ζω1s+ ω2
1

)
a = 8.8, ω1 = 37, ζ = 0.5 (2.7)

2.3 Performance of Effective RC Approach

The magnitude frequency response of the FIR compensator F (z) for the third order sys-

tem above is shown in Figure 2.3 along with a plot of the magnitude frequnecy response of

G−1(z). Using only 12 gains produces a compensator that is indistinguishable from G−1(z)

to graphical accuracy. Figure 2.4 plots the left hand side of Equation 2.4 with a maximum

value of approximately 3.5× 10−3, which guarantees stability of the RC systems, and sug-

gests very fast convergence. To see the convergence, consider a disturbance V (z) that is

a one Hertz sine wave of amplitude one, with period p = 200 time steps, and the desired

output is zero. For the initial run before tuning on the RC system, the command to the

feedback control system is zero and the true output YT (z) is then the output disturbance

11
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Figure 2.3: Magnitude plot vs. frequency for G−1(z) and for 12 gains FIR fit F (z)

Table 2.1: Standard deviation of measurement noise and resulting true output

Sample Rate S.D. W (z) S.D. YT (z)
200 Hz 0.9906 0.9793
400 Hz 0.9906 0.9809

V (z). This is called repetition 1 in Figure 2.5. We see that the RC root mean square (RMS)

error for each repetition decays very fast with iterations, and at the 8th iteration the error

is 1.4× 10−14. This is essentially the final error level reached by the computer simulation

and corresponds to a numerical zero. This is very good performance in the noise free case.

Now we consider RC with measurements corrupted by zero mean white Gaussian noise

W (z) generated with standard deviation of unity. Using sample rate 200 Hz and examining

100 periods of data after convergence, and 400 Hz with the same number of samples. The

standard deviation of the noise and the output samples are given in Table 2.1. From this

one might consider that the RC system is also very well behaved in the presence of noise.
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2.4 Possible Concerns

Actuator Requirements to Control all the Way to Nyquist

Routine feedback control system design if often characterized by the bandwidth, the control

system does a reasonable job of executing commands, or command components above this

number. RC is designed to produce zero tracking error of periodic commands, or in the

presence of periodic disturbances of a given period. This is includes DC (or zero frequency),

the fundamental of the given period, and all harmonics up to Nyquist. The closed loop

transfer function of the feedback control system G(z), like all such systems has a frequency

response that decays with frequency. The compensator F (z) is a very good approximation

G−1(z) (as seen in Figure 2.3 for 200 Hz sample rate), which means that it asks for very

large commands to the feedback control system when asked to eliminate a harmonic near

Nyquist frequency. Table 2.2 gives the maximum amplification factor in F (z) associated

with Nyquist frequency, and also shows the amplification in the actual G−1(z) and the

difference between these two indicating how accurate the 12 gain FIR approximation of

G−1(z) is. To interpret these numbers, consider an error of amplitude unity near Nyquist

frequency of 500 Hz for the sample rate of 1000 Hz. The command needed to cancel this

error has amplitude 1.9784733× 106. This is purely a property of the physical system, and

is independent of the choice of RC law to accomplish the zero error. In the configuration

of Figure 2.1 that has a continuous time feedback control system, the table talks about the

size of the command given to the system for zero error. Similar results would apply if

the feedback control system were digital, and one creates the required output of its digital

control law being sent to the actuator through a zero order hold. Clearly this amplitude can

14



Table 2.2: Maximum amplification of the compensator F (z) and of the system inverse
G−1(z) at Nyquist frequency

Sample Rate max|F (eiωT )| max|G−1(eiωT )| Difference
200 Hz 1.584× 104 1.59× 104 60
400 Hz 1.266475× 105 1.27095296× 105 447.8
1000 Hz 1.9784733× 106 1.985441569× 106 6968.3

be prohibitive.

Noise Amplification

The previous section was concerned with the large amplitude needed to fix errors at high

frequencies, but this same large amplification applies to measurement noise as well. The top

part of Table 2.3 considers the same white zero mean Gaussian noise with standard deviation

of unity as before. Instead of looking at the noise effect on the true output we look at the

noise influence on the command given the feedback control system. As before the command

is zero, so the command is only responding to noise. The standard deviation of the command

is given when the RC system is running. Consider that the feedback control system has unity

DC gain, so that any frequency near DC is corrected by a deterministic signal of amplitude

near unity. But correcting such a signal is subject to the influence of the measurement noise,

which produces a standard deviation around this deterministic value that is 7, 268.8 for 200

Hz sample rate, or 58, 618 for 400 Hz sample rate. Such amplification of noise could be a

problem even though when the signal goes through the feedback control system G(z) it gets

attenuated back to approximately unity standard deviation. Also shown in the last column is

the standard deviation of just the noise going through the compensatorF (z)W (z). Note that

since F (z) produces a very good approximation of the frequency response of the feedback

15



Table 2.3: Standard deviation of the command due to white noise and pink noise

S.D.W (z) S.D. U(z) RC running S.D. F (z)W (z)
WHITE
200 Hz 0.9906 7,268.8 7,314
400 Hz 0.9906 58,618
PINK

200 Hz 0.2392 556.19 559
400 Hz 0.2392 4,486.5
1000 Hz 0.2392 70,451

control system, this amplification factor is purely a result of designing the compensator to

be the inverse of the system frequency response. In this respect it is again a system property.

One might question to what extent white noise is a reasonable approximation of the

noise that might actually be encountered in hardware application. White noise assumes uni-

form amplitude at all frequencies from zero to Nyquist, but noise in applications is likely to

decay substantially with frequency. Pink noise has a power spectral density that is inversely

proportional to frequency. Starting with the same 20, 000 sample white noise history, an al-

gorithm is used to convert it to pink noise, and the frequency spectrum from discrete Fourier

transforms for each is compared in Figure 2.6. The pink noise and white noise amplitudes

intersect at one Hertz, and the pink noise decays according to the reciprocal of the square

root of the frequency. The bottom of Table 2.3 gives the corresponding results for standard

deviation of the command and of F (z)W (z). The command standard deviation is very

much reduced, but the value is still rather large.

Quantification

The control system designer picks the zero-order hold analog to digital converter that feeds

the command to the continuous time feedback control system. This hardware will need the
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Figure 2.6: Frequency content of white noise and pink noise sample

specification of the full-scale range, and the total number of discrete levels. The designer

might pick the full-scale range large enough that most of the noise distribution is included.

But since this number may be quite large as indicated in the previous section, the result

might be that the discrete levels are far apart, and there is considerable quantization error.

Reference [14] studies the influence of quantization on the final error level in learning and

repetitive control.

The actuator in the feedback control system will have its own actuator limits, and too

large a full-scale range on the command may result is a saturation nonlinearity of the ac-

tuator. If instead the feedback control system is digital, and has a digital controller whose

output goes through the digital to analog converter to feed the actuator, then the full-scale

range can be chosen directly based on actuator limits. In either case there is potential for

either degradation of performance due to quantization or to actuator saturation.
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Noise truncation and bias

The effect of truncating noise can be to introduce bias into the converged RC system, mak-

ing it fail to converge to zero error for periodic commands and disturbances. This is il-

lustrated by the following simulation. We set the desired output to a constant value of 35.

The standard deviation of the noise W (z) is set to 0.002 which results in a standard devi-

ation of command about 35 equal to 14.72. Then we set the upper limit and low limit of

the full-scale range equal to ±42.36. Therefore, the upper limit is the desired output of 35

plus one half of a standard deviation due to noise. The simulation is run truncating u(k)

to the full-scale range whenever the repetitive control law asks for something that exceeds

the full-scale range. The deterministic system has no error in following a constant com-

mand set to 35. With noise added and truncated when necessary, the steady state average

value of the command is 32.0761. And there is a steady state error or bias of 2.92017 in

following this ”periodic” command. Therefore, noise going beyond the full-scale range, or

going beyond a hard actuator limit, will generally result in a bias in the converged result.

Remember that the noise level in the output is small, of a similar value to the measurement

noise level itself, even when the system can perform the desired output command. Here

there is substantial bias in the converged result caused by a low noise level.

A control practitioner might say, if the measurements are noise, why don’t you run them

through a low pass filter before you use them in the repetitive control law. Of course, this can

decrease quantization or bias problem. but now the error signal E(z) = YD(z)−Y (z) used

by the repetitive controller in Equation 2.1 is replaced by EF (z) = YD(z) − YF (z) where

YF (z) = F2(z)Y (z) is the measurement filtered through low pass filter F2(z). Equations

18



2.2, 2.3 and 2.4 become

[zp − (1−G(z)F (z)F2(z))]EF (z) = (zp − 1) [YD(z)− F2(z)V (z)− F2(z)W (z)]

(2.8)

zpEF (z) = (1−G(z)F (z)F2(z))EF (z) (2.9)

|1−G(z)F (z)F2(z)| < 1∀ z = eiωT (2.10)

Since V (z) is periodic with period p in steady state, so is F2(z)V (z), and again the

right hand side of difference Equation 2.8 contains only the forcing function from the noise,

and this time the filer has made the forcing function smaller, and the associated particular

solution should also be smaller. However, the solution to the homogeneous equation, if

stable, satisfies Equation 2.9, and now it is the filtered error that converges to zero, not the

actual error. A causal filter F2(z) will introduce phase lag and amplitude attenuation, so it

is clear that one is no longer aiming for zero error. In addition, stability is determined by

Equation 2.10. Of cause one could ask for F (z)F2(z) to mimic G−1(z), but then you defeat

the purpose of the filter by amplifying the noise to cancel the filter. And if one designs F (z)

as before, the RC system is most likely unstable. A first order continuous time system puts

in a phase lag of 90 degree at infinity, and the digital version probably does 180 degrees

at Nyquist, and wither amount of extra phase lag is enough to violate Equation 2.10 and

destabilize the system. To avoid these issues one can consider using a zero phase noncausal

filter on the data from the previous period, which we consider later as applying not just to

the measured error but to the total control action, the filter H(z) in Figure 2.2.
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Figure 2.7: The 12 gains of F (z) for 200 Hz and 400 Hz sample rate

Table 2.4: Two largest gains in magnitude in F (z)

a7 a6
200 Hz -4897 4564
400 Hz -38620 37290

Possible numerical issues with large controller gains

In addition to large amplification of noise, the RC design may lose significant digits during

the numerical computation. Compensator F (z) uses 12 gains ai, as indicated in Equation

2.5 and plotted in Figure 2.7 for both 200 Hz and 400 Hz sample rate. Note that the largest

gain in magnitude is a7 (which is a negative gain), while the second largest gain a6 applies

to one time step forward in time. These two gains are similar in magnitude but opposite

in sign, as shown in Table 2.4. Figure2.8 plots the absolute value of these two gains as a

function of sample rate, and the two plots are hard to distinguish to graphical accuracy.

We comment that one should expect something similar to this if one is to correct errors
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at each time step for frequencies near Nyquist. At Nyquist frequency there are two samples

per period and the data is not able to determine the phase or the amplitude of the sinusoid.

Near Nyquist this becomes an ill-conditioned problem. Suppose one obtains samples of a

sinusoid at successive time steps k

Msin(ωkT + θ) = M [(sinθ)cos(ωkT ) + (cosθ)sin(ωkT )] (2.11)

At Nyquist frequency, ω = π/T , and sin(ωkT ) = 0 for all k, and cos(ωkT ) is +1 for even

k and −1 for odd k. Hence one can only know the product Msinθ and cannot determine

M or θ. If ω is near Nyquist then knowledge of two successive values y(k) and y(k + 1)
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of the left hand side of Equation 2.11 allows you to solve for M and θ from

 y(k)

y(k + 1)

 =

 cos(ωkT ) sin(ωkT )

cos(ω(k + 1)T ) sin(ω(k + 1)T )


Msinθ

Mcosθ

 (2.12)

At Nyquist the coefficient matrix is singular, but near Nyquist it will be ill conditioned,

and one expects that the successive nearly equal gains of opposite sign are a manifestation

of this ill conditioning. Small changes in the measured values on the left can be associated

with large changes in the associated magnitude and/or phase of the signal measured. The

computation of the product of the compensator operating on the 12 measured errors is likely

made in a minicomputer or micro processor that can have a substantial word length, which

limits the computation errors. But the measured errors come from physical sensor hardware,

and the number of digits measured accurately is usually rather limited. Consider a situation

where the measurement sensor operates on a scale from −10.0 to +10.0 units, so that each

measurement is accurate to ±0.05. If the gains ai have a larger range of magnitudes than

the 3 digits accuracy of each error, then the computation of the sum of 12 terms can have

numerical inaccuracy.

Now return to the concept of amplification of the noise corrupting measurements, this

time seen in terms of the gains involved, instead of frequency response. The sum of the 12

gains is always unity, because a continuous time system with a DC gain of unity also has a

DC gain of unity when fed by a constant function going through a zero order hold. Suppose

that all 12 error measurements were corrupted by the same positive constant value α, for

example +0.05. Then the command computed from F (z)E(z) would be corrupted by the
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amount (
12∑
i=1

ai

)
α = α (2.13)

Now suppose that each measurement is corrupted by a constant with magnitude α but

with the sign made equal to the sign of the corresponding ai, alternating sign every time

step. Then the influence of this error of constant magnitude each time step will corrupt the

computed command to the feedback control system by

(
12∑
i=1

ai

)
|α| =

{ 15, 842 |α| for200Hz

126, 647 |α| for400Hz

1, 978, 473 |α| for1000Hz

(2.14)

The need for a frequency cutoff/limiting the size of gains

The previous section identified two basic issues. The first is the amount of control or ac-

tuator effort needed to correct errors in physical systems at high frequency. This is purely

a physical hardware issue, and is not specific to any particular repetitive control system

design. The second issue is both the size of the gains and the range of sizes of the gains in

the compensators designed to mimic the inverse of the steady state frequency response of

the system. One can directly address the size of the gains by modifying the cost function

in Equation 2.6 to include a penalty on the sum of the squares of the gains with a weight

factor Wa

J =
N∑
j=1

[
1−G(eiωT )F (eiωT )

] [
1−G(eiωT )F (eiωT )

]T
+aTWaa; aT = [a1 a2 . . . an]

(2.15)
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This was suggested in the original publication on the method, Reference [9]. The first

issue argues for having a cutoff of the repetitive control action above some chosen fre-

quency, and we consider a cutoff filterH(z). The cutoff may also be an indirect way to

address the size of gains issues. We can list a series of interrelated reasons to want to stop

the learning, i.e. the convergence to zero error process, for error components above some

cutoff frequency:

• Gain size: Possible benefit of reducing the size of the gains, and the range of sizes of

the gains.

• Noise: Limit the amplification of noise, to eliminate bias from noise truncation, re-

duce the full-scale range needed on the digital to analog converters, reduce quantiza-

tion error.

• Actuator limits: Correcting errors at too high a frequency can require control actions

that the actuator cannot deliver at such a frequency, and result in saturation.

• Converter: As discussed with noise, simply correcting errors at very high frequencies

can ask for large full-scale range with possible quantization effects.

• Be kind to the hardware: It may be important to not try to eliminate errors at too high a

frequency, in order to be kind to the hardware. References [7] and [8] and a reference

therein, discuss a case where the RC was too good, it eliminated the full spectrum of

error to Nyquist, but the hardware was making so much noise we figured we were

wearing out the equipment. The decision was not to correct for the high frequency

error due to tooth meshing in a gearing system.

• Energy: Correcting errors at very high frequency can require large force, or torque,
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or energy, or power, or large fuel expenditure.

• Needed frequency range: If the periodic command of interest, and the periodic dis-

turbances to the system, do not have significant high frequency content, then there is

no need to ask to correct errors at high frequencies.

• Stability robustness: Perhaps the most important reason to limit the learning to lower

frequencies, is stability robustness to model errors. In order to satisfy the stability

condition Equation 2.4 all the way to Nyquist, one needs F (z) to mimic the true

G−1(z) with a phase error that must be less than ±90◦.Failing to have one pole at

high frequency in your model is enough to destabilize the learning process. One

must cut the learning when the model is too poor to learn.

• Fidelity of signal representation: People often want to run digital control systems at

as fast a sample rate as possible, because faster sampling gives a closer representation

to the true continuous time signals, e.g. the disturbance. The same lower frequency

disturbance is better canceled by a control system with its zero order hold running at

a faster sample rate. But fast sample rates emphasizes many of the above needs for

cutting off the learning above a chosen frequency.

In this list there are some natural cutoff frequencies. Concerning the need, the command and

the disturbance may not have significant frequency content above some value. The choice

of sample rate determines Nyquist frequency which is a special kind of cutoff. The RC law

operates on a feedback control system, and every feedback control system has a bandwidth

which is a form of frequency cutoff. Very often the control system designer is fighting to get

the bandwidth up, and issues of stability of the feedback system are limiting factors. There
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are other applications where the feedback control system designer intentionally restricts the

bandwidth so as not to excite the first resonance frequency in a system, and as a result not

to have to be clever in dealing with the extra dynamics. For feedback control design one is

con-strained by stability issues. Fortunately, RC can address periodic errors far above the

band-width of the feedback controller, and theoretically completely eliminate them. The

limitations are model accuracy for stability, and actuator capability.

2.5 Parameter choices in the design of RC systems

The RC designer has various choices to make. He must pick the values of n and m for the

compensator. We expect that a choice that makes the cost function very small, will result in

large gains, but for the 3rd order system considered here the minimum number of gains for

stability is 3. According to Reference [8] a stabilizing choice is n = m = 3, and the gains

for z2, z1, z0 are not particularly large, equal to 247.96, 488.7, 242.28 respectively.

The price one pays for this is slow learning, i.e. the left hand side of the inequality in

Equation 2.4 may be far from zero, but still not violate the inequality.

In addition to these two choices, the designer must pick the sample time interval T , and

he can introduce the weight Wa in Equation 2.15. He can pick an upper limit frequency,

ωN , on the cost function in Equation 2.6 or 2.15 that is smaller than Nyquist frequency to

indicate what part of the frequency spectrum is important. And the designer can modify the

RC law in Equation 2.1 to include one or both of the following generalizations

U(z) = z−pH(z)[U(z) + ϕF (z)E(z)]; U(z) =

[
ϕF (z)H(z)

zp −H(z)

]
E(z) (2.16)

26



The introduction of an overall gain ϕ multiplying F (z) directly multiplies all gains in

F (z) by this factor and can be used to reduce these gains, and do so at the expense of

slower learning at all frequencies from one repetition to the next. The H(z) is a zero-phase

low-pass filter that cuts all frequency content above the cutoff in the command going to

the feedback controller, so that errors above the cutoff are being ignored. We now examine

these different options.

Using a cost function weightWa on size of RC gains

First we consider the use of the penalty term Wa on the size of the RC compensator gains

as introduced in Equation 2.15. Figure 2.9 shows the substantial resulting change in the

size of the gains when a very small weight Wa = 0.00001 is used, and Figure 2.10 gives

the magnitude frequency response of the resulting F (z), The largest gain has been reduced

in magnitude very substantially from 4897 to 938 using this small weight. Of course, the

learning process is slower. Suppose a cutoff of the learning is defined as the frequency

when the radial distance from +1 to the plot of G(z)F (z), z = eiωT , equals 0.95. Figure

2.11 from Reference [15] gives this value as a function of Wa, and we see that this penalty

function is making the learning at high frequencies become slow, and is functioning rather

like a cutoff of the learning process at high frequencies.One may not want to push too

hard at reducing the gain size in this manner. Figure [16] shows the plot of G(z)F (z),

z = eiωT , near the near the origin for 200Hz sample rate and weightWa = 0.001, and the

plot appears stable, remaining inside the unit circle centered at +1. However, when the

weight is increased to Wa = 0.005 the corresponding plot is given in Figure 2.13 and is
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Figure 2.9: The 12 gains without penalty Wa in cost function J and with a small penalty

unstable. Figure 2.14 plots the value of the right hand side of inequality Equation 2.4 and

the system goes unstable some-where around 40 Hz. Figure 2.15 shows that the RC system

goes unstable when one goes back to Wa = 0.001 but increases the sample rate to 400Hz.

Of course, if it goes unstable above a cutoff frequency that one wants to use for some other

purpose, then stability is established by using the cutoff filter H(z)in the next section.

A Cutoff Filter H(z)

Using the cutoff filter as introduced in the RC law Equation 2.16, Equation 2.2, 2.3 and 2.4

become

[zp −H(z)(1− ϕG(z)F (z))]E(z) = (zp −H(z))[YD(z)− V (z)−W (z)] (2.17)

zpE(z) = H(z)(1− ϕG(z)F (z))E(z) (2.18)
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Figure 2.12: Frequency plot of G(z)F (z) associated with Wa = 0.001 and 200 Hz sample
rate

Figure 2.13: Frequency plot of G(z)F (z) associated with Wa = 0.005 and 200 Hz sample
rate
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Figure 2.15: Frequency plot of G(z)F (z) associated with Wa = 0.001 and 400 Hz sample
rate

31



|H(z)[1− ϕG(z)F (z)]| < 1 ∀ z = eiωT (2.19)

From the first of these equations it is clear that this filter should be zero phase filter that aims

to equal unity below the cutoff in the passband. Then one aims for (zp−H(z)) to equal zp−1

in the passband making the forcing function YD(z)− V (z) equal to zero in this frequency

range. If there were phase change as in a nonzero-phase filter there would be a forcing

function that produces error. One asks for zero in the stopband, and improved performance

is obtained if a transition band is introduced before the start of the stopband, then in the

stopband zp−H(z) = zp, and there is a forcing function and associated particular solution

associated with YD(z)− V (z), producing error in this unaddressed frequency range. Note

that in the stopband ideally the particular solution for E(z) associated with the noise W (z)

forcing function is equal to W (z), and is not amplified. Reference [16] introduces such a

zero phase filter satisfying

H(z) =
n∑

k=−n

akz
k (2.20)

JH = α

jp∑
j=0

[1−H(eiωjT )][1−H(eiωjT )]⋆ +
N−1∑
j=js

[H(eiωjT )][H(eiωjT )]⋆ (2.21)

where α is a weight factor to adjust the relative importance of stopband vs. passband, and

the summation limits allow for a transition band. This makes a linear problem for solution of

the odd number of filter weights, here we use 51weights or gains. Reference [17] makes this

into a quadratic programming problem with inequality constraints that ensure that the filter

does not go above unity magnitude in the passband. If the cutoff frequency is being chosen

for robustness to model error, one can tune the cutoff with hardware experiments. Using this

constraint helps one satisfy the stability condition Equation 2.19 up to as high a frequency
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Figure 2.16: Zero phase filter designs for different percent Nyquist cutoffs

as possible. The numerical results reported here use the filter design from Reference [17].

It is also possible to not ask for zero error in the stopband, but rather just enough attenuation

to satisfy the stabil-ity requirement in Equation 2.19, and this is studied in Reference [18].

Figure 2.16 gives the magnitude performance of the 51 gain design for cutoffs at 5, 10, 20,

and 30% Nyquist cutoff using a 10% Nyquist transition band, and passband weight α = 1.

Note that one should not pick a cutoff that is too small a percentage of Nyquist, because it

is hard to design a good filter in that case. This means one should not pick a sample time

T that is too short. Error in the passband that aims to make H(z) = 1, results in a nonzero

forcing function in the difference Equation 2.17 making the error not converge to zero even

below the cutoff. So design for high accuracy of H(z) in the passband.

There are several subtleties to consider. There are two ways to implement the control

law Equation 2.16. One can use ϕF (z) to filter the error, then add it to U(z) using H(z),
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and create the filter ϕH(z)F (z) and apply it to the errorE(z). In the former case, one is still

using F (z) with its possibly large gains and large range of gain magnitudes, and possible

numerical loss of accuracy. In that case one may want to introduce aTWaa into the cost

function. In the later case, these large gains involved in the latter approach.

Another subtlety relates to the cutoff intended and the cutoff achieved. Reference

[8] and a reference therein, discusses the difference between the cutoff frequency used

in Equation 2.19 and the resulting cutoff frequency of the learning as indicated by the

sensitivity transfer function from YD(z) − V (z) to the resulting error E(z), S(z) =

[zp−H(z)]/[zp−H(z)[1−ϕG(z)F (z)]]. If one picks the cutoff to be the highest frequency

possible and still satisfy stability in Equation 2.19, for example experimentally since one

does not know what is wrong with one’s model, then one finds that the effective frequency

of cutoff observed in the sensitivity transfer function can be much lower. This happens due

to some ill-conditioning in S(z) when one tries to eliminate errors far above the bandwidth

of the control system G(z). However, if one is picking the cutoff frequency for one of the

many other reasons described above, then it is the effective cutoff in S(z) that is of interest,

and one may need to iterate with higher cutoffs in H(z), to produced the desired resulting

cutoff in S(z).

Sample Rate T

Our RC control law aims to have zero error at the sample times. For high frequencies this is

not necessarily a good cancellation of the error. At Nyquist frequency there are 2 samples

per oscillation. Figure 2.17 shows a sinusoid sampled at one quarter Nyquist frequency
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or 8 samples per period, and run through a zero order hold. The subtraction of these two

signals makes zero error at the sample times, but has large error of the same amplitude as

the signal itself between sample times. In practice the zero order hold correction comes

through the physical system, which has low pass characteristics, and the error between

time steps will not be this extreme. Also shown is the zero order hold approximation of

the sinusoid when sampled 5 times as fast, and now the zero order hold approximation

starts to look reasonably good. This suggests that trying to cancel periodic disturbances too

near Nyquist frequency by getting zero error at the sample times is not very effective. One

should have perhaps at least 8 samples per oscillation, and this means one might want to

limit corrections to frequencies below one quarter Nyquist. Using a fast sample rate with

substantially more samples per period produces a much clos-er approximation of the signal,

and can produce a much better cancellation of the periodic disturbance, and reduced error

in following the periodic command when intersample error is considered. This applies to

all frequencies, including those below a desired cutoff. Of course, fast sampling decreases

the effects of aliasing as well. But we have seen that without using a cutoff, the gains grow

to very large values as the sample rate goes up, Figure 2.8. So one needs a cutoff. The

3rd order system being used as an example here is a reasonable model of the command

to response of each joint of a Robotics Research Corporation robot (Reference [8] and

references therein). The bandwidth is 1.4Hz, but the sample rate in 200Hz making a Nyquist

frequency of 100Hz very far above the system bandwidth. It is essentially impossible to

create a model that is good to 100Hz. The best model we could create might be accurate to

at most 20Hz. If no extra poles appear above that frequency without corresponding zeros,

the amplitude of a command needed to cancel an error near Nyquist is on the order of
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magnitude of 10,000 times the size of the error being corrected. One can use a sample rate

that is fast compared to the dynamics in the system, but one must limit the frequency range

of the RC law to error frequencies that can reasonably be correct, and also to frequencies

for which one is able to create a model with some confidence.A filter cutoff H(z) is needed

if one wants a fast sample rate, and the sample rate is then limited by not only real time

computation considerations, but the ability to design a cutoff filter that is accurate in the

passband. Recall that a sample rate so fast that one wants a cutoff at 5% Nyquist does not

allow a reasonable cutoff filter design when using 51 gains, Figure 2.15. We study this

combination of a fast sample rate with cutoff compared to a slower sample rate. Figure

2.4 designed a compensator F (z) for the standard 3rd order system with a 200 Hz sample

rate, or 100 Hz Nyquist frequency. The largest gain in magnitude in F (z) for this sample

rate is −4, 897. When the sample rate is increased to 1000 Hz (Nyquist frequency of 500

Hz), this gain becomes −597, 721. Then we design a 51 gains zero phase filter with 20%

Nyuist cutoff, i.e. 100 Hz, and the combined filter H(z)F (z) is computed having 62 total

gains. The maximum of these gains in magnitude is −1065, which very much reduces

concerns about a large range of gain sizes, and still allows a sample rate of 1000 Hz. Figure

2.18 shows the left hand side of Equation 2.19, the approximate decay rate of error at each

frequency when using 1000 Hz sample rate and a cutoff filter at 20% Nyquist. We see that it

is comparable below the 100 Hz cutoff to the learning rate shown in Figure 2.4 using F (z)

designed for 100 Hz Nyquist instead, but now one gets this performance with the fidelity

of signal representation associated with 1000 Hz, and with somewhat lower gains, but at

the expense of using an increased number of gains.
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Figure 2.18: The result of using 1000 Hz sample rate with a 100 Hz cutoff filter
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Adjusting RC gain ϕ

Now consider adjusting the gain ϕ. Note that if |1 − F (z)G(z)| < 1m i.e. if 0 <

F (z)G(z) < 2, then |1 − ϕF (z)G(z)| < 1 for 0 < ϕ < 1. So reducing the gain of

the RC will not destabilize the system, but it slows the learning from one repetition to the

next. It does reduce the size of the gains, but to make a big change results in very slow

learning. When F (z)G(z) ̸= 1 due to model error, a smaller ϕ can reduce gains, reduce

amplification of noise in the command signal, and improve robustness, but the RC still asks

for zero error for all harmonics up to Nyquist, so that issues related to hardware limits and

energy expenditure are not addressed unless one also includes a zero phase filter cutoff.

Also, consider an-other performance characteristic that we have not been addressing, the

error in the output from disturbances at frequencies other than those addressed of period p

time steps. If F (z) is such that F (z)G(z) can be considered unity, then the transfer func-

tion using Equation 2.17 from V (z) to error E(z) becomes [zp − 1]/[zp − (1 − ϕ)]. For

ϕ = 1 this equals 1 − z−p. For a disturbance V (z) at a frequency half way between two

harmonics, this doubles the size of the disturbance seen in the output. For reduced ϕ the

amplification of these becomes 2/(2−ϕ) which reduces to no amplification as the learning

speed gets arbitrarily slow.

Picking a reduced upper limit on frequency in cost function

If we know that we will use a filterH(z)with a certain cutoff frequency, then it is reasonable

to say there is no reason for the cost function used to fitF (z) toG−1(z) to consider matching

frequencies well above the cutoff. There is a potential for the design resulting from limiting
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ωN to create a much improved fit below the cutoff. And this would result in faster learning

in the frequency range considered. Figure 2.19 shows the values of 1 − F (z)G(z) versus

frequency forωN cutting off at 40, 50, 70% Nyquist, and compared to no such cutoff. Figure

2.20 is a detailed look at frequencies up to 50% Nyquist. Note that the improvement can be

a little erratic, since a 40% cutoff is not better within the 40% range than the 50% cutoff. But

it is clear that very substantial reductions in the value of 1−F (z)G(z) within the addressed

frequency range are possible, with resulting much faster convergence. Comparing the 50%

result in the range up to 50 Hz to the corresponding results in Figure 2.4, we see that there

is a reduction in 1−F (z)G(z) by about a factor of 100. We note that numerical experience

argues against using too small a percent cutoff. Using 200 Hz sample rate, asking for 12

gains to minimize the cost up to 40% gives the result shown, but limiting the cost ωN to

30% Nyquist results in a Matlab warning of ill-conditioning. At 400 Hz sample rate, 40%

Nyquist results in a warning, but not 50% Nyquist.

2.6 Conclusions

Motivation for RC frequency cutoff Repetitive control nominally asks for zero error

of a control system executing a periodic command, or in the presence of a periodic distur-

bance. This means zero error at the fundamental frequency and all harmonics up to Nyquist

frequency. This is easily a high frequency, and one therefore normally needs to cutoff the

convergence to zero error above some cutoff frequency. There are two classes of motiva-

tion for the cutoff. Ones where the designer can probably know the desired cutoff frequency

during the design process, include:
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• The frequency content of the error to be corrected can be limited, based on the fre-

quency content of the desired periodic output, and the frequency content of the peri-

odic disturbance.

• The frequency response of the feedback control system whose input is adjusted by the

RC system, has its own bandwidth. RC can correct error far above this bandwidth,

but eventually correction requires too much control effort.

• Related to this, one may use a frequency cutoff to avoid actuator saturation, or to be

kind to the hardware and not work it too hard, or to not use too much energy.

• Perhaps one knows that the system model is not good enough to try to correct above

some frequency.

The other class of problems has the objective:

• Correct as much of the error as possible, going to as high a frequency as possible.

• Model error is usually the limiting factor, and when designing the RC system, one

does not know what is wrong with the model. Hence, one needs to find the cutoff by

tuning it experimentally. Pick a generous cutoff, observe the RC behavior, if error

is growing find the frequency components that are growing to determine the needed

cutoff.

Types of Cutoffs

• H(z) must be the primary cutoff. It is the only cutoff that applies not only to the error

signalE(z), but to the whole accumulated command signal U(z). This is usually
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needed for stability robustness to high frequency model error. An imperfect cutoff

applied to E(z) cannot supply this robustness.

• ωN can be used to make F (z) be a more perfect model of G−1(z) in the region below

the cutoff frequency. It should be chosen somewhat above the cutoff in H(z) to

ensure good performance up through the H(z) cutoff frequency, and of course it

should be chosen to not go too far into frequencies where the model is no longer

accurate.

• Wa in some ways acts as a cutoff, but should be used for purposes of decreasing gain

magnitudes. It can improve robustness to error in some frequency range by slow-

ing the learning rate, but lack of sufficient attention at high frequencies can produce

instability and need H(z).

Possible design objectives when the cutoff frequency is known

• One may want to converge as fast as possible. The choice of n and m and ωN assist

here.

• One may want to use a particularly fast sample rate, making T small. This can im-

prove the cancellation of the continuous time periodic disturbance using a discrete

time control law. It can also help reduce aliasing. And when the period is not an in-

teger number of time steps it reduces error wither or not interpolation is use. One is

limited by real time computation requirements, and one cannot design a good cutoff

H(z) if the cutoff is too low a percent of Nyquist frequency.

• One may need to reduce the amplification of noise. RC overall gain ϕ reduces

throughout all frequencies, use of Wa targets more the high frequencies. Choice
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of ωN can reduce the size of gains, and so does a reduced cutoff in H(z).

• There may be disturbances that are not periodic with the given period. With ϕ = 1,

the error from these disturbances will be doubled for frequency components half way

between two harmonics. Reducing ϕ toward zero will come arbitrarily close to not

amplifying these errors, but at the expense of arbitrarily slow learning.

Additional considerations when one wants as high a cutoff as possible

• Tuning the cutoff of H(z) experimentally allows one to go up to that frequency at

which the model error involved in designing F (z) is just on the verge of produc-

ing instability, the highest cutoff possible. Note that the instability is likely to grow

slowly in many applications.

• Reducing ϕ pulls the ϕF (z)G(z) curve toward the origin, or the boundary of stability,

but it also gets more of the curve inside the unit circle, and hence, improves robustness

and can allow higher cutoff at the expense of slower learning.

• If one has a range of parameter uncertainty in one’s model, one can improve ro-

bustness to model error by designing an F (z) to minimize a sum of cost functions

for models in the distribution, Reference [19]. One can go further, and make ϕ a

function of frequency Φ(z) slowing the learning where one needs more robustness,

Reference [18].
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Existing ILC laws such as transpose law, partial isometry law have good robustness to

model error, but general RC laws don’t. This chapter investigates how ILC laws can be

converted for use in RC to improve robustness. Also robustification by adding control

penalty in quadratic cost function is compared to use a frequency cutoff filter.

3.1 Introduction

Iterative learning control (ILC) aims to converge to zero tracking error of a feedback control

system repeatedly performing the same task, but adjusting the command to the feedback

controller each repetition based on the error observed in the previous repetition. Repetitive
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control (RC) is similar, but seeks to converge to zero tracking error of a periodic command

as time progresses, or to cancel the influence of a periodic disturbance as time progresses,

by observing the error in the previous period. These types of control are very similar, but

they have rather different conditions for stability because one wants zero error during the

transient phase of each repetition or run, and the other seeks zero error as time steps tend

to infinity. Repetitive control has application in spacecraft for active vibration isolation of

fine pointing equipment when there is vibration from slight imbalance in CMG’s or reaction

wheels. ILC has application for repeated scanning maneuvers of fine pointing sensors.

ILC is normally formulated in the time domain using state variable models and Markov

parameter models. A set of effective ILC laws has been developed in the literature which

up-dates the full input history for the next repetition based on the history of the previous

repetition [7]. These laws use a learning matrix to do the update, and these are chosen to

produce symmetric update matrices that have good numerical robustness because of the or-

thogonality of the eigenvectors. Considerable experience has been gained with these laws,

and good robustness properties are observed to model errors. Each law has the property

that the learning rate gets slow at high frequencies.

The first purpose of this chapter is to present and develop methods by which the design

approaches of ILC can be converted to use in the RC problem. The decreased learning rate

at high frequencies provided by the ILC laws when converted to RC can be seen to improve

robustness to model error. Robustness to model error is fundamental to both ILC and RC

because they seek zero tracking error in the real world by iterating with the real world,

rather than zero error in one’s model of the world. The result can be very much improved

final error levels approaching the repeatability level of the hardware.

46



3.2 General ILC Formulation

Both ILC and RC make use of the error measured in the previous repetition or period to

adjust the control action. This section gives the general linear ILC formulation in Reference

[7] for a SISO system

x(k + 1) = Ax(k) +Bu(k) + w(k)

y(k) = Cx(k)

(3.1)

This could be any system, but most often it represents a closed loop feedback control

system, and it is desired to iteratively adjust the command input u(k) in order to converge

to zero deterministic error ej(k) = y∗(k)− yj(k) tracking the desired trajectory y∗(k), k =

1, 2, . . . , p as the repetition number j tends to infinity. Each repetition starts from the same

initial condition. It is convenient to define vectors giving the whole history of the input,

the output and desired output, and the error for a repetition, and denote them by under-bars

uj = [uj(0) uj(1) . . . uj(p − 1)]T and similarly for y
j
, y∗, ej except that the time

arguments start at step one and go to step p. Here we assume that the time delay through

the system is one step, which implies that CB ̸= 0. Simple modifications handle other

delay values. Define a difference operator δjξ = ξj − ξj−1 for any quantity ξ. Then a

general linear learning control law is given by

uj−1 = uj + Lej (3.2)

whereL is a p by pmatrix of learning gains. The repetition domain system model is obtained

by writing the convolution sum solution to Equation 3.1 for each time step and packaging
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the result in matrix form

δj+1y = Pδj+1u; δj+1e = −Pδj+1u

P =



CB 0 0 . . . 0

CAB CB 0 . . . 0

... ... ... . . . ...

CAp−1B CAp−2B CAp−3B . . . CB


(3.3)

Matrix P is a Toeplitz matrix. Using δjy = −δje one can write the error propagation

equation

ej−1 = (I − PL)ej (3.4)

where I is the identity matrix. Then the condition guaranteeing convergence to zero track-

ing error as the repetitions go to infinity, and the condition for monotonic delay of the

Euclidean norm of the error with repetitions, are

|λi(I − PL)| < 1 i = 1, 2, . . . , p

∥I − PL∥2 < 1

(3.5)

respectively, where λi represents the ith eigenvalue, and subscript 2 indicates the induced

Euclidean norm given by the maximum singular value of the matrix.

Four ILC Control Laws

Four choices for ILC laws are summarized in this section. The first law is the simplest

possible ILC, one with a very natural motivation, and it is the initial law developed in the
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field. It has almost ideal stability robustness, converging to zero error nearly independent

of the system dynamics, but it does not have good learning transients and can only be used

effectively on first order systems (Reference [7], [20]). The three remaining laws are very

effective ILC laws used in practice.

Simplest Control Law This law implements the following concept, if the output at a

given time step in the previous run was two units too small, add two units to the command

in this run, at the appropriate time step. Note that we assume a one time-step delay from

input to output, so we add two units to the command one step before the error considered.

Also, in the spirit of typical classical control, we can insert a scalar learning gain ϕ so that

instead of asking for 2 units more, we ask for 2ϕ. Perhaps being a bit less aggressive and

asking for less change in the next iteration can have some benefit. Then the learning gain

matrix L is a p by p identity matrix multiplied by this scalar learning gain

L = ϕI (3.6)

P transpose Law The following ILC law is called the contract mapping law or P

transpose law (Reference [7],[10]). It is a contraction mapping in the sense of the Euclidean

norm of the tracking error from iteration to iteration. The law is given as

L = ϕP T (3.7)

Partial Isometry Law P transpose law has the undesirable property of learning high

frequency components of the error very slowly in most applications. The partial isometry
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ILC law (Reference [7], [10], [21]), helps to address this issue. Let the singular value

decomposition of matrix P be given by

P = USV T (3.8)

Here U and V are unitary matrices whose columns (and rows) represent unit vectors

in p dimensional space, and these vectors are orthogonal. As a result, the inverse of the

these matrices is given by their transpose, U−1 = UT and, V −1 = V T . Note also that all

of the eigenvalues of P in Equation 3.3 are equal to CB which is nonzero. Therefor P is

full rank and all the singular values in the diagonal matrix S = diag(σ1, σ2, · · · , σp) are

nonzero and positive, and it is guaranteed to have an inverse (however, it is usually badly

ill-conditioned). The partial isometry law is given by

L = ΦUV T (3.9)

Quadratic Cost Law In reference [12], the learning updates each iteration are tuned

by minimizing a quadratic cost function with a parameter rd that adjusts the speed of learn-

ing and ru governs how far from zero error one will be once the learning process converges.

Jj = eTj Qej + δju
TRdδju+ uT

j Ruuj (3.10)

The standard version of the quadratic cost law (References [22], [23]) do not have the

last term in the cost. This term is sometimes included to avoid effectively inverting the

ill-conditioned matrix. Reference [12] uses this term to maintain zero tracking error up to
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some frequency, and then impose a small penalty. This forms an alternative to using a cutoff

filter. Define hat quantities as follows

êj = UT ej; ûj = V Tuj; ŵj = UTwj;Rd = V RdV
T ;Ru = V RuV

T (3.11)

By converting to the hat variables we convert to what becomes the discrete frequency

components as the value of p gets large (Reference [24]). We will denote the kth compo-

nent of the hat variables as an argument, where we start with one and progress to p for all

variables including ûj . Then as p gets large, k denotes a frequency component, each fre-

quency having two components corresponding to the need for sine and cosine to span each

frequency’s space. The cost function can now be written in terms of these new variables as

J = êTj êj + δjû
TRdδjû+ ûT

j Rûj

Rd = diag(rd(1), rd(2), · · · , rd(p));Ru = diag(ru(1), ru(2), · · · , ru(p));
(3.12)

We choose to pick the weight matrices diagonal in which case, as p gets large we are

supplying weighting factors for each frequency component. As a result, the cost can be

decomposed frequency by frequency, so that one solves the optimization problem indepen-

dently for each k

Jj =

p∑
k=1

Jj(k); Jj(k) = ê2j(k) + rd(k)(δjû(k))
2 + ru(k)(ûj(k))

2 (3.13)

In order to determine the optimal change to make in the command input, δjû(k), one

computes dJj(k)/dδjû(k) = 0. The dependence of the last term on the change in command
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is ûj = ûj−1 + δjû(k). The dependence in the first term is computed as follows. From

δje = −Pδju or ej = ej−1−Pδju, then converting to hat variables results in the uncoupled

set of equations êj = êj−1 − Sδjû. The needed relationship has the kth component given

as êj(k) = êj−1(k)− σ(k)δjû(k) where σ(k) is the kth singular value. The result for k is

ûj(k) = H(k)[ûj−1(k) + F1(k)êj−1(k)]

H(k) =
σ2(k) + rd(k)

σ2(k) + rd(k) + ru(k)
;F1(k) =

σ(k)

σ2(k) + rd(k)

(3.14)

One can return to the original un-hatted variables according to

uj = H[uj−1 + V Tdiag(1/(σ2(k) + rd(k)))V
TV SUT ej−1]

uj = H[uj−1 + FP T ej−1]

H = V Tdiag(H(k))V ;F = V Tdiag(1/(σ2(k) + rd(k)))V
T

(3.15)

Unifying the set of ILC laws using the quadratic cost structure

The quadratic cost function in Equation 3.10 contains three symmetric matrices whose en-

tries are to be chosen by the designer. If we wish to converge to zero error, set rn = 0.

Then Reference [10] gives a general approach to show that the set of choices is sufficiently

rich that one can make a quadratic cost to generate each of the other ILC laws. Use the

following quadratic cost function

Jj+1 = eTj+1Qej+1 + δj+1u
TRδu (3.16)
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Table 3.1: Producing the ILC Laws from the General Quadratic Law

ILC Law Weighting Matrices
P Transpose Law Q = ϕI , R = I − ϕP TP

Partial Isometry Law Q = ϕI , R = P TU(I − ϕS)V T

Quadratic Cost Law Q = ϕI , R = rI

with Q and R symmetric positive definite p by p matrices. Use the error equation in Equa-

tion 3.3, and minimize the above cost function to obtain

dJj+1/dδj+1u = −2P TQej + 2(P TQP +R)δj+1u = 0

uj+1 = uj + Lej; L = (P TQP +R)−1P TQ

(3.17)

Table 3.1 gives the different weighting matrices for the various ILC laws.

Reference [25] presents another more sophisticated quadratic cost design with more

sophisticated choices for the weights Q and R, given by Q = I , R = V diag(α2
i )V

T ,

substituting this into the L of Equation 3.17 produces

L = V diag(
σi

α2
i + σ2

i

)UT = V ΣUT (3.18)

And the decoupled monotonic decay of each component of the error in the U coordinate

system obeys

ϵj+1(i) =

(
1− σi

α2
i + σ2

i

)
ϵj(i) =

(
α2
i

α2
i + σ2

i

)
ϵj(i) (3.19)

This demonstrates that instead of picking one of the control laws above, one can tailor

the learning rate for each component of the error on the unit vector columns of U . If one

chooses the partial isometry law with L = V ΣUT , Σ = diag(αi), which results in the error

propagation equation ϵj+1(i) = (1− σiαi)ϵj(i). Then one picks any desired decay rate by
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Table 3.2: Summary of Learning Rate

ILC Law Weighting Matrices
P Transpose Law 1− ϕσ2

i

Partial Isometry Law 1− ϕσi

Quadratic Cost Law 1− ϕσ2
i /(ϕσ

2
i + 1)

adjusting the αi. In a later section, we will discuss more on this approach for purpose of

increasing robustness. Table 3.2 summarizes the learning rates for the above learning laws

when picking αi = 1

3.3 RC Fertilized by ILC

The iterative learning control laws are designed in the time domain; they ask to converge to

zero error at every time step of a finite time trajectory. Hence, it aims for zero error during

the transients as well as during whatever part of the trajectory might be considered steady

state. On the other hand, repetitive control laws ask to converge as the time step number

tends to infinity. Hence, using steady state frequency response concepts is an appropriate

approach to use in repetitive control. To fully use the ILC control strategy in the RC domain,

the frequency response versions of the ILC laws need to be presented. Currently there are

two approaches which fulfills our needs. First one builds a connection or mapping between

Singular Value Decomposition of P and frequency response, the second one shows us the

frequency response versions of ILC laws.
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Singular Value Decomposition and Frequency Response

Reference [24] presents the relationship between singular values and singular vectors of the

matrix P and the frequency response of the system in Equation 3.1 whose transfer function

is denoted by G(z). Its frequency response version is G(eiωT ) = M(ω)eiθ(ω).

For our p step long signal uk, the Discrete Fourier Transform (DFT) can be used to find

its frequency content

U(eiω0n) =

p−1∑
k=1

u(k)(eiω0n)−k

ω = (2π/p)n = ω0n, n = 0, 1, 2, · · · , p− 1

(3.20)

Define z0 = eiω0 ,Un = U(eiω0) = U(zn0 ), and then Equation 3.17 can be written in

matrix form as

U = Hu; H =



(z00)
0 (z00)

−1 . . . (z00)
−(p−1)

(z10)
0 x22 . . . (z10)

−(p−1)

... ... . . . ...

(zp−1
0 )0 (zp−1

0 )−1 . . . (zp−1
0 )−(p−1)


(3.21)

The Inverse Discrete Fourier Transfer is generated using H−1 = (1/p)(H⋆)T , u =

H−1U , where superscript asterisk denotes the complex conjugate. Now, assuming zero

initial conditions, y = Pu. Multiplying on the left by H on both sides, and inserting

H−1H in front of u produces

Y = EU ; E = (1/p)HP (H⋆)T = ĤPĤ⋆
T

(3.22)
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Then E gives the relationship between the frequency components of the input and the fre-

quency components of the output. The Ĥ represents H with the complex columns and rows

normalized to unit length: Ĥ = (1/
√
p)H , Ĥ−1 = (Ĥ⋆)T .

As trajectory gets long, the E of Equation 3.22 converges to the system frequency re-

sponse given by

E = diag(M0e
iθ0 ,M1e

iθ1 , · · · ,Mp−1e
iθp−1) (3.23)

Write the singular value decomposition of P = UΣV T . Since all of the attenuation or

amplification information is contained in the Mn and Σ, by deleting both, the phase infor-

mation can be determined as

diag(eiθ0 , eiθ1 , · · · , eiθp−1) = ĤUV T Ĥ⋆
T

(3.24)

And we also can have a mapping between the SVD of P and the system magnitude

response. For j going from 0 up to Nyquist in the middle of the matrix σj = Mj and for

the rest of the j up to p− 1, use σj = Mj = Mp−j .

Frequency Response Version of ILC Laws

Now consider the frequency response version of the ILC laws (Reference [12]). Denote the

transfer function of the system in Equation 3.1 as

G(z) = C(zI − A)−1B (3.25)

The product −Pδj+1u in Equation 3.3 represents a convolution sum of the input history
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Table 3.3: Frequency Response Version of ILC

ILC Law Frequency Response Version
P Transpose Law ϕG(z−1)

Partial Isometry Law ϕG(z−1)/|G(z)|
Quadratic Cost Law [G(z−1)G(z) + r]−1G(z−1)

with the unit pulse response history, in z−transform space, the error equation can be written

in terms of transforms for infinite sequences as

Ej+1(z) = Ej(z)−G(z)δj+1U(z) (3.26)

Note that the Taylor series expansion of the z−transfer function, expanded in powers of

z−1 is

G(z) = CBz−1 + CABz−2 + CA2Bz−3 + · · · (3.27)

Examine the product involving the transpose of P in the P transpose law. It is clear that

it involves the convolution product using

G(z) = CBz1 + CABz2 + CA2Bz3 + · · · (3.28)

By substituting z = eiωT , we can have the frequency response of G(z). Since G(e−iωT )

is the complex conjugate of G(eiωT ), they have the same magnitude response, but with the

sign of the phase reversed. From the above, the frequency response versions of the ILC

laws can be given as in Table 3.3

The frequency response version of the stability condition Equation 3.5 is the approxi-
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mate monotonic decay condition

|1−G(z)L(z)| < ∀z = eiωT (3.29)

Reference [7] proves that this a repetitive control law converges to zero tracking error

for all possible periods p, fi and only if this condition is satisfied.

Implementation with FIR Filter for Repetitive Control

In order to create an implementable repetitive controller base on the above frequency re-

sponse behaviors, one can design an FIR filer with the coefficients for the filter can be

chosen to minimize the cost function

LR(z) = a1z
m−1 + a2z

m−2 + · · ·+ amz
0 + · · ·+ an−1z

−(n−m−1)

= (a1z
n−1 + a2z

n−2 + · · ·+ amz
n−m + · · ·+ an−1z

1 + anz
0)/z(n−m)

(3.30)

JILC2RC =
N∑
j=0

[1− LR(e
iωjT )L−1(eiωjT )]Wj[1− LR(e

iωjT )L−1(eiωjT )]⋆ (3.31)

G(z−1) can also be obtained using the pole and zero form. Considering the transfer function

G(z) as

G(z) =
K(z − z1)(z − z2)

(z − p1)(z − p2)(z − p3)
(3.32)
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Replacing z by z−1 producing

G(z−1) =
K(1

z
− z1)(

1
z
− z2)

(1
z
− p1)(

1
z
− p2)

1
z
− p2

× z3

z3

= −Kzz1z2
p1p2p3

(z − 1
z1
)(z − 1

z2
)

(z − 1
p1
)(z − 1

p2
)(z − 1

p3
)

(3.33)

Thus, for the P transpose RC law, one needs to have

L−1(z−1) = G−1(z−1) = −
[
p1p2p3
Kzz1z2

]
(z − 1

p1
)(z − 1

p2
)(z − 1

p3
)

(z − 1
z1
)(z − 1

z2
)

(3.34)

3.4 Evaluation of RC Control Laws

The rate of convergence is of interest as a separate subject, but it is also related to the

stability robustness of the RC laws to model errors, a main topic of interest in this chapter.

Experience indicates that slower learning can be more robust.

Rate of Convergence to Zero Error for All the RC Laws

From Equation 2.9, one can use approximate quasi-steady state thinking, that the left hand

side as the error in the next period which is written as the transfer function in square brackets

times the error in the current period. Substituting z = eiωT into the transfer function makes

it into a frequency transfer function. With the quasi steady state thinking used above, the

left hand side of Equation 2.8 is the factor by which the amplitude of the error component

at frequency ω decays from one period to the next. Thus, the smaller one makes the left

side of the Equation 2.8 over all frequencies up to Nyquist, the faster the control system

59



converges to zero error.

Now one can compare the learning rate between the RC laws originally developed for

RC from Equation 2.15, and also compare the learning rate for RC laws created by trans-

fering ILC laws to RC.

Here we examine the approaches with the system descried in Equation 2.7. Initially,

consider that this Laplace transfer function is fed by a zero order hold sampling at 100 Hz,

and that the number of time steps in the desired trajectory is p = 100.

In Figure 3.1, The plot show that learning rate for all the above RC laws on a log10

scale using frequency response from Table 3.3. When implemented one needs to design

an FIR filter to mimic the frequency response of the table. The ILC equivalent RC laws

(P transpose, Partial Isometry,Quadratic Cost) have much slower late rate at most of the

frequency range compared to the original RC law. RC from Equation 2.6 aims to have the

same learning rate at all frequencies, while Equation 2.15 will attenuate high frequencies.

If one’s only objective is faster learning rate, then the original RC law is a better choice.

By using Equation 3.30, 3.31 and 3.34, one can have implementable FIR version of RC

laws. Figure 3.2 shows the compensator designed by Equation 2.16 using only 12 gains,

indicating that G(z)L(z) is very close to the +1 on the real axis, meaning that L(z) is very

close the frequency response inverse of G(z). Figure 3.3 and 3.4 show the 12 and 50 gains

FIR designs for the P transpose RC compensator with unity DC gain. One can produce

similar results for other ILC origin RC laws. Comparing the Figure 3.2,3.3 and 3.4, one

observes that many more gains are needed to have an FIR compensator that closely mimics

the frequency response dictated in Table 3.3 for RC designs based on ILC.
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Figure 3.1: Learning Rate of RC laws in Log10 Scale Without FIR Implementation
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Approach to Evaluate Robustness of Control Laws

Evaluation of stability robustness for each of the learning laws is one of the main interests

in this paper. One can define two classes of robustness, robustness to parameter variation,

and robustness to unmodeled high frequency dynamics, also called residual modes or para-

sitic poles. Robustness of the latter kind is addressed by using a zero-phase low-pass filter

to cut off the learning, and tuning the cutoff frequency in hardware based on observed per-

formance. In RC it is particularly important to have stability robustness to model errors

because RC asks to converge to zero error in the real world, not in our model of the world.

The procedure for studying robustness considered here follows the method used in Ref-

erences [19] and [11]. Consider two sets of uncertainty in each of the parameters in the

model Equation 2.7, obeying a uniform distribution ranging ±25% and ±35% around the

nominal values respectively, i.e.

27.75 < ω1 < 46.25; 24.05 < ω2 < 49.95

6.6 < a1 < 11; 5.72 < a2 < 11.88; 0.3 < ζ1 < 0.5; 0.26 < ζ2 < 0.54

(3.35)

Two sets of 1000 samples from each distribution are used to form 2 sets of 1000 mod-

els.Comparing the results for each set gives understanding of how much influence the model

uncertainty has on the result.The entries in Table 3.4 indicate how many of the models vi-

olate the stability condition Equation 3.29 for the column > 1, and how many violate the

stability condition by reaching > 1.001 and > 1.01. Because the learning rate can be very

slow at high frequencies, there can be many frequencies with magnitude very near 1 on the

left of Equation 3.29 and it is hard to know whether a violation of the inequality is due to
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Table 3.4: RC Laws Robustness Tests

RC Laws
|H(z)[1−G(z)L(z)]| W/O

FIR Implementation
|H(z)[1−G(z)L(z)]| with

12 Gains FIR Implementation
> 1 > 1.001 > 1.01 > 1 > 1.001 > 1.01

P Transpose ±25% 0 0 0 0 0 0
±35% 0 0 0 7 6 3

Partial Isometry ±25% 0 0 0 0 0 0
±35% 0 0 0 0 0 0

Quadratic Cost ±25% 0 0 0 0 0 0
±35% 0 0 0 10 9 6

Original RC
J Compensator

±25% - - - 25 25 25
±35% - - - 127 127 123

Original RC
with V

±25% - - - 21 21 20
±35% - - - 114 114 114

round off error in the computation or represents an actual instability. The > 1.001 seems

to be a good choice for the threshold, while > 1.01 is normally clearly unstable.

From Table 3.4 it is clear that RC laws created from ILC laws have much better robust-

ness to model parameters uncertainty than the RC designs using costs in Equation 2.15.

Adding a small V slows down the learning rate and helps to have better robustness. To

further explain the Table, we have Figure 3.5 and 3.6 to give the frequency response plot

of the FIR versions P transpose, Partial Isometry and Quadratic Cost Law applied to the

nominal system. In Figure 3.5, P transpose and Quadratic Cost have similar curves which

means they have similar magnitude and phase error tolerance, and this result is evident in

Table 3.4. And Partial Isometry Law had faster learning and as in Figure 3.6, it stays further

from the origin than the other two methods, meaning it can still learn when getting close to

Nyquist frequency.

Combine the results from Table 3.4, Figure 3.1 and 3.5, one can get better robustness by

slowing down the learning rate, and Partial Isometry Law appears to be a good compromise

between learning speed and robustness.
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3.5 Handling Robustificaiton of RC to High Frequency

Model Error by Penalizing Control Effort

Using the relationship between frequency response and singular values as discussed above,

the Equations 3.14 and 3.15 can be converted from ILC to RC

Uj(e
iωkT ) = H(eiωkT )[Uj−1(e

iωkT )− F (eiωkT )Ej−1(e
iωkT )]

H(eiωkT ) =
|G(eiωkT )|2 + rd(k)

|G(eiωkT )|2 + rd(k) + ru(k)
;F (eiωkT ) =

G(e−iωkT )

|G(eiωkT )|2 + rd(k)

(3.36)

Note that the H is a zero phase filter as before, but not a cutoff filter, something that is

used to stabilize. One still can use these frequency responses to design an implementable

FIR filter and FIR compensator. The design process is to introduce a nonzero value of

ru(k) for only those frequencies where the hardware exhibits growth of error without such

a weight on the control action. One stabilizes each such k, but at the expense of nonzero

final error at that frequency. The effect of ru(k) is to expand what was the unit circle

stability boundary for this frequency.

In order to have a better understanding of this design, use E(z) = −G(z)U(z) which

represents the real world dynamics, and substitute into Equation 2.16. Using the same

heuristic argument as for Equation 2.19 gives the stability condition as

|H(eiωkT )[1−G(eiωkT )F (eiωkT )]| < 1 ∀ω (3.37)

In the design process one first deals with adjusting the weights to robustify as needed.

For this purpose, we write the stability condition in terms of the original frequency compo-
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nents. After making the design and creating the FIR filters, one again checks for satisfaction

of Equation 3.37. The condition for picking the weights in the cost function is then

∣∣∣∣1− GM(e−iωkT )GW (eiωkT )

|GM(eiωkT )|2 + rd(k)

∣∣∣∣ < 1

H(eiωkT )
= 1 +

ru(k)

|GM(eiωkT )|+ rd(k)
∀k (3.38)

At high frequencies one may not have a good system model, but the amplitude of the

output is also very small. This means that it will often be true that the left hand side goes

above unity by only a small amount. In this case, and small ru(k) can be enough to stabilize

the system.

To illustrate how ru works, we introduce a second second order factor with DC gain of

unity, an undamped natural frequency ωh = 20 Hz, and a 0.5 damping ratio. In Figure 3.7,

without the zero phase filter, the |1−GW (e(iωkT ))F (ie(iωkT )|starts going out of the unit

circle after about 20 Hz. By using the stability condition in Equation 3.38, one can a have

a zero phase filter as in Figure 3.8 which can help to pull the curve back into unit circle to

satisfy the stability condition.

Some Extension The above zero phase filter works very effective for better robust-

ness to high frequency model error. However, the learning rate of quadratic cost RC law

is not as fast as other RC laws, and one may ask can the same approach be applied on RC

design according to Equation 2.6. The answer is positive.

By using the same stability condition as Equation 3.38 , one can still have a very effec-

tive zero phase filterH(z)which helps to overcome the instability caused by high frequency

model error, as show in Figure 3.10.
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Figure 3.10 compares the use of a perfect zero phase low pass filter to the use of control

penalty starting at the cutoff frequency. One can evaluate both by computing the sensitivity

transfer functions, which tells how much error is produced by allowing a nonzero ru

E(z) = −GW (z)U(z) +W (z) = S(z)W (z)

S(z) =
zp −H(z)

zp −H(z)[1− F (z)GW (z)]

(3.39)

Both approaches help to stabilize the system, but by using ru one can have more fre-

quencies which partially learning after the cutoff frequency, which can result in a better

final error level. One thing we may need to pay extra attention to is that, due to the wa-

terbed effect, the curve of using ru in Figure 3.10 will go above 1 around 20 Hz to 25 Hz,

which means the error in this frequency range will get amplified.

69



Frequnecy (Hz)
0 10 20 30 40 50

S
en

si
ti

vi
ty

0

0.2

0.4

0.6

0.8

1

1.2
Zero Phase Low Pass Filter H
R

u

Figure 3.10: Comparison between Zero Phase Low Pass Filter and Weighting Gain Ru

3.6 Conclusions

In this Chapter, both ILC and RC laws are investigated for the purpose of exploring the

possibility that ILC laws might be useful in designing effective RC laws. Using effective

ILC designs converted to RC has benefits of improving the robustness to model parameter

error, which is very important in these fields. Both ILC and RC originally aim to converge

to zero error in the real world, not in one’s model of the real world, and therefore it is im-

portant the laws converge when there is model error. In direct RC design one can always

pick the learning rate at each frequency. What the ILC laws do is to suggest an appropriate

adjustment of the learning rate to use. Slower learning corresponds to increased robustness.

The Partial Isometry Law can be an effective compromise between learning speed and ro-

bustness to model error. Averaging of cost functions over model error distributions can

improve robustness to parameter uncertainty. One can do the averaging in ILC and then

70



convert to RC, or convert each model from the distribution to RC and then do averaging.

A drawback in ILC designs is slow learning rate at high frequencies.
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C 4

I L C D

W L L

Many real-world situations have a linear system with input through a zero-order hold and

sampled output. Often one knows the desired output and would like to solve the inverse

problem of finding input that produces this output. For the majority of physical systems

this results in an unusable input that grows exponentially with time and alternates sign

each time step. Recent results demonstrated a new stable inverse method produced by

allowing two or more zero order holds between each time step for which one that asks for

zero error. This addresses a basic problem and has the potential to address difficulties in

many control approaches. In particular, this chapter treats problems such as a factory robot

repeatedly starts from a home position, going to a newly arrived object where it performs

a high precision task, and then returns to home. High accuracy tracking is only needed

for the task part of the trajectory, during which we make use of the stable inverse result.
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Other parts of the trajectory use a typical quadratic cost control that compromises tracking

accuracy for reduced control effort. The main content of this chapter is to develop a method

to create such desired trajectories with a zero-error tracking interval without involving an

unstable inverse. Then an easily implementable feedback version is created optimizing the

same cost every time step from the current measured position. The above methods are

only as good as the model used, so an Iterative Learning Control (ILC) algorithm is created

to learn to give local zero error in the real world while using an imperfect model. The

approach also gives a method to apply ILC to endpoint problems without specifying an

arbitrary trajectory to follow to reach the endpoint. This creates a method for ILC to apply

to such problems without asking for accurate tracking of a somewhat arbitrary trajectory to

accomplish learning to reach the desired endpoint.

Introduction

There are many situations in engineering where people would like to solve an inverse prob-

lem. One application is feedback control systems which are supposed to perform the com-

mand they are given, but instead produce a convolution integral of that command. One

would like to know the command that causes the feedback system to actually do what you

want it to do. This objective can apply to various spacecraft problems requiring high preci-

sion motion of scanning sensors. Iterative Learning Control (ILC) is a form of control that

learns from one trial or run to the next, aiming to converge to produce the desired output

(References [22],[26]]). For a linear continuous time system with Laplace transfer func-

tion G(s), the inverse problem wants to compute the needed input from the inverse of the
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transfer function. Non-minimum phase systems that have a zero or zeros in the right half

plane cause this process to be unstable. Such systems are relatively rare. These systems are

said to have intrinsic non-minimum phase zeros. Perhaps the majority of control systems

are now implemented using digital control, and this requires that continuous time portions,

such as the plant that is fed by a zero order hold, be converted without approximation to a

difference equation with the same outputs as the differential equation at the sample times.

The resulting discrete time z-transform transfer function G(z) generically has enough zeros

introduced (called sampling zeros) that it has one less zero than pole. For pole excesses of

3 or more in continuous time, the 2 or more zeros introduced will have at least one zero

outside the unit circle (when the sample rate is not excessively slow), making most discrete

time physical systems have unstable discrete time inverses (see Reference [27]). The true

inverse in such cases can be useless: it asks for control action that grows exponentially but

alternates sign every time step. The error goes through zero at the sample times, and grows

exponentially positive then negative between time steps. The zero error at the sample times

is hiding the fact that the error between sample times is exploding.

As we mentioned in the previous chapter, ILC observes the stored error samples from

the previous time a feedback control system tried to perform the desired trajectory, and

based on the error observed in that run, updates the command history to apply in the next

run. The aim is to converge to zero tracking error at the sample times. It is not uncommon

that the user fails to notice that the iterations will eventually start producing unstable control

actions. This can happen because the instability grows slowly. It can look as if convergence

has been reached, but with a disappointingly large “converged” error level, while in fact the

instability is still “sleeping” and will eventually grow to dominate the response. A series

75



of publications by the authors and co-workers have developed ILC methods to address this

problem (see References [28], [29], [30], [31]).

The difficulty encountered in ILC spawned the sub-problem of finding some kind of

stable in- verse. The results are given in Reference [32] with a proof given in Reference [33].

Of course the full inverse for zero error every time step is unique, and it produces unstable

time histories of the control action as described above. There must be some modification

of the statement of the problem to eliminate the instability. More than one new type of

stable inverse is presented in Reference [32] and [33]. The first allows zero tracking error

at every time step, with the following exception. If there are m zeros outside the unit circle,

one does not ask for zero tracking error in the first m time steps. There are options of what

to do for the control in these time steps, but Reference [33] picks the control history of the

now underspecified set of equations to minimize the Euclidean norm of the control history.

In the case of a 3rd order system with no intrinsic zeros, there will be one sampling zero

outside, and for a 5th order there will generally be two. The second stable inverse asks that

one increase the sample rate by 2 or 3, ask for zero error every second or third sample time,

equivalent to the original sample times. This makes a generalized hold consisting of 2 or 3

zero order holds for each original time step. It is this stable inverse that is used in this paper.

These methods are introduced into ILC in References [28], [29], [30] and [31] producing

algorithms that converge to zero error at the addressed time steps, with control actions that

do not exhibit instability.

The above two kinds of stable inverses are new. There is a recent literature on “stable

inverses” that use a different approach, see for example References [34] and [35], and the

approach re- quires pre-actuation, extending the desired trajectory to minus infinity in the-
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ory. In practice one extends the desired trajectory a sufficient amount of time equivalent

to a settling time of zero locations in backward time. Then the tracking accuracy of the

desired part of the trajectory is no longer perfect, but can be made as close as desired by

making a sufficiently long pre-actuation.

The pre-actuation in the new stable inverse is m time steps equal to the number of zeros

outside the unit circle, which is only one time step for a 3rd order pole excess.

The original standard ILC problem asks to converge to zero tracking error at every

time step of a finite time desired trajectory. There are classes of applications where this

objective is not to- tally appropriate as an overall goal. Instead, only some sub-portions of

the desired trajectory need to be performed with high precision. Two important examples:

(1) A ubiquitous example is when people use ILC for tracking a trajectory, when the real

objective is high precision endpoint control in some point-to-point maneuvers of robots.

Learning to create high precision tracking is only important as the robot nears the end point,

and the rest of the trajectory can follow any reasonable curve. (2) Another class of problems

needs fine accuracy trajectory tracking only during a sub- portion of the trajectory. Consider

robots on an assembly line. Often they sit in a home position until some object arrives on a

belt, and then moves to the object and performs some task, and then returns to home. The

path followed from home to where the task is to be performed, and the re- turn to home, do

not need high accuracy tracking, but high accuracy can easily be needed while performing

the task, in the middle of the overall trajectory.

Hence, there is a need for ILC algorithms that allow local learning. Reference [36]

approaches the problem in an unrelated way using neural networks. Reference [37] offers

a method based on wavelet basis functions that could address the problem. References [38]
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and [16] address a somewhat generalized version of this problem from the current literature

concept of “stable inverse” point of view, using the terminology, output tracking transition

switching.

This purpose of this paper is to do the following:

• Develop a method of designing the desired trajectory based on minimizing a typi-

cal quadratic tracking cost function that normally represents a compromise between

tracking accuracy and control effort. However, this time we double the sample rate

for 3rd order pole excess, and introduce the stabilized inverse. This allows us, if we

desire, to ask for zero tracking error at every other time step without introducing ex-

ponentially growing control action. Then we can adjust the con- trol penalty in the

cost function to perform the usual compromise of a quadratic cost through most of

the trajectory, but the control penalty can reduce to zero for any part of the trajectory

that needs to be followed precisely. It is the new stable inverse result in Reference

[32] and [33] that makes this possible. This embeds the zero error high precision

portion of the tracking problem into the standard quadratic cost tracking problem in

a natural way. The result produces the desired zero error tracking provided the model

used is correct.

• Having developed an optimized desired trajectory that one wishes to perform, one

might want to implement an optimal feedback to improve performance if disturbances

cause some deviation from this trajectory. One can embed the problem of the above

item into each time step to create an optimal solution starting from the current dis-

turbed state.
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• From the desired trajectory in first item, we develop the corresponding iterative learn-

ing control problem whose purpose is to achieve the desired tracking accuracy in spite

of some error in the model used in the design. ILC can apply this command history

to the physical world and observe the error. A major characteristic of ILC is that it is

observing the error in the real world, not in one’s model of the real world. ILC laws

attempt to be sufficiently robust that given a model of the world used to design the

ILC algorithm, the algorithm converges to zero error in the real world model instead

of the model, because it is using real world data for the update each iteration. Toward

this objective for our given desired trajectory, we incorporate the quadratic cost ILC

approach to iterative learning control (References [10], [22] and [23]). This approach

has well behaved learning transients and convergence properties. Starting from the

quadratic cost based desired trajectory described above, a quadratic penalty on the

change in the control from run to run is introduced to create an ILC law that can learn

to give zero tracking error in the world when there is some model error in the stable

inverse created from a model.

4.1 The Inverse Problem for a State Variable Model

Consider the same discrete time SISO state space model of the Equation 3.1, for a one step

time delay through the system, the p step input history vector u = [u(0)u(1) · · ·u(p)]T

produces the p step output vector y = [y(0)y(1) · · · y(p)]T . The output for all time steps in

this vector can be written as y = Wu+ Ax(0) where A is an observability matrix, and W
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is the Toeplitz matrix

W =



CB 0 0 . . . 0

CAB CB 0 . . . 0

... ... ... . . . ...

CAp−1B CAp−2B CAp−3B . . . CB


(4.1)

Then the unique solution to the inverse problem giving the input needed to produce a given

output y is given as

u = W−1[y − Ax(0)] (4.2)

Note that the matrix W relates the input and the output histories when the initial conditions

are zero, y = Wu.

Reference [29], [30] and [31] demonstrate that the matrix W exhibits the instability

of the inverse solutions in its singular value decomposition. For every zero outside the

unit circle there will be a small singular value that decreases by the singular value to the pth

power as the trajectory length p increases. The associated input singular vector components

alternate in sign with the time steps (for sampling zeros that lie on the negative real axis)

and increase in magnitude each step by the magnitude of the zero location outside the unit

circle. The associated output singular vector performs in the same way but with the opposite

slope. Thus, to obtain an output that is the output singular vector, an input is required that

grows exponentially with time step.

The results on stable inverse summarized in Reference [32] say that if one deletes the

number of initial rows of W equal to the number of zeros outside the unit circle, then the
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associated singular values are gone, and the singular vector pair exhibiting the instability is

gone. Consider for simplicity the situation of a third order pole excess producing one zero

outside the unit circle. The more important result for the present objective for this system

is: (i) If one eliminates every odd numbered row of matrix W , then it has a stable inverse,

or more precisely its minimum Euclidean norm of the control history among the multiple

solutions, produces a stable inverse, i.e. the control action produced results in the desired

output at every even numbered time step. The equations are underspecified so there are an

infinite number of solutions. If there were 2 zeros outside, then eliminate 2 rows between

each row that is kept. (ii) An improved version given in References [32] creates the matrix

W as a product of a matrix that deals with the zeros outside the unit circle, multiplying a

matrix that handles all zeros and poles inside the unit circle. The latter matrix of course has

a stable inverse. Then the odd numbered rows of the initial matrix are deleted. Reference

[33] proves that this produces a stable inverse, whether or not the zero outside is the image

of an intrinsic zero, or it is a sampling zero. For simplicity we use the case of one zero

outside to present the method and the results. The methods generalize in an obvious way

to more zeros outside.

The results in Reference [33] factorize W as W = POPI where the first matrix deals

with the zero outside, and the second deals with all poles and zeros inside. Then the odd

rows of PO are deleted to make a WDOI = PODPI . Then the solution to y
D
= WCOIu used

in Reference [33] is given by u = P−1
I (POD)

+y
D

, and proven to give a stable control action.

Superscript + indicates Moore-Penrose pseudo inverse of the underspecified matrix. For
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simplicity in this work, we denote W with odd rows deleted by WD , and use

u = (WD)
+y (4.3)

giving that solution that minimizes the Euclidean norm of the resulting u , which is also

observed to give a stable inverse.

4.2 The Model Predictive Control System Model

The problems dealt with in this paper want to use the system model as found in Linear

Model Predictive Control (LMPC). For simplicity, the method of generating such a model

is presented here starting from a third order scalar difference equation

α0y(k + 1) = −α1y(k)− α2y(k − 1)− α3y(k − 2)

+β1u(k) + β2u(k − 1) + β3u(k − 2)

(4.4)

Note that the initial conditions required to produce the output at time step 1, are

y(0), y(−1), y(−2) and u(−1), u(−2). Then the choice of the initial control u(0) determines

the first output y(1) . The LMPC model writes this equation for a chosen number of time

steps both forward and backward from any current step of interest k. Considering only 3

steps backward and 3 steps forward, the result is can be packaged as
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α0 0 0

α1 α0 0

α2 α1 α0




y(k + 1)

y(k + 2)

y(k + 3)

 =


0 β3 β2

0 0 β3

0 0 0




u(k − 3)

u(k − 2)

u(k − 1)



−


α3 α2 α1

0 α3 α2

0 0 α3




y(k − 2)

y(k − 1)

y(k)

+


β1 0 0

β2 β1 0

β3 β2 β1




u(k)

u(k + 1)

u(k + 2)



(4.5)

The column vectors in this equation will be denoted by ŷ
F
(k), uP (k), ŷP (k), uF (k)

with subscripts indicating future and past. By taking the inverse of the initial matrix and

multiplying both sides from the left with it, the model takes the form

ŷ
F
(k) = P̂1uP (k)− P̂2ŷP (k) + ŴuF (k) (4.6)

Our initial use of this model is to plan the entire desired trajectory. In this case we set

the time step k to zero, and for simplicity of notation we will not show the argument in each

of the column vectors. The k argument will be reintroduced when we discuss the possible

use of feedback in time when implementing the optimized trajectory.

Planning the whole trajectory dictates the dimensions of the column vectors. The num-

ber of entries in the past vectors must be at least as large as the minimum number for setting

up the initial conditions, in this case 3. And instead of the 3 used above for the number of

entries in the future vectors, they should contain every time step to the end of the problem

at time step p, preferably an even number.

Note that if the initial conditions are set to zero, then the two past vectors for k = 0
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are zero, and the model becomes ŷ
F
(k) = ŴuF (k), demonstrating that the Ŵ here is

the same matrix as the W in the previous section. The model of interest for design of the

desired trajectory and for the ILC law, needs to isolate the even numbered time steps in this

equation. This requires eliminating the odd numbered entries in column vector ŷ
F
(0) and

the odd numbered rows of matrices P̂1,P̂2, and Ŵ . After deletion, we indicate each of the

resulting matrices by removing the hat on top of the symbol, except in the case of Ŵ where

we choose to explicitly show the deletion by using the WD symbol as before. The resulting

model after appropriate deletions is

y
F
= P1up − P2ŷp +WDuF (4.7)

With these notation changes, the final equation looks deceptively routine, but it is non-

standard because the coefficient matrices are rectangular, and the future vector is limited to

even time steps, and the past vector is not.

4.3 A Quadratic Cost Function Based Desired Trajectory

With Local Perfect Tracking

Consider a quadratic cost function written for tracking a finite time initial desired trajectory,

which we specify at even numbered time steps as y
FdesA

J = [y
F
− y

FdesA
]TQ[y

F
− y

FdesA
] + [uF ]

TR[uF ] (4.8)
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We want y
F

to actually equal y
FdesA

for certain critical time intervals. In this work, we

consider that we are always far enough away from any actuator constraint limits that they

are not active.We specify the rest of the trajectory in some reasonable way. Consider the

problem mentioned before of a robot that when something arrives at its station, the robot

moves out from a home position to the object where it starts to do its job. After finishing

the task, it moves back to the home position to wait for the next item to arrive. While

performing the task one wants high precision motion along a prescribed trajectory. But the

path from home position to the start of the task can be anything reasonable. Here we ask

the user to specify a reasonable path in the associated part of y
FdesA

, but since there is

nothing special about this choice, we will let the cost function of the above equation create

a path that roughly follows the path, doing so in a way that is a trade off between accurately

following, and the amount of control effort expended, as penalized by the second term. The

resulting trajectory is denoted by y
FdesB

, and it is this trajectory we wish to implement in

hardware.

Our objective of have accurate tracking for some time steps might suggest that one

should adjust the value of Q to emphasize the penalty on the tracking error at those time

steps. This only produces perfect tracking asymptotically as the gain is increased to infinity.

Instead we set Q to the identity matrix. Then, if the control penalty is zero for some time

steps the control action can use whatever control makes the first term zero. Hence, matrix

R can be diagonal matrix, and we will adjust the elements differently for different parts of

the trajectory.

The stable inverse results we wish to incorporate, require that we restrict the possible

values of the control history uF to ones that minimize the Euclidean norm of the possible
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control actions producing y
F

from uF in the underspecified set of equations. To do this,

write the singular value decomposition (SVD) of matrix WD as

WD = U [S 0]V T = U [S 0]

V T
1

V T
2

 = USV T
1 (4.9)

Define a transformed version of the control action as

µ
F
= V TuF

µF1

µ
F2

 =

V T
1 uF

V T
2 uF

 (4.10)

The components of uF on V2, i.e. µ
F2

, have no influence on the output y in equation

y
F
= WDuF . These components are orthogonal to the components on V1, so the minimum

norm control action uF that satisfies the equation y
F
= WDuF is given by

uF = V µ
F
= [V1 V2]

µF1

µ
F2

 = [V1 V2]

µF1

0

 = V1µF1
(4.11)

and we enforce the choice of µ
F2

= 0. Consider the penalty term uT
FRuF . The components

of uF are for time steps. And we know that for time steps in the part of the trajectory that

requires fine tracking we want to eliminate any penalty so that the control action for that part

of the trajectory is free to do whatever is needed to make perfect tracking error of y
FdesA

for those time steps. Hence, we want to specify the weight matrix in diagonal form

R = diag(r1, r2, · · · , rp) (4.12)
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But we must also limit the uF so that the control penalty takes the form

uT
FRuF = µT

F1
V T
1 RV1µF1

= µT

F1
RµµF1

(4.13)

The cost function that results from these modifications and the LMPC model become

J = [y
F
− y

FdesA
]T [y

F
− y

FdesA
] + µT

F1
Rµ

F1

Rµ = V T
1 RV1 = V1diag(r1, r2, · · · , rp)V1

y
F
= P1up − P2ŷP + USµ

F1

(4.14)

Substituting the last equation into the cost, differentiating the result with respect to µ̂F1,

and solving for this control vector results in the optimal control action

µ
F1

= [Ru + S2]−1SUT [y
FdesA

− (P1uP − P2ŷP )] (4.15)

This optimal control action µ
F

when substituted into the model given by the last equation

of Equation 4.14 produces the new optimized desired trajectory y
F
= y

FdesB

y
FdesB

= [US(Rµ+S2)−1SUT ]y
FdesA

+I − [US(Ru + S2)−1SUT ][P1up−P2ŷp] (4.16)

Comments:

• Note that if the penalty on the control effort Rµ is set to zero, then the square bracket

term in the above equation becomes the identity matrix. The initial condition terms

disappear from the equation, and yFdesB = yFdesA . Then the minimization of the
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cost produces the stable inverse solution of Reference [32] giving exact tracking for

every other time step of the given desired trajectory.

• Consider a problem such as the robot problem described earlier, that has a section

or interval of time steps in the middle of the trajectory for which one wants perfect

tracking of yFdesA . In this interval one sets the corresponding entries in diagonal

matrix R to zero.

• During the initial part of the trajectory one is not concerned with accuracy. For these

time steps one adjust the entries in R as one would do when using quadratic cost

control design in the time domain.

• As the time steps approach the high accuracy tracking time interval, one must create

a transition zone where the R components of above item are being smoothly transi-

tioned to zero approaching the high accuracy interval.

• After the high accuracy zone one can use these two zones in reverse order.

• An important application is for systems where the really important objective is to

reach the desired endpoint with high accuracy. The high accuracy tracking interval

could be a chosen inter- val at the end of the trajectory, or it could be just a point.

As before, a transition region is needed as the system approaches the high accuracy

tracking portion or endpoint.

4.4 Creating Real Time Optimal Feedback

In order to correct for disturbances encountered, one normally wants to have feedback con-

trol. Ideally, this feedback gives you the optimal solution from the current known state at
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any time step k until the end of the problem. Starting from Equation 4.6 where there was

an argument k, we can perform the conversions that resulted in Equation 4.7, but this time

keep the argument k

y
k
= P1uP (k)− P2ŷP (k) +WDuF (k) (4.17)

Pick k so that the first entry in y
F
(k) is an even time step. Then the optimal control future

input satisfies

uF (k) = V1(k)µF1
(k) = V1(k)[Rµ(k)+S2(k)]−1S(k)U(k)Ty

FdesA
(k)− [P1uP (k)− P2ŷP (k)]

(4.18)

The k dependence is a result of the shrinking number of time steps from the current step to

the end. This equation has the form

uF (k) = A1(k)yFdesA
(k)− A2(k)uP (k) + A3(k)ŷP (k) (4.19)

The y
P
(k) and uP (k) are feedback from data, and note that data from both even and odd

time steps are requested. The coefficient matrices A2(k),A3(k) can be pre-computed for

each time step. And one can also do this to the term A1(k)yFdesA
(k). The uF (K) of course

can be a tall vector with many entries, but the only entries one needs at time step k are the

first two entries. Hence one can pre-compute everything needed for the next two time steps

from pre-computed gains and the y
P

anduP data. The pre-computation needed might be

substantial, but the on-line computation is minimal and performed every two steps.
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4.5 Creating Iterative Learning Control With Local

Learning

The method develop to create an optimal y
FdesB

with zero tracking error for the high accu-

racy portion of the trajectory, produces zero error provided one’s model used in the compu-

tation is the same as the real world model. A major objective of Iterative Learning Control

is to achieve in iterations with the real world, zero error in the world, but the ILC law was

designed using an imperfect model. The ILC laws are designed to exhibit convergence ro-

bustness for a broad class of model errors around the model used to create the algorithm.

Here, for each iteration or run j we optimizes a cost function

Jj = [y
F,j

− y
FdesA

]T [y
F,j

− y
FdesA

] + µT

F1,j
V T
1 RV1µF1,j

+ δjµ
T

F1
V T
1 RLV1δjµF1

RL = diag(rL1, rL2, · · · , rLp)

δjµF1
= µ

F1,j
− µ

F1,j−1

(4.20)

A new penalty term has been added that penalizes the change in the control action from one

run to the next. Consider what happens when R is set to zero. This makes a quadratic cost

ILC design (References [10], [22] and [23]). Reference [39] shows that this ILC law has

good stability robustness properties to model error. The penalty on the change in control

action from run to run is purely controlling the learning transients. Convergence is still to

zero tracking error for the whole trajectory, because the iterations can accumulate whatever

change in control action is needed to get zero error. Note that robustness to model error be-

comes substantially larger when the learning is made slowly using a large RL. The learning
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law updating the input µ
F1,j−1

to µ
F1,j

from iteration j − 1 to j is

µ
F1,j

= [S2+V T
1 (R+RL)V1]

−1{V T
1 RLV1µF1,j−1

+SUT [y
FdesA

−(P1uP−P2ŷP )]} (4.21)

To use this ILC law for local learning:

• Make the entries in R become zero for the high accuracy part of the desired trajectory

• During these same time steps, pick RL entries to correspond to the speed of learning,

and the associated robustness to model errors desired.

• The entries in R should transition smoothly to zero as before from the quadratic cost

objective to the perfect tracking objective. Nonzero entries in RL in this section of

the trajectory are trying to improve tracking of the y
FdesB

time steps in this region.

• The objective is to get zero tracking error in the world in the high accuracy part of

the desired trajectory, in spite of the fact that one’s model is imperfect.

• The standard ILC problem is to learn in iterations to converge to zero tracking

throughout a trajectory, but people often want to use it to address point-to-point prob-

lems instead of tracking problems, to produce accuracy at the endpoint. Doing so

asks for high accuracy throughout, when one is only interested in the endpoint. The

method developed here makes ILC actually address the endpoint problem as an end-

point problem, extending the range of true applicability of ILC to this important class

of systems.
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4.6 Numerical Experiments

Consider the same system as in Equation 2.7. Suppose this is fed by a zero order hold

running at 100Hz, and one wants to execute an 8 second trajectory that oscillates at 2 Hz

given in continuous time form as yd = 1 − cos(4πt). First we ask for zero error tracking

this trajectory every other time step using the cost Equation 4.14 with R = 0. The top of 4.1

shows this control penalty for all 800 time steps of control action, the second plot shows the

desired trajectory at the addressed time steps, every other step, so the plot goes to 400. The

third plot is the tracking error at the addressed time steps which is around −300dB which

is a numerical zero. The control action in the bottom plot shows that the control action

is not unstable, while the inverse of the discrete time transfer function G(z) equivalent to

the G(s) above, has one zero outside the unit circle giving a solution of the inverse system

that is a constant times −3.7 to the power of the time step, for the asymptotic location, and

around −3.2 for this sample rate.

One is interested to know what the tracking is like for the time steps that are not ad-

dressed. The control action being chosen for these times steps does not know what the

desired trajectory is, and it is only defined for us because the desired output was given in

continuous time so that we could sample at these unaddressed time steps and find the error.

This is presented in Figure 4.2 The top plots labeled as actual, is the output of the control

system for all 800 time steps, and no anomalous behavior is visible for the unaddressed

time steps. The second plot is the desired trajectory sampled every other time step used

by the algorithm to produce the control action. The bottom plot gives the “error” at the

unaddressed time steps, the algorithm makes no attempt to control the size of this error. It
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Figure 4.1: Perfect tracking with R = 0

is seen to be around −120dB to −140dB, corresponding to 10−6 or 10−7 . At the beginning

of the trajectory this “error” is larger but decays reasonably quickly.

Figure 4.3 investigates what happens when the penalty R is changed from one to zero

(top plot), suddenly asking for zero tracking error. The output trajectory is shown in the

second plot which only tracks as well as the quadratic cost compromise between tracking

and control effort dictates for this value of R when it is unity. When the R is set to zero, the

error in following the trajectory is large, and the stable inverse control action to graphical

accuracy starts giving what looks like zero error reasonably quickly, but the control action

has to try to produce something like an impulse function to instantaneously move to zero

tracking error (bottom plot). Looking at the tracking error on the 3rd plot, one sees that

the error is decreasing exponentially toward the numerical zero around −300dB and needs

roughly 50 time steps to reach this zero.
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Figure 4.2: Examining the error at unaddressed time steps
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Figure 4.3: Examining the behavior when R changes from 1 to 0 suddenly
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Figure 4.4 makes R decrease linearly from 1 to zero over 300 steps, which is seen to

improve performance toward zero error in a smooth way, with the wiggles observed pre-

viously now being much smaller. This plot investigates using the method of this paper for

endpoint control. Very often one wants the output to go to some final position and just stay

there afterward. In order to address this desire, the trajectory has been altered, asking the

output to be zero at the end at 350 steps, and stay there for 50 more time steps. This demon-

strates the effectiveness of use of the algorithm developed here for endpoint problems. The

same comments about an impulse function apply to converting to staying at the endpoint.

The desired trajectory and its first derivative are zero, but the second derivative is not, and

to make a step change in continuous time u(t) would require an impulse, and this produces

some wiggles.

In order to reduce the need for such wiggles in the control action, one can make a

smoother transition to the section asking for zero tracking error. Figure 4.5 considers having

a zero tracking error section in the middle of the trajectory instead of at the end, and uses a

5th order polynomial 10t3−0.15t4 +0.0006t5 applied to the appropriate time steps for both

going onto the zero error portion and coming off of it, with time reversed between the two

cases. This is designed to be zero with zero first and second derivatives at the start, and

have the final value desired at the end, but with zero first and second derivatives. Clearly

this approach is effective at addressing the is- sue of wiggles in the control action when

starting onto or getting off of the zero tracking error portion of the trajectory. Figure 4.6 is

an example of applying the iterative learning control approach developed here, to learn to

get zero error in the zero tracking error portion of the trajectory when the model used by

the control algorithm has undamped natural frequency of 5.9Hz as before, but in the real
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Figure 4.4: Change R linearly from 1 to 0, and addressing the problem of staying at the
endpoint

world, this frequency is 8Hz. The new penalty on the change in control from one run to

the next set to RL = 0.0001. After 10 iterations for learning, the error in the high accuracy

part of the trajectory has reached a numerical zero in the real world model in spite of the

algorithm using a stable inverse of an incorrect model.

4.7 Conclusions

This chapter uses a new stable inverse that can produce zero tracking error for discrete time

systems having a zero of zeros outside the unit circle, which occurs for nearly all systems

above second order after conversion to discrete time. The new stable inverse offers zero
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Figure 4.5: Zero tracking in the middle of a trajectory with polynomial conversion of R
between 1 and 0

tracking error for every time step in exchange for using multiple zero order holds between

steps. Problems are addressed where one wants high precision tracking for a portion of the

total time interval. The trajectory in other portions makes use of the effective routine control

tracking method that minimizes a quadratic cost function as in linear quadratic regulator

tracking. The method creates a unified quadratic cost method to produce both parts of

the trajectory. When using the design method, one should build in a transition zone to

get onto the zero tracking error part of the trajectory, and also when leaving this part of

the trajectory. After designing the desired trajectory, a method of using iterative learning

control is presented to learn to achieve zero tracking in the world (limited by the noise floor

in hardware), while the initial control action is based on an imperfect model. An important
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Figure 4.6: ILC learning to achieve zero error in the middle of a trajectory when the stable
inverse used an inaccurate model

aspect of the design approach developed here is that it allows iterative learning control

to address the problem of learning to reach a desired endpoint, when the formulation of

learning control is created to obtain zero tracking throughout a desired trajectory.
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C 5

L M P C

D S I

In the previous chapter, we have introduced a method of producing a stable inverse of

systems that have zeros outside the unite circle so the full inverse is unstable. The methods

produce zero tracking error expect at one or more initial time steps. The purpose of this

chapter is to outline a set of uses for such a stable inverse in control applications, including

LMPC, and LMPC applied to Repetitive Control RC-LMPC, and a generalized form of

one step ahead control. An important characteristic is that the approach has the property

that it can converge to zero tracking in a small number of time steps, which is finite time

convergence instead of asymptotic convergence as time tends to infinity. The majority of

discrete time systems in the world obtained from discrete differential equation systems fed

by zero order hold have unstable inverses. The existence of a stable inverse that produces

zero tracking error at addressed time steps opens up a range of new possibilities in control
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theory.

5.1 Introduction

Repetitive Control (RC) and Iterative Learning Control (ILC) are control methods that seek

to converge to zero error in repeating situations such as periodic command or periodic dis-

turbance. This chapter seeks to make a preliminary investigation of synergistic cross fer-

tilization between several control design methods for single-input, single-output systems -

RC, ILC, linear model predictive control (LMPC), and one step ahead control - by making

use of a recently developed stable inverse.A common objective in this work is to produce

control actions that converge to zero tracking error in a finite number of time steps, instead

of converging asymptotically. These different control design methods address different

control objectives which are described below. The intention is to describe the range of pos-

sible applications of the stable inverses developed to various kinds of control designs and

objectives. One Step Ahead Control considers higher order discrete time models with a

natural time delay through the system of one time step, for example given the desired out-

put in the next time step, and knowing all previous inputs and outputs, one simply solves

for the current input to produce the desired output in the next step. This approach works

for systems with a stable inverse, but usually produces far too aggressive control action in

practice. Equally important is the fact that most discrete time systems coming from con-

tinuous time systems fed by a zero order hold, have an unstable inverse. Here we seek to

use a stable inverse theory developed by the authors for ILC, to address the second issue.

Then we look for ways to slow down the convergence to meet actuator constraints, but still
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converge to zero error in a finite number of steps.

5.2 The Use of the Stable Inverse Approach

This chapter seeks to give a preliminary assessment of the use of the stable inverse approach

developed by the authors and co-workers, to address 3 different Objectives.

• This objective asks to create an approach to LMPC addressing tracking problems. It

is assumed that the desired trajectory is always feasible. The approach seeks zero

tracking error after a small number of time steps, while honoring the actuator con-

straints, for any chosen trajectory. It is anticipated that one can achieve this even

when one makes changes in the future desired trajectory going to the prediction hori-

zon, so that one achieves zero tracking error following an arbitrary trajectory requir-

ing much more limited knowledge of the future desired trajectory. This can make

LMPC more versatile allowing it to react more quickly to changes of plan.

• RC aims to reach zero tracking error asymptotically for a periodic trajectory and/or

with a periodic disturbance. This Objective seeks to reach zero tracking error in a

small number of time steps, honoring actuator limitations assuming that the desired

trajectory is feasible. It seeks to do so by using the LMPC formulation together

with the one period back data RC normally uses. LMPC makes plans for the finite

time interval to the horizon, and therefore one can make use of the finite time stable

inverse.

• Develop a way to make a generalized one-step ahead control apply to systems with an

unstable inverse. Then suggest ways to slow the convergence to reach zero error in a
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number of time steps but satisfy actuator saturation constraints. Many issues need to

be addressed, but this allows one to have zero tracking error at addressed time steps

for arbitrary trajectories. There is a natural extension of this Objective to indirect

adaptive control

Objective 1: LMPC that converges to zero tracking error in a small

number of time steps

LMPC is the obvious applications for the stable inverses of the previous section. LMPC

always assumes that you know the trajectory that you plan to use from the present to the pre-

diction horizon. As long as the prediction horizon is long enough to create a stable inverse,

one could apply the inverse to compute the LMPC control action. This is an advance, since

using the system inverse in LMPC was not possible for the preponderance of real world

systems, those that have unstable inverses due to sampling zeros.

Without Actuator Constrain: Consider the third order system of 2.7 with pole ex-

cess of 3 fed by a zero order hold. Asymptotically as the sample time interval tends to zero

the two zeros tend to −3.732 and −1/3.732,the first of which makes the inverse model

unstable. By either the first or second stable inverse method, one skips the first time step.

Then the control at time step k for LMPC is planned for all time steps to the prediction hori-

zon, producing zero error 2 steps ahead and thereafter if applied. LMPC then will apply the

first two time steps of the planned control. The process repeats after two time steps. The

result is zero error every other time step. An issue to address is, what is the behavior at the

unaddressed time steps. One expects that when the desired trajectory is rather smooth at the
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chosen sample rate, then the minimum norm solution for the control history will produce

reasonable control actions and errors at these intermediate steps. Of course, the error should

be compared to what would happen using just one zero order hold input over both steps.

Slowing the Convergence: The stable inverse is like one-step ahead control or dead-

beat control, and can ask for very large control actions during the initial steps. We assume

that the desired trajectory is feasible, and not following the boundary of the feasible region.

But the process of getting to the desired trajectory can easily ask for control actions beyond

saturation. One method of addressing this while preserving the convergence to zero track-

ing error every other time step, is apply standard quadratic programming at each time step:

Minimize eTDF,r(k)eDF,r(k) subject to |u(k + i)| < umax for i = 0, 1, · · · , r − 1, where

eDF,r(k) = yDF,r(k) − y⋆DF,r(k) and y⋆DF,r(k) is the desired future trajectory. By picking

umax(k) each time step one can control the convergence rate. Alternatively, one could ask

at step k to minimize eTDF,r(k)eDF,r(k)+uT
F,rR(k)uF,r(k), and adjust R(k) during the tran-

sients, according to a line search to keep the control actions feasible. Once near enough the

desired trajectory, R(k) can be set to zero producing zero tracking error.

Comment: The methods just discussed produces zero tracking to any arbitrary trajec-

tory known r time steps in advance, and converges to zero error in a finite number of time

steps. Standard LMPC does not always produce good tracking performance, because it is

always aiming for the desired trajectory, and when the time step advances it aims again,

never reaching the objective. The stable inverse used here ad- dresses this issue. Also, one

disadvantage of LMPC is that it asks you to know the command you want to executed r
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time steps into the future. It appears that the stable inverse solutions above could partially

alleviate this property as well. As long as some reasonable choice for r time steps in the

future is made, for r large enough to eliminate the instability signatures from the P matrix,

then one can have zero error 2 time steps in the future for the 3rd order example, and repeat

this. The issue of course is, will the 2 control actions that gets to zero error at the second

step, do something undesirable in the intermediate point. One expects to need a certain

level of smoothness. But there seems to be the possibility to have zero error following an

arbitrarily changing command with a short preview time.

Objective 2: Model Predictive Repetitive Control That Converges in a

Small Number of Iterations

Repetitive control has two properties to try to incorporate into LMPC. The standard RC

problem aims to converge to zero tracking error of a periodic command or in the presence

of a periodic disturbance, or both when both have the same period. The stable inverse so-

lutions developed here do not include a disturbance unless one knows the disturbance time

history and includes it in the inverse equation. On the other hand RC makes a difference

between the inputs and outputs one period back and in the present time, and this difference

eliminates the disturbance from the dynamics needed. All that must be known is the period

of the disturbance. The second objective in RC is to converge to zero error in the real world,

not zero error in our model. This objective relies on having enough stability robustness to

model error to converge to zero error in spite of an imperfect model. Here we can make

RC-LMPC that handles the disturbance, and reaches zero tracking error in a small number
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of steps assuming the model is right. It requires that the prediction horizon r be shorter

than one period. Stability robustness is an issue to be investigated, but provided the real

world is inside the convergence region, RC will learn a modified command to give to the

stable inverse such that it produces zero tracking error. This convergence is likely asymp-

totic. Some existing literature considers the relationship of RC and LMPC and develops a

combination, References [13], [40]. The approach here differs in that it offers to converge

to zero tracking error in a small number of time steps with a correct model, and makes use

only of input-output data without asking for knowledge of the state. To a produce the RC-

LMPC law, write the dynamic equations using the LMPC model at the present time step k,

and also one period back, where one period is p time steps. Define a difference operator δp

giving the value of some variable at the present time, minus that variable one period back.

Then

eDF,r(k − p) = PD1uP,s(k − p)− PD2yP,s(k − p) +WDuF,r(k − p)− y⋆DF,r(k − p)

eDF,r(k) = PD1uP,s(k)− PD2yP,s(k) +WDuF,r(k)− y⋆DF,r(k)

(5.1)

Because we seek to track a periodic trajectory y⋆DF,r(k) = y⋆DF,r(k − p). And if we want

to produced zero error fast we ask for eDF,r(k) = 0 to eliminate the error observed in the

previous period. Then the control update law using the stable inverse is

δpuF,r(k) = −W−1
D [eDF,r(k − p) + PD1δ

puP,s(k)− PD2δ
pyP,s(k)] (5.2)

As discussed in the LMPC problem above, one has choices of how to slow the convergence

rate to remain within actuator limits. One can solve a quadratic programming problem to
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minimize eTDF,reDF,r(k) subject to actuator inequality constraints each time step. Or one

can minimize eTDF,r(k)eDF,r(k) + δpuT
F,r(k)R(k)δpuF,r each time step. The changes in the

control actions δpuF,r(k)will accumulate to produce zero error asymptotically, buy by pick-

ing R(k) to satisfy the current control limitation by a line search, one satisfies the actuator

saturation during convergence, but can set it zero eventually to produce zero tracking error

in a finite number of times steps.

Objective 3: Generalized One Step Ahead Control

The above two objectives are immediately achievable. This third objective is a substantial

generalization. The objective of one step ahead control is to have zero error in the next step

no matter what one wants to do in the next step. In order to apply the stable inverses above,

one needs to define a desired trajectory r steps into the future where r has a lower limit based

on how many time steps are needed in PD for it to not exhibit the signatures of an unstable

inverse. But it is clear that one can plan many possible future trajectories which will define

a stable control sequence and produce zero error at the second time step, for the 3rd order

pole excess example. The issue will be whether the action at the first time step is something

reasonable. Guidelines can be produced to say how to extend the trajectory into the future

and have the control action for the unaddressed time step be something acceptable. Again,

one step ahead control can easily ask for unreasonably large control actions for arbitrary

changes in the output in the next step, and zero error every other step can be doing the

same. Again we can formulate methods to slow the convergence as was done in both of

the previous Objectives, e.g. by making use of a quadratic program updated in real time to
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satisfy actuator limits. If these issues are addressed, it opens the door to performing indirect

adaptive control replacing the one step ahead algorithm, and making it apply to not just the

small number of discrete time systems with stable inverse, but apply in general.
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C

Repetitive Control nominally asks for zero error of a control system executing a periodic

command, or in the presence of a periodic disturbance. This means zero error at the fun-

damental frequency of the given period, and all harmonics up to Nyquist frequency. One

normally needs to use a frequency cutoff for a number of possible reasons. A cutoff filter

can be needed for stability robustness to high frequency model error. Limiting the frequency

upper limit in the RC cost function can be use to improve the accuracy of the compensator

F (z) in modeling the frequency response of G−1(z) in the region below the learning cutoff

frequency. The choice of these two cutoff’s should be coordinated. The penalty Wa in the

cost function 2.6 is included to directly decrease the gain magnitudes. But it can also act

like a frequency cutoff. Improve robustness to error in a chosen frequency range can be

achieved by slowing the learning rate, but when model error is too large for learning to

succeed one must use the primary cutoff filter H(z). This dissertation seeks to show the

choices one needs to make, and how they should be made, to create RC that converges to

as small an error as possible.

Learning more slowly can improve the robustness to model error, and the laws devel-
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oped in ILC have good robustness properties for this reason. In Chapter 2, we generate RC

laws that are analogous to these ILC laws, and the resulting RC laws improve the robustness

while have fast learning rate in the low frequency range.

Many real-world situations have a linear system with input through a zero order hold

and sampled output. Often one knows the desired output and would like to solve the inverse

problem of finding that input that produces this output. For the majority of physical systems

this results in an unusable input that grows exponentially with time and alternates sign each

time step. Recent results demonstrated a new stable inverse method produced by allowing

two or more zero order holds between each time step for which ones at which one asks for

zero error. This forms a kind of generalized hold. The existence of a stable inverse that

produces zero tracking error at addressed time steps opens up a range of new possibilities

in control theory. Chapter 3 addresses problems where one wants high precision tracking

for only a portion of the total time interval. The trajectory in other portions makes use of

the effective routine control tracking method that minimizes a quadratic cost function as in

linear quadratic regulator/tracking. The method creates a unified quadratic cost method to

produce both parts of the trajectory. When using the design method, one should build in a

transition zone to get onto the zero-tracking error part of the trajectory, and also when leav-

ing this part of the trajectory. After designing the associated desired trajectory, a method

of using iterative learning control is presented to learn to achieve zero tracking in the world

(limited by the noise floor in hardware), when the initial control action is based on an im-

perfect model. An important aspect of the design approach developed here is that it allows

iterative learning control to address the problem of learning to reach a desired endpoint,

when the formulation of learning control is created to obtain zero tracking throughout a
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desired trajectory.

By using the same stable inverse, Chapter 4 outlines a set of uses for such methods

in control applications, including Linear Model Predictive Control (LMPC), and LMPC

applied to Repetitive Control RC-LMPC, and a generalized form of one step ahead control.

An important characteristic is that the approach has the property that it can converge to zero

tracking error in a small number of time steps, instead of converging asymptotically as time

tends to infinity.

There are a number of topics for future research. One topic to generalize the guide

for RC design to multi-input, multi-output (MIMO) systems. The cost function used in

SISO can be generalized to MIMO systems, and the resulting compensator will have similar

concerns as discussed in Chapter 2. To robustify the design to unmodeled high-frequency

dynamics, a MIMO zero-phase low pass FIR filter will be necessary. Another future topic

is to apply the design methods based on stable inverse to nonlinear problem. The first

approach is linearization. But when the system is linearized about a trajectory, the system

equations become linear with time varying coefficients. So we need to develop methods to

handle systems with time varying or periodic coefficients.

A rigorous proof for the RC stability condition have been given in previously, it uses

Nyquist stability like thinking. But for nonlinear systems, perhaps the stability condtion ca

be generalized to nonlinear system by employing the logic behind the Popov criterion or

equivalent circle criterion.
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