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ABSTRACT

The seasonal potential predictability of monsoon onset during the August–December season over Indonesia

is studied through analysis of the spatial coherence of daily station rainfall and gridded pentad precipitation

data from 1979 to 2005. The onset date, defined using a local agronomic definition, exhibits a seasonal northwest-

to-southeast progression from northern and central Sumatra (late August) to Timor (mid-December). South of

the equator, interannual variability of the onset date is shown to consist of a spatially coherent large-scale

component, together with local-scale noise. The high spatial coherence of onset is similar to that of the

September–December seasonal total, while postonset amounts averaged over 15–90 days and September–

December amount residuals from large-scale onset show much less spatial coherence, especially across the

main islands of monsoonal Indonesia. The cumulative rainfall anomalies exhibit also their largest amplitudes

before or near the onset date. This implies that seasonal potential predictability over monsoonal Indonesia

during the first part of the austral summer monsoon season is largely associated with monsoon onset, and that

there is much less predictability within the rainy season itself. A cross-validated canonical correlation analysis

using July sea surface temperatures over the tropical Pacific and Indian Oceans (208S–208N, 808–2808E) as

predictors of local-scale onset dates exhibits promising hindcast skill (anomaly correlation of ;0.80 for the

spatial average of standardized rain gauges and ;0.70 for standardized gridded pentad precipitation data).

1. Introduction

Rainfall over Indonesia is governed by the austral-

Asian monsoon, whose onset progresses from northwest

to southeast during the austral spring (Aldrian and

Susanto 2003; Naylor et al. 2007). This is also the season

when the El Niño–Southern Oscillation (ENSO) exerts

its strongest influence on Indonesian rainfall, particu-

larly during the September–December monsoon onset

season (Hamada et al. 2002). The impact of ENSO

then diminishes during the core of the rainy season in

December–February (Haylock and McBride 2001; Hendon

2003; Aldrian et al. 2005, 2007; Giannini et al. 2007),

suggesting that the timing of monsoon onset may be

potentially predictable.

The date of onset of the rainy season is of particular

importance for the agriculture sector over Indonesia

(Naylor et al. 2002, 2007). It determines the suitable

time for planting crops, while delayed onset during El

Niño years (Hamada et al. 2002; Boer and Wahab 2007)

can lead to crop failure. For irrigated rice farmers in

Java, information on onset timing is also important for

developing strategies (Boer and Subbiah 2005; Naylor

et al. 2007) to avoid exposure of the second rice crop to

higher drought risk at dry season planting (April–July),
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particularly for farmers located at the tail end of the

irrigation system. Farmers in Indonesia often suffer

from ‘‘false rains’’ in which isolated rainfall events

around the expected onset date do not signal the sus-

tained onset of the monsoon. Such false starts occurring

in September prompt potato farmers in Pengalengan in

West Java to start planting. In the eastern part of

Indonesia, such as East Nuna Tenggara, multiple false

starts can cause multiple failures, with farmers some-

times planting up to four times in a season.

This paper discusses the seasonal potential predict-

ability of monsoon onset during the August–December

season over Indonesia. The approach taken is based on

quantifying the spatial coherence of specific rainfall

properties: the September–December (SOND hereaf-

ter) rainfall total, rainfall onset date, and postonset

rainfall totals following Haylock and McBride (2001)

and Moron et al. (2006, 2007). The seasonal predict-

ability of large-scale monsoon onset is then estimated

based on sea surface temperatures (SST) in July using a

cross-validated canonical correlation analysis (CCA).

The two precipitation datasets [rain gauge and Climate

Prediction Center (CPC) Merged Analysis of Precipi-

tation (CMAP)] are described in section 2, together

with the definition of onset. Results are presented in

section 3, with conclusions drawn in section 4.

2. Data and method

a. Global Summary of the Day (GSOD) station data

Daily rainfall at rain gauges for the period 1979–2004

was extracted from National Oceanic and Atmospheric

Administration (NOAA) CPC Global Summary of the

Day (GSOD) dataset, archived at the National Center for

Atmospheric Research (NCAR), and originating through

the World Meteorological Organization (WMO) Global

Telecommunication System (GTS). There are 91 avail-

able stations for Indonesia. The station years having at

least 50% of daily data are extracted and the 57 stations

having at least 10 available years are selected. Missing

entries (, 13%) were filled using a simple stochastic

weather generator (Wilks 1999), considering the wet-to-

wet and dry-to-wet persistence and a gamma distribution

for wet days, computed on a monthly basis at each sta-

tion. If a month is completely missing (, 3% of station

months for SOND), this method simulates a climatolog-

ical daily sequence for that month.

b. CMAP

Gridded pentad CMAP on a 2.58 latitude–longitude grid

was selected within a window (128S–68N, 90–1308E) over

the 1979–2005 period, based only on rain gauges and sat-

ellite estimates (Xie and Arkin 1996). Over this window,

there are typically 1–2 rain gauges per grid box including

land (P. Xie 2007, personal communication).

c. Definition of onset

Monsoon onset date can be defined in various ways.

We used an agronomical definition (e.g., Sivakumar

1988) based on local rainfall amounts using thresholds

to define the onset, requiring a certain amount of rain-

fall within a specified period of time, with no extended

dry spell occurring afterward. This local definition is

sensitive to small-scale processes but is used here in

order to be relevant to agricultural management, and to

prevent any a priori inflation of spatial coherence.

Onset date is defined to be the first wet day of the first

5-day sequence receiving at least 40 mm that is not fol-

lowed by a dry 10-day sequence receiving less than 5 mm

within the following 30 days from the onset date. Onset is

computed from 1 August because August–September

are the driest months over Indonesia (Aldrian and

Susanto 2003; Aldrian et al. 2007). The latter criterion

helps to avoid ‘‘false starts,’’ which could be defined, for

example, as the difference between the first 5-day wet

sequence receiving at least 40 mm and the onset as de-

fined above. The identification of false starts is sensitive

to the choice of the postonset dry spell length. In fact, the

sensitivity of crops to postonset dry spells varies. In trop-

ical countries, dry spells with a length of more than 7 days

would have serious impact on crop yields (Niewolt 1989).

Other studies found that 21 rice varieties being exposed

to dry spells with a length of 16 days during the vege-

tative stage will have a delayed harvesting time between

2 and 27 days and reduced yield between 10% and 91%

(Dikshit et al. 1987). Indeed, false starts defined with a

10-day dry spell in the following 30 days occur in 46% of

station years, ranging from less than 40% in northern

and central Sumatra and Kalimantan to a maximum

. 50% in western and central Java. These percentages

decrease by a factor of 2–3 when the length of the

postonset dry spell is chosen to be 15 days. The mean

onset date is also earlier (by one or two weeks in mean)

with a postonset dry spell lasting 15 days rather than 10

days. Nevertheless, this parameter (and the others en-

tering the onset definition) has only a very weak impact

on the large-scale and regional-scale interannual varia-

bility of onset dates (e.g., the spatial averages of CMAP

and GSOD onset-date anomalies computed with both

parameters are correlated at 0.99 and 0.97, respec-

tively). Increasing the length of the initial wet spell re-

duces the noise introduced by weather variability, but

the threshold of 5 days is used to facilitate comparison

between CMAP and GSOD datasets. The National Agency

for Meteorology and Geophysics of Indonesia (BMG)

defines the monsoon to start when, after 1 September,
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two consecutive 10-day sequences each receive at least

50 mm of rain. While changing the length and/or the

amount of rainfall of the initial wet spell modifies the

climatological mean onset date, its impact on interan-

nual variability is again found to be much smaller. The

onset date is undefined for two cases in CMAP and the

missing entries are filled with the latest available onset

dates for the corresponding grid points.

d. Spatial coherence estimates

The spatial coherence of interannual precipitation

anomalies is estimated empirically in terms of the in-

terannual variance of spatially averaged standardized

anomalies given by the Standardized Anomaly index

(SAI; Katz and Glantz 1986). Use of the SAI in the

context of tropical rainfall is discussed extensively in

Moron et al. (2006, 2007). The interannual variance of

the SAI (var[SAI]) measures the spatial coherence be-

tween M stations (or grid points) because it depends on

the interstation correlations; it ranges from var[SAI] 5

0 when two samples of equal size, perfectly covariant,

are perfectly out of phase; var[SAI] 5 1/M when all the

correlations are zero; and var[SAI] 5 1 when all stations

are perfectly correlated.

The SAI is an empirical estimate of the shared in-

phase ‘‘signal’’ across the network. The ‘‘noise’’ com-

ponent can be defined in terms of the (square rooted

spatial average) squared deviations relative to the SAI.

This definition of signal and noise is analogous to the

distinction between externally forced and internally

generated variance in ensembles of general circulation

model (GCM) simulations (i.e., Rowell 1998), with

stations or grid-points playing the role of GCM en-

semble members. A signal-to-noise ratio (SNR) can be

formed by dividing the SAI by the noise, but this sec-

ond-order statistic is more sensitive to sampling issues

than the SAI used here.

Statistical significance of interannual correlations is

assessed against 1000 synthetic time series of the same

length and spectral density as the observed pair, but

random phase (Janicot et al. 1996), with the two-sided

90%, 95%, and 99% significance levels indicated in the

following by one (*), two (**), and three (***) asterisks,

respectively.

3. Results

a. Onset date

The mean onset dates determined from CMAP and

GSOD, plotted in Fig. 1a, exhibit a northwest–southeast

progression from late August in northern-central

Sumatra and Kalimantan to mid-December in Timor. The

dates agree well between the two datasets, while there is

a large interstation variability over Java (Fig. 1a) that

could be related to small-scale topographic features.

Onset occurred before 1 November, 1 December, and

1 January in 67% (65%), 79% (86%), and 94% (95%)

of cases, respectively, in CMAP (GSOD). Mean onset

dates computed for subsets of GSOD stations averaged

by subregion (Table 1) are in good agreement with

Naylor et al. (2007; their Fig. 1). Using their definition

(i.e., the first day when accumulated rainfall from

1 August reaches 200 mm) leads to similar median dates

to those shown in Table 1, except in northern areas (not

shown). Moreover, the interannual variability is highly

consistent between both definition with cross correla-

tions . 0.85*** for all regions displayed in Table 1 ex-

cept for northern Sumatra (r 5 0.52***). Onset date is

less relevant in the northern regions because of the

differing seasonality of rainfall north of the equator

(Aldrian and Susanto 2003).

The interannual variability of onset date for the 14

stations over western and central Java is shown in Fig.

1b in terms of the individual standardized anomaly time

series (dotted). The signal that is common to the 14

stations, defined by the SAI (heavy solid), accounts for a

moderate fraction (var[SAI]50.41) of the total variance

at the individual stations, indicating substantial inter-

station noise. However, the SAI is correlated at 0.80***

(0.83***) with the large-scale SAI [leading principal

component (PC) time series] computed from CMAP

onset dates over all 128 grid points (heavy dashed blue

and red curves, respectively), suggesting that the signal

in onset over western and central Java is related to the

large scale despite considerable small-scale noise. This

is also seen in the other subregions (Table 1). The in-

fluence of ENSO is clearly visible in Fig. 1b, with big

delays in large-scale onset during the 1982 and 1997 El

Niño events. In fact, the correlation between large-scale

SAI (leading PC time series) of CMAP is correlated at

0.84*** (0.84***) with the Niño 3.4 SST anomalies in

October, corresponding to the mean onset date across

the domain. Some skewness is also visible with delayed

onsets exhibiting larger amplitudes than early onsets.

The leading EOFs of CMAP and GSOD onset dates

are plotted in Fig. 2. The leading CMAP EOF accounts

for 36% of total variance (EOF#2 accounts for 9% of

total variance), and consists of a large-scale monopolar

pattern with highest loadings over ‘‘monsoonal’’

Indonesia, (i.e., from southern Sumatra to the Timor Sea;

Aldrian and Susanto 2003, their Fig. 2). Loadings remain

substantial toward the southeast but fall off rapidly over

northern Sumatra, the Malay Peninsula, and northern

Kalimantan where they are generally close to zero. The

loadings of the leading EOF of GSOD onset dates (31%

of the variance) are generally similar to those of CMAP,
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while their PC time series are correlated . 0.90***; there

is thus a high level of consistency at large scale between

these two contrasting datasets. Similarly, the cross cor-

relations between the SAIs of each region defined in

Table 1 are always positive and significant at the one-

sided 95% level or greater.

As discussed in section 2d, the station-scale noise can

be defined in terms of the (square rooted spatial aver-

age) squared deviations of the stations’ rainfall relative

to the SAI. The noise variance computed in this fashion

for each of the subregions (not shown) is fairly uniform

in space, though somewhat smaller in southern

Kalimantan, southern Sumatra and western and central

Java. However, differences in the spatial sampling be-

tween subregions do not allow for confidence in this

second-order statistic.

b. Seasonal rainfall total and postonset amounts

The temporal correlations between the leading PC of

onset (Fig. 1b) and the leading PC of SOND seasonal

FIG. 1. (a) Mean onset date computed in CMAP (shading) and GSOD (dot) as the first wet

day of a 5-day sequence receiving . 40 mm from 1 Aug without a dry 10-day sequence

receiving , 5 mm in the following 30 days from onset. (b) Standardized onset date for western

and central Java GSOD stations (dotted lines) with the average, i.e., SAI (solid black line),

together with the CMAP SAI (blue dashed line) and standardized leading PC time series (red

dashed line) computed from all 128 CMAP grid points. The dashed horizontal lines delineate

the 95% confidence interval of a set of 14 white noise time series. Note that one std dev

corresponds to an averaged deviation of ;20 days for western and central Java.
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total exceed 20.90*** for both datasets. The variance

explained by the leading EOF of SOND total (51%

in CMAP and 32% in GSOD) is even larger than that

of onset, presumably because of the seasonal in-

tegration of rainfall that filters out some of the local-

scale noise inherent in the definition of onset date. In

fact, 46% (CMAP) and 67% (GSOD) of onsets oc-

curred between 1 September and 31 December. This

suggests that at least some of the spatially consistent

interannual variability of SOND amount is actually

conveyed by the anomalous timing of the monsoon

onset.

Three approaches are used to test this hypothesis, by

estimating the spatial coherence of rainfall amount be-

yond the onset date. (i) First, the spatial coherence of

the rainfall summed over the 15, 30, 60, and 90 days

following the local onset date is computed. Postonset

rainfall is a priori independent of the timing of the onset

of the monsoon, although both may be influenced by

ENSO and local-scale SST. The disadvantage of this

approach is that postonset amounts refer to different

temporal windows depending on the particular year

and station location. Nonetheless, 30-day amounts, for

example, refer to periods before 1 January in 69%

(CMAP) and 88% (GSOD) of cases. (ii) In the second

approach, the component of the SOND total accounted

for by the large-scale onset, defined as the leading PC of

each dataset (Fig. 2), is removed using a least squares

linear regression. The remaining residual is thus asso-

ciated only with postonset amounts, and all information

linearly related to large-scale onset is removed a priori.

(iii) The last method is to compare cumulative spatial-

FIG. 2. Leading EOF of CMAP (shading) and GSOD (dot) onset dates, plotted as cor-

relations with the principal component time series. The time series of onset date at each grid

point were standardized prior to EOF analysis.

TABLE 1. Statistics of GSOD station onset date by subregion (N is number of stations), computed from the SAI of each region. The

hindcast skill refers to the correlation between the observed and hindcast SAI with a cross-validated CCA using July SSTs as predictors.

One, two, and three asterisks indicate correlation significant at the two-sided 90%, 95%, and 99% level according to a random-phase test

(Janicot et al. 1996).

N

25%, 50%, and 75%

percentiles of the

spatial average Var [SAI]

Correlation with

large-scale SAI

of CMAP

Correlation

with PC#1

of CMAP

Hindcast

skill

Western and central Java (west of 1128E) 14 16 Oct, 28 Oct, 11 Nov 0.41 0.80*** 0.83*** 0.59***

Eastern Java (east of 1128E) 7 13 Nov, 21 Nov, 2 Dec 0.44 0.74*** 0.72*** 0.61***

Southern Sumatra (south of 18S) 6 5 Sep, 19 Sep, 17 Oct 0.60 0.86*** 0.88*** 0.74***

Central Sumatra (between 18S and 28N) 7 15 Aug, 24 Aug, 31 Aug 0.43 0.76*** 0.74*** 0.51**

Northern Sumatra (north of 28N) 6 1 Sep, 11 Sep, 15 Sep 0.23 0.46** 0.41** 0.22

Southern Kalimantan (south of 18S) 6 17 Sep, 22 Sep, 25 Oct 0.72 0.80*** 0.79*** 0.84***

Central Kalimantan (north of 18S) 5 11 Aug, 29 Aug, 12 Sep 0.48 0.70*** 0.69*** 0.46**

Eastern Indonesia (east of 1208E and

south of 88S)

5 30 Nov, 13 Dec, 25 Dec 0.57 0.63** 0.60** 0.49**
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average rainfall anomalies computed from 1 August as

expressed as percentage of the long-term mean for early

and late onset years.

Estimates of var[SAI] for each quantity are given in

Table 2. The spatial coherence is high (i.e., large var

[SAI]) for both onset date and seasonal total but falls to

near zero for postonset rainfall and SOND residuals.

There is, nonetheless, a weak increase of spatial co-

herence as the length of the postonset averaging period

increases from 15 to 90 days, expected because of the

progressive cancellation of meteorological events as the

length of considered period grows. The difference be-

tween CMAP and GSOD results could come from the

area, mainly oceanic, that is not sampled in GSOD and/

or smoothing provided by gridbox-pentad averages in

CMAP.

Standardized anomaly time series of postonset 90-day

amounts for each CMAP grid box are shown in Fig. 3a,

together with the SAI. Spatial coherence is generally

low in most years, with the exceptions of the 1982 and

1997 large El Niño events. The loadings of the leading

EOF of the postonset 90-day amount are displayed in

Fig. 3b. These are weak over monsoonal Indonesia,

especially between southern Sumatra to Sulawesi,

where those of the leading EOF of onset peak (Fig. 2),

and this mode explains less variance (22% in CMAP

and 11% in GSOD) than does the leading EOF of

CMAP onset date (36% in CMAP and 32% in GSOD).

The temporal behavior of the leading PC is nevertheless

consistent with that of onset date; that is, the postonset

season tends to be anomalously dry when onset is

anomalously late, and vice versa, at least for CMAP (r

between leading PC of onset and of postonset 90-day

amount is 20.87*** in CMAP and 20.19 in GSOD; the

postonset PCs being correlated at 0.37* between the

two datasets). Note that the second EOF of postonset

90-day amount in GSOD (not shown) explains 10% of

total variance and is correlated at 20.60*** (respec-

tively 0.51**) with the leading PC of onset date in

GSOD (respectively the leading PC of postonset 90-day

in CMAP). The fact that the loadings are rather large

over the eastern Indian Ocean and scattered patches of

the northern and eastern oceanic margins of the domain

(Fig. 3b) could be evidence of a deterministic signal and

warrants further study.

The leading EOF of SOND residuals (Fig. 3c) shares

some similarities with that of postonset 90-day rainfall

amounts (Fig. 3b), at least for CMAP (25% explained

variance); both have relatively high homogeneous

loadings over eastern Indonesia, and weak loadings

across monsoonal Indonesia. The leading EOF of

GSOD (16% explained variance) lacks similarity with

its CMAP counterpart, and their PCs are not signifi-

cantly correlated (r 5 0.23). Nearby stations often have

quite different loadings, such as over Java (Fig. 3c). By

construction, the leading PC of SOND residuals is or-

thogonal to the leading PC of onset date.

Figure 4 shows the spatial average of the cumulative

rainfall anomalies (averaged over the 57 stations across

Indonesia in the upper panel and the 14 stations of

western and central Java in the lower panel) computed

from 1 August and expressed as percentage relative to

long-term mean for the 6 latest and earliest mean onset

dates. A constant modulation of rainfall anomalies

would lead to a straight horizontal line at the mean

rainfall anomaly. The largest positive (negative) cu-

mulative anomalies occurred in both cases before or

around the early (late) onset dates while the curves

usually tend to zero thereafter (Fig. 4). The spatially

averaged rainfall anomalies at the end of the rainy

season, somewhere in March–April, are still consistent

with the phase of the onset date but the amplitude of

these anomalies is weak (Fig. 4). It suggests that the

strongest spatially coherent signal at large scale (Fig. 4a)

and for a particular subset of stations (Fig. 4b) is before

or near the onset date while it tends to cancel thereafter.

c. Seasonal predictability of onset

The substantial spatial coherence of onset date sug-

gests seasonal predictability. To provide a measure of

the latter, regression models are built using cross-

validated CCA between July SST over the tropical

Pacific and Indian Oceans (208N–208S, 808–2408E) as pre-

dictors and GSOD or CMAP onset dates as predictands.

Note that the 14% of missing entries in GSOD were first

filled with a simple linear regression using the closest

CMAP grid point as predictor. The models were built using

the Climate Predictability Tool (CPT) software developed

at the International Research Institute for Climate Pre-

diction (IRI; http://iri.columbia.edu/outreach/software/);

TABLE 2. Interannual variance of the SAI (Var[SAI]) of the 57

GSOD stations, and 128 grid points of CMAP for local onset date,

and postonset 15-, 30-, 60-, and 90-day rainfall totals. Var[SAI]

ranges between 0 (correlation of 21 between two equal-sized and

perfectly covarying samples), 1/m (5 0.02 for m 5 57 and 0.008 for

m 5 128) where m is the number of locations for spatially inde-

pendent variations, and 1 (perfect correlation between stations)

(Moron et al. 2007).

Var(SAI) GSOD Var(SAI) CMAP

Onset 0.30 0.31

15 day 0.03 0.05

30 day 0.03 0.08

60 day 0.05 0.11

90 day 0.06 0.14

SOND 0.26 0.46

SOND residuals 0.10 0.16
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the predictor and predictand fields were prefiltered using

EOFs, with the number of modes retained determined by

maximizing the model’s goodness of fit under cross vali-

dation, with 5 yr withheld at a time. The leading 5 and 2 (1)

EOF modes are retained in SST and CMAP (GSOD) and

most of the cross-validated skill is associated with the

leading CCA mode whose predictand pattern (i.e., SST

pattern) is almost identical for CMAP and GSOD.

Homogeneous correlation maps of the leading CCA

mode are shown in Figs. 5a and 5b for SST and onset

date, respectively. The SST anomaly structure (Fig. 5a)

exhibits a classical ENSO pattern, together with high

FIG. 3. (a) Individual standardized anomalies of rainfall total for the 90-day period after

the local onset date at the 128 CMAP grid points (dots) with the SAI (solid). The dashed

horizontal lines delineate the 95% confidence interval of a set of 128 white noise time series.

(b) Leading EOF of postonset 90-day amounts in CMAP (shading) and GSOD (dot). (c)

Leading EOF of SOND residuals in CMAP (shading) and GSOD (dot). Units in (b) and (c)

are correlations with the respective principal component time series.
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correlations around Indonesia, such that warm ENSO

events are associated with delayed onset (Hamada et al.

2002; Hendon 2003). The corresponding structure

in onset dates (Fig. 5b) indicates that the delayed onsets

extend right across Indonesia, with high loadings over

monsoonal Indonesia, decreasing weakly (strongly)

toward eastern (northwestern) Indonesia. The regres-

sion model hindcast skill is plotted in Fig. 5c in terms of

FIG. 4. Spatial average of cumulative rainfall anomalies (a) for all 57 stations and (b) 14 stations from

western and central Java (Table 1) computed from 1 Aug and expressed as percentage from the long-

term mean for the six latest (in red) and earliest (in blue) onsets (computed from the spatial average of

onset dates). The dashed line indicates each year and the full bold line indicates the mean of the 6 yr.

The time series are low-pass filtered with a Butterworth filter (cutoff frequency 5 1/30 cpd). The

asterisks indicate the station-average onset date.
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anomaly correlation, with regional averages given in

Table 1 (last column). Skill values are highest over

monsoonal Indonesia, exceeding 0.5** from southern

Sumatra to southern Kalimantan and Timor, reaching

0.80*** for the SAI computed over all stations (0.70***

for CMAP). The subisland subsets of stations in Table

1 achieve station-averaged skills ranging from 0.22

(northern Sumatra) to 0.84*** (southern Kalimantan).

The spatial variability of skill over Java could be due to

random sampling but also to deterministic signals as-

sociated with small-scale orographic features and/or

orientation relative to low-level winds.

4. Conclusions

The spatial coherence of onset date and postonset

rainfall is analyzed from GSOD rain gauges and the

CMAP dataset. The onset date is defined using an ag-

ronomic approach, that is, the first significant wet spell

(here 40 mm in 5 days) without any potentially damaging

FIG. 5. Homogeneous correlation maps of (a) SST, and (b) onset date from CMAP

(shading) and GSOD (circles), of the leading canonical correlation analysis (CCA) mode (c)

MOS skill (i.e., correlation between observed and hindcast onset date) associated with the

leading CCA mode between July SST and onset dates.
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dry spell (here 10 days receiving less than 5 mm) there-

after (here in the 30 postonset days). This definition is

best suited for the end user’s purpose but suffers from the

subjective choice of the parameters. Nevertheless, these

parameters broadly reflect the needs and risks associated

with major crops of Indonesia, such as lowland rice. The

long-term mean onset dates, as well as the frequency of

false starts are sensitive to these subjective parameters

and future applications should carefully consider the

impact of these choices on specific crops. However, for

our main purpose of analyzing the spatial coherence of

anomalous onset dates, the sensitivity to these param-

eters largely vanishes.

The interannual variability of rainy season onset over

monsoonal Indonesia is shown from both gridded

pentad CMAP and daily station GSOD rainfall datasets

to be characterized by a large-scale coherent signal,

together with a moderate amount of local-scale noise

(Figs. 1b and 2). Considering small subsets of GSOD

stations recovers this signal, despite the complexity of

the island topography (Table 1). The interannual anom-

alies are dominated by delayed onsets (Fig. 1b). Con-

versely, the spatial coherence of interannual rainfall

anomalies beyond the onset date is weak, as revealed by

the amount of rainfall in the 15 to 90 days after the onset

and the SOND residuals from large-scale onset (Table 2

and Fig. 3a). The leading EOF of postonset 90-day

CMAP amounts exhibits weak and rather inconsistent

loadings over the main islands with high loadings re-

stricted to eastern Indian Ocean and scattered patches

of the northern and eastern margins (Fig. 3b). However,

this signal is strongly consistent in sign with onset date in

CMAP (i.e., late onset associated with smaller postonset

amount and vice versa). The leading EOF of SOND

residuals from large-scale onset lacks consistency be-

tween the GSOD and CMAP datasets but both none-

theless exhibit large spatially coherent loadings over

eastern Indonesia, but not over the eastern Indian

Ocean (Fig. 3c). The spatial average of cumulative

rainfall anomalies also exhibit their largest amplitudes

before and near the onset date (Fig. 4), while the post-

onset cumulative rainfall anomalies tend almost

monotonically toward zero. There may thus be some

predictability in postonset seasonal amounts, but most

of the spatially coherent signal in SOND seasonal total,

especially across islands, is merely related to the onset.

Our main finding is that most of the large-scale in-

terannual signal of SOND seasonal rainfall total is

conveyed by variations in the onset date of the rainy

season. This implies that (i) rainfall monitoring at a

small set of stations spread across Indonesia should be

sufficient to establish interannual anomalies of onset

date, and (ii) the scale of the interannual variability of

the onset suggests a large-scale forcing and potential

seasonal predictability. Indeed large-scale onset is found

to be highly correlated with an ENSO SST pattern

during July (Fig. 5a), that is, at least one month and half

before the mean local-scale onset date. A cross-

validated CCA using July SST in tropical Indian and

Pacific Oceans (208N–208S, 808–2408E) as a predictor

leads to promising skill values for the large-scale onset

date (r 5 0.80*** for GSOD; Fig. 5b,c). Further work is

needed to examine the associated circulation changes

and to investigate the roles of ENSO and Indian Ocean

climate variability (Hendon 2003).

The spatial variation of hindcast skill (Fig. 5c) and

onset EOF loadings (Fig. 2) warrants further study.

Both exhibit maxima from southern Sumatra to south-

ern Kalimantan—quite close to the equator—and de-

creases gradually southward across Java and Sonde

Islands and more rapidly northward (Figs. 2 and 5c,

Table 1). The latter decrease could be related to the

year-round rainfall there (Aldrian and Susanto 2003),

and the onset date should be viewed merely as an in-

crease of the rainfall rather than the transition between

a real dry and wet season. In that case, the onset date is

sensitive to the subjective choices used to define it and is

clearly less robust. This does not apply to monsoonal

Indonesia south of 58S. The highest EOF loadings and

SST-related skill over southern Sumatra to southern

Kalimantan coincide with the largest interquartile range

of interannual variability (Table 1). This subequatorial

band is perhaps the most sensitive to the spatial shift of

the ITCZ that probably triggers the onset of the rainy

season. The complex orography across Java could also

enhance the intraregional noise even between close

stations but we must also keep in mind that the spatial

sampling is highest over Java (Fig. 1a). Similarly, the

nature of spatial coherence for postonset rainfall and

SOND residuals over eastern Indonesia and the eastern

Indian Ocean (postonset rainfall only), as well as sea–

land contrast needs further investigation using better

sampled datasets and/or regional model simulations.

The large-scale signal in onset is still strongly present

in multistation small subisland regions (Table 1), indi-

cating the potential to downscale the large-scale onset

signal to the near-local scale. However, it is clear that

individual stations exhibit considerable noise (Table 1).

Thus, careful consideration needs to be given to the

trade-off between potentially more-accurate forecasts

at the aggregated scale versus local specificity for use in

climate risk management. The large-scale nature of

seasonal predictability of onset should enable improved

agricultural planning in the future, together with better

identification of false starts to the rainy season via real-

time monitoring and short-term forecasts of the large-
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scale evolving monsoon circulation. Forecasts of the

Madden–Julian oscillation may lend an additional source

of predictability at intraseasonal lead times (Wheeler

and McBride 2005).
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