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ABSTRACT

Essays on Sticky Prices and High Inflation Environments

Daniel Villar

It has been well established for a long time that sticky prices are fundamental to our

understanding of monetary policy. Indeed, sticky prices are a common micro-foundation

in models of monetary policy and nominal aggregate fluctuations, as monetary variables

typically do not have real economic effects if prices are fuly flexible. This is why price

stickiness has been the focus of much research, both theoretical and empirical. A particularly

exciting development in this literature has been the recent availability of large, detailed,

micro data sets of individual prices, which allow us to observe when and how often the

prices of individual goods and sevices change. This type of data has greatly improved our

ability to discipline the theoretical models that are used to analyze monetary policy, and

advances in sticky price modelling have also provided important questions to ask of the data.

The most common data set used in this literature has been the micro data underlying the

U.S. Consumer Price Index. While work with this data has produced important results, an

important limitation is that it has, until recently, only been available going back to 1988.

This is a limitation because it means that the data set only cover periods of low and stable

inflation, which limits the types of questions that the price data can help answer.

In this dissertation, I present an extension to this data set: in work carried out with Emi

Nakamura, Jón Steinsson and Patrick Sun, we re-constructed an older portion of the data

to extend it back to 1977. With this new sample, we can study the high inflation periods of

the late 1970’s and early 1980’s, and in this dissertation I explore various questions related



to monetary policy, and show that several important insights can be gained from this new

data set.

Chapter 1, “The Elusive Costs of Inflation: Price Dispersion during the U.S. Great

Inflation”, presents the extended CPI data set and addresses a key policy question: How

high an inflation rate should central banks target? This depends crucially on the costs of

inflation. An important concern is that high inflation will lead to inefficient price dispersion.

Workhorse New Keynesian models imply that this cost of inflation is very large. An increase

in steady state inflation from 0% to 10% yields a welfare loss that is an order of magnitude

greater than the welfare loss from business cycle fluctuations in output in these models.

We assess this prediction empirically using a new dataset on price behavior during the

Great Inflation of the late 1970’s and early 1980’s in the United States. If price dispersion

increases rapidly with inflation, we should see the absolute size of price changes increasing

with inflation: price changes should become larger as prices drift further from their optimal

level at higher inflation rates. We find no evidence that the absolute size of price changes

rose during the Great Inflation. This suggests that the standard New Keynesian analysis of

the welfare costs of inflation is wrong and its implications for the optimal inflation rate need

to be reassessed. We also find that (non-sale) prices have not become more flexible over the

past 40 years.

Chapter 2, “The Skewness of the Price Change Distribution: A New Touchstone for

Sticky Price Models”, documents the predictions of a broad class of existing price setting

models on how various statistics of the price change distribution change with the rate of ag-

gregate inflation. Notably, menu cost models uniformly feature the price change distribution

becoming less dispersed and less skewed as inflation rises, while in the Calvo model both



relations are positive. Using a novel data set, the micro data underlying the U.S. CPI from

the late 1970’s onwards, we evaluate these predictions using the large variation in inflation

over this period. Price change dispersion does indeed fall with inflation, but skewness does

not, meaning that menu cost models are at odds with these empirical patterns. The Calvo

model’s prediction on price change skewness are consistent with the data, but it fails to

match the positive relationship between inflation and the frequency of price change, and the

negative relationship between inflation and price change dispersion. Since the negative cor-

relations for dispersion and skewness are driven by the selection effect in menu cost models,

the evidence presented suggests that selection is less substantial than in menu cost models.

Chapter 3, “The Selection Effect and Monetary Non-Neutrality in a Random Menu Cost

Model”, presents a random menu cost model that nests the Golosov and Lucas (2007) and

Calvo (1983) models as extreme cases, as well as intermediate cases, depending on the dis-

tribution of menu costs. This model includes idiosyncratic technology shocks and aggregate

demand shocks, so it can be applied to price micro data, and to evaluate the degree of mon-

etary non-neutrality implied by different kinds of menu cost distributions. This model can

match the empirical patterns presented in Chapter 2. I find that a random menu cost model

with a much weaker selection effect (than in existing menu cost models) no longer predicts

such a negative relationship between inflation and price change skewness, but still predicts

that the frequency of price change rises with inflation, as in the data, and contrary to the

Calvo model. This model also predicts a very high degree of monetary non-neutrality, and

the results overall provide evidence in favor of high non-neutrality.

Chapter 4, “The State-Dependent Price Adjustment Hazard Function: Evidence from

High Inflation Periods”, considers a model-free approach to understanding sticky prices and



non-neutrality. The price adjustment hazard function has been used to establish the relation-

ship between individual firms’ price setting behavior (micro-level price stickiness) and the

response of the aggregate price level to monetary shocks (aggregate stickiness, or monetary

non-neutrality), but scant work has been done to estimate the function empirically. We show

first that various types of hazard functions (with widely different levels of implied aggregate

stickiness) can match the unconditional moments that have been the focus of empirical work

on sticky prices (such as the average frequency and size of price changes). However, the rela-

tionship between inflation and the shape of the price change distribution over time provides

considerable information on the shape of the hazard function. In particular, we find that in

order to match the positive inflation-frequency correlation, and the non-negative inflation-

price change skewness correlations, the hazard function has to be asymmetric around zero

(price increases are overall more likely than decreases) and relatively flat for small to inter-

mediate values of the desired price gap. The latter feature means that our estimated hazard

function implies a large degree of aggregate flexibility.
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Chapter 1

The Elusive Costs of Inflation: Price

Dispersion during the U.S. Great

Inflation

Emi Nakamura, Jón Steinsson, Patrick Sun and Daniel Villar

1



1.1 Introduction

Recent years have seen a resurgence of interest in the question of the optimal level of inflation.

In the years before the Great Recession, there was a growing consensus emerging among

policymakers that good policy consisted of targeting an inflation rate close to zero. One

manifestation of this was that many countries adopted explicit inflation targets concentrated

around 2% per year. Within academia, prominent studies argued for still lower rates of

inflation even after having explicitly taken account of the zero lower bound (ZLB) on nominal

interest rates (Coibion et al., 2012; Schmitt-Grohe and Uribe, 2011). The Great Recession has

led to reconsideration of this consensus view with an increasing number of economists arguing

for targeting a higher inflation rate of say 4% per year (see, e.g., Ball, 2014; Blanchard et al.,

2010; Blanco, 2015b; Krugman, 2014).

An important concern with targeting higher inflation is that this will increase price dis-

persion and thereby distort the allocative role of the price system. Intuitively, in a high

inflation environment, relative prices will fluctuate inefficiently as prices drift away from

their optimal value during intervals between price adjustment. As a consequence relative

prices will no longer give correct signals regarding relative costs of production, leading pro-

duction efficiency to be compromised.

In standard New Keynesian models—the types of models used in most formal analysis

of the optimal level of inflation—these costs are very large even for moderate levels of infla-

tion. Calibrating such a model in a relatively standard way, we show that the consumption

equivalent welfare loss of moving from 0% inflation to 10% inflation is roughly 10%. For

comparison, the welfare costs of business cycle fluctuations in output—even including large
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recessions like the Great Depression and Great Recession—are an order of magnitude smaller

in these same models.1 No wonder these models strongly favor virtual price stability.

Measuring the sensitivity of inefficient price dispersion to changes in inflation is chal-

lenging for several reasons. One challenge is the small amount of variation we have seen in

the inflation rate in the U.S. over the last few decades. Existing BLS micro-data on U.S.

consumer prices have been influential in establishing basic facts about the frequency and

size of price changes (Bils and Klenow, 2004; Klenow and Kryvtsov, 2008; Nakamura and

Steinsson, 2008). These data, however, have the substantial disadvantage that they span

only the post-1987 Greenspan-Bernanke period of U.S. monetary history, when inflation was

low and stable. This seriously limits their usefulness in studying how variation in inflation

affects the economy.

To overcome this challenge, we have extended the BLS micro-dataset on U.S. consumer

prices back to 1977. This allows us to analyze a period when inflation in the U.S. rose

sharply—peaking at roughly 14% per year in 1980—and was then brought down to a lower

level in dramatic fashion by the Federal Reserve under the leadership of Paul Volcker (see

Figure 1.1). We constructed these new data from original microfilm cartridges found at the

BLS by first scanning them and then converting them to a machine-readable dataset using

custom optical character recognition software. This effort took several years to complete

partly because the data were never allowed to leave the BLS building in Washington DC.

1The models used to analyze the costs of welfare in the New Keynesian literature typically assume a
representative agent with constant relative risk aversion preferences and output fluctuations that are trend
stationary. In this case, Lucas (2003) shows that the consumption equivalent welfare loss of business cycle
fluctuations in consumption over the period 1947-2001 are 0.05% if consumers are assumed to have log-utility.
Redoing Lucas’ calculation with a coefficient of relative risk aversion of 2 and considering fluctuations in
annual per capita consumption around a linear trend over the period 1920-2009 implies a welfare loss of
0.4%. A substantial literature has since argued that Lucas’ calculation substantially understates the true
costs of business cycle fluctuations (see, e.g., Barro, 2009, Krusell et al., 2009).
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Figure 1.1: CPI Inflation in the U.S.

A second challenge to measuring the sensitivity of inefficient price dispersion to changes

in inflation is that much of the cross-sectional dispersion in prices—even within narrowly

defined product categories—likely results from heterogeneity in product size and quality

(e.g., a can of soda versus a 2 liter bottle, organic versus non-organic milk, Apple’s iPhone

6S versus LG’s G4 smartphone). The simplest way to empirically assess price dispersion is

to calculate the standard deviation of prices within a narrow category. But this approach

will lump together desired price dispersion resulting from heterogeneous product size and

quality and inefficient price dispersion resulting from price rigidity. In fact, the amount of

desired price dispersion within even narrow product categories is likely to dwarf inefficient

price dispersion at moderate levels of inflation.

To overcome this challenge, we assess the sensitivity of inefficient price dispersion to

changes in inflation by looking at how the absolute size of price changes varies with inflation.
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Intuitively, if inflation leads prices to drift further away from their optimal level, we should see

prices adjusting by larger amounts when they adjust. The absolute size of price adjustments

should reveal how far away from optimal the adjusting prices had become before they were

adjusted. The absolute size of price adjustment should therefore be highly informative about

inefficient price dispersion.

We show that the mean absolute size of price changes in the U.S. is essentially flat over

our entire sample period. There is, thus, no evidence that prices deviated more from their

optimal level during the Great Inflation period when inflation was running at higher than

10% per year than during the more recent period when inflation has been close to 2% per

year.

We conclude from this that the main costs of inflation in the New Keynesian model are

completely elusive in the data. This implies that the strong conclusions about optimality of

low inflation rates reached by researchers using models of this kind need to be reassessed. It

may well be that inflation rates above 2% have other important costs. A strong consensus

for low inflation being optimal must rely on these other costs outweighing the benefits of

higher inflation.

Rather than seeing an increase in the absolute size of price changes during the Great

Inflation, we see a substantial increase in the frequency of price change. The behavior of

both the absolute size and frequency of price change as inflation varies in our sample line

up much better with the predictions of menu cost models than they do with the predictions

of the workhorse Calvo (1983) model. Intuitively, in the menu cost model, prices never drift

too far from their optimal level since firms find it optimal to pay the (relatively small) menu

cost before this happens. This greatly limits the extent to which price dispersion rises with
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inflation in the menu cost model and, as a result, the welfare loss from increasing inflation

is small in this model, a point emphasized by Burstein and Hellwig (2008).

A second dramatic result of our analysis is that, despite all of the technological change

that has occurred over the past four decades, regular prices (excluding temporary sales) do

not seem to have become more flexible over this period, controlling for inflation. We show

that a simple menu cost model with a fixed menu cost over the entire sample period can

match the empirical relationship between the frequency of price change and inflation. Menu

costs are, of course, a veil for a variety of deeper frictions in the price adjustment process

arising from technological, managerial, or customer-related factors. Whatever these costs

are, they do not appear to be going away over time.

In sharp contrast, we show that the frequency of temporary sales has increased substan-

tially over the past four decades. Temporary sales occur only in a subset of sectors. But

their frequency has increased substantially in all of these sectors. Whether this has impor-

tant implications for aggregate price flexibility is a question of active research over the past

decade. The empirical literature has emphasized that temporary sales have quite different

empirical properties from those of regular prices. Sales are much more transitory than other

price changes, and less responsive to macroeconomic conditions. These characteristics sub-

stantially limit the contribution of temporary sales to aggregate price flexibility.2 Moreover,

this growth in temporary sales leaves the large and growing “gorilla in the room” sector—the

service sector—untouched.

Relatively little work has been done on the sensitivity of price dispersion to changes in

2These arguments are made in Nakamura and Steinsson (2008), Guimaraes and Sheedy (2011), Kehoe
and Midrigan (2015), Anderson et al. (2015). See also Nakamura and Steinsson (2013) for a discussion of
these ideas.
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inflation in the United States. Reinsdorf (1994) uses BLS micro data for the period 1980-1982

(a subset of our data) and finds that price dispersion rose when inflation fell. Sheremirov

(2015) uses scanner price data for the relatively low inflation period of 2002-2012. He finds

that price dispersion rises with inflation. Alvarez et al. (2011) study the relationship between

price dispersion and inflation during the Argentinian hyperinflation in 1989-1990. They find

that the elasticity of price dispersion with inflation is roughly 1/3 at high inflation rates, in

line with a simple menu cost model.

An earlier literature studied the relationship between inflation and the dispersion of sec-

toral inflation rates (Debelle and Lamont, 1997; Fischer, 1981; Glejser, 1965; Mills, 1927;

Parks, 1978; Vining and Elwertowski, 1976). However, such measures are very sensitive to

sectoral shocks such as oil price shocks (Bomberger and Makinen, 1993). Van Hoomissen

(1988) and Lach and Tsiddon (1992) study the the relationship between inflation and the

dispersion of price changes within sector during high inflation periods in Israel in the 1970’s

and early 1980’s. These papers argue that menu cost models yields similar implications

for “relative price variability” (the dispersion in product-level inflation rates) as for price

dispersion itself. This is not, however, the case in the models we study. On a related note,

Vavra (2014) studies the cyclical properties of the dispersion of price changes.

The paper proceeds as follows. Section 1.2 discusses the welfare loss resulting from in-

flation in different models with price rigidity. Section 1.3 describes the construction of our

new micro-dataset on consumer prices. Section 1.4 presents evidence based on this data that

inefficient price dispersion was no higher when inflation was high in the late 1970’s and early

1980’s than it has been since then. Section 1.5 discussed the evolution of the frequency of

price change over our sample period. Section 1.6 discusses our results on the evolution of
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price flexibility. Section 1.7 concludes.

1.2 Costs of Inflation in Sticky Price Models

To understand what drives the large costs of inflation in standard sticky price models, it is

useful to lay out a simple model of the type used in the literature. The model economy is

populated by households, firms, and a government. Consider first the households. There are

a continuum of identical households that seek to maximize discounted expected utility given

by

Et

∞∑
j=0

βj [logCt+j − Lt+j] , (1.1)

where Et denotes the expectations operator conditional on information known at time t, Ct

denotes household consumption of a composite consumption good, and Lt denotes household

supply of labor. Households discount future utility by a factor β per period. The composite

consumption good Ct is an index of household consumption of individual goods produced in

the economy given by

Ct =

[∫ 1

0

c
θ−1
θ

it di

] θ
θ−1

, (1.2)

where cit denotes consumption of individual product i. The parameter θ > 1 denotes the

elasticity of substitution between different individual products.

Households earn income from two sources: their labor and ownership of the firms in the

economy. The household’s budget constraint is therefore

PtCt +QitBit ≤ WtLt + (Dit +Qit)Bit−1, (1.3)
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where Pt denotes the price of the final good, Wt denotes the wage rate, Dit, Qit, and Bit

denote the dividend, price, and quantity purchased and sold of asset i. The assets in the

economy include ownership claims to the firms in the economy and may include other assets

such as a risk-free nominal bond and Arrow securities although these will not play any role

in our analysis. To rule out “Ponzi schemes”, we assume that household financial wealth

must always be large enough that future income suffices to avert default.

Households take the prices of the individual goods pit as given and optimally choose to

minimize the cost of attaining the level of consumption Ct. This implies that their demand

for individual product i is given by

cit =

(
pit
Pt

)−θ
Ct, (1.4)

where

Pt =

[∫ 1

0

p1−θit di

] 1
1−θ

(1.5)

is the cost-of-living price index.

Optimal choice of labor by the household taking the wage Wt as given yields a labor

supply equation

Wt

Pt
= Ct. (1.6)

Household optimization also yields expressions for the household’s valuation of all assets

that exist in the economy. For the purpose of calculating the equilibrium in our model, it

will be useful to have an expression for the household’s valuation at time t of an uncertain

dividend payment from firm i at time t+ j, i.e., a j-period “dividend strip” for firm i. Lets
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denote the value of this dividend strip as V j
it . Its value is

V j
it = Et

[
βj
(
Ct+j
Ct

)−1
Dt+j

]
. (1.7)

Other conditions for household optimization do not play a role in determining the equilib-

rium.

There exist a continuum of firms in the economy that each produce a distinct individual

product using the production function

yit = AitLit. (1.8)

Here Ait denotes the productivity level of firm i and Lit is the amount of labor demanded by

firm i. The logarithm of firm productivity varies over time according to the following AR(1)

process

logAit = ρ logAit−1 + εt, (1.9)

where εt ∼ N(0, σ2
ε ) are independent over time and across firms.

Firms commit to meet demand for their products at the price they post. They hire labor

on the economy-wide labor market at wage rate Wt in order to satisfy demand. The marginal

cost of firm i is MCit = Wt/Ait. The firms are monopoly suppliers of the goods they produce.

Their main decision is how to price these products. We assume that changing prices is costly

and consider several different assumptions about these costs below.

Finally, to keep our model as simple as possible so that we can focus on the driving forces

underlying costs of inflation in a sticky price setting, we assume that the monetary authority
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is able to control nominal output St = PtCt. Specifically, the monetary authority acts so as

to make nominal output follow a random walk with drift in logs:

logSt = µ+ logSt−1 + ηt (1.10)

where ηt ∼ N(0, σ2
η) are independent over time. We will refer to St either as nominal output

or as nominal aggregate demand.

1.2.1 The Flexible Price Benchmark

Let’s begin by considering the equilibrium of this economy when prices are completely flex-

ible. In this case, the firms will set the price of the good they produce equal to a markup

over marginal cost

pit =
θ

θ − 1

Wt

Ait
, (1.11)

This price setting equation can then be used to show that at the aggregate level

Pt =
θ

θ − 1

Wt

Af
, (1.12)

where

Af =

[∫ 1

0

Aθ−1it di

] 1
θ−1

. (1.13)

We refer to Af as flexible price aggregate labor productivity.3 Using firm i’s production

function—equation (1.8)—the demand curve for firm i’s output—equation (1.4)—the price

3Since we abstract from aggregate productivity shocks, if the cross-sectional distribution of idiosyncratic
firm productivity Ait starts off at its ergodic distribution, the integral on the right-hand-side of equation
(1.13) will remain constant.
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setting equation for firm i—equation (1.11)—and integrating over i yields the following

aggregate production function

Yt = AfLt. (1.14)

where Yt denotes aggregate output (which is equal to aggregate consumption Yt = Ct). See

Appendix A.1 for derivations of equations (1.11)-(1.14).

We can now see that in this flexible price version of our model, the equilibrium value of

output, labor, and real wages is determined by the following three simple equations:

Labor Supply:
Wt

Pt
= Yt (1.15a)

Production Function: Yt = AfLt (1.15b)

Markup: Pt = Ωf
Wt

Af
. (1.15c)

where Ωf = θ/(θ − 1) denotes the amount by which firms choose to markup their products’

prices over marginal costs when prices are fully flexible. Notice that these three equations

only determine Wt/Pt, not the level of Pt and Wt individually. To pin down the level of

nominal prices and wages, one must add St = PtYt to the system.

Using equations (1.15a)-(1.15c) to solve for output and labor supply yields

Yt = Ω−1f Af (1.16a)

Lt = Ω−1f . (1.16b)

Notice that this solution is independent of the rate of inflation and also independent of the
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history of shocks to nominal aggregate demand. The only distortion that moves this economy

away from a first-best outcome is the monopoly power of the firms. This distortion leads

the firms to set prices above marginal costs. As a consequence, output is inefficiently low.4

1.2.2 Equilibrium with Sticky Prices

When prices are sticky, the determination of equilibrium is more complicated and will de-

pend on the exact nature of the price adjustment costs. We will consider several different

assumptions about the nature of price adjustment costs including the case of a constant fixed

cost (the menu cost model) and a case where the cost is zero with some probability in each

period and infinite with a complementary probability (the Calvo (1983) model). We assume

that firms maximize the value of their stochastic stream of dividends. The methods we use

to solve for the equilibrium in these models are those described in detail in Nakamura and

Steinsson (2010).

To help build understanding about the costs of inflation that result from sticky prices, it is

useful to compare the equilibrium in the sticky price case with the flexible price equilibrium.5

To this end, we consider an analogous set of equations to equations (1.15) for the sticky price

4In a fully competitive version of the economy described above—i.e., one in which the markets for all the
goods are competitive—all prices would be set equal to marginal cost and the markup Ωf would therefore
be one. Output would therefore be higher. We know from the first welfare theorem that this is the efficient
level of output.

5This exposition builds on related analysis in Blanco (2015a) as well as earlier work in Burstein and
Hellwig (2009).

13



case:

Labor Supply:
Wt

Pt
= Yt (1.17a)

Production Function: Yt = At(π̄)(Lt − Lpct ) (1.17b)

Price Setting: Pt = Ωt(π̄)
Wt

At(π̄)
. (1.17c)

The same labor supply equation continues to hold in the sticky price case. The aggregate pro-

duction function—equation (1.17b)—however, differs from its flexible price analog—equation

(1.15b)—in two ways. First, some labor is needed to change prices and does not produce

output. We use Lpct to denote this extra labor. This is one source of costs of price rigid-

ity. Second, aggregate labor productivity is lower in the sticky price economy than under

flexible prices because in the sticky price model the relative prices of different goods do not

accurately reflect the goods’ relative marginal cost of production. In Appendix A.1 we show

that the value of aggregate labor productivity when prices are sticky is

At(π̄) =

[∫ 1

0

(
pit
Pt

)−θ
A−1it di

]−1
. (1.18)

Note that aggregate labor productivity is not only a function of the physical productivity

of the individual firms, but also a function of the relative prices of the goods they sell. This

occurs because we use a utility based definition of aggregate output (see equation (1.2) and

note that Yt = Ct) and the marginal utility households derive from each individual product

falls as they consume more of that product relative to other products. Consider for simplicity

a case where all products have the same physical productivity. In this case, products that
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have low relative prices—and are therefore consumed in greater quantities—will contribute

less to aggregate output on the margin than products with high relative prices unless. This

will lower aggregate productivity of labor.6 More generally, the more intensive consumption

of the low priced goods will lower aggregate productivity of labor, unless their lower relative

prices are offset by higher physical productivity.

When prices are sticky, the relative price of a particular product drifts downward as time

passes. This is one source of divergence between relative prices and relative productivity

that results in lower aggregate labor productivity. This drift is more pronounced the higher

is the level of inflation. For this reason, aggregate labor productivity is a decreasing function

of the average level of inflation. To emphasize this, we make explicit the dependence of At

on π̄ by writing At(π̄).

Equation (1.17c) is most usefully thought of as defining Ωt(π̄). We will refer to Ωt(π̄)

as the aggregate markup in the sticky price case. Variation in Ωt(π̄) reflects the degree to

which the price level rises more or less rapidly than At(π̄) falls as inflation changes.7

Manipulating equations (1.17) yields

Yt = Ωt(π̄)−1At(π̄) (1.19a)

Lt = Ωt(π̄)−1 + Lpct (1.19b)

This shows that output under sticky prices will differ from its level under flexible prices for

6In the special case of equal idiosyncratic productivity, the variance of prices is a second order approxi-
mation for labor productivity.

7It should be noted that Ωt(π̄) does not measure how the average markup of firms over physical marginal
costs change as inflation changes since At(π̄) is not a measure of physical productivity but rather is also
affected by the distribution of relative prices.
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two reasons: 1) aggregate labor productivity will be lower, 2) the aggregate markup may

be different; and aggregate labor supply will also differ from its level under flexible prices

for two reasons: 1) Some labor is needed to change prices, 2) the aggregate markup may be

different.

Welfare in the economy, in turn, depends on output and labor through equation (1.1).

As is common in the literature, we will report welfare differences across models and levels of

inflation in terms of consumption equivalent welfare changes. I.e., when comparing welfare

in model economy A with welfare in model economy B we will solve for the value of Λ that

yields

E
[
log
(
(1 + Λ)CA

t

)
− LA

]
= E

[
log
(
CB
t

)
− LB

]
. (1.20)

The value Λ then measures the percentage change in consumption needed to make households

in economy A equally well off as households in economy B.

1.2.3 Model Calibration

Below we calculate equlibrium outcomes for a menu cost model and a Calvo model and

compare them to the flexible price benchmark. These models are calibrated as follows. A

unit of time is meant to correspond to a month. We set the subjective discount factor

to β = 0.961/12. The baseline value that we use for the elasticity of substitution between

intermediate goods is θ = 4. This value is roughly in line with estimates of the elasticity

of demand for individual products in the industrial organization and international trade

literatures (Berry et al., 1995; Broda and Weinstein, 2006; Nevo, 2001). This is, however,

at the low end of values for θ that have been used in the macroeconomics literature on the
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welfare costs of inflation. We will also present results for θ = 7, which is the values used by

Coibion et al. (2012).

In the menu cost model, we calibrate the level of the menu cost and the standard deviation

of the idiosyncratic shocks to match the median frequency of price change of 10.1% per month

and the median absolute size of price changes of 7.5% over the (relatively low inflation) period

1988-2014.8 The resulting parameter values are K = 0.019 for the menu cost and σε = 0.037

for the standard deviation of the idiosyncratic shocks.9 In the Calvo model, we set the

frequency of price change equal to the median frequency of price change in the data and the

standard deviation of the idiosyncratic shocks to the same value as in the menu cost model.

In both models, we assume that the first-order autoregressive parameter in the process for

idiosyncratic productivity is ρ = 0.7, the same value as in Nakamura and Steinsson (2010).

We calibrate the standard deviation of shocks to nominal aggregate demand to be ση =

0.0039 based on the standard deviation of changes in U.S. nominal GDP over the period

1988-2014. We present results for a range of values of average change in nominal aggregate

demand (i.e., a range of values for average inflation).

1.2.4 Numerical Results on the Costs of Inflation

Figure 1.2 plots the consumption equivalent welfare loss experienced by households when

prices are sticky as a function of the inflation rate. The welfare loss is calculated relative

to welfare in an economy with flexible prices. The difference in results between the menu

8More specifically, we first calculate the average frequency and absolute size of price changes within ELIs
(see section 1.3 for a discussion of what an ELI is) in each year. We then take a median across ELIs in each
year. We then take an average of these medians over years.

9This menu cost implies that 0.019 units of labor are needed to change a price. For comparison, the
non-stochastic steady state level of labor each month is Ω−1

f = 0.75.
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Figure 1.2: Welfare Loss
Note: The figure plots the consumption equivalent loss of welfare in each model as a function of the
inflation rate relative to welfare when prices are completely flexible.

cost model and the Calvo model is striking. For the menu cost model, the welfare loss is

small and virtually completely constant at about 0.5% as a function of inflation. This is

true both when θ = 4 and θ = 7. For the Calvo model, however, the costs of price rigidity

rise sharply with inflation. Consider first our baseline case of θ = 4. When inflation is zero,

these costs are similar in magnitude to those in the menu cost model. When inflation is 10%

per year, these costs have risen to 2.4%; and when inflation is 16% per year, these costs are

a staggering 7.7% per year. When θ = 7, these welfare losses rise even faster. In this case,

the welfare loss hits 10% when inflation is roughly 10%. Clearly the exact nature of price

rigidities matter a great deal when assessing the costs of inflation.

To gain further insight, Figure 1.3 plots the level of output and labor supply in the menu

cost model and Calvo model as a function of inflation (again relative to the level of these
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Figure 1.3: Output and Labor Supply
Note: The left panel plots average output and the right panel plots average labor supply. In each
case, these variables are plotted as a function of inflation relative to their level when prices are
flexible.

variables when prices are flexible). This figure shows that in the Calvo model, an increase

in inflation from 0% to 10% leads to a fall in output of about 1.5%. But the amount of

labor needed to produce this lower output is actually greater by 0.7% due to a fall in labor

productivity. As with welfare, these changes in output and labor supply grow increasingly

rapidly as inflation rises above 10%.

Figure 1.4 plots labor productivity directly as well as the aggregate markup (again relative

to the level of these variables when prices are flexible). From this figure we see that the welfare

loss that results from a higher rate of inflation in the Calvo model come entirely from a sharp

fall in labor productivity. Labor productivity falls by 2.1% when inflation rises from 0% to

10%. The other two potential sources of welfare losses discussed in section 1.2.2 are non-

existent or actually increase welfare in the Calvo model. First, in the Calvo model, firms face

no direct costs when they change their prices. Second, the aggregate markup actually falls
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Figure 1.4: Labor Productivity and Markup
Note: The left panel plots average labor productivity and the right panel plots the aggregate markup.
In each case, these variables are plotted as a function of inflation relative to their level when prices
are flexible.

when inflation rises (by roughly 0.9 percentage points, when inflation rises from 0% to 10%).

In other words, the price level relative to the wage rate does not rise quite as rapidly as labor

productivity falls implying the output does not fall as rapidly as labor productivity.10

At an intuitive level, the loss of labor productivity in the Calvo model when inflation rises

is due to an increase in inefficient price dispersion. In fact, these two concepts are equal up

to a second order approximation when we abstract from idiosyncratic productivity shocks.

To drive home this point, Figure 1.5 plots inefficient price dispersion in the Calvo model and

the menu cost model as a function of inflation. We see that the pattern for inefficient price

dispersion is very similar to the pattern for labor productivity (and the overall welfare loss).

This is useful in terms of providing us with guidance regarding what statistics we should

10In the menu cost model we analyze, the aggregate markup does not change much with inflation over
the range we consider. Benabou (1992) studies a menu cost model with consumer search in which the higher
price dispersion resulting from inflation leads to more search, which in turn makes markets more competitive
an lowers markups.
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Figure 1.5: Inefficient Price Dispersion
Note: The measure of inefficient price dispersion that we plot here is the standard deviation across
firms of the firm’s price relative to the price it would charge if it had flexible prices.

calculate to shed empirical light on the costs of inflation.

1.3 New Micro-Data on Consumer Prices during the

Great Inflation

Our analysis is based on a new dataset that we developed with the help and support of

staff at the Bureau of Labor Statistics.11 The dataset contains the individual price quotes

underlying the U.S. Consumer Price Index for the period from May 1977 to October 1986

and May 1987 to December 1987. Prior to our project, the BLS CPI Research Database

contained data starting only in 1988. It therefore had the important disadvantage that it

did not cover the most eventful period in post-WWII U.S. monetary history: the “Great

11We owe a huge debt to Daniel Ginsberg, John Greenlees, Michael Horrigan, Robert McClelland, John
Molino, Ted To and numerous others at the Bureau of Labor Statistics whose efforts were crucial in making
this project possible.
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Inflation” of the late 1970’s and early 1980’s.

The construction of the dataset involved two main phases. First, we worked with the

BLS staff to scan the physical microfilm cartridges to convert them to digital images. This

step was difficult because the microfilm cartridges were sufficiently old that modern scanners

could not read them. Fortunately, we were able to find a company that was willing and able

to retrofit a modern microfilm reader to read these outdated cartridges.

This original process of scanning the price cartridges left us with roughly 1 million images

of “Price Trend Listings” that needed to be converted to machine-readable form. The BLS’

high standards of confidentiality imply that all processing of the data must be done on-site at

the BLS in Washington DC. This made it infeasible to outsource this step to a professional

data-entry firm for manual data entry. The alternative available to use was to use optical

character recognition (OCR) software for this conversion process. This was challenging

because leading commercial software solutions turned out to be both prohibitively expensive

and too slow. After considerable search, we, however, found a firm that was able to create

custom software that ensured high quality and high enough speed to convert the large number

of images we had.12

The raw microfilm cartridges we found at the BLS contain images of Price Trend Listings,

starting in May 1977 and ending in October 1986. Each Price Trend Listing contains prices

for the previous 12 months for a given product—a feature of the data that we make con-

siderable use of in checking for errors, as we describe below. All cartridges from the period

1977-1981 we scanned, while cartridges from every other month for the period 1982-1986

12In overcoming these practical obstacles, we benefited greatly from Patrick’s tireless work and ingenuity.
The rest of us are very grateful for his efforts in this regard.
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were scanned. This choice was motivated by the higher quality of the images on the more

recent cartridges. It is possible that even older CPI micro-data exists at the BLS. However,

the CPI underwent a major revision in 1978. We conjecture that data collection was revised

as a part of this revision and the May 1977 start date of our data is the start date of the new

data collection system put in place at this time. We obtained separate, already digitized

data on prices for the months of May to December in 1987. This left us with a short gap in

coverage for the period November 1986 to April 1987.

The information contained on the Price Trend Listing images includes 1) an internal

BLS category label called an Entry Level Item or ELI, 2) a location (city) identifier, 3) an

outlet identifier, 4) a product identifier, 5) the product’s price, 6) the percentage change

in the product’s price between collection periods, 7) a “sales flag” indicating whether the

product’s price was temporarily marked down at the time of collection, 8) an “imputation

flag” indicating whether the price listed is truly a collected price or was imputed by the

BLS, and 9) several additional flags that we do not use. From this we see that each product

in the dataset is identified at a very detailed level—for example, a 2-Liter Diet Coke at a

particular Safeway store in Chicago.

BLS employees collect the data by visiting outlets on a monthly or in some cases bi-

monthly basis. Somewhere between 80,000 and 100,000 observations are collected per month.

Prices of all items are collected monthly in the three most populous locations (New York,

Los Angeles, and Chicago). Prices of food and energy are collected monthly in all other

locations as well. Prices of other items are collected bimonthly. We focus on the monthly

data in our analysis.

Fortunately, there are numerous redundancies in the raw data that allow us to check for
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errors in our OCR procedure. The first form of redundancy arises from the fact that prices for

a particular product in a particular month appear on multiple Price Trend Listings because

the Price Trend Listings include 12 months of previous prices, as we note above. We can

use this redundancy to verify that the price observations obtained from different Price Trend

Listings are, in fact, the same. The second form of redundancy arises because each Price

Trend Listing includes both the price and a percentage change variable. We can therefore

verify that the percentage change in prices obtained when we calculate this directly based on

the converted prices is the same as the one reported in the percentage change variable. We

describe both of these procedures in detail in Appendix A.2. We err on the side of caution:

all of the price observations included in our final dataset have been “accepted” by either of

the procedures described above.

The order of the Price Trend Listings allows us to check for errors in the OCR conversion

of the product label and category variables. Each microfilm cartridge corresponds to a

particular “collection period” when the prices were collected. On each cartridge, images are

sorted first by product category (ELI), then by outlet, then by quote (a specific product,

such as a 2-Liter Diet Coke), and finally by the version (used when a product is replaced

by other very similar product). The order of the Price Trend Listings means that if our

OCR procedure fails to convert a particular ELI value, we can easily fill it in using the

surrounding values of ELI’s. We use a similar procedure to fill in missing values of the

outlet, quote and version variables. The algorithm we use for this is described in Appendix

A.2. Errors in converting the product identifiers will lead to a spuriously large number of

products. Appendix A.2 discusses this in more detail and describes a procedure we use to

verify that this does not bias our results.
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Finally, our process for converting the sales and imputation flag variables makes use of

the limited set of values taken by these values (e.g., “I” stands for imputation). We also

make use of the fact that, like in the case of prices, the flags for a given product-month

appear on multiple Price Trend Listings. We discuss these procedures in greater detail in

Appendix A.2.

The BLS has changed the organization of the consumer price micro-data two times since

1978. The first change occurred in 1987 and the second, more substantial change, occurred in

1998. We have created a concordance to harmonize the ELI categories across these different

time periods. To do this, we first used the category descriptions to match the ELI categories

used in the 1977-1986 and the ones used in 1987-1997. We then used the descriptions

available in the BLS’ documentation for the CPI Research Database to match the ELI’s for

1987-1997 and 1998 onwards. A detailed set of concordances is available on our websites.

We will hand over the new dataset we have constructed to the BLS so that they can

make it available to researchers in the same way the existing BLS CPI Research Database is

available. The data we will make available will include the original scanned images (in PDF

format), the raw dataset that resulted from our OCR conversion (with all the redundancies

discussed above), and the final dataset we constructed using the procedures discussed above

and in Appendix A.2. The availability of all three of these versions of the data will therefore

allow future researchers to improve on our data construction effort (both the OCR conversion

and the accuracy verification of the OCR output).

In our analysis of this data, we drop all imputed prices. Whenever we observe a price

change that is larger than one log point (log(pt/pt−1) > 1), we set the price change variable

and price change indicator to missing (i.e., we drop these large price changes). Only 0.04% of
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observations are dropped because they are large. We frequently calculate weighted means and

medians of various statistics across ELIs by year. In all cases, we hold fixed the expenditure

weights at their value in 2000. While the accuracy of our data conversion methods seems

high for most of our sample, we are not fully confident in the quality of the resulting data at

the very beginning of our sample. For this reason, we drop the data from 1977. Our sample

period is therefore 1978 to 2014.

1.4 Price Dispersion and the Size of Price Changes

We have seen in section 1.2 that the costs of inflation in sticky price models are largely due

to increases in inefficient price dispersion. Figure 1.6 plots the evolution of a simple measure

of price dispersion for U.S. consumer prices over the period 1978-2014. We first calculate the

interquartile range of prices within Entry Level Items (ELI’s)—narrow product categories

defined by the BLS such as “salad dressing”—for each year. We then and then take the

expenditure weighted median across ELI’s. We calculate this measure of price dispersion

both including and excluding temporary sales.

Figure 1.6 shows that this simple measure of price dispersion has increased steadily over

the past 40 years. This is driven by dramatic increases in price dispersion within ELI for

unprocessed food, processed food, and travel services. This increase in dispersion is, of

course, the opposite result from what one might have expected given that inflation has

fallen sharply over this period (see Figure 1.1). As we discuss in the introduction, a key

empirical challenge is that much of the cross-sectional dispersion in prices—even within

narrowly defined product categories—likely results from heterogeneity in product size and
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Figure 1.6: Dispersion of Log Prices within ELI
Note: To construct the series plotted in this figure, we first calculate the interquartile range of log
prices in each ELI for each year. We then take the weighted median across ELI’s. We do this both
for prices including and excluding temporary sales.

quality. Time variation in the cross-sectional dispersion in prices may therefore come from

time variation in product heterogeneity as opposed to time variation in inefficient price

dispersion. The pattern revealed in Figure 1.6 suggests that a large increase in product

variety over the past 40 year for example among food products has lead to an increase in

price dispersion within ELI that was large enough to dwarf any (relatively small) changes in

inefficient price dispersion associated with price rigidity.

We therefore consider next a gauge of the extent of inefficient price dispersion that “dif-

ferences out” fixed product characteristics. We focus on the absolute size of price changes.

The basic intuition for this measure is that, if higher inflation truly leads prices to drift

further from their efficient levels due to price rigidity, we should observe larger price changes

when firms finally have an opportunity to adjust.
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Figure 1.7 illustrates this by comparing the relationship between inflation and the average

absolute size of price changes in the Calvo model and in the menu cost model. We do this in

two ways. First, we plot the steady state average absolute size of price changes for different

steady state values of inflation. These are the two lines in the figure. For the Calvo model,

the average absolute size of price changes rises sharply with inflation, while this is not the

case in the menu cost model. Recall that this is exactly the pattern that holds for inefficient

price dispersion. Studying the absolute size of price changes thus provides an indirect, yet

powerful, way to measure the extent to which inefficient price dispersion rises with inflation.

A concern with the steady state calculation that underlies the two lines in Figure 1.7 is

that the Great Inflation was a somewhat transitory event. Perhaps inflation was not high

for long enough during the Great Inflation to create the degree of price dispersion needed to

substantially raise the average absolute size of price changes. We can address this concern by

simulating the response of the average absolute size of price change to the actual evolution

of inflation in the U.S. in the two models over our sample period. These are the two sets

of points in the figure. Each point gives the average absolute size of price changes and

the average inflation in a particular year between 1978 and 2014.13 This exercise, while

somewhat noisier, gives results very similar to the steady state calculation discussed above.

Figure 1.8 plots the evolution of the absolute size of price changes over the period 1978-

2014. We first calculate the mean absolute size of price changes within ELI by year and then

take an expenditure weighted median across ELIs for each year. We again report results

13The simulations are done at a monthly frequency and the results then time-averaged to annual obser-
vations. We start the simulation in January 1960 to make sure that the distribution of relative prices in
1978 reflects the actual U.S. inflation history leading up to that point. In these simulations, we assume
for simplicity that the real wage is constant and feed in the observed inflation rate. The perceived law of
motion for the price level is a random walk with drift. We calibrate the perceived average drift and perceived
standard deviation of monthly changes in the price level to their sample analogies over the period 1960 to
2014.
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Figure 1.7: Absolute Size of Price Changes in Sticky Price Models
Note: The lines plot the mean absolute size of price changes as we vary the steady state level of
inflation in the menu cost and Calvo models. The circles and squares plot the mean absolute size
of price changes in the menu cost model and Calvo model, respectively, from a monthly simulation
using the actual inflation rate from 1978 to 2014. Each point is the average from a particular year
in the simulation.
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Figure 1.8: Absolute Size of Price Changes in U.S. Data
Note: To construct the series plotted in this figure, we first calculate the mean absolute size of price
changes in each ELI for each year. We then take the weighted median across ELI’s. We do this both
for prices including and excluding temporary sales.

both including and excluding temporary sales. Even though the inflation rate has fallen

sharply over our sample period, the absolute size of price changes has remained essentially

unchanged over this time period at roughly 8%. If anything, there is actually a slight upward

trend over the sample period. The evolution of the absolute size of price changes, therefore,

provides no evidence that prices strayed farther from their efficient levels during the Great

Inflation than in the low-inflation Greenspan-Bernanke period.14

The welfare costs of price rigidity depends non-linearly on the extent to which individual

prices differ from their efficient level. Prices that are very far from optimal contribute

disproportionately to welfare losses. The random nature of the timing of price adjustment

in the Calvo model implies that as inflation rises the distribution of relative prices becomes

14Figure A.1 in the appendix shows that the average size is flat (or slightly upward sloping) within sector
for six of the most important sectors in our data. Figure A.2 shows that there is nothing special about the
median across ELIs. The 10th, 25th, 75th and 90th quantiles tell essentially the same story.
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highly dispersed. The distribution of relative prices has a long left tail with some firms

having wildly inappropriate prices because they have not been able to change their price for

a long period. When these prices finally change, they change by large amounts. In contrast,

in the menu cost model, the absolute size of firms’ price changes is small because all price

changes are clustered around the sS bounds.

Conditional on the average absolute size of price changes, the standard deviation of the

absolute size of price changes provides information about the dispersion of the distribution

of relative price changes and, in particular, information about how many firms have wildly

inappropriate prices. Figure 1.9 plots the standard deviation of the absolute size of price

changes as a function of inflation in the Calvo model and in the menu cost model (using

the same two methods as we do for the mean absolute size of price changes in Figure 1.7).

We see that the standard deviation of the absolute size of price changes rises by more than

a factor of six in the Calvo model, as the inflation rate rises from 0 to 16% per year. In

contrast, this measure rises only slightly in the menu cost model.

Figure 1.10 reports the standard deviation of the absolute size of price changes in the

data over our sample period of 1978-2014. Like with the average absolute size statistic, we

first calculate the standard deviation of the absolute size of price changes within ELI for

each year and then take a weighted median across ELI’s for each year. This statistic turns

out to be quite stable over time in the data. It varies between roughly 4.5% and 6% for

the majority of the sample period. If anything, it displays a slightly upward trend. This

statistic, again, provides us with no evidence that the distribution of relative prices became

more dispersed during the Great Inflation.
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Figure 1.9: Standard Deviation of Absolute Size of Price Changes
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Figure 1.10: Standard Deviation of Absolute Size of Price Changes: Data
Note: To construct the series plotted in this figure, we first calculate the standard deviation of the
absolute size of price changes in each ELI for each year. We then take the weighted median across
ELI’s.
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1.5 Frequency of Price Change

Thus far in the paper, we have focused on the size of price changes because of its relation to

price dispersion and welfare. The frequency of price change is in some sense the flip side of

the coin. If inflation rises but the size of price changes don’t, the frequency of price change

must be changing.15 Earlier research by Klenow and Kryvtsov (2008) and Nakamura and

Steinsson (2008) has studied the time series behavior of the frequency of price change and its

relationship to inflation in the U.S. using data on prices since 1988. The inference one can

draw from these papers is, however, limited by the fact that inflation in the U.S. has been

low and stable over the post-1988 period. The data from the Great Inflation that we analyze

in this paper have much more power to distinguish among different pricing theories.16

Figure 1.11 plots the relationship between the frequency of price change and inflation in

the menu cost model and the Calvo model. As with the size statistics discussed in section

1.4, we calculate this relationship for different steady state levels of inflation (the lines in

the figure) and for a simulation based on the actual history of inflation in the U.S. over the

period 1978 to 2014 (the points in the figure). Not surprisingly, the menu cost model implies

that the frequency of price change rises with inflation. When inflation rises from 0% to 16%,

the frequency of price change rises by more than half, going from 10% to 16%. In contrast,

the frequency of price change is constant in the Calvo model by assumption.

Figure 1.12 plots the frequency of price change for consumer prices in the U.S. over our

15A subtlety here is that at low levels of inflation the frequency and absolute size of price changes can be
relatively constant as inflation rises if the fraction of price changes that are increases is rising with inflation.
In this case, the behavior of the average size and the average absolute size can be quite different. At higher
levels of inflation, most price changes are increases and this distinction is less important (Gagnon, 2009).

16Important evidence on this topic is also available from a number of other (mostly middle income)
countries with more volatile inflation rates. See, in particular, Gagnon (2009) and Alvarez et al. (2011)
for evidence from Mexico and Argentina, respectively, and Wulfsberg (2015) for evidence from Norway.
Nakamura and Steinsson (2013) discuss this literature in more detail.
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Figure 1.11: Frequency of Price Changes in Sticky Price Models
Note: The lines plot the frequency of price change as we vary the steady state level of inflation in the
menu cost and Calvo models. The circles and squares plot the frequency of price change in the menu
cost model and Calvo model, respectively, from a monthly simulation using the actual inflation rate
from 1978 to 2014. Each point is the average from a particular year in the simulation.

sample period of 1978-2014 along with the CPI inflation rate. To construct this series, we

first calculate the mean frequency of price change by ELI for each year. We then take an

expenditure weighted median across ELIs for each year. The figure clearly shows that the

frequency of price change comoves strongly with inflation. This data therefore strongly favors

the menu cost model over the Calvo model.

Figure 1.13 separates the frequency of price increases and the frequency of price decreases.

Here we plot the 12 month average frequency of price change at a quarterly frequency to

see a bit more detail. The most striking feature of this figure is that it is the frequency of

price increases that varies with the inflation rate, while the frequency of price decreases is

unresponsive. Nakamura and Steinsson (2008) show that this asymmetry arises naturally in

the menu cost model when prices are drifting upward due to a positive average inflation rate.
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Figure 1.12: Frequency of Price Changes in U.S. Data
Note: To construct the frequency series plotted in this figure, we first calculate the mean frequency
of price changes in each ELI for each year. We then take the weighted median across ELI’s.

In this case, prices tend to “bunch” toward the bottom of their inaction region. Because

of this bunching, when there is an aggregate shock that changes desired prices, there is a

large response of the frequency of price increases (reflecting the relatively large mass at the

bottom of the band), but a much smaller response of the frequency of price decreases. This

is the same argument as the one described by Foote (1998) for why job destruction will be

more volatile than job creation in declining industries.17

One curious feature of Figure 1.12 is the spike in the frequency of price changes that

occurs in 2008. Looking at Figure 1.13 and especially the analogous plot for food in Figure

A.3 in the appendix, we see however, that inflation was highly volatile in 2008. It first spiked

up due to the commodity price boom early in that year, and then fell dramatically with the

17Figure A.3 presents figures analogous to Figure 1.13 for two important sectors in our data: food and
services. In this figure, the inflation rate that we plot on each panel is the sectoral inflation rate in that
sector. In both sectors, the frequency of price increases covaries strongly with inflation, while the frequency
of price decreases is largely flat.
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Figure 1.13: Monthly Frequency of Price Change
Note: To construct the frequency series plotted in this figure, we first calculate the mean frequency
of price increases and decreases in each ELI for each month. We then take the weighted median
across ELI’s.

onset of the recession and the collapse of commodity prices. In light of this unusual volatility

of inflation, the spike in the frequency of price changes in 2008 seems less puzzling.

1.6 Have Prices Become More Flexible over Four Decades?

The “menu cost” in the menu cost model is best thought of as a stand-in for a variety of

costs associated with price adjustment. Though economists have failed to settle on what

exactly this menu cost represents, many theories have been considered, including adverse

customer reactions to price changes, limited managerial attention, and the actual costs of

changing price tags or reprinting menus. Given all of the technological advancement that

has occurred over the past half-century, it seems natural to conjecture that some of the costs

of changing prices may have fallen, allowing prices to become more flexible.
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Figure 1.14: Predicted and Actual Frequency of Price Changes

Yet, there is no evidence that prices (excluding sales) have become more flexible over time.

Figure 1.12 shows that the frequency of price change (excluding sales) has actually fallen

over the past 40 years. Of course, the benefits of changing prices frequently have also fallen

over this period since inflation has fallen. For this reason, the evolution of the frequency of

price change is not an ideal measure of the evolution of price flexibility.

An alternative (arguably better) measure of price flexibility is the menu cost needed to

match the frequency of price change at a particular point in time given the level of inflation

at that time. If the menu cost model is able to match the frequency of price change over

time with a constant menu cost, this would indicate that prices (excluding sales) have not

become more flexible over time.

Figure 1.14 presents the results of this type of exercise. The broken lines in the figure

are the frequency of price increases and decreases in the data. The solid lines are the
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frequency of price increases and price decreases from a simple menu cost model with a

constant menu cost.18 Evidently, the frequency of price change in the data tracts the model

implies frequency of price change quite well over time as inflation rises and falls. If the costs

of price adjustment had trended down over the past four decades, one would expect that

our model would systematically underpredict the frequency of price change toward the end

of the sample period. This is not the case.

Since our simple menu cost model with a fixed cost of price adjustment can explain the

overall trend in the frequency of price change over the sample period, we conclude that

there is no evidence that prices (excluding sales) have become more flexible over time. One

might worry that these facts about price changes excluding temporary sale might be somehow

contaminated by the increasing frequency of sales (discussed below); but the same downward

trend in the frequency of price change is visible even in sectors with essentially no sales, such

as the service sector.

One way in which prices have become more flexible over time is that the frequency of

temporary sales has increased. Temporary sales are distributed very unequally across sectors,

occurring frequently in processed and unprocessed food, apparel, household furnishings, and

recreation goods, but quite infrequently in other sectors of the economy (see Nakamura and

Steinsson (2008)). Figure 1.15 plots the evolution of the frequency of sales in the sectors

in which sales are prevalent. In all five sectors, there has been a dramatic increase in the

frequency of sales over our sample. In some categories, the increase seems to continue

unabated, while in others (especially apparel and household furnishing) the frequency of

18For simplicity, in this exercise, we feed the inflation rate into the model directly (as opposed to feeding
in a process for nominal aggregate demand and having inflation be an endogenous outcome). The model we
use in this exercise is therefore a partial equilibrium model.
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sales seems to have plateaued. This trend increase in the prevalence of sales may, in fact,

go back considerably before the start of our sample period. Pashigian (1988) documents a

trend increase in the frequency of sales going back to the 1960’s.

1.7 Conclusion

In this paper, we develop a new comprehensive price dataset going back four decades for the

U.S. to study the costs of inflation. We find little evidence that the Great Inflation of the late

1970’s and early 1980’s led to a substantial increase in price dispersion—the costs of inflation

emphasized in standard New Keynesian models of the economy. The frequency of price

change varies substantially with the inflation rate, in line with the predictions of standard

menu cost models. We find no evidence that the costs of price adjustment have fallen over

these four decades, despite the many technological improvements that have occurred over

this period–suggesting that the barriers to price adjustment are not purely technological in

nature. The frequency of temporary sales has increased dramatically over this period in many

sectors of the economy, rising at an almost linear pace. However, the service sector–which

has grown over time–exhibits both sticky prices and almost no sales.
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Figure 1.15: Frequency of Temporary Sales
Note: To construct the series plotted in this figure, we first calculate the mean frequency of temporary
sales in each ELI for each year. We then take the weighted mean across ELI’s.
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2.1 Introduction

The dynamics of price changes (when, how, and why firms change the prices of the goods

and services that they sell) have been a major focus of the study of monetary economics for

the past several decades. It is indeed well known that monetary variables have no influence

on real economic activity (monetary neutrality) if all prices can be freely re-set at any point

in time. This has drawn attention to the study of frictions in the price-setting process for a

long time: Barro (1972) and Sheshinski and Weiss (1977) characterized the pricing behaviour

of a firm that faces a fixed price adjustment cost, while Calvo (1983) did so for a firm facing

the random opportunity to change its price. What has also become well established is that

the distinction between these two approaches in modelling price change dynamics matters

greatly for monetary non-neutrality. While central banks have widely adopted Calvo-style

staggered price setting into the models that they use to evaluate the effects of their policies,

much of the literature has highlighted how this considerably over-states the effectiveness of

monetary policy, compared to what it would be if prices are set based on adjustment (or

menu) costs.

The literature has emphasized that monetary non-neutrality depends not only on how

often prices change, but also crucially on which prices change. Caplin and Spulber (1987)

and especially Golosov and Lucas (2007) demonstrated this by showing that if prices are

sticky because of menu costs, money is close to neutral. These seminal studies showed that

in the presence of menu costs, only relatively large price changes will justify the payment of

the cost and occur at all, which makes the aggregate price level considerably more responsive

to nominal shocks than in the Calvo model. This mechanism came to be known as the
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selection effect, and much research has been devoted to re-evaluating the results of Golosov

and Lucas (2007), and the strength of the selection effect, in light of new empirical findings

established with price micro data sets (most notably, Nakamura and Steinsson (2010) and

Midrigan (2011)).

Understanding the selection effect, and to what extent it plays an important role, is

necessary to determine the true degree of monetary non-neutrality, but this mechanism

cannot be observed directly. It would be very difficult to observe whether the prices that

change are those predicted by the selection effect, so its presence and strength must be

inferred indirectly from observable price change statistics. The existing work in the field has

done this primarily by bringing quantitative price setting models together with the price

data that has become available in the past decade. However, an important limitation with

these studies is that they have, for the most part, only used unconditional moments of the

price change distribution (such as the frequency or size of price changes, averaged over time)

to discipline the models used. In this paper, we show that conditional moments, which have

been seldom used, are extremely informative and yield new insights on the selection effect.

In particular, we find that the selection effect makes very strong predictions about how the

shape of the price change distribution should change with aggregate inflation. Using a new

data set, the price data underlying the U.S. CPI from 1977 onwards, we show that these

predictions are not supported empirically.

In menu cost models, the presence of a fixed adjustment cost induces a selection effect:

only price changes that are large enough to justify the cost occur, leaving an inaction region

of changes (centered at zero) that are too small to be justified. A positive monetary shock

(raising nominal demand) will induce prices that were otherwise already strongly mis-aligned
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to change, meaning that average price changes would respond relatively strongly to such a

shock. This implies, in turn, that the aggregate price level will be very responsive to monetary

shocks, eliminating much of the effect of the monetary shock on real activity (money is close

to neutral). We exploit the fact that this logic also has strong implications for how the

distribution of price changes responds to such shocks: an inflationary shock will push more

price changes out of the inaction region to the positive side, and into the inaction region from

the negative side. There will therefore be more price changes concentrated on the positive

side of the inaction region, leaving a price change distribution that is less dispersed and

more asymmetric (negatively skewed). Indeed, all existing menu cost models, because of the

selection effect created by the presence of an adjustment cost, imply a very strong negative

correlation between inflation and both dispersion and skewness of price changes, and these

are implications that can be empirically tested.

The literature on sticky prices has faced thus far been unable to test these types of

predictions because the kind of price data that is necessary has only been available for

periods of low and stable inflation. Although some studies (such as Alvarez et al. (2011a);

and Gagnon (2009)) have used price data from countries that experienced high inflation,

they used this data to determine how the frequency of price change behaves at high inflation,

without considering the higher moments of the price change distribution. For the U.S., the

main source of price data in this line of work, the micro data underlying the Consumer Price

Index, was, until recently, only available going back to 1988 (while other commonly used

data sets go back even less far). However, we use the data set recently presented in Chapter

1, which extends the C.P.I micro data back to 1977, to evaluate whether the dispersion and

skewness of price changes do indeed fall with inflation. Since the newly recovered period
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includes the highest inflation episodes in the post-war U.S., as well as the disinflation period

initiated by the Federal Reserve under Paul Volcker, our data set is particularly well suited

for the tests that we propose.

We find that while the dispersion of price changes does go down considerably in high

inflation periods, the skewness does not, contrary to the strong predicitons of menu cost

models. Since the counter-factual predictions are driven by the mechansim behind the se-

lection effect, these results cast doubt on whether this effect, which has been emphasized as

a source of aggregate price flexibility, is really very significant. However, the fact that the

frequency of price change rises with inflation (which we find), and that the dispersion falls

with inflation, contrary to the assumptions and predictions of the Calvo model (in which

there is no selection), seems to indicate that the selection effect is acting to some extent.

The quantitative implications of these results for the strength of the selection effect and

monetary non-neutrality will be the subject of the following chapter.

The rest of the paper is organized as follows. In what remains of the introduction we

provide a more detailed overview of the work done in this branch of the literature. In section

2.2, we present the predictions of a large class of sticky price models, and explain why time-

and state-dependent models give such different predictions. Section 2.3 describes the data

set that we use and evaluates the predictions of the different models based on the data.

Finally, Section 2.4 provides some concluding remarks.
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Literature Review

While a few empirical studies of price stickiness in certain industries have been around

for some time (e.g. Cecchetti (1986); Carlton (1986); Kashyap (1995)), it is only starting

with Bils and Klenow (2004) that monetary economists have been able to start measuring

statistics related to price stickiness for the economy as a whole. The facts established by Bils

and Klenow and the subsequent empirical studies on price stickiness (most notably, Klenow

and Kryvtsov (2008); and Nakamura and Steinsson (2008)) have enriched the discussion

on monetary non-neutrality by providing the models that evaluate monetary non-neutrality

with a standard by which to be measured.

Caplin and Spulber (1987)had used a very stylized model to show that if prices are

sticky, state-dependent pricing implies that monetary shocks can still have little or no effect

on economic activity. Golosov and Lucas (2007) then incorporated this mechanism into a

quantitative menu cost model that was calibrated to match the new empirical facts of the

sticky price literature, and they confirmed that under state-dependent pricing, monetary

policy is close to neutral. The model matched the fraction of prices that change (frequency

of price change) estimated by the empirical papers, but also the observation that when prices

do change, the changes tend to be large. Since, under menu costs, firms will only change

their prices when they really need to, and so will not bother incurring a menu cost for a

small price change, this latter fact in particular lent credibility to the adoption of a menu

cost as the foundation of price stickiness.

Since then, the literature has continued to combine quantitative, micro-founded, price set-

ting models with empirical facts from micro price datasets, and in this way the non-neutrality
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debate has advanced. While the Golosov and Lucas model matched the frequency and av-

erage size of price changes, much subsequent work has modified the model to match other

aspects of the distribution of price changes, generally finding that the degree of monetary

non-neutrality predicted ends up being much larger than in the original model (for exam-

ple, Nakamura and Steinsson (2010); Midrigan (2011); Alvarez et al. (2014)). In a slightly

different style, Vavra (2014) showed that the frequency and dispersion of price changes are

counter-cyclical in the U.S., and introduced counter-cyclical dispersion shocks to match this.

With the exception of Vavra (2014), however, the papers mentioned thus far match mo-

ments that are price change statistics averaged across time. Yet all the statistics that they

consider can be computed period by period, as they pertain to a distribution of price changes,

which is observed period by period. Obviously, focusing on averages across time abstracts

from the time series variation in these statistics, which is observed to be quite significant in

the data, and this misses out on potentially informative patterns. Our paper departs from

most of the existing literature by focusing on the variation of price change statistics over

time to evaluate sticky price models. These models are aimed at understanding how the

dynamic pricing behaviour of firms aggregates up to the response of aggregate inflation to

monetary shocks. A natural way to use the time series variation of price stickiness statistics

is therefore to see how they co-move with inflation, both in models and empirically. How-

ever, as mentioned earlier in this section, most existing studies have faced the limitation of

working with price data sets that only cover periods of low and stable inflation. It is in this

way that our data set is novel, as it makes it possible to measure price stickiness statistics

at high and low inflation.

Nevertheless, evaluating sticky price models with this kind of time series variation is not
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unprecedented. For example, Gagnon (2009) and Alvarez et al. (2011a) use price data from

high inflation episodes in Mexico and Argentina, respectively, to show that the frequency of

price change rises with inflation. This fact is consistent with menu cost models, but it goes

against the core assumption of the Calvo pricing model, that firms face a constant probability

of changing their prices over time. Our paper confirms this result, but documents more

patterns based on other statistics that paint a more nuanced picture. While the relation

between the frequency of price change and inflation provides strong evidence against the

strict assumptions of the Calvo model, changes in the shape of the price change distribution

(measured by its dispersion and skewness) are also informative to distinguish between the

models.

Ultimately, we find that neither menu cost nor Calvo models are able to match all the

patterns in the data that we present. In particular, the menu cost model makes very strong

predictions about the shape of the price change distribution: the dispersion and the skewness

fall sharply with inflation. In the data the dispersion of price changes does fall with inflation,

but the skewness does not. We are not the first to find empirical failures of this model:

Nakamura and Steinsson (2010) and Midrigan (2011) had already pointed out problems

with some of the predictions of the Golosov and Lucas model, and shown that changes to the

model that corrected these problems overturned the result of low monetary non-neutrality.

However, we show that even these modifications to the Golosov and Lucas model, though

they reconcile the menu cost framework with the data in some ways, are also inconsistent

with the facts that we present. Finally, we also consider models of imperfect information in

which firms adjust their prices infrequently (Alvarez et al. (2011b), Woodford (2009)), and

find that these also fail to match the data, although each in different ways.

48



2.2 The Skewness of Price Change in Sticky Price Mod-

els

We begin by presenting the models that we will be evaluating, and describing the predictions

that we will focus on testing. Our analysis will consider the models that have been used

in the sticky price literature, including the Calvo model, the Golosov and Lucas menu cost

model and the variants of it that have appeared since. First, we describe the set-up of the

various models, both the common framework and the differences that set them apart, before

explaining how we derive the predictions, and we finally summarize the predictions.

2.2.1 General Set-Up

All the sticky price models that we consider have certain features in common, that are also

used in the sticky price literature in general. First, households maximize expected discounted

utility of the following form:

Et

∞∑
τ=t

βτ−t [logCτ+t − ωLτ+t] .

All our analysis will focus on the firm’s dynamic price setting, so the set up of the household

problem matters for our purposes insofar as it determines the relationship between aggregate

consumption and the real wage, which will be the firm’s main cost. There is then a continuum

of monopolistically competitive firms, indexed by z, producing a differentiated product, and

aggregate consumption is given by a constant elasticity of substitution aggregator, meaning
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that each firm faces the standard demand function for its good:

ct(z) =

(
pt(z)

Pt

)−θ
Ct.

, where θ is the elasticity of demand, and Pt is the CES price aggregator. Firms produce

output based on a linear production function, with labor as the only input:

yt(z) = At(z)Lt(z).

Productivity is subject to idiosyncratic shocks, which have been an important feature of

sticky price models since Golosov and Lucas (2007). Large idiosyncratic shocks make it

possible for such models to match the large heterogeneity and high average size of price

changes observed in the data, which was documented notably by Nakamura and Steinsson

(2008) and Klenow and Kryvtsov (2008). These shocks are typically modelled as first-order

autoregressive processes with normal innovations, but Midrigan (2011) argues that such a

process yields a distribution of price changes with tails that are too thin, relative to what is

observed in the data. He therefore introduces Poisson shocks in the productivity process in

the following way:

logAt(z) =


ρlogAt−1(z) + εt, P robability = pε

logAt−1(z), P robability = 1− pε

, εt
iid∼ N(0, σ2

ε ).

This set-up nests the standard AR(1) productivity, which can be obtained by simply setting

the probability of a shock occurring (pε) to 1. Since we will consider various models with
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AR(1) productivity, as well as Midrigan’s model with Poisson shocks, we maintain this set-

up, and cover the different models by adjusting the relevant parameters.

In order to generate aggregate fluctuations, the sticky price models that we look at incor-

porate a stochastic process for nominal aggregate demand. Again, we stick to what is most

often used in the literature by modelling nominal output as a log random walk with drift:

logPtCt = logSt = µ+ logSt−1 + ηt, ηt
iid∼ N(0, σ2

η).

This process stands in for monetary policy in these models: nominal output is determined

exogenously, and firms’ price responses to these shocks determine how inflation, and how

real output respond. We will use the same parameter values for this process (to match the

behaviour of US aggregate activity) across the different models, and we define monetary non-

neutrality as the variation in aggregate real consumption induced by the nominal shocks.

This has become the main way of introducing monetary variables in the menu cost literature

because it lends itself much more easily to the global solution methods that are used for such

models than explicitly incorporating systematic monetary policy. Although Blanco (2015b)

developed a menu cost model with a Taylor-type policy rule, we do not attempt this for the

models in this section. Our goal is to show how the price change distribution changes with

inflation under different sticky price models, and the aggregate demand process that we use

enables us to do this. Next, we describe the price setting problem faced by firms, which is

the main dimension along which the different models vary.
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2.2.2 Price-Setting

In the standard Golosov and Lucas (2007) menu cost model, firms must pay a fixed cost (in

units of labor) whenever they change their price. The period profit function therefore takes

the following form:

Πt(z) = pt(z)yt(z)−WtLt(z)− χWtI{pt(z) 6= pt−1(z)}.

The menu cost (χ) can then be calibrated to match the frequency of price changes, while the

standard deviation of the idiosyncratic shocks can be set to match the average size of price

changes (we also set the probability of an idiosyncratic shock occurring, pε, to 1 to make the

process an AR(1), as in the original model). This is, in a way, the most “state-dependent”

model, as under the fixed menu cost firms are fully in control of the decision of when to

change the price for each good (subject to the constant menu cost). It is this feature that

makes prices very responsive to aggregate demand shocks, and that famously yields very low

monetary non-neutrality.

The first extension to the menu cost model that we consider is the Nakamura and Steinsson

(2010) multi-sector menu cost model. The only change here is that firms are separated into

sectors, with firms in different sectors facing different menu costs, and a different variance of

idiosyncratic shocks. This reflects the fact, documented in the paper and in Nakamura and

Steinsson (2008), that the frequency of price change varies considerably across sectors, as

does the average size of price changes. Golosov and Lucas (2007) calibrated their model to

match the average frequency of price changes across sectors, and Nakamura and Steinsson

show that calibrating sector by sector makes a major difference for the degree of monetary
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non-neutrality in the models, as the multi-sector model predicts much higher non-neutrality

than the standard model.

Midrigan (2011) modified the standard menu cost model in two ways: first by changing

the idiosyncratic shock process so that it would feature fat tails (which we described above),

and giving firms a motive to make small price changes. In the standard model, since a firm

always has to pay a fixed cost to change its price, there will be a threshold for the size of

the price change, such that changes below a certain size are not profitable and do not occur.

Midrigan (2011) models multi-product firms that can change the prices of all their products

for the payment of the menu cost. Because of this, a firm might choose to pay the menu

cost to change the product of a particularly mis-aligned product price, and then also take

the opportunity to change the price of another product by a small amount. This enables

the model to match the considerable fraction of small price changes that are observed in the

data, but it also makes the model much more difficult to solve. We therefore follow Vavra

(2014) in simplifying the Midrigan model by assuming that, instead of producing multiple

products, firms each period are randomly given the possibility of changing their price for free

(with a low probability), or by paying a menu cost. This adds, as an additional parameter

to calibrate, the probability of drawing a zero menu cost (free price change): pz. With the

additional parameters in this model, we target the fraction of price changes that are small,

as in Midrigan (2011).1

1Midrigan (2011) defines a small price change as a price change that is less than half, in absolute value,
of the average size of price change. Due to the variation in the average size of price changes over time and
across sectors, we prefer to use an absolute measure, and focus instead on the fraction of price changes that
are smaller than 1% in absolute value. Finally, Midrigan (2011) also emphasized the failure of the Golosov
and Lucas model to match the kurtosis of the price change distribution, and the introduction of Poisson
idiosyncratic shocks helps to get the kurtosis in the model closer to what it is in the data. However, it turns
out to be very difficult to match (it seems to be very high in the data), and Midrigan (2011)1 does not
achieve it completely. We therefore do not match the kurtosis either.
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We also consider a Calvo model, which has the set-up described above, except that firms,

instead of facing a menu cost, have a fixed probability every period of receiving the op-

portunity to freely change their price (otherwise, they do not get to change price). This is

equivalent to the simplified Midrigan model that we describe, but with the high menu cost

set to infinity, and the probability of a free price change set to equal the average frequency of

price change in the data. This model includes idiosyncratic shocks to obtain a distribution

of price changes, and we also set the variance of these shocks to match the average size of

price changes. The variance needs to be higher than in menu cost models, because menu

costs induce the selection effect that naturally leads to large price changes to be more likely.

Finally, we also include two models involving imperfect information: the Alvarez et al.

(2011b) model of observation and menu costs, and the rational inattention model of Wood-

ford (2009). In the former, firms must pay a fixed cost to observe the relevant state (or

conduct a “price review”), and a menu cost to change their price. Facing such costs, firms

conducting a price review choose the date of the next review, and a price plan until that date.

Woodford (2009) considers the same type of price-setting problem, but within the rational

inattention framework proposed by Sims (2003): firms face a cost based on how much infor-

mation they process, and therefore choose to receive limited information based on which they

choose when to review prices. In this model, the cost of processing information is a crucial

parameter, and both the Calvo model and standard menu cost model are nested as extreme

cases of the information cost in this set-up (infinite and zero, respectively). Furthermore,

intermediate values of the information cost result in what is described as a “generalized Ss

model”: while a simple Ss model involves a threshold rule for price adjustment, a general-

ized Ss model features a probability of price adjustment as a function of the degree of price
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mis-alignment. This is the kind of model that we work with in Chapter 3, and we view the

rational inattention framework as a potential micro-foundation for this.

2.2.3 Solution and Simulation

We solve each of the models mentioned above by value function iteration, mostly with the

parameter values used by the original authors, which were set for the models to match

various features of the micro price data. One difficulty in solving these models is that in all

of them the price level (Pt) is an aggregate endogenous variable whose evolution depends on

the behaviour of all firms. This means that, in principle, every firm’s relevant state should

include the state of every other firm, which makes for an infinitely large state space. As

done elsewhere in the literature, we use an approach analogous to Krusell and Smith (1998)

to solve the model assuming a relationship between the price level and a small number

of variables, and to then verify that the resulting solution is consistent with the assumed

relationship. In the appendix, we provide more details about the procedure, as well as the

calibration of the different models. The parameters of the process for nominal aggregate

demand, described above, are calibrated to match the average growth and volatility of U.S.

nominal GDP, and the same values are used for all the models.

The first aim of our paper is to document what these different models imply for the price

change distribution at different inflation rates. Our approach is to simulate each model,

for 1,000 periods (months) and 40,000 firms. From these, we obtain a simulated series

for aggregate inflation (determined by the endogenous response of prices to the nominal

aggregate demand shocks) and a distribution of price changes for each period. Since the
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models are calibrated to match the frequency of price change that is observed empirically,

the vast majority of prices do not change every period. Our analysis is therefore based on

the distribution of price changes, conditional on a non-zero price change, and this applies for

the rest of the paper, including in our empirical work. We compute various moments of each

period’s price change distribution, giving us a time series for each moment, and compute

correlations between inflation and each of the moments, and this is how we determine how

the price change distribution changes with inflation.

As mentioned in the introduction, the studies that have examined price change statistics

in high inflation environments have mostly focused on whether the frequency of price change

rises with inflation, as the menu cost model predicts. We present the correlation between fre-

quency and inflation in the models, but also consider other correlations with other moments:

the standard deviation of price changes, and the skewness of price changes. As we will show,

the menu cost models have very strong and clear implications for these correlations that

are markedly different from those of the Calvo model. Furthermore, as seen in Midrigan

(2011), the shape of the price distribution can be very informative about the importance or

presence of the mechanisms that weaken the role of monetary shocks, and it is therefore to

be expected that the way in which the shape of this distribution changes (as described by the

dispersion and skewness) with inflation would also be informative about these mechanisms.

We present a summary of these theoretical results in Table 2.1, indicating whether each

correlation is positive (+), close to zero (0), or negative (-) in the different models:

In order to further illustrate these results, we present scatter plots between inflation and

the different moments from the simulations (in which one point represents one period in

the model simulations). Figure 2.1 shows the correlations for the frequency of price change,
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Table 2.1: Moments correlation with inflation

Model corr(π, frequency) corr(π, std. deviation) corr(π, skewness)
Calvo (1983) 0 + +

Golosov and Lucas (2007) + - -
Nakamura and Steinsson (2010) + - -

Midrigan (2011) + - -
Alvarez et al. (2011b) + 0 -

Woodford (2009) + 0 +

while Figures 2.2 and 2.3 do so for the dispersion and skewness of price changes, respectively.

These bring out the fact that in the menu cost models, the relationships between inflation and

dispersion and skewness are very clear and strong (especially in the Golosov and Lucas model

for the dispersion). In contrast, the same relations in the Calvo and imperfect information

models are not so strong.

Although the relationships come out very clearly in these simulations, it could be a concern

that the higher moments that we are estimating might not be well defined in the distributions

that we are working with. In addition, estimates of higher moments are very sensitive to

outliers, which would be of concern particularly when we estimate from the data. That is

why we also consider alternative measures for the dispersion and skewness of price change:

the inter-quartile range (for dispersion) and Kelly’s coefficient of skewness2(as opposed to

“moment skewness”, which is what we have been estimating so far). Since these statistics are

quantile-based, they are well-defined for any distribution, and they are also less sensitive to

outliers. The correlations are similar for all the models (inter-quartile range compared with

standard deviation, and moment skewness with Kelly Skewness). Figure 2.4 shows scatter

2These statistics are defined as follows, with Qi representing the ith percentile. Inter-quartile range

= Q75 − Q25. Kelly Skewness = (Q90−Q50)−(Q50−Q10)
Q90−Q10

. Kelly skewness essentially measures the degree of
asymmetry in a distribution, comparing the size of the right and left tails.
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plots of Kelly Skewness in the different models.

Another concern could be that these simulations all assume that the value of steady-state

inflation is held constant throughout the simulated time period. This could be problematic

in terms of testing the predictions on data, as the U.S. clearly went from a moderate to a

low inflation regime over our sample period. To address this, we also conduct the following

exercise: we solve each model for different values of the trend inflation parameter (µ), and

for each solution compute the average dispersion and skewness of price change (either from

the stationary distribution of price changes, or averaging over simulated time periods; they

are almost the same). In Figure 2.5, we plot the results.

What the scatter plots show is that, as in the “short-run” analysis, the dispersion and

skewness of price changes fall with trend inflation in the menu cost model (we are only

plotting results for the Golosov and Lucas model, but the same pattern holds for the other

menu cost models). Here too, the Calvo model predicts weak positive relations for both

moments. This will be important when comparing the skewness of price change between the

low and high inflation periods in the data.

To conclude our theoretical analysis, we emphasize that the correlations that we consider

all have the same sign in the four menu cost models (Golosov and Lucas, Nakamura and

Steinsson, Midrigan, and observation costs). The scatter plots show that the values taken by

moments we report do vary across the models (for example, in the Golosov and Lucas model

the skewness of price changes takes a wider range of values than in the other models), but the

fact that the sign and strength of the correlations across the models are similar is notable.

Indeed, the Nakamura and Steinsson and Midrigan menu cost models were developed as

extensions of the Golosov and Lucas model to make it match new empirical facts, and the
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Figure 2.1: Simulated frequency and inflation from different models
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Figure 1: Price Change Frequency & Inflation
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Figure 2.2: Simulated dispersion and inflation from different models
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Figure 2: Price Change Dispersion & Inflation
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Figure 2.3: Simulated skewness and inflation from different models
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Figure 3: Price Change Skewness & Inflation
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Figure 2.4: Simulated Kelly skewness and inflation from different models
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Figure 2.5: Simulated long run statistics from different models
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Figure 5: Steady-State Correlations
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changes made considerably weakened the selection effect that reduces the importance of

monetary shocks. However, what we find here is that, despite the important changes made

to the baseline menu cost model, they all have the same implications along the dimensions

that we are considering. Next, we discuss the intuition behind these theoretical results.

2.2.4 Intuition for the Menu Cost Model

Menu cost models are often also known as “Ss” models, due to the fact that they tend to

feature an inaction region for price changes (the edges of which can be labelled with “S” and

“s”), and this makes it easier to understand the theoretical correlations between inflation

and the moments of the price change distribution that we find in this section. Price change

dynamics in the menu cost model can be thought of in the following way: both idiosyncratic

and aggregate nominal shocks give a distribution of desired price changes (the price change

a firm would choose if it changed its price, or in the absence of price change frictions).

The presence of a menu cost means that only desired prices above a certain size (positive

and negative) will actually occur, as only those will yield a benefit to the firm big enough

to compensate for the menu cost. The realized price change distribution in this model is

therefore the underlying distribution with a band containing 0 removed, as illustrated in

Figure 2.6 below.

The presence of idiosyncratic shocks yields variation in firms’ desired prices, and nominal

aggregate shocks move the position (average) of the underlying distribution. For example,

a positive aggregate shocks moves the distribution to the right, which also leads to realized

prices being higher on average, resulting in higher inflation (the reverse is true for negative
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Figure 2.6: Intuition for the Menu Cost Model
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aggregate shocks). Such shocks also result in a higher fraction of price changes being pos-

itive, which are separated from the negative ones by the inaction region. This reduces the

dispersion of price changes because a bigger fraction of them are on one side of the inaction

region, and therefore relatively close to each other. It is when the share of price changes on

either side of the inaction region is equal that the dispersion is highest, and by the same

logic, higher than when inflation is negative (when more price changes are decreases), which

is what we see in the dispersion plots (Figure 2.2) for the menu cost model: dispersion de-

creasing with inflation in the positive region, and increasing in the negative region, with the

maximum attained at zero inflation.

The logic for why the skewness falls with inflation is related. The skewness, as a statistic,

measures the asymmetry of a distribution, or the relative sizes of the right and left tails. As

a positive aggregate shock raises the average desired price change, and the average realized

price change, some negative price changes (to the left of the inaction region) remain and

form the left tail. This makes the skewness negative: the resulting distribution has a left

tail (price decreases relatively distant from the average price change, which is positive),

without a corresponding right tail (as price increases are to the right of the inaction region
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and relatively close to each other). Furthermore, for the range of values that inflation takes

in our simulations (which corresponds roughly to the historical range for inflation since the

late 1970’s), there is always a significant proportion of negative price changes. This means

that as inflation rises (due to larger positive aggregate shocks), these negative price changes

form a left tail in the price change distribution that is further and further (to the left) of

the average of the price change distribution, leading to a skewness that is more negative.3

What this also implies is that the relationship between skewness and inflation is monotonic,

decreasing for positive and negative values of inflation.

It is important to emphasize that these correlations have to do with the central mechanism

of the menu cost model: the selection effect. When firms face a fixed cost to changing their

price, only relatively large price changes will occur, leading to the presence of the inaction

region. As the average of the underlying distribution rises (moved by aggregate shocks),

there is a large response of inflation because there is a large share of price increases that

are marginal: without the shock they would not occur, but are pushed outside the inaction

region (and many marginal price decreases do not occur with the shock), leads to a relatively

large rise in inflation, muting the real effect of the aggregate shock. This is the logic for why

state-dependent models are known to imply low levels of monetary non-neutrality.

However, what we show is that this same mechanism leads to predictions that are in

principle observable: the presence of an inaction region means that positive aggregate shocks

should lead to not only more price increases, but to a distribution with price changes more

3This also means that if the aggregate shock were so high that all price changes were positive (to the right
of the inaction region), the relationship would break down, as price decreases would no longer be separated
from price increases. However, this would also mean that all prices would change, and that inflation would
be extremely high. This kind of situation, or anything resembling it, never occurs in the period we are
considering.
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concentrated on the right, leading to a declining dispersion and skewness. This does not

occur in a Calvo model: in such a model every desired price change has a fixed probability

of being realized, so as the desired price changes rise, the shape of the realized price change

distribution does not change in a meaningful way.

The intuition for this theoretical result is easiest to explain in the case of the “standard”

Golosov and Lucas model, or in general any menu cost model with a single fixed menu

cost. The other menu cost models that we consider feature a richer structure of menu costs

that led to some very different empirical predictions. However, we have shown that these

models also imply negative correlations for the dispersion and skewness of price changes,

and the intuition for this is the same as for the standard model. In the multi-sector menu

cost model, different sectors face different menu costs, and this can be thought of as sectors

facing different inaction regions, with each sector behaving as described for the standard

menu cost model. Therefore, the aggregate price change distribution behaves similarly to

how each sector’s distribution does.

The Midrigan model involves firms randomly facing either a positive or zero menu cost.

This weakens the selection effect, because there is now a positive probability that a firm

will change its price even if it will be a small change, so that price changes are no entirely

“selected” based on how out of line the original price is. However, the selection effect is still

present to a certain extent, because it is only relatively large price changes that will happen

with certainty (as those will be the only ones for which a firm will be willing to pay the

positive menu cost, when it faces the positive menu cost). It is this difference between small

and large price changes that makes the same mechanism present in this model and drives

the correlations, even though small price changes do occur (as they do in the data, but do
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not in the Golosov and Lucas model).

We have shown that menu cost models, under the assumptions commonly made in the

literature, make clear, consistent predictions about how the shape of the price change dis-

tribution changes with inflation, and that these do not change much based on the type of

menu cost model in question, and that the predictions are strikingly different from those

of the Calvo model. Furthermore, these are predictions that can be tested with the price

data available to us, which enables us to evaluate this broad class of sticky price models. In

the following section, we do this by presenting the empirical counterpart to the correlations

presented in Table 2.1, and we discuss how each of the models falls short of matching the

data.

2.3 Empirical Evidence from High Inflation Periods

In the previous section, we documented the predictions made by various sticky price models

on the behaviour of price changes at different inflation rates. In this section, we describe

the data set that we will use to test these predictions, and report that while the inflation-

dispersion correlation is consistent with the empirical evidence, the inflation-skewness cor-

relation is not.

2.3.1 Previous Empirical Work

The micro data that underlies the U.S. Consumer Price Index (CPI), gathered by the Bureau

of Labor Statistics, is one of the most widely used data sets in the literature on monetary

price-setting models. Bils and Klenow (2004) were the first to use this data set to provide
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estimates for the frequency of price change. Since then, other studies have documented

additional features of the price change distribution using this data set (e.g. Nakamura and

Steinsson (2008); Klenow and Kryvtsov (2008)). The availability of a large, representative

data set that makes it possible to observe the price changes of very specific products has

lead monetary economists to develop models that match the behaviour of price changes as

closely as possible.

The data set that has been used in this line of work covers the period 1988 to the present,

as 1988 marked a major revision of the structure of the CPI. However, a limitation of the

data used thus far is that throughout this period, aggregate inflation has been relatively low

and stable, especially compared to the years before. Since 1988, the maximum twelve month

change in the headline CPI has been 6.2% (4.6% for the Core PCE), and the average has

been 2.8% (2.2% for the Core PCE). Partly because of this, most research on sticky price

models up until now has focused on matching moments of the price change distribution that

are averaged over time (the main exception being Vavra (2014), who uses the CPI micro data

to investigate the cyclicality of price change moments). But as we showed in the previous

section, the models imply that these moments would change over time, and in a way that is

closely related to aggregate inflation, with implications that differ strongly across models.

Motivated by this, a few studies have used data from other countries that experienced

episodes of high inflation, such as Argentina (Alvarez et al. (2011a)) and Mexico (Gagnon

(2009)). These studies also used the micro data that underlies the CPI’s of these countries,

and reported how various price change statistics change as inflation goes from low, to mod-

erate, to high. They find that the frequency of price change is fairly constant, and not very

responsive to inflation, at low levels of inflation (below 10% annual). Once inflation rises
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even higher, however, the frequency of price change begins to rise sharply with inflation. In

addition, they show that a standard menu cost model matches this relationship very well.

What this shows is that, first, the Calvo (1983) assumption of a constant frequency, while

possibly approximately valid for low inflation, becomes problematic when inflation rises be-

yond a certain level. Second, the evidence presented in these papers is shown to be consistent

with standard menu cost models, suggesting that they better explain the behaviour of price

changes when inflation is high. However, Alvarez et al. (2011a) and Gagnon (2009) do not

look at the higher moments of the price change distribution that we emphasized in the

previous section, which is what we do in this paper.

2.3.2 Data Set and Construction of Statistics

The CPI Research Database collected and maintained by the U.S. BLS contains about

80,000 monthly prices collected from around the U.S, classified into about 300 categories

called Entry Level Items (ELI’s). As mentioned before, the data going back to 1988 has

been available for a little over a decade. The data going back to 1977 has recently become

available, and this is the novel part of the data set that we use extensively. This new data

set has thus far only been used by the work included in this dissertation, and Chapter 1

also describes in detail just how the data set was made available. As explained in the BLS

handbook of Methods, there were several changes made to how the BLS samples prices and

computes the CPI. While there are many variables present in the post-1988 data set that are

not available for the older period, we are able to study the price change distribution in a way

that is consistent throughout the whole period, and with the theoretical framework that we
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are testing. First, we have access to the variables that identify specific products, and that

reveal when a substitution has occurred (when a new version of a product has replaced the

old one). Second, the data set contains information on when any given price is a temporary

sale, or imputed (or not properly collected). Because of this, we are confident that we are

observing the price changes of identical products and services, with the price being actually

observed; and all of this with the same standards throughout the sample period.

The empirical literature on price setting has emphasized the importance of identifying

“pure” or regular price changes, as opposed to price changes coming from temporary sales

or substitutions. The reason is that sales and substitutions have features that make them

different in terms of their relevance for the study of the role of monetary policy and aggregate

shocks. Indeed, when a product goes on sale, its price will change, but it is not clear that

this happens in response to any changes in aggregate conditions. What’s more, products

on sale tend to revert back quickly to their pre-sale price. This distinction was pointed out

notably by Nakamura and Steinsson (2008), and Anderson et al. (2015) document the ways

in which sale prices behave differently from regular prices. In a similar way, the distinction

between regular price changes and substitutions is made because a price change coming from

a product substitution could reflect the changes in product characteristics or in quality that

could be behind the substitution. Although it is possible in some cases to estimate the

contribution of quality or characteristic changes to a substitution price change (and the BLS

does for certain products), we prefer to use the product identifiers to focus on price changes

involving identical products.

In order to test the predictions that we presented in the previous section, we use the

data set to construct distributions of price changes for each month, and a few observations
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on how these are constructed are in order. First, since the vast majority of prices do not

change in any given month, these distributions only include non-zero price changes (which

corresponds to what we look at in the theoretical results). Second, because estimates of

higher moments are very sensitive to outliers, we follow other empirical work in excluding

price changes whose absolute value is above a certain value (e.g. Klenow and Kryvtsov

(2008); Alvarez et al. (2014)), (our threshold is one log point). Third, Eichenbaum et al.

(2013) have shed light on problems with the methods of reporting and collecting prices in

some of the product categories of data sets such as the CPI. They show that this leads

to erroneous small price changes appearing in the data, price changes that come from the

price collection methods, and that do not reflect actual price changes. This is particularly

important for us, as estimates of dispersion and skewness will be sensitive to the relative

amounts of small and large price changes. We deal with this by constructing statistics that

exclude very small price changes (< 1% in absolute value) in the ELI’s that Eichenbaum et

al. flagged as problematic as a robustness check.

Finally, it has been pointed out by Nakamura and Steinsson (2008 and 2010) that there

is significant heterogeneity of price change statistics across sectors. To report the average

overall frequency of price change, they estimate the frequency for each ELI, and then take

a weighted average of each frequency (with the expenditure weights that go into the CPI).

The same method is used by many of the other cited empirical studies. For the frequency

of price change, we use the same method, considering both the weighted median and mean
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frequency4. For the dispersion and skewness, we follow a similar approach: we first estimate

each moment by sector-month. However, as ELI’s are fairly narrow categories, most of

them have a handful of price change observations in any given month, fewer than would be

necessary to estimate higher moments with any precision. We therefore do not use ELI’s

as our definition of sectors, but instead separate products into 13 “major groups”, which

are listed in the appendix. While this sectoral classification is fairly broad, it allows us to

separate goods and services into similar categories, while leaving enough observations in each

sector-month to obtain good estimates of the dispersion and skewness., and then for each

month take weighted averages of the statistics.

This approach then leaves us with monthly series of the different moments of the price

change distribution. We believe that our approach, following the empirical price setting

literature, gives us the most valid estimates to compare with those from model simulations.

Indeed, the models that we are testing involve “pure” price changes, and abstract from

temporary sales and product substitutions, which is why we try as much as possible to

include only regular price changes in our empirical estimates. Perhaps more importantly,

the models do not allow for differences across sectors. Such differences, such as sector-

specific shocks, have the potential to strongly affect the shape of the overall price change

distribution (when all price changes across sectors are pooled together), in turn affecting

the higher moments of the distribution. Because of this, we might see the moments of the

4Nakamura and Steinsson (2008) highlight the difference between the mean and the median, arising from
the fact that the distribution of frequencies by ELI is very skewed to the right, with a few ELI’s having very
high frequencies. They argue that the median is a better measure of the average frequency in the sense that
a single-sector menu cost model calibrated to match the median frequency is a much better approximation
of a multi-sector model, of the kind described in Section 2.2. In this way, the median frequency is a statistic
that better describes the degree of price stickiness (as it relates to monetary non-neutrality). This is also
why we calibrate all the single sector models to match the median frequency.
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“pooled” distribution of price changes vary over time due to such sector-specific shocks,

which would be unrelated to the mechanisms that are behind the predictions of the models

that we described in the previous section. For this reason, we attempt to “control for” these

kinds of effects by computing statistics sector by sector.

2.3.3 Results

The goal of our empirical work is to determine whether the theoretical patterns documented

above are borne out by the data. As in the theoretical section, we focus on the correlations

between aggregate inflation and price change dispersion, and between inflation and price

change skewness. The price change moments are calculated as described above, and our

preferred measure for aggregate inflation is monthly core PCE inflation. We prefer to use core

inflation because the sharp changes in headline inflation tend to be driven by changes in the

global market prices of food and commodities, which would not be well described by the price-

setting models that we are working with. However, we will also compute correlations with

headline inflation as a robustness check (as well as using estimates of the moments excluding

price changes from food and energy categories). Finally, to control for seasonality in the

inflation and moment series, we calculate the correlations after removing month dummies

from the series, and after applying a moving average smoother to them.

The price data is monthly, and inflation series are monthly, so we can compute the corre-

lations at a monthly frequency. However, the drawback of using monthly series is that each

period’s moment estimates are based on relatively few observations, making them less precise

(this is especially important for higher moments such as the dispersion or skewness). The
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alternative is to group price change observations by quarters or years (but still separating

them by sector) and to estimate the moments from these samples, which gives us more precise

estimates (as they are based on distributions with more observations), but only quarterly or

annual moment series. Since quarterly and annual inflation averages also have the advan-

tage of containing less noise than monthly inflation series, we consider monthly, quarterly,

and annual correlations. We present the results in two ways: first, with raw correlations

and scatter plots, as with the models, to give a simple illustration of the signs and strength

of the relationships in the data, and a qualitative comparison with the models. which we

correlate with inflation series of the corresponding frequency. Secondly, we estimate these

relationships with regressions. This allows us to more formally test for significance, and to

control for other variables that might conceivably affect the price change distribution.

Correlations

Our sample period for the price data is 1977-2014, and the early, high inflation, part of the

period is particularly important. We want to answer whether the dispersion and skewness

of price changes move inversely with aggregate inflation, as predicted by most sticky price

models, and in order to do this it is very helpful to see how the statistics change when inflation

was high. However, we first verify that the frequency of price change rises with inflation, as

found by Gagnon (2009) and Alvarez et al. (2011a). Table 2.2 reports correlations between

the frequency of price change and inflation, and Figure 2.7 is the empirical counterpart to

Figure 2.1 from the simulations (scatter plots of the average frequency and inflation for the

months in the sample, for both the weighted mean and median frequency).

The table and figure confirm that there is a positive association between the frequency
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and inflation, although this is considerably clearer for the median than the mean frequency.

As argued in the previous studies that had looked into this relation, this provides strong

evidence against the Calvo assumption of time-dependent price setting. Figures 2.8 and 2.9

illustrate the other correlations that are presented in Table 2.2: those involving quarterly

and annual averages of inflation and the frequency, and here the same pattern holds.

Next, we look at the results for the moments that our discussion has focused on: the

dispersion and skewness of price changes. Tables 2.3 and 2.4 report the correlations for the

dispersion and skewness respectively. Our main results is that while there does seem to be a

clear negative relationship between inflation and dispersion, there is no such relation between

inflation and skewness. Indeed, for both measures of skewness (moment skewness and Kelly

skewness; “Skewness” in the tables and graphs refers to moment skewness), the correlation

is either strongly positive (over the whole sample period) or close to zero (post-1984). This

can also be seen in Figures 2.13 and Figures 2.16, 5, which are scatter plots illustrating the

correlations (with each period corresponding to a month).

Figures 2.11-2.18 show these correlations with the quarterly and annual measures (includ-

ing the Kelly Skewness correlation using annual data), illustrating how the same patterns

hold.

5In the following figures, the left panel uses the statistics estimated using all available observations, while
the right panel uses the estimates that exclude price changes below 1% in absolute value in ELI’s deemed
problematic by Eichenbaum et al. (2013).
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Table 2.2: Corr(Frequency, Inflation)

Weighted Median
Monthly Quarterly Annual

1977-2014 1985-2014 1977-2014 1985-2014 1977-2014 1985-2014
Raw 0.575 0.399 0.671 0.536 0.764 0.618

Smoothed 0.769 0.552 0.785 0.628 -
Weighted Mean

Raw 0.311 -0.019 0.314 -0.216 0.374 -0.243
Smoothed 0.371 -0.337 0.36 -0.295 -

Table 2.3: Corr(IQR, Inflation)

All Observations
Monthly Quarterly Annual

1977-2014 1985-2014 1977-2014 1985-2014 1977-2014 1985-2014
Raw -0.602 -0.446 -0.716 -0.665 -0.776 -0.751

Smoothed -0.675 -0.706 -0.719 -0.742 -
EJRS

Raw -0.666 -0.434 -0.711 -0.689 -0.775 -0.779
Smoothed -0.792 -0.701 -0.709 -0.769 -

Table 2.4: Corr(Skewness, Inflation)

All Observations
Monthly Quarterly Annual

1977-2014 1985-2014 1977-2014 1985-2014 1977-2014 1985-2014
Raw 0.265 0.084 0.345 0.067 0.473 0.122

Smoothed 0.506 0.136 0.474 0.133 -
EJRS

Raw 0.272 0.068 0.327 0.053 0.447 0.102
Smoothed 0.462 0.144 0.452 0.105 -
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Table 2.5: Corr(Kelly Skewness, Inflation)

All Observations
Monthly Quarterly Annual

1977-2014 1985-2014 1977-2014 1985-2014 1977-2014 1985-2014
Raw 0.584 0.069 0.674 -0.106 0.744 -0.165

Smoothed 0.696 -0.067 0.697 -0.199 -

Figure 2.7: Frequency of Price Change and Inflation, Monthly
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Figure 7: Frequency of Price Chane & Inflation, Monthly

Figure 2.8: Frequency of Price Change and Inflation, Quarterly
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Figure 8: Frequency of Price Change & Inflation, Quarterly
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Figure 2.9: Frequency of Price Change and Inflation, Annual
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Figure 9: Frequency of Price Change & Inflation, Annual

Figure 2.10: IQR & Inflation, Monthly
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Figure 10: IQR & Inflation, Monthly
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Figure 2.11: IQR & Inflation, Quarterly
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Figure 12: IQR & Inflation, Quarterly

Figure 2.12: IQR & Inflation, Annual
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Figure 14: IQR & Inflation, Annual
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Figure 2.13: Skewness & Inflation, Monthly
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Figure 11: Skewness & Inflation, Monthly

Figure 2.14: Skewness & Inflation, Quarterly
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Figure 13: Skewness & Inflation, Quarterly
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Figure 2.15: Skewness & Inflation, Annual
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Figure 15: Skewness & Inflation, Annual

Figure 2.16: Kelly Skewness & Inflation, Monthly, correlation= 0.58
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Figure X: Kelly Skewness & Inflation, Monthly; Corr = 0.584

To summarize, we find first that the dispersion of price changes falls sharply with inflation

throughout the sample period. Second, the skewness, while varying over time, does change

with inflation in a systematic way for low levels of inflation. However, there does seem to

be a positive relationship when inflation is high. We see this from the different correlations

for the different sample periods (which roughly correspond to the high and low inflation

periods). Finally, all these patterns hold true regardless of whether we exclude potentially

spurious small price changes or apply seasonal adjustment and smoothing to the data series.
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Figure 2.17: Kelly Skewness & Inflation, Quarterly, correlation= 0.67
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Figure X: Kelly Skewness & Inflation, Quarterly; Corr = 0.674

Figure 2.18: Kelly Skewness & Inflation, Annual, correlation= 0.7
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Figure 16: Kelly Skewness & Inflation, Annual; Corr = 0.744
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Next, we formalize this analysis with linear regressions.

Regressions

Although the correlations and scatter plots provide a general picture of what the data shows

on the relationships in question, we turn to regressions to determine whether these correla-

tions are statistically significant, and to consider different control variables. However, the

question of interest for us is not merely whether they are statistically significant from zero,

but also whether they are significantly different from what the models predict. To do this, we

estimate regressions of the frequency, dispersion (inter-quartile range) and skewness (both

moment and Kelly skewness) of the price change distribution on inflation, with different

specifications allowing for different sets of controls and sample periods. As before, we run

the regressions both on the whole sample period and on only after 1984. This allows us

to see if the relationship looks different between the low and high inflation periods. The

regressions all take the following form:

yt = α + βπt + γControlst + et,

where yt denotes the different price change moments (frequency, dispersion, and skewness).

Controls are included to address the fact that many important changes occurred in the

U.S. monetary environment over our sample period, which could conceivably have a direct

effect on the price change distribution. Since expected inflation could affect firms’ price

setting decisions separately from present realized nominal shocks, we include expected in-

flation (measured by the University of Michigan Survey of Consumers) as a control. We
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also inlcude dummy variables for the different Federal Reserve chair’s times in office, to

control for differences in the conduct of monetary policy. The different specifications cover

different combinations of controls (no controls, Fed dummies only, or Fed dummies with

expected inflation) and the different periods. Tables 2.6 to 2.9 show the estimates for β

from these different specifications, with the standard errors below them. All standard errors

are calculated according to Newey and West (1987), and allow for serial correlation in the

residuals.

Table 2.6: Coefficients for Frequency Regressions

Weighted Median Weighted Mean
Specification 1977-2014 1985-2014 1977-2014 1985-2014
All 0.708*** 0.777*** 0.164 0.018

(0.071) (0.224) (0.203 ) (0.196 )
Fed Dummies 0.728*** 0.810*** 0.686*** 0.339**

(0.095) (0.208) (0.104 ) (0.167 )
Inflation Only 0.771*** 0.587** 0.438*** -0.087

(0.237) (0.252) (0.108 ) (0.236 )

Note: Significant at 1% level (** at 5% level; * at 10% level). This table reports

the correlation coefficients from regressions of the weighted average (median and

mean) frequency of price changes on aggregate CPI inflation. The regressions

are run using quarterly series, where quarterly inflation is defined the mean of

the 12-month log changes in the CPI for the three months in every quarter. The

different cells indicate different specifications, which change with respect to the

sample period used and inclusion exclusion of small price changes (columns), and

what controls are used. Standard errors that are consistent for heteroskedasticity

and auto-correlation of the residuals (Newey-West) are reported. The same

observations apply to the other regression tables, which report coefficients on

inflation in regressions with other dependent variables.

These results confirm what the correlations showed: the frequency of price change rises

with inflation (although for the mean frequency this is not so clear), the relationship between

dispersion and inflation is negative and statistically significant in all specifications and sample
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Table 2.7: Coefficients for IQR Regressions

All Observations EJRS
Specification 1977-2014 1985-2014 1977-2014 1985-2014
Inflation Only -0.296*** -0.428*** -0.327*** -0.491***

(0.042) (0.070) (0.046) (0.082)
Fed Dummies -0.186*** -0.414*** -0.204*** -0.476***

(0.038) (0.077) (0.044) (0.089)
Fed & Expected Infl -0.257*** -0.222** -0.261*** -0.224***

(0.089) (0.086) (0.095) (0.092)

Table 2.8: Coefficients for Skewness Regressions

All Observations EJRS
Specification 1977-2014 1985-2014 1977-2014 1985-2014
Inflation Only 3.936*** 1.732 3.501*** 1.108

(0.827 ) (1.641 ) (0.828) (1.534)
Fed Dummies 4.309*** 1.541 3.928*** 1.130

(1.012 ) (1.857) (0.966) (1.705)
Fed & Expected Infl 2.665 3.634 1.947 2.963

(2.788 ) (3.279) (2.538) (2.985)

Table 2.9: Coefficients for Kelly Skewness Regressions

All Observations
Specification 1977-2014 1985-2014
Inflation Only 2.499*** 0.320

(0.354) (0.454)
Fed Dummies 2.439*** 0.710*

(0.363) (0.423)
Fed & Expected Infl 1.658 0.942

(0.948) (0.595)
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periods. The skewness correlation, however, is significantly positive for the whole sample,

but not significantly different from zero when the early, high-inflation period is excluded

(and this applies for both measures of skewness). This indicates (as we can also see from

the scatter plots), that this relation is close to flat for low inflation periods, but clearly

positive for high inflation periods. The fact that the skewness of price change is higher on

average in high inflation periods is important, because it also goes against the menu cost

models’ predictions at high values of steady-state inflation, as we showed in Figure 2.5. It

is also notable that the skewness coefficients change considerably when expected inflation

is included as a regressor. Since expected inflation is very highly correlated with realized

inflation, the estimates are much less precise (as shown by the high standard errors), so this is

not surprising. However, this makes little difference to the comparisons with the coefficients

predicted by the models, which we turn to with Table 2.10.

Table 2.10: Coefficients on Inflation for Price Change Moment

Model Frequency IQR Skewness Kelly Skewness
Golosov & Lucas 0.139 -0.937 -17.7 -0.40

Multisector Menu Cost 0.143 -0.218 -5.39 -4.33
Midrigan 0.348 -0.896 -9.84 -6.53

Observation and Menu Costs .268 -0.071 -4.32
Calvo -0.003 0.040 2.93 1.00

Rational Inattention 0.001 0.007 3.03

The table presents the coefficients on inflation from regressions of the same type, but run

on simulated data from the different models. The first four models (menu cost models) have

negative coefficients for the inter-quartile range, although for all but the multi-sector model,

they are outside the 95% confidence intervals of the coefficients that we estimate. However,

the disagreement with the data is much starker with the skewness coefficients. These are all
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very far outside the confidence intervals that we estimate for the skewness coefficients under

all specifications, and the same is true for Kelly skewness6. We summarize our findings in

Table 2.11 below, which “updates” Table 2.1 by adding the signs of the correlations in the

data to those predicted by the models.

Table 2.11: Correlation of inflation and moments

Model corr(π, frequency) corr(π, Std. Deviation) corr(π, Skewness)
Calvo 0 0 +

Golosov and Lucas + - -
Multi Sector Menu Cost + - -

Midrigan + - -
Observation and Menu Costs + 0 -

Rational Inattention + 0 +
Data + - +

For each model, the signs that match the data are colored in blue, while those that do

not are red. We do this to highlight the fact that in the broad class of state-dependent price

setting models that we consider, none match the data in all the dimensions that we have

presented. In particular, this highlights the usefulness of the inflation-skewness correlation as

a statistic to test the existing menu cost models. As we have already argued, these models

make a counterfactual prediction with this statistic because of the state-dependence that

underlies them. It is also worth noting that the Calvo and rational inattention models have

the same predictions, and therefore disagree with the data in the same ways.

6The one exception is the coefficient for the Golosov and Lucas model, which is much smaller in magnitude
than in the other menu cost models, and is marginally accepted in the specification that restricts the sample
to the post-1984 period and uses only Fed chair controls. It appears that the value of the Kelly Skewness is
extremely sensitive to the unusual shape of the price change distribution (bi-modal) in this model, leading to
this weak relationship. The model’s Kelly Skewness coefficient is still rejected in all the other specifications,
however.
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2.4 Conclusion

The literature on sticky prices has made extensive use of price micro data to discipline models

of price setting, and in this way the models have conformed more and more to important

aspects of the dynamics of price changes. This line of work has notably enabled the study

of monetary non-neutrality to be more grounded in data. However, an important limitation

of the work done so far is that it has mostly used data for low inflation environments. Since

the models in question are designed to study how prices respond to aggregate shocks, it is

helpful to be able to observe the behaviour of price changes under large aggregate shocks

and high inflation.

Our paper contributes to this by using price data from the U.S. going back to the late

1970’s to compare how the price change distribution changes with inflation, to the predictions

of a wide range of sticky price models. Our main finding is that the menu cost models that

have been most used in the literature fail to match the positive relationship between inflation

and the skewness of price changes in the data, because they uniformly predict a sharp

negative relationship. In addition, we argue that this relationship, although not obvious at

first site, follows very intuitively from the selection effect that is central to menu cost models.

We also show how a model with random menu costs can overcome this problem when the

distribution of menu costs features a significant probability of very high and very low menu

costs, making it resemble a Calvo model and weakening the selection effect. Finally, this

model predicts a degree of monetary non-neutrality that is considerably higher than what is

predicted by the Golosov and Lucas model, and higher still than the Midrigan model.

The distinction between menu cost and Calvo models, or between state- and time-
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dependent pricing models has taken an important place in this literature. Much work has

been done to show how these two ways of modelling pricing stickiness yield such different

implications on monetary non-neutrality, and to determine which models are best at match-

ing empirical facts. Our paper contributes to this line of work by introducing statistics not

previously considered that are very useful to discriminate between the different models. In

addition, we follow Woodford (2009) in presenting the distinction between time- and state-

dependent models as a continuum, or spectrum. Woodford (2009) shows how different values

for the firm’s cost of processing information leads to a different point on this spectrum. In

contrast, our approach is agnostic as to what ultimately underlies the randomness of menu

costs that allows our model to span the time versus state dependent spectrum. Instead, we

determine what point on the spectrum is most consistent with the data. Future research

could combine these two approaches to gain a better understanding into the nature and

importance of the informational constraints that underly price rigidity. For now, along with

Nakamura and Steinsson (2010) and Midrigan (2011), we show that the assumption made

by Golosov and Lucas (2007) of firms facing a single, constant menu cost is starkly at odds

with many aspects of the price data, and that monetary policy can be expected to have

substantial and persistent effects on real economic activity.
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Chapter 3

Monetary Non-Neutrality and the

Selection Effect in a Random Menu

Cost Model
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3.1 Introduction

Much of the literature on sticky prices (including the other chapters in this work) have

studied the distinction between state-dependent and time-dependent price stickiness. This

distinction is extremely important, because the two different classes of models make ex-

tremely different predictions on how large the real effect of monetary policy (or monetary

non-neutrality) is. One approach to this line of work, notably taken by Woodford (2009),

has been to consider state-dependent (or menu cost models) and time-dependent (for exam-

ple, the Calvo model) as specific cases of a more general approach to price stickiness. More

specifically, Woodford (2009) applies the rational inattention framework to the standard mo-

nopolistically competitive price setting problem, and shows that the resulting model can nest

the Calvo and menu cost models as extreme cases, spanned by different values for the cost

of processing information. Indeed, with an infinite cost of information, firms behave as in a

Calvo model, choosing to receive random signals about when to change their prices; while in

the case of free information, the model is equivalent to a standard menu cost model. Beyond

rational inattention, Caballero and Engel (1993) proposed a hazard function approach to

studying the link between discrete micro-level decisions by agents and aggregate variable

dynamics, applying it to sticky prices in particular. The hazard function, in this context,

is the probability of a price changing, as a function of the gap between the current price

and the optimal price. Different types of sticky price models will imply different hazard

functions, making this approach very general. Caballero and Engel (2007) showed how the

hazard function can shed insight on the relationship between price stickiness and monetary

non-neutrality, and the following chapter of this work will show how this function can be
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estimated from price micro data.

In this chapter, I consider a different type of generalized model that nests the menu cost

and Calvo cases, with a very particular goal in mind. Chapter 2 had shown how the selection

effect in sticky price models induces very strong patterns between aggregate inflation and

the shape of the price change distribution. It was shown, notably, that in menu cost models

the skewness and dispersion of price changes fall very sharply with inflation, while in the

data only the dispersion seems to fall with inflation. This strongly suggests that the degree

of selection implied by menu cost models is too high. However, the fact that the frequency of

price change appears to rise sharply with inflation is also strong evidence that the complete

absence of selection assumed by the Calvo model is inconsistent with the data. I therefore

present an extension to the standard Golosov and Lucas (2007) model in which the menu

cost that firms must pay if they choose to change their price is random over time and across

firms.

Inspired by the Dotsey et al. (1999) random menu cost model, this model can also nest the

Calvo and standard menu cost models, depending on the distribution of menu costs. Indeed,

a degenerate menu cost distribution of menu costs reduces the model to a standard, fixed,

menu cost model. On the other hand, if the menu cost can only take the values of zero and

infinity (with a certain probability), the model is identical to a Calvo model. Such a model

would feature no selection because the only determinant as to whether a price changes would

be the luck of the draw of the menu cost (as in Calvo). I use this model to find a distribution

of menu costs that allows the model to match both the average frequency and size of price

change (which have been used to calibrate many of the existing sticky price models), and

the different inflation correlations presented in the previous chapter. The key factor that
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will distinguish distributions for these purposes is the amount of selection implied, and the

distribution that allows the model to match these moments (and in particular to predict

a non-negative inflation-skewness correlation) implies a very weak selection effect. This, in

turn, means that the model predicts a very high degree of monetary non-neutrality: around

six times greater than in Golosov and Lucas (2007), two times greater than in Midrigan

(2011), but around 70% as high as in Calvo (which, featuring no selection, still represents

the upper bound of non-neutrality).

The remainder of this chapter is organized as follows. Section 3.2 presents the random

menu cost model, and further discusses the relationship with existing generalized approaches

to sticky prices. Section 3.3 presents the solution method to the model, the moments used

for calibration, and the results on monetary non-neutrality. Finally, section 3.4 presents

some concluding remarks.

3.2 Random Menu Cost Model

The model in this paper fits into the general set-up of the models examined in the previous

chapter. Households choose consumption and labor supply to maximize expected discounted

utility:

Et

∞∑
τ=t

βτ−t [logCτ+t − ωLτ+t]

Consumption consists of a composite of individual varieties produced by monopolistically

competitive firms. Aggregate consumption is a CES aggregator, which yields the usual

demand function for individual varieties, indexed by z (of which there is a continuum with
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unit mass):

ct(z) =

(
pt(z)

Pt

)−θ
Ct

Firms produce their variety using only labor, with a linear production technology:

yt(z) = At(z)Lt(z)

The demand system and technology faced by the firm is the same as in the existing models,

but we generalize the price setting problem in the following way: the menu cost faced by

each firm every period is random. Formally, the period profit function of the firm takes on

this form:

Πt(z) = pt(z)yt(z)−WtLt(z)− χt(z)WtI{pt(z) 6= pt−1(z)}, χt(z)
iid∼ G(χ)

The difference with the Golosov and Lucas (2007) model is that now the menu cost can

vary over time and across firms, the difference with the Midrigan (2011) model is that the

distribution of menu costs is generalized, and as opposed to the Nakamura and Steinsson

model, the menu cost for any given firm here varies over time. The first thing that can be

shown is how this model nests some of the models presented in the previous chapter:

Golosov&Lucas : χt(z) = χ̄∀t, z
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Calvo : χt(z) =


0, P rob = f

∞, P rob = 1− f

Midrigan : χt(z) =


0, P rob = pz

χ, Prob = 1− pz

One can already see how these different cases imply different degrees of selection in price

setting. In the degenerate distribution case, the menu cost never varies, such that the firm’s

decision as to whether to change its price will depend entirely on how mis-aligned its price

is. In the Calvo case, however, firms either get to change their price for free, or not at all. In

this case, the price change decision depends entirely on what value was drawn for the menu

cost in that period. In Midrigan (2011), we have an intermediate case, in which firms with

very mis-aligned prices will be more likely to change their prices, but some price changes will

also occur simply because the firm randomly received a free price change opportunity. The

assumption of random menu costs is similar to that made by Dotsey et al. (1999)1, but this

model still fits into the general framework of Golosov and Lucas (2007), which will make it

possible to calibrate the model using micro price data and evaluate the degree of monetary

non-neutrality.

Finally, the processes for shocks are the same as the ones used previously. Firms’ idiosyn-

1The key differences with Dotsey et al. (1999) are that their model does not include idiosyncratic shocks,
that it does include capital as an input to production, and that they did not have a way of using information
from price micro data to place restrictions on the menu cost distribution, which is what the present exercise
is about.
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cratic productivity shocks follow a Poisson process:

logAt(z) =


ρlogAt−1(z) + εt, P robability = pε

logAt−1(z), P robability = 1− pε

, εt
iid∼ N(0, σ2

ε )

Nominal aggregate demand follows a random walk with drift:

logPtCt = logSt = µ+ logSt−1 + ηt, ηt
iid∼ N(0, σ2

η)

As before, it will be the aggregate shocks that drive variations in inflation.

3.2.1 Background on Random Menu Costs

I choose to modify the model in this way for several reasons. The first is that it yields a very

general model that nests the menu cost models we have considered, as described above. In

addition, this approach has a close relation to another, even more general approach already

pursued by Caballero and Engel in a series of papers (1993, 2006, 2007). They propose

thinking about price adjustment through the price adjustment hazard function2, which is

the probability of a price change occurring as a function of the deviation of the current price

from its optimal value (p∗):

H(x) = P (∆p| p∗ − p = x)

2It must be noted that this is distinct from the hazard function of price change estimated by Nakamura
and Steinsson (2008) and Klenow and Kryvtsov (2008), which is the function λ(t) that gives the probability
that a price will change after t periods, given that it has already stayed constant for t periods. This function
gets at timing of price changes, and at whether prices become more likely to change the longer they have
stayed constant.
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Any of the models considered so far will imply a price adjustment hazard function, so

the hazard function can be a helpful object to summarize the important features of each

model. This function also describes the degree of the selection effect, as it indicates to what

extent prices have a higher chance of adjusting the more mis-aligned they are. Caballero

and Engel (2007) show that, within this framework, aggregate price flexbility (or the inverse

of monetary non-neutrality) can be expressed as the sum of two components:

∫
H(x)f(x)dx+

∫
xH ′(x)f(x)dx

where f(x) is the probability density of the desired price gap, x. The first term in this

sum is the frequency of price change, and the second is what Caballero and Engel refer to

the extensive margin, which incorporates the selection effect. To illustrate how this works,

the hazard function corresponding to the Calvo model is a constant (the average frequency

of price change), so that the first term is equal to that constant, and the second is zero. This

shows that in general, and as long as the hazard function is increasing in the absolute value

of the price gap (which is true for all models considered), the Calvo model gives a lower

bound on the degree of flexibility. In the random menu cost model, a particular menu cost

distribution will imply a particular hazard function, and will therefore determine aggregate

flexibility (and monetary non-neutrality) as shown by the expression above. In this way,

there is a very tight relation between these approaches3.

3It would naturally also be interesting to directly estimate this hazard function. In this paper we
continue to work in the menu cost framework to maintain the structure of a General Equilibrium model and
obtain a quantitative response to the question of monetary non-neutrality. However, Caballero and Engel
(2006) attempt to do this, although the price change moments that they had access to were limited in the
informational value they provided for this. By the same logic we have put forth in this paper, the higher
moment price change correlations will be very informative to estimate the hazard function, and we pursue
this in chapter 4.
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A more structural approach to price stickiness that is also related to mine is Woodford

(2009)’s model of rational inattention. He shows that by varying the cost of processing

information, price setting under rational inattention in the style of Sims (2003) can also

nest, as extreme cases, the single menu cost model (free information) and the Calvo model

(infinitely costly information), as well as the spectrum in between, which he also describes

with the adjustment hazard function implied by different information costs. In addition,

there will also be a mapping between the value for the cost of information in that framework,

and a specific distribution of menu costs in ours. While I do not derive this mapping, it is

possible that the rational inattention framework (or another type of informational constraint)

could provide a micro-foundation for the distribution of menu costs that I assume to be

general at first, and then adjust to allow the model to fit the empirical facts4.

3.2.2 The Distribution of Menu Costs

Introducing random menu costs allows one to determine the extent of state-dependence

present in the model, or to what extent firms choose when to change their prices. One

extreme case of this is of course perfect price flexibility, or firms being free to change their

prices every period without facing any kind of cost for doing so (although this is inconsistent

with the fact that most prices do not change on any given month). But right after this

comes a menu cost environment such as the one in Golosov and Lucas (2007): firms are

4As Woodford (2009) also points out, the direct empirical evidence on the actual costs of price adjustment
put forth by Zbaracki et al. (2004) indicates that the most important part of those costs are related to the
process of gathering the necessary information for a price review. In addition, Anderson and Simester (2010)
give evidence on how price changes can antagonize consumers, which introduces costs to changing prices. To
the extent that the menu costs in the menu cost framework represent these costs, I believe that it is plausible
that the menu costs are random to some extent, and vary across firms and time. This lends plausibility to
the random menu costs assumption, although I leave the explicitly modeling of the informational constraints
or consumer considerations that underly it to future research.
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still able to choose when to change their prices, but are subject to a fixed cost (that is

small in typical calibrations, to match the frequency of price change in the data). Adding

randomness to the menu cost makes the price change decision more exogenous to the firm,

as an additional dimension of the problem (how much changing the price will cost) is now

outside the firm’s control (with the extreme being the Calvo model, where the opportunity

to change price is completely exogenous). The Midrigan model (both in Midrigan (2011),

and the simplification of it that we present) goes in this direction, and as a result the degree

of monetary non-neutrality in that model is much higher. The results from chapter 2 suggest

that a model would need even more exogeneity (but less than the Calvo model) to match

the empirical facts that were presented. Therefore, I parametrize the distribution of menu

costs in a way that makes it possible to do this.

There are two important features that the menu cost distribution will need in order to

achieve this: a positive probability of the menu cost being zero (of a free price change),

which eliminates the “Ss” band or inaction region in the price setting problem, as some

firms, facing a free price change, will choose to change their prices even if it is by a small

amount. However, the Midrigran model already includes this, and as we have shown it also

predicts a counterfactual inflation-skewness correlation. The other feature is that there must

also be a positive and considerable probability that the menu cost will be very high, so high

that firms will not choose to change their price when faced with these menu costs. This is

important, because in the existing models, the skewness of price changes falls with inflation

because a positive aggregate shock induces more firms that face a positive menu cost to pay

it, effectively pushing them over a threshold, leading to an important shift in the shape of the

distribution. Having a positive probability of very high menu costs means that fewer firms
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will be pushed over this threshold, weakening this effect. It is also helpful to note that the

Calvo model contains both of these features in the extreme, as it gives a positive probability

of a free price change, and in all other cases the menu cost is infinite. Because of this, one

can consider that the menu cost distribution in the generalized model will incorporate a

strong “Calvo feature”, without going all the way to the Calvo extreme.

In order to achieve this, I present a relatively flexible distribution for menu costs. I assume

that menu costs are iid across time and firms, so that every period each firm draws a menu

cost χ from a mixed distribution. First, with a certain probability, the menu cost is zero,

and otherwise it is drawn from a continuous distribution:

χ =


0, P rob = pz

χ̃, P rob = 1− pz

, where F (k) = P (χ̃ ≤ k) = 1− e−λkα

In the simplified version of the Midrigan model, the menu cost was either zero or a fixed

positive value. The difference here is that instead of the positive value being fixed, it is drawn

from a non-degenerate distribution. This distribution is a transformation of the exponential

distribution (it is the same when α = 1), and shares the important feature that the random

variable is always positive. The difference is that α governs the curvature of the distribution

function, which roughly corresponds to the fatness of the tails. Figure 3.1 shows how the

shape of the cumulative distribution function changes with α:

For our purposes, what is important is that for low values of α, the probability of very

low values is relatively high, but the probability of very high values is also quite high. When

α is high, these extreme probabilities are low, and as α rises, the density concentrates on
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Figure 3.1: Shape of Menu Cost CDF for Different α
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one value, approximating the case of a unique menu cost.

3.3 Solution and Results

This set-up has introduced new parameters, relative to the models that we considered in

chapter 2: the inverse of the average menu cost (λ), and the curvature of the menu cost

distribution (α). The other parameters important for the firm’s price setting problem are

the variance of the idiosyncratic shocks (σ2
ε ), the arrival probability of the shocks (pε), and

the probability of a free price change (pz) which was used in the Midrigan model. I set these

parameters so that the model can match the empirical facts that were discussed previously,

which can be divided into two categories:

1. From existing models: although these have not been the focus of the discussion, all

the existing models match the average monthly frequency of price change and the

average size of price change. My model therefore matches the median of these statistics

measured in our data. In addition, the empirical work has confirmed that, as previous

studies had shown, the correlation between inflation and the frequency of price change

is positive, so this model also matches this fact.

2. New moments: like the existing menu cost models, and consistent with the data, this

model will imply a strongly negative correlation between inflation and the dispersion

of price changes. The novelty will be that the implied correlation between inflation

and the skewness of price changes will be non-negative, as in the data.

Table 3.1 presents the parameter values that we choose to match these moments, and Table

3.2 shows the moments attained by the model, compared to their empirical values.
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Table 3.1: Parameter values

Parameter Description Value
λ Inv. average menu cost 0.1925
α Fatness of tails of MC 0.27
pz P(zero MC) 0.056
pε P(idio. shock) 0.345
σε Size of idio. shocks 0.101

Table 3.2: Simulation results

Moment Model Data
Avg. Frequency 11.3% 11.3%

Avg. Size 8.0% 8.0%
Corr(IQR,π) -0.59 -0.70
Corr(Skew,π) 0.05 0.39
Corr(Freq,π) 0.58 0.63

The first two moments are matched almost exactly. For the empirical value of the correla-

tions, we present the results for the quarterly correlations involving the raw data, including

all time periods, and excluding suspicious small price changes (for dispersion and skewness),

and the weighted median for the frequency. The model matches the dispersion and frequency

correlations quite closely. However, the skewness correlation in the model is close to zero,

while it is clearly positive in the data for the whole sample. Before explaining this in more

detail, I illustrate these correlations with scatter plots for the generalized model under the

calibration above in Figures 3.2-3.4.

While the skewness correlation in this model is lower than in the data, for the range of

inflation that occurs in the simulations (0-6%), the correlation also appears to be close to zero

in the data. I also consider a “long-run” correlation: solving the model for different values of
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Figure 3.2: Frequency & Inflation in Generalized MC model, corr=0.58613
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Figure 3.3: Dispersion & Inflation in Generalized MC model, corr=-0.45496
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Figure 3.4: Skewness & Inflation in Generalized MC model, corr=0.048446
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trend inflation, and computing the average skewness of price change for each of these values.

I find that for higher steady-state inflation, the average level of skewness in the price change

distribution rises, and the correlation between period-by-period price change skewness and

inflation (the same correlations we have been focusing on so far) also rises. This result

makes the model even more consistent with the data, as it shows that when steady-state

inflation is higher (as it surely was in the early, high-inflation part of our sample), we should

expect to see the skewness rising with inflation. This is indeed what we saw in the empirical

analysis in chapter 2. In addition, this also makes this model stand out even more from

the existing ones, as the other menu cost models feature a declining average price change

skewness as steady-state inflation rises (and a period-by-period skewness correlation that is

always negative). Figure 3.5 below shows this clearly by plotting the steady-state skewness

correlations for the Midrigan model and the heteroegenous menu cost model separately.

Figure 3.5: Steady-State Skewness Correlation
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Figure 21: Steady-State Skewness Correlation

This pattern highlights how the steady-state (or trend) inflation plays an important role

behind the model’s non-negative skewness correlation. Indeed, positive trend inflation leads
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firms to expect positive future inflation when considering whether to re-set their prices.

This will lead them to be less likely to cut their prices, even when facing an idiosyncratic (or

aggregate) shock that would reduce their current desired price. This asymmetry in firms’

willingness to cut prices also means that the left tail of the price change distribution will

be less responsive to aggregate shocks, weakening the mechanism that led to the negative

skewness correlation in the existing models.

What these results and figures make clear is that the generalized menu cost model that we

presented, in making menu costs random in a way that weakens the selection effect, matches

the important empirical facts that have been the focus of previous work on sticky prices

as well as the existing models, and overturns the counterfactual prediction of these models

that were emphasized previously. I now show what this means for the degree of monetary

non-neutrality.

3.3.1 Monetary Non-Neutrality

Monetary non-neutrality in these models is defined as the variation in real consumption

induced by the nominal aggregate demand shocks, which are the only aggregate shocks, and

I compare this statistic for the Calvo model, the Golosov and Lucas and Midrigan menu cost

models, and the generalized menu cost model. As mentioned above, making the menu cost

distribution random in the way that I have proposed weakens the selection effect that is at

work in menu cost models, so it is to be expected that this model would imply a greater

degree of monetary non-neutrality. Table 3.3 below provides a quantitative illustration of

this.
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Table 3.3: Monetary Non-Neutrality

Model Var(Ct) ∗ 104

Golosov and Lucas 0.05778
Midrigan 0.17588

Generalized Menu Cost 0.33617
Calvo 0.47696

As Golosov and Lucas (2007) had famously shown, their model features a trivial amount

of monetary non-neutrality compared to the Calvo model. Between the menu cost models,

the major difference is between the baseline (Golosov and Lucas (2007)) and the others.

Allowing for small price changes, as the Midrigan model does, leads to a very large increase

in monetary non-neutrality, and this was emphasized by Midrigan (2011). However, the

generalized model goes further by giving firms a large probability of effectively not being able

to change their price, and yields an even higher level of non-neutrality. The Calvo model still

has a higher degree of monetary non-neutrality. To further illustrate the differences between

the models, Figure 3.6 shows the impulse response of real aggregate consumption to a one

percentage point increase in nominal aggregate demand in the same four models:

Not only is the effect on real activity greater on impact in the random menu cost model,

but the effect is also considerably more persistent than in the existing menu cost models. It

is clear that while in the Golosov and Lucas model the real effect of a nominal shock is small

and transient, it is not so in my model, which has used the inflation-skewness correlation

to evaluate the strength of the selection effect. Finally, the Calvo model gives a closer

approximation to monetary non-neutrality than the other menu cost models.
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Figure 3.6: Impulse Responses in Models
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3.4 Conclusion

This chapter has presented a generalized random menu cost model that nests the standard

menu cost model and the Calvo model. The model’s flexibility allows me to determine

the strength of the selection effect by adjusting the distribution of menu costs. Chapter 2

had shown that standard menu cost models predict a counter-factual negative relationship

between aggregate inflation and price change skewness, and I find here that the random

menu cost model can match the signs of all the different inflation correlations, as long as the

distribution of menu costs implies a very weak selection effect. This exercise makes it possible

to pin down the required strength of the selection effect quite precisely, and this result means

that the model predicts a very high degree of monetary non-neutrality: considerably higher

than in the Midrigan or Golosov and Lucas menu cost models, and slightly lower than in the
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Calvo model. Beyond providing a precise answer to the question of monetary non-neutrality,

an important contribution of of this work is to develop a quantitative random menu cost

model, that generalizes the distinction between time and state-dependent models, and that

can be readily applied to price micro data.

In addition, I follow Woodford (2009) in presenting the distinction between time- and

state-dependent models as a continuum, or spectrum. Woodford (2009) shows how different

values for the firm’s cost of processing information leads to a different point on this spec-

trum. In contrast, the approach taken here is agnostic as to what ultimately underlies the

randomness of menu costs that allows the model to span the time versus state dependent

spectrum. Instead, I determine what point on the spectrum is most consistent with the

data. Future research could combine these two approaches to gain a better understanding

into the nature and importance of the informational constraints that underly price rigidity.

For now, along with Nakamura and Steinsson (2010) and Midrigan (2011), I show that the

assumption made by Golosov and Lucas (2007) of firms facing a single, constant menu cost

is starkly at odds with many aspects of the price data, and that monetary policy can be

expected to have substantial and persistent effects on real economic activity.
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Chapter 4

The State-Dependent Price

Adjustment Hazard Function:

Evidence From High Inflation Periods

Shaowen Luo and Daniel Villar
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4.1 Introduction

The size of monetary policy’s effect on real economic activity is a question that has received

much attention in the monetary economics literature. And with the new availability of large

and detailed price data sets over the past decade, what was once a mostly theoretical debate

has become more grounded in empirical facts. Indeed, different models have been proposed

for sticky prices, and they have yielded very different implications for monetary policy. But

price micro data sets (and notably the data underlying the U.S. Consumer Price Index, first

used by Bils and Klenow (2004)) have made it possible to measure how sticky prices really

are, and to discipline the key parameters of structural models. In chapter 2, we addressed

the distinction between time-dependent and state-dependent models, which has been much

of the focus of the monetary literature. In doing so, we worked with the two main structural

models of sticky prices: the menu cost model and the Calvo model (and their variants),

which we evaluated using an extension of the CPI micro data. In this paper, we analyze

price stickiness taking a different approach: the hazard function approach originally proposed

by Caballero and Engel (1993), which is, in many ways, model-free.

The debate about time-dependent models (such as the Calvo model) and state-dependent

models (such as the menu cost model) has centered on the fact that in state-dependent

models, firms that choose to change their price are those whose prices are most mis-aligned,

while such selection is absent by assumption from time-dependent models.Caplin and Spulber

(1987) and Golosov and Lucas (2007) showed that this has enormous implications for mon-

etary policy: monetary non-neutrality (the real effect of monetary shocks) is substantially

lower in menu cost models than in the Calvo model (calibrating the models to match the
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same frequency of price change). Since then, various different models have been developed to

match different empirical facts on sticky prices, and to provide richer micro-foundations for

sticky prices. This has been done, for example, by Nakamura and Steinsson (2010), Midrigan

(2011), and Alvarez et al. (2011b), among others.

However, Caballero and Engel (1993) suggested an approach to sticky prices that does not

require explicitly modelling the firm’s price setting problem. They consider an adjustment

hazard function, which is the probability of a price adjustment occurring for any given

product, as a function of the deviation between the current price and optimal price absent

any nominal rigidities. The concept of the adjustment hazard function can be applied to

many other cases in which discrete microeconomic decisions drive fluctuations in aggregate

variables (such as labor market adjustment, or lumpy investment in capital). But it is

particularly well suited to analyze the mapping between sticky prices and monetary policy.

Indeed, the existing “model-based” literature has shown that the selection effect, or whether

more mis-aligned prices are more likely to change, is a crucial determinant of monetary non-

neutrality. This is exactly what the hazard function approach adresses, as the shape of the

hazard function makes explicity how much selection there is. The advantage of this approach

is that it is extremely tractable, does not require solving a model of optimizing agents, and

is flexible and general. Any given hazard function implies a certain amount of monetary

non-neutrality (or aggregate rigidity), and price change statistics that can be compared to

the values observed in price micro data.

In a more recent paper, Caballero and Engel (2007) showed how various properties of the

price adjustment hazard function are related to monetary non-neutrality. And while they

included an estimate of the hazard function in an earlier version of that paper (Caballero
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and Engel (2006)), the estimate was based on only a few price change statistics that are not

able to adequately discipline the important features of the hazard function. In this paper,

we re-visit the exercise of estimating the price adjustment hazard function. In particular, we

propose to use the CPI micro data from high inflation periods, and especially the relationship

between the higher moments of the price change distribution and inflation (the same relations

we had presented in chapter 2) to estimate the hazard function much more precisely.

We find that without the conditional moments that we focus on, a wide range of hazard

functions can match the moments that have been the focus of the literature until now, and

that these hazard functions imply very different levels of monetary non-neutrality. However,

once we include the conditional moments in the estimation, the hazard functions pertaining

to the existing models can be rejected. We non-parametrically find a hazard function that

can match all the moment, and that implies a much greater degree of non-neutrality than

the ones that could have been previously considered. This is closely related to the insight in

chapters 2 and 3 of this work, in which we showed that only a model with a very small role

for the selection effect (and therefore a large degree of predicted non-neutrality) could match

the facts we presented. However, our estimated hazard function provides us with additional

insights. For example, the hazard function makes it clear that the probability of price

adjustment stays far below 1 even for large price mis-alignments (contrary to what would be

obtained from menu cost, or hybrid menu cost models, such as Midrigan (2011)). In addition,

the hazard function is asymmetric: for an equivalent magintude of price mis-alignment, a

price cut is less likely than a price increase. Both of these features are very important for

the hazard function to be able to match all the empirical facts, and are consistent with a

rational inattention model with an intermediate cost of processing information (Woodford
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(2009)).

The rest of this paper is organized as follows. Section 2 formalizes the hazard function

approach, and illustrates it with various examples. Section 3 describest the estimation

procedure and presents the results. In section 4, we derive results on monetary non-neutrality

from the estimated hazard function. Finally, we provide some concluding remarks in section

5.

4.2 The Price Adjustment Hazard Function

4.2.1 Basic Set-Up

We formally present here the price adjustment hazard function proposed by Caballero and

Engel (1993). There are a large number of firms in the economy, and the hazard function

gives the probability of a firm’s price adjusting given the difference between the current price

and the optimal price:

H(x) = P (∆pt|x ≡ p∗t − pt−1)

Furthermore, when a price adjusts, it is set to its current optimal level (p∗t ), such that

the desired price gap (or price imbalance) is closed. This set-up is extremely general, and

nests existing sticky price models, as we will show below. It is important to note, however,

that we are here not modelling firms’ (or households’) optimization problems. Rather, we

are just laying out a general way of describing the behavior that firms would choose, and

that will aggregate up to determine inflation. In a model, firms would optimally choose

how to determine the likelihood of adjustment for different price imbalances, given certain

constraints on changing prices. Furthermore, it would be optimal for firms to set their price
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equal to the target at all times (and thus for the hazard function to be always equal to 1)

absent any pricing constraints.

Before continuing our discussion of the price adjustment hazard function, it is important

to draw a distinction with another hazard function that has received attention in the sticky

price literature: the time-dependent hazard function. This function, evaluated at time t,

gives the probability of a price change occurring at time t, given that t periods have passed

since the last price adjustment. Different models will also imply different types of time-

dependent hazard functions, and some work has been done to estimate these using price

micro data (such as

citeklenowandkryvtsov2008 and Nakamura and Steinsson (2008)). However, in this paper

we only investigate the state-dependent price adjustment hazard function described in this

section. The fact that this latter function involves an unobserved variable (the desired price

gap) makes it particularly difficult to estimate, although estimating the time-dependent

hazard function involves other significant empirical challenges.

Next, we must specify a process for the desired price. We do not explicitly model the

production technology or demand system that would lead to a firm’s desired price. Instead,

we simply assume that the log of the desired price is the sum of an idiosyncratic (z) and

aggregate (m) component (each of which are expressed in logs):

p∗t (i) = zt(i) +mt

An idiosyncratic component, with shocks, is important in order to match the fact that,

even within a given period, there is a wide variation of price changes (as shown notably by
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Bils and Klenow (2004), Nakamura and Steinsson (2008), and

citeklenowandkryvtsov2008). We assume that the idiosyncratic component follows a log-

AR(1) process, as the idiosyncratic productivity shocks in menu cost models like Golosov

and Lucas (2007):

zt(i) = ρzt−1(i) + εt(i), εt ∼ N(0, σε)

The aggregate shock follows a random walk with drift:

mt = µ+mt−1 + ηt, ηt ∼ N(0, ση)

The drift parameter (µ) accounts for the fact that inflation is positive, on average. The

aggregate shocks lead to variations in inflation, and represent monetary, or aggregate de-

mand, shocks. While we are not modelling firms’ optimal response to these shocks, the

hazard function (along with the distribution of idiosyncratic shocks) will determine how the

aggregate price level responds to them. It is in this way that the hazard function allows us

to assess the degree of aggregate price flexibility, or the inverse of monetary non-neutrality.

In the remainder of this section, we will make more explicit just how the hazard function

determines the degree of non-neutrality, and illustrate how different models map into this

approach with examples.
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4.2.2 Relation to Aggregate Flexibility

Here we present the theoretical results of Caballero and Engel (2007), who derived the

relationship between various aspects of the hazard function and aggregate price flexibility.

We do this to illustrate the importance of having a precise estimate of the hazard function,

and of knowing what shape it takes, in particular.

In what follows, we denote the cross-sectional density of price imbalances (x) at time t

as ft(x). Although we have made assumptions about the distribution of the imbalance’s

components, we present the theoretical results for a general distribution. The change in the

aggregate price level (or the average price change, or inflation) can therefore be expressed

as:

∆pt =

∫
xH(x)ft(x)dx

We are interested in how this change will depend on the aggregate shock, and so we

consider the change in the price level as a function of the change in mt (since m is the

aggregate component of the desired price, we can assume that ft(x) is the density of price

imbalances absent any change in m):

∆pt(∆mt) =

∫
xH(x)ft(x+ ∆mt)dx =

∫
(x−∆mt)H(x−∆mt)ft(x)dx

Aggregate flexibility is then defined as the derivative of inflation with respect to ∆m,

evaluated at (∆m = 0). Based on the previous equation, this is equal to:

∆p′t(∆m = 0) =

∫
H(x)ft(x)dx+

∫
xH ′(x)ft(x)dx
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1

The first term in this expression is simply the frequency of price change in period t.

Although the hazard function clearly plays a role, the frequency of price change can be esti-

mated simply and directly from price micro data, and can therefore be assessed independetly

of the hazard function. However, the second term does not have a simple relation to anything

measurable in the data. In particular, since it is the derivative of the hazard function that

enters the second term, its shape has an important influence on monetary non-neutrality.

Caballero and Engel (2007) refer to this term as the role of the extensive margin, and show

that it is typically twice as large as the frequency, in a wide variety of models associated

with increasing hazard functions. Next, we illustrate the importance of these concepts with

a few examples of hazard functions implied by different sticky price models.

4.2.3 Examples from Existing Models

The simplest, and perhaps most used, sticky price model is the one due to Calvo (1983), in

which every period a fixed fraction of firms is randomly assigned the opportunity to change

its price. Because it is randomly determined whether a price changes or not, the probability

of a price change is constant, regardless of the degree of price mis-alignment. This means that

the hazard function associated with this model is simply a constant equal to the frequency

of price change, which we denote f:

H(x)Calvo = f

1Note that the average sensitivity of the price level to the change in the aggregate component takes the
same expression, with the ergodic density of price imbalances, fE(x) replacing ft(x).
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Applying the expression for aggregate flexibility to this function makes clear why the

Calvo model has a much lower degree of monetary non-neutrality than other models it is

compared to. Indeed, since the hazard function is constant, the derivative is zero everywhere,

meaning that the contribution of the extensive margin to aggregate flexibility is zero. Almost

any micro-founded price setting model will imply that the probability of price adjustment

is at least weakly increasing in the size of the price imbalance, meaning that the hazard

function will also be increasing in the absolute value of x. For any such model, the extensive

margin term will be positive.

At the other extreme in terms of flexibility is the class of menu cost, or Ss, models (such

as Golosov and Lucas (2007)). When firms have to pay a fixed cost to change their nominal

price, they optimally choose a threshold rule, under which they re-set their optimal price if

and only if their price mis-alignment is outside of some interval (S,s):

H(x)MC =


0, x ∈ (S, s)

1, x /∈ (S, s)

While the derivative of this hazard function is not well defined, Caballero and Engel

(2007) show that in this case the extensive margin term is clearly positive, and equal to:

|S|ft(S) + sft(s)

A menu cost has an extreme extensive margin, because only the most mis-aligned prices

adjust. Since they adjust by a large amount, the average price response to monetary shocks

is very large, making the aggregate price level very flexible.
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An example of a hybrid between the two extremes is Midrigan (2011) ’s menu cost model.

In this model, each firms produces multiple products, but once it pays the menu cost, it can

change the price of all its products. Once a particular product’s price is mis-aligned beyond

a certain amount, the firm pays the menu cost to re-set the price (so beyond a threshold,

the hazard function is 1). When this occurs, however, the firm’s other prices will also be re-

set, essentially for free, and these will not necessarily be very mis-aligned. This means that

all prices will have a positive probabily of adjusting, no matter how small their imbalance,

because of the possibility that their firm’s other prices will lead it to pay the menu cost and

adjust all its prices. This leads to a hazard function of the following form:

H(x)Mid =


pz, x ∈ (L,U)

1, x /∈ (L,U)

In this case, the extensive margin term is equal to:

(1− pz)[|L|ft(L) + Uft(U)]

While it is not a priori clear how this compares to the standard Ss extensive margin effect,

we will show that once the parameters are calibrated to match some key price change statis-

tics, this term is much smaller for the Midrigan model (due to the fact that the thresholds

will be bigger, and coincide with points of lower density). This is consistent with the fact

that Midrigan’s model exhibits a much higher degree of monetary non-neutrality than the

standard menu cost model.
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The models that we have presented so far yield hazard functions that are extremely

simple. However, richer and more interesting hazard functions can be obtained from models

of imperfect information. We also present the example of the rational inattention model due

to Woodford (2009). In this model, firms face cost to process relevant information (measured

in terms of entropy reduction) to make their pricing decisions. A key insight provided by this

framework is that different values for the tightness of the information constraint make the

model change drastically. Indeed, the model can nest the Calvo model (in the no information

case) and the menu cost model (free information, or no constraint), as well as intermediate

cases. This can be seen in the different hazard functions implied by different values for the

cost of information (denoted by θ), shown in Figure 4.1

An infinite cost of information corresponds to a Calvo-like hazard function, while free

information leads to a trough-shaped one, as in the standard menu cost model. Intermediate

values for the cost of information yield smooth funtions increasing in the absolute value of

the price imbalance (denoted q in the figure). It is also noteworthy that these functions are

asymmetric around zero, so that for a given size of the price imbalance, a price increase is

more likely than a decrease. In this model, this is due to the asymmetry of the profit function,

which makes it more costly to the firm to have its price be too low. This is consistent with

the hazard function estimated by Caballero and Engel (2006), and we will also show that an

asymmetric hazard function fits the data best.

As these examples show, various sticky price models can be analyzed under the hazard

function approach, and this allows us to clearly see and understand the differences in the

degree of aggregate flexibility that they imply. In the following section, we will present the

estimation of the hazard function, which we will then use to revisit the aggregate flexibility
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Figure 4.1: Rational Inattention Hazard Functions
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results of the different models.

4.3 Hazard Function Estimation

In order to estimate the hazard funciton, we will simply compare the price change moments

implied by different guesses of the hazard function (obtained from simulations) with the

moments from the data, and choose the hazard function that matches these moments best.

For this to be feasible, we need to choose a finite number of parameters to characterize the

hazard function. One way to do this is to impose a functional form on the hazard function,

and to estimate the parameters that characterize it. This can be applied to the models in

section 2, for example, as most of them imply hazard functions that are summarized by

a small number of parameters. In this way, we can actually approximately estimate the

underlying models without having to solve them. The resulting estimates do not recover the

structural parameters of the models, but they do allow us approximately asess the model’s

implications for various empirical patterns, and the degree of aggregate flexibilty. We will

implement this method for the standard menu cost model and for the Midrigan model (we

can also do this trivially for the Calvo model).

A second approach to estimating the hazard function is non-parametric, and this is the

one that will constitute our main results. The approach consists of discretizing the space

for the price imbalance (x), and estimating the value of the hazard function (the price

adjustment probability), essentially making each point on the hazard function a parameter.

We prefer this approach, because it has the obvious and important advantage of not imposing

parametric restrictions on the hazard function, so that we are not a priori choosing between
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a menu cost or Calvo model, for example. The disadvantage is that it of course requires

estimating considerably more parameters, but we find that we can implement this for a

relatively fine grid in a reasonable amount of time. We now describe the data and the

moments that we use to carry out the estimation.

4.3.1 Data and Moments

As in chapters 1 and 2, we use the micro data underlying the U.S. Consumer Price Index for

the period 1977-2014. Since it contains a very large number of individual prices tracked over

time, it enables us to construct statistics related to individual price changes. We can then

compare these statistics with the results of simulating firms adjusting prices according to

various hazard functions. To estimate the statistics, we use the same method as in chapter

2, and the same restrictions on which observations to include in the estimates.

The first key moment that we use in the estimation is the average frequency of price

change. As shown above, monetary non-neutrality depends on the frequency of price change,

and on the extensive margin effect. The latter has to do with the extent to which prices that

are more mis-aligned are more likely to change (and is closely related to the concept of the

selection effect that has received much discussion in the literature). However, the size of this

effect cannot be observed. That is why a model, or a hazard function, is needed, and this is

the focus of our exercise. However, the frequency of price change can be directly observed

and estimated with the data that we have, and we ensure that our estimated hazard function

matches its correct value. The second moment that we use is the average absolute value of

price changes (measured in percentage changes, conditional on a non-zero change occurring).
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While this statistic does not enter directly into the expressions for aggregate flexbility, it is

key to discipline the variance of idiosyncratic component of desired price changes. It has also

been consistently found that price changes are large on average (Nakamura and Steinsson

(2008) and Klenow and Kryvtsov (2008)). We construct these estimates as described in

chapter 1, and we estimate the frequency and average size of price increases separately, and

use those as target moments.

These can be considered the basic moments that any sticky price model or hazard function

should match. And while they are necessary to place restrictions on the key parameters of

these models (such as the price adjustment probability, or the width of the inaction bands),

it is also important that almost any model can match these. Another moment that can

provide additional information is the fraction of price changes that are smaller than a certain

threshold. Midrigan (2011) had shown that the standard menu cost model cannot match this

moment when the threshold is small, as under a fixed menu cost firms will never be willing

to pay the cost to carry out small changes. Midrigan’s model provides additional flexibility

that allows it to match this, and this leads it to predict a much higher degree of monetary

non-neutrality than the standard menu cost model. We will also require our hazard function

to match this fraction, with the threshold for a price change being small is 1% (in absolute

value).

Caballero and Engel (2006) only used the frequency and size moments to estimate the

hazard function. They were able to do this by restricting the function to a quadratic function

that is potentially asymmetric around 0. While they are able to match these moments, we

will show that other hazard functions can match those moments, as well as others that

would not be matched by their estimated hazard function. This is even the case when the
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distribution of idiosyncratic shocks is restricted to be normal, as we do. We will estimate

hazard functions pertaining to some of the existing models using these moments to illustrate

this point.

As we argued in chapter 2, these unconditional moments do not provide enough infor-

mation to conclusively discriminate between models that predict very different degrees of

monetary non-neutrality. However, conditional moments that describe the relationship be-

tween inflation and the shape of the price change distribution can be much more informative.

Indeed, we have found that menu cost models predict that the distribution of price changes

should become less dispersed and more negatively skewed as inflation increases, while other

models (such as the Calvo model, or the rational inattention model) do not make these

predictions. We therefore include these correlations among the moments to be matched,

and show that it is precisely these moments that allow us to reject hazard functions that

would not have been rejected based on the unconditional moments. We will also include the

correlation between inflation and the frequency of price change, as it creates a very clear and

simple distinction between state-dependent models (in which more firms choose to change

their prices when inflation is high) and the Calvo model (in which the same fraction of firms

change their prices in every period, by assumption).

We will use all of the moments mentioned to estimate the non-parametric hazard function,

and this will constitute our central result. In addition, we will also include the average over

time of the dispersion and skewness of price changes, to add further discipline to the shape

of the hazard function. We will show that while this function matches the unconditional

moments that have been considered by the literature before us, it is also able to match the

correlations that we have emphasized here and in chapter 2, in a way that no existing model
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Table 4.1: Target Moments

Moment Value
Avg. Frequency of Increases 0.0805
Avg. Frequency of Decreases 0.031

Avg. Size of Increases 0.072
Avg. Size of Decreases 0.079

Fraction of Small Changes 13.2%
Avg. Dispersion (IQR) 0.099

Dispersion of Price Increases 0.077
Dispersion of Price Decreases 0.087

Avg. Skewness -0.14
Corr(Frequency,π) 0.523

Corr(IQR,π) -0.419
Corr(Skewness,π) 0.201

has. In Table 4.1, we list the moments that we will target, as well as their values in the data:

Using these moments, we will estimate various estimates of the price adjustment hazard

function. We do this by running simulations for 60,000 firms and 1,000 periods. We simulate

the shock processes, and use a candidate hazard function to simulate price changes. We

then calculate moments based on the price change distribution, and compare them to their

empirical coutnerparts. We then settle on the hazard function that matches the moments

best. First, we will use a subset of the moments to estimate parametric functions related

to some of the existing models, and then present the non-parametric estimate using all the

moments.

4.3.2 Estimates from Existing Models

The simplest sticky price model is the Calvo model, which yields a simple constant hazard

function. The only parameter of the hazard function that needs to be set is the adjustment
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Table 4.2: Calvo Hazard Function

Parameter Value
p 0.114
σε 0.055
ρ 0.6

Moments
Avg. frequency 0.114

Avg. absolute price change 0.074

probability. This can simply be set equal to the overall price adjustment frequency, which in

our data is 0.114. While this fully describes the hazard function, we also need to set values

for the shock parameters. We set the aggregate shock process to have a drift parameter

(µ) of 0.002 and a standard deviation of 0.0037 (to match the time series properties of U.S.

nominal GDP). There is no clear reference to calibrate the parameters of the idiosyncratic

shock process (the persistence ρ, and the standard deviation σε), so we set them to match

the average size of price changes and the ratio between price increases and decreases. The

size of price changes, in particular, is largely determined by σε. In Table 4.2, we show the

parameters that we select for the Calvo hazard function, and the moments that they imply.

This hazard function can easily match the overall frequency of price change, and the

average absolute value of all price changes (inreases and decreases). However, when the

frequency and average size are decomposed into increases and decreases, the match is no

longer as good.

We next consider the hazard function corresponding to the Golosov and Lucas menu cost

model, featuring an inaction region. The parameters to estimate here are the bounds of the
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Table 4.3: Ss Hazard Function

Parameter Value
S (left bound) -0.074
s (right bound) 0.054

σε 0.028
ρ 0.8

Moments
Avg. frequency of increases 0.079
Avg. frequency of decreases 0.038

Avg. size of increases 0.07
Avg. size of decreases 0.09

inaction region (S and s), and again the idiosyncratic shock parameters. Table 4.3 shows the

parameters we set, and the moments obtained

This hazard function matches the overall frequency and average size of all increases quite

closely. The frequency and size of price decreases are slightly too high, but the fact that

price increases are considerably more frequent and slightly smaller on average is captured.

Note that in order to achieve this, the inaction region is very asymmetric around zero, which

is also a common feature in the solution to menu cost models.

We also present the hazard function corresponding to the Midrigan model. This function

has one additional parameter relative to the previous one, as the function features a positive

probability of price adjustment for small price imbalances, which will lead the model to

predict the occurrence of small price changes. Another extension introduced in Midrigan’s

model is that the idiosyncratic variable (firm productivity, in the model) follows a Poisson

process. We introduce this modification by using the following process for the idiosyncratic
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Table 4.4: Midrigan Hazard Function

Parameter Value
L (left bound) -0.095

U (right bound) 0.065
pz 0.05
pε 0.25
σε 0.058
ρ 0.7

Moments
Avg. frequency of increases 0.077
Avg. frequency of decreases 0.040

Avg. size of increases 0.071
Avg. size of decreases 0.083

Fraction of small changes 0.133

component of the desired price:

zt(i) =


ρzt−1(i) + εt(i), P rob = pε

zt−1(i), P rob = 1− pε

This extension allows the model to match the fact that the distribution of price changes in

the data has fat tails, and extending the hazard function set-up in this way has the same

effect. This also adds one parameter to set: the probability of a shock occurring (pε). Table

4.4 shows the parameter values resulting from our calibration, and the implied moments.

This hazard function matches the frequency of price increases and decreases quite closely,

and the fraction of price changes that are small (less than 1% in absolute value). In order

to achieve this, the bounds beyond which price changes are certain to occur are asymmetric

around zero. The difference between the average size of price increases and decreaes is again
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larger than in the data, but the average size of all price changes is as in the data. In addition,

the kurtosis of price changes (around 4 on average) is closer to the empirical value than the

Golosov and Lucas simulations.

Finally, we consider the one existing direct estimate of a price adjustment hazard function

that we are aware of: the one in Caballero and Engel (2006). Their approach was to use the

frequency and average size of price increases and decreases to estimate a simple asymmetric,

quadratic hazard function:

H(x) =


λnx

2 , x ≤ 0

λpx
2 , x > 0

We estimate this form of the hazard function using the relevant moments from Table

reftable: target moments (the values are slightly different than in their paper because their

values were based on a shorter time period), and present the results in the table below. As the

previous hazard functions, this one is reasonably successful in matching the frequency and

size statistics. It is clear that the function has to be very strongly asymmetric around zero

(with price increases being more likely) in order to match the considerably higher fraction

of price increases. Caballero and Engel had obtained the same result with their original

estimate.

In Figure 4.2 below, we plot the hazard functions estimated so far, to illustrate the

differences between them.

The hazard functions that we have presented so far are quite successful at matching

the targeted unconditional moments, which have been the focus of most of the literature

on sticky prices until now. Indeed, they can all exactly match the overall frequency and
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Table 4.5: Quadratic Hazard Function

Parameter Value
λn 15
λp 100
σε 0.035
ρ 0.7

Moments
Avg. frequency of increases 0.074
Avg. frequency of decreases 0.034

Avg. size of increases 0.07
Avg. size of decreases 0.095

Figure 4.2: Existing Model Hazard Functions
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absolute value of price changes, and it is mostly in matching the averages decomposed into

increases and decreases that there are marginal differences between the hazard functions (as

well as the fraction of small price changes). However, as we will show now, following our

findings in chapter 2, the correlations between inflation and various price change statistics

show striking differences between some of the hazard functions.

In a sense, this has already been known before our results. Indeed, a very common criti-

cism of the Calvo model is the assumption that firms are randomly assigned the opportunity

to change their price, with a constant probability of price adjustment. While the Calvo

model can easily match the frequency of price change, and even the average size of price

changes (once the model is augmented with idiosyncratic shocks, as we have done), it was

always understood that a simple way to reject this assumption would be to show that the

frequency of price change rises with inflation. This has indeed been shown by Gagnon (2009)

and Alvarez et al. (2011a), among others. In this way, the performance of models at different

rates of inflation can provide important information about how they work and how plausible

the assumptions underlying them are. The result on the frequency-inflation correlation has,

on its own, vindicated the general class of menu cost models by highlighting the necessity

for state-dependence. However, we show that by looking at the higher moments of the price

change distribution, in particular the skewness, we can find important information on what

kind of (or how much) state-dependence is realistic.

In Table 4.6, we report the values of the correlations from the simulations under the

different hazard functions.

None of the hazard functions are able to match all three correlations. In particular, while

the menu cost hazard functions match the positive frequency correlation, and the negative
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Table 4.6: Moment Correlations for Existing Model Hazard Functions

Table 5
Corr(Frequency,π) Corr(IQR,π) Corr(Skewness,π)

Calvo -0.05 0.42 0.56
Midrigan 0.86 -0.97 -0.99

Golosov & Lucas 0.85 -0.68 -0.99
Caballero & Engel 0.91 -0.89 -0.99

Data 0.52 -0.42 0.20

dispersion correlation, they imply a counter-factual skewness correlation. As we explain in

chapter 2, this has to do with the fact that, in these models, prices adjust with certainty

once they reach a threshold for the mis-alignment. This is a natural consequence of a menu

cost, as there will always be a point beyond which it is worth paying the fixed menu cost

to adjust a price. This means that as the average of the desired price change distribution

rises, a big share of the mass of realized price changes concentrate right beyond the edges of

the positive adjustment threshold, inducing more negative skewness. The negative inflation-

skewness correlation that this induces is not supported by the data. The Calvo model does

not feature this kind of effect, as the hazard function implied by it is flat. While this allows

it to match the right sign of the skewness correlation, it fails (by assumption) to match the

fact that the frequency rises with inflation. We will therefore look for a hazard function that

will match each of these correlations.

4.3.3 Non-Paramteric Hazard Function

Here we present the main result of our paper: the non-parametric price adjustment hazard

function estimated using both unconditional and conditional price change moments. The
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way we implement this is by selecting 51 “points” on the grid of price imbalances, equally

spaced between -0.5 and 0.5. We then search for the value of the the candidate function

(which is the probability of price adjustment) at the 51 grid points, and assign the values

between the grid points by linearly interpolating between them. In other words, the hazard

functions we are considering are a subset of the space of real-valued functions spanned by

a basis consisting of the 51 points on the space of price imbalances. The hazard function is

then based on the candidate function, h(x) in the following way:

H(x) =



h(−0.5), if x < −0.5

h(x), if x ∈ [−0.5, 0.5]

h(x), if x > 0.5

We further assume that h(x) ∈ [0, 1], h′(x) ≤ 0 if x < 0 and h′(x) ≥ 0 if x ≥ 0.

However, we notably do not impose that the hazard function be symmetric around zero.

In addition to the hazard function values, we also have to set a value for the variance and

persistence of the idiosyncratic shocks, as well as the arrival probability of idiosyncratic

shocks (pε), since we use the more flexible Poisson process (this particularly helps to match

the frequency of small price changes).

The process we use to find the hazard function values that best fit the data is as follows.

First, we fix the values for the parameters pε and σε(as an initial guess), and then aim to
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solve the following optimization problem:

min
{H(xi)}

∑
(1− t

t∗
)2

t∈{Moments}

, where t is the value of a given moment by a particular combination of the 51 hazard

function values ({H(xi)}), and t∗ is the empirical value. We are therefore simply looking for

the hazard function values that minimize the sum of squared deviations across the moments

that we traget, with equal weighting for all the moments. In order to do this, we use the

pattern search optimization procedure, which is intended for optimization problems in which

the gradient of the objective is not defined. This is exactly the case for our problem, as the

values of the model-implied moments can only be computed by simulation. Davidon (1991)

describes this specific procedure in more detail, and we stop the process once the value of the

objective function changes by less than 10−6 across successive iterations. With the values

of the hazard function fixed, we then adjust the values of pε and σε manually to match the

average size and fraction of small price changes. Since there is a very close relationship

between those two parameters and moments, this step is relatively simple to implement

manually.

In implementing this non-parametric estimation, it is true that that number of probability

points (“parameters”) that we are choosing is greater than the number of moments being

targeted (14), so in this sense the estimation cannot be considered to be identified, even

though the assumptions we make about the hazard function also provide some additional

restrictions. Our procedure is in practice a calibration, as we cannot be certain that the

paramater values that we settle on are the only ones that match the data. Nevertheless,
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in searching for the values that best match the moments that we target, we can rule out

several types of hazard functions. We find that hazard functions with the “Ss” feature, or

with a rapidly rising hazard near x = 0, consistently predict a negative inflation-skewness

correlation, and can thus be rejected. Similarly, a flat hazard can be rejected based on the

restriction that the frequency of price change must rise with inflation. It is in this sense that

our approach, by including sign restrictions on the moment correlations, allows us to recover

important features of hazard function.

In light of the concern with the fact that our approach is under-identified, as an estimation

procedure, we also implement a calibration of the hazard function searching for only 9 values

on the grid of price imbalances. In this way, the number of parameters being chosen is

smaller than the number of moments targetted. As we show below, the results for this

hazard function are very similar, and the fit with the data is almost as good. Alternatively,

we could choose a flexible parametric form for the hazard function, with a small number of

parameters, and estimate those parameters using these (or additional moments).

In Figure 4.3, we present the hazard function that best matches the moments we had set

as targets. This goes along with the following parameter values for the idiosyncratic shock

process: ρ = 0.7, σε = 0.058, pε = 0.4.

Figure 4.4 the estimated hazard function with only 9 grid points (the accompanying

parameter values are: ρ = 0.7, σε = 0.056, pε = 0.4). We only estimated points on the

price imbalance space ranging from -0.3 to 0.3, as imbalances with larger values occur very

rarely). The values of the hazard function are overall quite similar to those estimated on a

finer grid.

Our estimated hazard function (under both specifications) is clearly increasing in the
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Figure 4.3: Non-Parametric Price Adjustment Hazard Function
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Figure 3: Non-Parametric Price Adjustment Hazard Function

Figure 4.4: Non-Parametric Hazard Function (9 points)
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Figure 4: Hazard Function (9 grid points)
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absolute value of the price imbalance. While it does not feature any inaction region, like

the the menu cost models do, there is clearly a sharp, large rise in the probability of price

adjustment after a certain threshold. However, there is a significant asymmetry in this rise

between negative and positive imbalances: the point beyond which the probability rises in

the negative range is much smaller than in the positive range. However, there is another type

of asymmetry: for imbalances smaller than this “threshold”, the probability of adjustment is

smaller for desired price decreases than for increases (keeping the size of the desired change

constant).

Clearly, the shape of this hazard function is quite different from any of the model-based

functions we have presented so far (with the possible exception of some cases of the rational

inatention model). Here, we highlight some of the key diffences. First, as mentioned above,

the price adjustment probability is asymmetric around zero. This asymmetry can be sum-

marized in the following way: small price and large price increases are more likely than price

decreases of equivalent size, but intermediate sized price decreases are more likely (although

this is a narrow range).

Second, even for price imbalances of zero, there is a significant probability of price ad-

justment (around 10%). It turns out that this feature (which we refer to as a Calvo feature,

because the Calvo model gives the same probability of adjustment to imbalances of zero)

is crucial to achieving a non-negative correlation between price change skewness and infla-

tion. The Midrigan hazard function has a similar feature, but we find that the probability

of adjustment at an imbalance of zero has to be higher. While this feature might appear

at first sight to make the price adjustment process more flexible, it is actually more likely

to lead to less aggregate flexibility. That is because, if the probability of adjustment has to
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be high for small imbalances, then it must be lower (than it otherwise would be) for larger

imbalances, because the overall frequency of price change is, so to speak, fixed by the value

that we estimate in the data. This means that a larger share of price changes are smaller

price changes that will be less responsive to aggregate shocks.

Finally, we find that the probability of price adjustment does not go all the way to

one unless the price imbalances are very large. In other words, even relatively large price

imbalances (of about 20%) can still have a high probability of not inducing an adjustment

(and for desired price increases, this probability is significantly greater than 50%). This also

comes out of matching the non-negative inflation-skewness correlation. Indeed, if large or

intermediate desired price changes (that compose the tails of the price change distribution)

occur with certainty, the tails of the distribution will be very sensitive to the aggregate shock,

which drives inflation. This is what makes the skewness of price changes vary so sharply with

inflation in the menu cost models. But this effect is muted if the probability of adjustment

is significantly below one for these price changes, which is the case in our estimated hazard

function. From our attempts to match the correlations, we have learned that this feature, as

well as the previous ones, are necessary in order for the hazard function to simulatenously

match the signs of the three correlations.

In Table 4.7 below, we present the moments implied by both estimated hazard functions.

They matche the unconditional price change statistics as well as the menu cost hazard func-

tions, but succeed in no longer predicting a negative inflation-skewness correlation. Natu-

rally, the hazard function with 51 estimated points matches the moments slightly better.

By using a combination of unconditional and conditional moments in the estimation, we

have been able to place significant restrictions on important features of the price adjustment
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Table 4.7: Hazard Function Calibration

Moment Simulations (51 pts) Simulations (9 pts) Data
Avg. Frequency of Increases 0.072 0.069 0.0805
Avg. Frequency of Decreases 0.042 0.039 0.031

Avg. Size of Increases 0.073 0.075 0.072
Avg. Size of Decreases 0.082 0.077 0.079

Fraction of Small Changes 13.3% 13.6% 13.2%
Avg. Dispersion (IQR) 0.12 0.114 0.099

Avg. Skewness -0.12 -0.13 -0.13
Corr(Frequency,π) 0.76 0.76 0.523

Corr(IQR,π) -0.90 -0.94 -0.419
Corr(Skewness,π) 0.14 0.38 0.201

hazard function. In the following section, we will show what this means for the degree of

aggregate flexibility implied by the hazard function.

4.4 Monetary Non-Neutrality

The degree of monetary non-neutrality, or aggregate flexibility, can be computed given a

hazard function and parameters for the shock processes. In Section 2, we showed the analyt-

ical expressions for aggregate flexibility based on the hazard function and the distribution of

price imbalances. However, since our estimated hazard function only takes values at discrete

points, and is thus non-differentiable, we compute aggregate flexibility by simulation. We

do this by using the original simulations that yielded the implied moments, and compute

the variance (across time) of log real consumption, where log real consumption is defined as

ct = mt − pt. The aggregate component of the desired price, mt, simply follows the random

walk process described above, and the aggregate price level is solved for using the hazard

function. This is the measure for monetary non-neutrality (the inverse of aggregate flexi-
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Table 4.8: Monetary Non-Neutrality

Hazard Function V ar(ct)× 104

Calvo 0.484
Non-Parametric 0.291

Midrigan 0.167
Caballero & Engel 0.137
Golosov & Lucas 0.055

bility) most commonly used in the sticky price literature (e.g. Golosov and Lucas (2007),

Nakamura and Steinsson (2010), and Midrigan (2011)), as it measures the variation in real

activity induced aggregate nominal shocks. With full price flexibility, real activity should

not vary as prices would respond one-for-one to aggregate shocks. In the hazard function

framework, that would be the case if the probability of price adjustment was always 1. In

Table reftable: monetary non neutral, we present the results for the Calvo and menu cost

hazard functions, the asymmetric quadratic hazard function based on Caballero and Engel

(2006) as well as our non-parametric estimate.

The degree of monetary non-neutrality implied by our estimated hazard function is rela-

tively high: it is considerably higher than those based on menu cost models, and it is about

half as high as the Calvo hazard function. These results are generally in line with our find-

ings in chapter 3, which showed that the non-neutrality predicted by the random menu cost

model was also between that in the Calvo and Midrigan models. Our results here reiterate

the fact that taking into account how the shape of the price change distribution varies with

inflation provides evidence in favor of greater non-neutrality than would be expected by

simply looking at unconditional moments.

While we do not analytically evaluate the extensive margin component of aggregate flex-
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ibility from our estimated hazard function (and the distribution of underlying shocks), the

expression for this term helps make sense of the results in Table 7:

Extensive Margin :

∫
xH ′(x)ft(x)dx

This term is relatively small under our estimated function, because the hazard function

is relatively flat (with a small H ′(x)) at the imbalances that have the most density (which

are mostly those such that |x| ≤ 0.1). In contrast, the “Ss” type hazard functions feature a

very large increase in the price adjustment probability at smaller values of x, for which there

is a high density, giving them a very strong extensive margin effect. This is why monetary

non-neutrality is high under the estimated hazard function, and this result comes from the

features of the hazard function that are captured by our estimation.

4.5 Conclusion

As has been shown by Caballero and Engel (2007), the shape of the price adjustment hazard

function is closely related to, and provides important information on, the degree of aggregate

flexibility (or monetary non-neutrality) implied by micro-level price stickiness. While the

question of the significance of monetary non-neutrality has been extensively studied using

sticky price models, less attention has been paid to the hazard function approach to this

question. This may be in part due to the face that, since it is not grounded in optimizing firm-

level behavior, there are very few restrictions that can be placed on the shape of the hazard

function a priori. Furthermore, while Caballero and Engel (2007) have derived the exact

relationship between the hazard function and aggregate flexibility, they did not consider what
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empirical patterns could be used to discipline the key features of the hazard function. In this

paper, we have attempted to fill this gap, by showing which moments can be used to estimate

this function. In particular, we have emphasized that the relationship between inflation and

the shape of the price change distribution provides a great amount of information on what

shape the hazard function can take, and how much aggregate flexiblity it can realistically

imply.

We have found that while “Ss” type hazard functions (featuring an inaction region, and a

threshold beyond which desired price changes occur with certainty) can successfully match

statistics related to the average frequency and size of price changes, they imply a very

strong, and counter-factual, negative relationship between inflation and price change skew-

ness. Starting from a very general form for the hazard function, we find one that is able

to match both the average size and frequency moments, and the correlations with inflation.

In order to match the correlations, and the non-negative inflation-skewness correlation in

particular, the hazard function has to include three important properties. First, the proba-

bility of a price adjustment at a price imbalance of zero must be positive. Second, even for

relatively large price imbalances (of up to 20%), the probability of price adjustment must be

considerably lower than 50%. Put differently, this means that the threshold beyond which

price changes are very likely is high. Finally, price increases are overall somewhat more likely

than price decreases, for an equal size of the price imbalance. The first two properties, in

particular, imply that aggregate flexibility is relatively low, and much lower than what would

be predicted by “Ss” type hazard functions. The degree of aggregate flexibility is, moreover,

broadly consistent with what we find in a random menu cost model in chapter 3.

The main contribution of this paper has been to provide a new estimate for the price ad-
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justment hazard function using a richer set of data and empirical moments than in Caballero

and Engel (2006), yielding different results on aggregate flexibility. While the hazard func-

tion framework that we have been working under is very flexible, there are several variations

to our estimation procedure that we could attempt. Indeed, a richer set of processes for the

idiosyncratic shocks could be considered, as it would be helpful to know how sensitive the

hazard function estimates are to changes in the shock process. Specifically, we have shown

that the skewness of the price change distribution can provide important information on

what shape the hazard function should take, so it would make sense to work with asymmet-

ric distributions of the desired price change distribution to see what that could mean for

the results. In addition, this same procedure could be used to estimate a hazard function

for different sectors (such as food, services, household goods), by using empirical moments

pertaining to particular sectors. Finally, we could also derive the hazard functions implied

by other sticky price models that have been proposed, and use these to empirically evaluate

the models.
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Appendix A

Appendix for Chapter 1

A.1 Derivations

A.1.1 Flexible Price Case

The period t profits of intermediate firm i are given by

Πit = pityit −WtLit. (A.1)

Using the demand curve the firm faces—equation (1.4)—and the firm’s production function—

equation (1.8)—we can rewrite the profit function as

Πit = pit

(
pit
Pt

)−θ
Ct −

Wt

Ait

(
pit
Pt

)−θ
Ct. (A.2)
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Maximization of this expression as a function of pit yields

pit =
θ

θ − 1

Wt

Ait
. (A.3)

Raising the expressions on both sides of this equation to the power 1 − θ and integrating

over i yields ∫ 1

0

p1−θit di =

(
θ

θ − 1
Wt

)1−θ ∫ 1

0

Aθ−1it di. (A.4)

Raising both sides of this expression to the power 1/(1− θ) yields

Pt =
θ

θ − 1

Wt

Af
, (A.5)

where Af is given by

Af =

[∫ 1

0

Aθ−1it di

] 1
θ−1

. (A.6)

Combining firm i’s production function—equation (1.8)—and the demand curve for firm

i’s output—equation (1.4)—yields

Lit =

(
pit
Pt

)−θ
A−1it Ct. (A.7)

Integrating over i and using firm i’s price setting equation—equation (A.3)—yields

∫ 1

0

Lit di =

(
θ

θ − 1

Wt

Pt

)−θ ∫ 1

0

Aθ−1it diCt. (A.8)
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Using equation (A.5), this equation can be simplified to yield

Yt = AfLt, (A.9)

where Yt denotes aggregate output and we have Yt = Ct.

A.1.2 Sticky Price Case

As in the flexible price case, combining firm i’s production function—equation (1.8)—and

the demand curve for firm i’s output—equation (1.4)—yields

Lit =

(
pit
Pt

)−θ
A−1it Ct. (A.10)

In this case, however, some labor is potentially used to change prices. Let’s denote this

by Lpct . Taking this into account and integrating the above expression over i, we get that

aggregate labor supply is

Lt =

∫ 1

0

(
pit
Pt

)−θ
A−1it diCt + Lpct (A.11)

Rearranging this equation and using the fact that Yt = Ct, we get that

Yt = At(π̄)(Lt − Lpct ), (A.12)

where

At(π̄) =

[∫ 1

0

(
pit
Pt

)−θ
A−1it di

]−1
. (A.13)
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A.2 Data Appendix

The process of scanning the microfilm cartridges left us with about 600 image folders—one

corresponding to each cartridge. Each folder contains roughly 2000 images for a total of

about 1 million images. The images are called Price Trend Listings and contain a table of

data regarding several products (the rows in the table) over a 12 month period (the columns

in the table). All data on each image comes from products in a particular product category

(ELI). The left most column on each image contains a location (city) identifier, an outlet

identifier, a product identifier, and a version identifier. The top row lists the time periods to

which the data refers. The right most column contains the data for the month the images

was created in. The remaining 11 columns repeat older data on the same products—i.e.,

show the “price trend” for each product. We refer to the month the image was created in as

the “collection period” for this image. Each of the interior cells in the table is divided into

three sub-cells. The top sub-cell reports the price. The middle sub-cell reports a number of

flags including a sales flag and a flag related to whether the price is imputed. The bottom

sub-cell contains the percentage change of the price since the last collection period for that

product. Within each collection period, images are sorted by product category (ELI). Within

each image, rows are sorted by the values of the identifiers in the left most column. They are

first sorted by the outlet identifier, then by the product identifier, and finally by the version

identifier.

As we describe in the main text, we used optical character recognition (OCR) software

to convert the scanned images to machine readable form. We worked closely with a software

company to create custom software that could convert the Price Trend Listings as accurately
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as possible. While we were able to find ways to eliminate most common systematic errors

that we came across (especially in the price variable), it is inevitable given the current state of

OCR technology that there are some random errors that remain in the raw data that results

from the OCR process. Fortunately, the format of the Price Trend Listings described above

implies that there is a large amount of redundancy in the raw dataset. This redundancy can

be used to validate the output of the OCR process. Below we describe the procedure we use

to validate the output from the OCR procedure.

A.2.1 Product Categories and Product Identifies

The first step is to validate and improve on the OCR output for category labels and product

identifies. We first set to missing all ELI values that do not correspond to one of the values

on the list of ELI values in the BLS classification. We then use the fact that the images are

ordered by ELI within each collection period to fill in missing ELI information in cases where

the last observed ELI value and the next observed ELI value are the same. Finally, in cases

where there are large blocks of images that still have missing values for the ELI, we manually

review the original scanned images to determine which image separates the different ELIs.

By these steps we are able to validate the ELI for 99.7% of the images we have.

We use a similar procedure if there is a missing value of a product-identifier. We use the

fact that the images are sorted by ELI and the observations within image are sorted first

by location, then by outlet, then by product, and finally by version. First, we set identifiers

that are out of order to missing. We then fill in identifiers in cases where the identifier before

and after a block of observations with missing values for the identifier are the same.
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Errors in reading product-identifies lead to spurious products in our dataset. Whenever

such errors occur, an entire row in a single Price Trend Listing image will be associated

with this “phantom product” (i.e., this erroneous product code). We will therefore have

up to 12 months of price data for these phantom products, which will result in up to 11

months of price change statistics. If the distribution of phantom products is non-uniform

across product categories, their presence could bias our results by putting more weight on

product categories where there are more phantom products. However, it is unlikely that

exactly the same error will occur for multiple images with the same product-month. This

implies that product months of phantom products will appear only on a single image (i.e.,

we won’t have more than one replicate for product-months of phantom products). This, in

turn, implies that our first algorithm for accepting price observations in to the final dataset

(described below) will not accept these observations. We have rerun our results with only

data accepted by the first algorithm and they are virtually identical. This makes us confident

that the phantom products are not biasing our results.

The presence of the phantom products does artificially inflate the number of observations

in the dataset. Whenever the same observation appearing on more than one image is read in

different ways from different images, what is suppose to be a single observation, turns into

more than one observation. We see signs of this occurring in the early part of our sample and

in particular in the latter half of 1979 and the first half of 1980. Over this period, the number

of observations per month rises to 170,000 per month. But the number of observations that

appear on only a single image also rises very substantially (to over 50,000 per month). We

take this as a sign that in this period a substantial number of phantom observations are

appearing in the dataset.
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A.2.2 Prices

We use two main procedures to validate the OCR output for prices. First, since each Price

Trend Listing contains not only the price for that period but also prices for up to 11 earlier

month, each product-month observation may appear multiple times in the raw dataset. For

example, suppose we consider a product that the BLS collected a price for from October

1979 to Novermber 1980. The October 1979 price will appeal on an image in October 1979

and will then be repeated on images in each of the subsequent 11 months. The October 1979

price of this product will therefore show up 12 times in the dataset. We refer to these 12

instances as 12 replicates of the same product-month observation.

Most product-month observations will have fewer than 12 replicates. Our data is based on

monthly micro-film cartridges from May 1977 to December 1980 and bimonthly micro-film

cartridges from January 1981 onward. Product-month observations in the later part of our

dataset will therefore appear at most 6 times. Also, certain products in certain cities are

sampled only bimonthly. These will also only appear at most 6 times. Finally, product-

month observations towards the end of a product’s life-time in the BLS sample may appear

less often. But even the last observation for a product in many cases appears more than

once. Figure A.1 plots the distribution of number of replicates in our sample.

We use this redundancy to verify the accuracy of the OCR output for prices. Our rule is

to accept the price that we observe most often among the replicates for each product-month

as long as we observe this price at least twice. If no price is observed more than once, we

don’t accept any price using this algorithm (and instead rely on the 2nd algorithm described

below). It is very rare that more than one price is observed at least twice. This occurs for
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Figure A.1: Distribution of Number of Replicates for Each Product-Month Observation

only 0.04% of product-months. It is even rarer, that there are more than one prices that

are observed at least twice and an equal number of time, i.e., that there is a tie as to which

price is observed most often. This occurs for only 0.004% of product-months. In these cases,

we accept neither price (and again rely on the 2nd algorithm). Overall, prices are accepted

using this algorithm for 86.5% of product-months.

Once we have finish running this first validation algorithm, we take all replicates for

product-months for which prices have been accepted and we fill in the accepted price. In

other words, we “correct any errors” in all the replicates for the product-months for which

the first algorithm accepts observations. We do this in order to improve the chances that

the second algorithm is able to validate prices for additional product-months.

The second redundancy we make use of is the percentage change variable. We calculate

the percentage change in the price for a particular product-month from the price we observe

164



on the image in that month and the price we observe on the image in the previous month,

whenever both are present on the same image. We round this calculated percentage change

to the next whole percent. If the value we calculate for the percentage change in this way

matches the value reported in the percentage change variable on the image, we accept the

price for both the product-month in question and the previous product-month (i.e., both

price values used to calculate the percentage change).

The second way in which we use the percentage change variable is that when the following

conditions are met:

• The percentage change in the price that we calculate from the price observations does

not line up with the percentage change variable read directly from the image in a

particular product-month and also does not line up for the same product in the next

month.

• The percentage change read from the image for the product-month in question and

both the next and last month for that product are all equal to zero

we set the price in the product-month to the value read in the previous month and accept

this value into our main dataset. This is meant to catch cases where the OCR software made

an error in the price variable, but the percentage change variable gives us a strong indication

that the price actually stayed constant.

The procedure we describe above that uses the price change variable on the Price Trend

Listing images is repeated for each image that a particular product-month observation occurs

on. A price for the same product-month can therefore be accepted more than once (in

principle as often as a particular product-month occurs on different images). It is even
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possible that two or more different prices are accepted for the same product month using

this procedure. This only occurs for 0.14% of observations. Whenever this occurs, we drop all

accepted observations based on the percentage change procedure. Overall, these procedures

for using the percentage change variable raises the overall acceptance rate to 98.4% of the

observations in our raw dataset. We drop the remaining observations.

A.2.3 Price Flags

As we discuss above, the second sub-cell of each cell in the Price Trend Listings images

contains a string of characters which code various information regarding the price in question.

This string contains at most seven characters. In some cases, some of these characters are

left blank. The first three spots are reserved for characters indicating, among other things

whether a product is on sale, whether it was unavailable, whether it is a seasonal item, etc.

Typically, at most one of these spots will contain a letter and the others will be left blank.

The next three spots give information about which pricing cycle the product belongs to

(some products are priced monthly and others bimonthly). The last spot may contain the

letter “I” indicating that the price was imputed. If the price was not imputed, this spot is left

blank. We had the OCR software convert blank spots to # signs to help us tell which spot

of the string each character occurred in. However, this conversion was somewhat imperfect.

Our OCR procedure turned out to be less accurate in converting these price flags, but

fortunately the price flags are chosen from a restricted set of characters and the errors follow

well-defined patterns. Our interest centers on identifying two pieces of information from this

string of characters: 1) whether the product was on sale, 2) whether the price was imputed.
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The letter “B” is the character that indicates that the product was on sale. We therefore

create a sales flag variable and set it to 1 if the letter “B” occurs in the string of characters.

Due to worries about accuracy or the OCR procedure for these flags, we manually compared

the OCR output with the corresponding images for a subset of the images. This process

revealed that the OCR process sometimes converted the letter “B” in the string to “6”,

“8”, “9”, “0”, “O”. We therefore set the sales flag to 1 whenever we observed any of these

characters in the string.

As we mention above, the letter “I” in the last spot of the string indicates that the price

was imputed. We therefore create an imputation flag variable and set it to 1 if the letter

“I” is observed at the end of the string. Our manual comparison of the OCR output and

the corresponding images revealed that in some cases the letter “I” was read as “1” by the

OCR procedure. The number “1” also appears as a part of the pricing sample part of the

string. But our manual inspection indicated that the number “1” appearing at the end of

the string and being preceded by another number, gave strong indication that the price was

imputed. In these cases, therefore, we set the imputation flag to one.

In addition to this, several of the characters appearing in the first three spots of the

string signal that the price was imputed. These include “A” (seasonal item not available),

“C” (closeout or clearance sale)1, “D” (ELI not available), “U” (unable to price), “T” (tem-

porarily unable to price). The first three of these (A, C, D) may also appear in the pricing

cycle portion of the string. We therefore set the imputations flag to one whenever we ob-

serve these characters in one of the first three spots of the strings. The other three characters

1BLS documentation we received indicated that “C” referred to “closeout or clearance sales” but out
inspection of a subset of images indicated that these observations were imputed (e.g., they tended to include
more than two numbers after the decimal place (fractions of a cent).
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should not appear in other parts of the string. We therefore set the imputation flag to one

whenever we observe these characters.

As in the case of prices, a price flag should appear in multiple “replicates” due to the

structure of the Price Trend Listing, and in principle, these replicates should be the same. In

cases where they disagree, we choose the value of the flag corresponding to the majority of

replicates. This rule is meant to balance a concern for false positives and false negatives based

on our inspection of a subset of cases where is disagreement. The fraction of observations

that we drop because of imputation is 9.3%.
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Figure A.1: Mean Absolute Size of Price Changes by Sector
Note: To construct the series plotted in this figure, we first calculate the mean absolute size of price
changes in each ELI for each year. We then take the weighted median across ELI’s within each
sector for each year.
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Figure A.3: Frequency of Price Increases and Decreases for Food and Services
Note: To construct the frequency series plotted in this figure, we first calculate the mean frequency
of price increases and decreases in each ELI for each month. We then take the weighted median
across ELI’s for food and services separately and plot these in the two separate panels.
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Appendix B

Appendix for Chapter 2

B.1 Data Set and Statistics

As mentioned in the main text, the data set we use for our empirical analysis is the micro

data underlying the U.S. CPI for the period 1977-2014, with the previously unavailable

period being 1977-1986. I worked intensively in the process of re-constructing this data

set from the micro film made available by the Bureau of Labor Statistics. This process

is described in detail in Appendix A.2., and it leaves us with a large data set that tracks

the prices of individual, narrowly-defined products in a monthly or bi-monthly frequency.

We then combine this data set with the existing CPI data (1987 onwards), and that forms

the data set for our analysis. Figure A.1 below shows the size of our sample month by

month. We plot both the number of non-missing available prices each month, as well as

the number of price change observations available. The distinction is important, because we

are always interested in price change statistics. The number of price observations is greater

than the number of price change observations because for the price change to be observed

171



in a particular month, we need both the current month’s price, and last month’s price. So

when a product has a missing price for some month, the price change will be missing for

that month and the following month.

Figure A.1: Number of observations by month
0

50
00

0
10

00
00

15
00

00

1980 1990 2000 2010

Price Obs Price Change Obs

Figure A1: Number of Observations by Month

The BLS makes a considerable effort to ensure that the prices of individual products

are tracked, so that the price changes cannot be attributable to changes in any product

characteristics. This conforms with our goals very well, as we are also only interested in

price changes of identical products. An individual product could be, for example, a two

quart bottle of Diet Coke in a particular supermarket location in New York City, or a

specific futon model in a particular furniture store in Los Angeles. The BLS also identifies

whenever a product substitution occurs, or when a new “version” of a particular product

is introduced. Since a change of version indicates that some characteristic of the product

has changed, we treat a new version as an entirely new product, and only compute price

changes by comparing price changes within identical versions. We compute price changes as
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the difference of the log price, or:

∆pit = log(
Pit
Pit−1

).

As discussed in Section 2.3, we exclude observations for which there is any indication that

the price was not actually observed but imputed, and for which the product was on sale.

There are therefore missing observations in the price spells that we use. To compute the

price change for any given month, we compare the price for that month to the previous

month’s price, when it is available. When the previous month’s price is not available, we

compare the current price to the price from two months before. Without this, we would have

to drop a significant amount of data, as many prices are only sampled every two months.

Since price changes are relatively infrequent, we believe that it is overwhelmingly likely that

if a price changed between any two months, it only changed once, which means that we are

observing the true price change, whether it occurred in the current or previous month. This

is then not extremely important, as for much of our analysis we combine the price changes

by quarter or year.

With the price change observations, we then form distributions of these price changes,

keeping only the non-zero changes, for each period (either month, quarter, or year). For

the dispersion and skewness statistics, we first separate observations into categories that we

label major groups. There are thirteen of these, and table B.1 below provides a list, along

with the share of expenditure weight that they represent.

Services represent the lion’s share of the weight. We then compute the dispersion and

skewness statistics from each major group, and for each time period we then take an
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Table B.1: CPI group weight

Major Group Weight (%)
Processed Food 8.2

Unprocessed Food 5.9
House Furnishings 5.0

Apparel 6.5
Transportation 8.3
Medical Care 1.7

Recreation 3.6
Edu. Supplies 0.5
Miscellaneous 3.2

Services 38.5
Utilities 5.3
Gasoline 5.1

Travel Services 5.5

expenditure-weighted average of the statistics, which represents the value of the statistics

that we will use. If, for example, Skewkt is the skewness of the distribution of price changes

in major group k and period t, then the value of skewness that we use in our analysis, Skewt,

is given by:

Skewt =
∑
k

wkSkewkt.

We follow the same method for the dispersion, and thus obtain time series for the skewness

and dispersion of price changes. This also applies for the frequency, but there we calculate the

frequency first by ELI, which is a much narrower category. That is because the frequency is

merely an average of the dummy variable indicating whether a price has changed or not, and

it is calculated based on the number of price change observations (zero or non-zero), while

the other moments are only calculated based on the non-zero changes (which gives fewer

observations). This means that the frequency can be estimated with reasonable precision

by ELI. Finally, the expenditure weights that we use are those from the 1998 revision of
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the CPI, which are the latest ones available. Different weights were used for 1977-1987 and

1988-1997, but we keep the weights constant throughout the sample so that changes in the

weights do not induce changes in the statistics that we estimate.

B.2 Computational Procedure and Calibration

We solve the sticky price models in this paper by value function iteration, following the

method described in Nakamura and Steinsson (2010). The main difficulty with this method

applied to this type of problem is that an important variable entering the firm’s profit

function is the aggregate price level. Since its future evolution depends on each firm’s

price, every firm’s current state is, in principle, a state variable for all firms, making the

problem intractable. To get around this, we follow the example of Krusell and Smith (1998)

and approximate the law of motion of the price level with a finite number of moments,

as in Nakamura and Steinsson (2010). In particular, we impose that firms perceive future

inflation to depend only on future nominal aggregate demand (St, which is exogenous), and

the current price level:

πt ≡ log(
Pt
Pt−1

) = Γ(
St
Pt−1

).

Under this assumption, the state space can be reduced to three dimensions: the firm’s

idiosyncratic productivity (exogenous), the firm’s relative price (choice variable), and real

aggregate demand (Ct, which determines the real wage in equilibrium). The latter is endoge-

nously determined, but the probability distribution of its future value is known fully with

the law of motion of nominal aggregate demand, and the assumed law of motion of inflation.

The firm’s problem can therefore be written recursively with the following Bellman equa-
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tion:

V (At(z),
pt−1(z)

Pt
,
St
Pt

) = max
pt(z)

{
ΠR
t (z) + Et

[
DR
t,t+1V (At+1(z),

pt(z)

Pt+1

,
St+1

Pt+1

)

]}
,

where V (·) is firm z’s value function, ΠR
t (z)1 is firm z’s real profits at time t, and DR

t,t+1

is the real stochastic discount factor between time t and t+1. Our procedure to solve the

model then closely follows Nakamura and Steinsson (2010): First, we discretize the state

variables and propose a guess for the function Γ( St
Pt−1

) on the grid. Then, we solve for the

firm’s policy function, F2, by value function iteration, using the proposed Γ(·) function, the

stochastic processes for the exogenous variables (applied using the Tauchen (1986) method),

and the menu cost structure of the firm’s problem. We then check whether F and Γ are

consistent, by computing the price level (and inflation) implied by F for each value on the

St
Pt−1

grid and comparing it to the value given by Γ. If they are consistent, we stop and use

F to simulate the models. If they are not consistent, we update Γ and go back to the value

function iteration step and continue. To determine whether they are consistent, we compare

the inflation values, grid point by grid point, and consider that they are consistent when the

difference is smaller the difference in values between grid points.

The method described above applies to all the menu cost models (including the Calvo

model). However, the imperfect information models are markedly different in several ways,

and therefore require different methods. We solve these models using the same methods and

1It can be shown that the profit function under CES preferences and linear production using only labor
can be written as ΠR(A, p̃, C) = Cp̃−θ[p̃− ωC

A ]
2Because the value of the menu cost in our general model is stochastic, the policy function is also a

function of the menu cost. However, because we assume that the menu costs are iid over time, they are not
a state variable.
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parameter values used in the original papers (Alvarez et al. (2011b) for the observation costs

model; Woodford (2009) for the rational inattention model), and use the policy functions to

simulate the models.

As mentioned in Section 2.2, the existing menu cost models and the Calvo model are

calibrated to match the median frequency of price change and the median average size of

price change in the data. The way we compute these moments is by first calculating the

frequency of monthly price changes and the mean absolute value of price change by ELI-

year. We then compute the median across the ELI frequencies for each year (to obtain an

annual series for the median frequency) and to then take the mean across years. The average

frequency that we obtain is 11.3%, and the average size of price change is 8.0%. For the

Midrigan model (as well as our random menu cost model), we also target the fraction of

price changes that are small (less than 1% in absolute value). We compute this as with

the frequency and average size: evaluate fractions by ELI-year, and take weighted medians

across ELI’s. WE find a value of 12%. Table B.2 below shows the model-implied moments

for the Golosov and Lucas, Midrigan, and Calvo models, as well as the random menu cost

model from Chapter 3, and compares them to their empirical values:

Table B.2: Model implied moments

Model Average Frequency (%) Average Size (%) Fraction Small (%)
Golosov and Lucas 11.1 8.0 0

Midrigan 11.0 8.0 12.4
Calvo 11.0 7.9 17.3

Random MC 11.3 8.0 12.2
Data 11.3 8.0 12.0

All the models match the frequency and size moments almost exactly, and the Midrigan
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and random menu cost models match the fraction of small changes very closely. The Calvo

and Golosov and Lucas models over- and undershoot the empirical value, respectively, as

they do not target it. Table B.3 below shows the parameter values that we choose for these

models.

Table B.3: Parameter values for models

Parameter Golosov and Lucas Value
χ Menu cost (as share of steady state revenue) 0.019
σε Std. dev. of idiosyncratic tech. shocks 0.042

Midrigan
χHigh Menu cost (when positive) 0.034
σε Std. dev. of idiosyncratic tech. shocks 0.076
pz Probability of free price change 0.037
pε Probability of receiving idio. shock 0.153

Calvo
α Probability of price change 0.111
σε Std. dev. of idiosyncratic tech. shocks 0.197

For the multi-sector model, we use the same parameter values as in Nakamura and Steins-

son (2010), which make the model match the average frequency and size of price change for

each of 14 sectors.

B.3 Additional Empirical Results

In Section 2.2, we presented results on the empirical result between inflation and various

price change moments, using both scatter plots and regressions. For the scatter plots, the

measure of inflation that we used was Core PCE inflation, which excludes food and energy

prices that tend to be quite volatile (and that could be influenced by sectoral shocks that we

do not consider in the models). In addition, since the PCE index is chained, it tends to yield

a lower value for inflation than the CPI. However, for the regressions, we used CPI inflation
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because we include expected inflation as a control, and the survey of inflation expectations

asks about expectations of CPI inflation specifically. We therefore used CPI inflation to

make the two variables more comparable. In Figure A.2 below, we plot the twelve month

log change for both indexes. They both co-move very strongly, although the peak is much

higher for the CPI.

Figure A.2: Inflation
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Figure A2: Inflation

In this section we show that our results do not depend on which inflation measure we

use, so we present scatter plots with CPI inflation, and regression results with Core PCE

inflation as the regressor. The only difference that this makes is that in the regressions, the

absolute value of the coefficients on inflation are slightly larger, because core PCE inflation

does not attain as high a value, so the estimated slope of the moments on inflation is smaller.

We also present results using series filtered by a moving average smoother and seasonally

adjusted by removing quarterly dummies. Again, the the same results hold, but they come

out a bit more clearly. For all of these results, we focus on using the quarterly inflation and

moment series, although the same results would hold with the monthly and annual series.
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Figures A.3-A.6 below present scatter plots of the smoothed moment and inflation series.

Figure A.3: Frequency of price change & inflation smoothed, quarterly
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Figure A3: Frequency of Price Chane & Inflation Smoothed, Quarterly

Figure A.4: IQR of price change & inflation smoothed, quarterly
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Figure A4: IQR & Inflation, Quarterly Smoothed

Figures A.7-A.10 are scatter plots using CPI inflation.

The patterns in these scatter plots are the same as in the ones presented in Section 2.3.

We further confirm these results with the regression tables below.

What these tables show is that while the size of the coefficients varies somewhat across

specifications, the results presented in Section 2.2 still hold: the frequency of price change
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Figure A.5: Skewness & inflation smoothed, quarterly
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Figure A5: Skewness & Inflation Smoothed, Quarterly

Figure A.6: Kelly skewness & inflation smoothed, quarterly, corr=0.734

-.2
-.1

0
.1

.2
.3

K
el

ly
 S

ke
w

ne
ss

, w
ei

gh
te

d 
m

ea
n

-.02 0 .02 .04 .06
Year-on-year inflation, Quarterly Average

Pre 1984 Post 1984

Figure A6: Kelly Skewness & Inflation Smoothed, Quarterly; Corr = 0.734
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Figure A.7: Frequency of price change & CPI inflation, quarterly
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Figure A7: Frequency of Price Change & CPI Inflation, Quarterly

Figure A.8: IQR & CPI inflation, quarterly
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Figure A8: IQR & CPI Inflation, Quarterly

Table B.4: Core inflation as regressor - frequency

Coefficients for Frequency Regressions
Weighted Median Weighted Mean

Specification 1977-2014 1985-2014 1977-2014 1985-2014
All 0.906*** 1.362*** -0.046 -0.231

(0.271) (0.313) (0.244) (0.305)
Fed Dummies 1.248*** 1.503*** 0.978*** 0.281**

(0.220) (0.214) (0.223) (0.258)
Inflation Only 0.877*** 1.083*** 0.374** -0.580**

(0.122) (0.253) (0.173) (0.296)
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Figure A.9: Skewness & CPI inflation, quarterly
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Figure A9: Skewness & CPI Inflation, Quarterly

Figure A.10: Kelly skewness & CPI inflation, quarterly, corr=0.674
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Figure A10: Kelly Skewness & CPI Inflation, Quarterly; Corr = 0.674
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Table B.5: Smoothed and seasonal adjusted series - frequency

Coefficients for Frequency Regressions
Weighted Median Weighted Mean

Specification 1977-2014 1985-2014 1977-2014 1985-2014
Fed & Expected Infl 0.711*** 0.796*** 0.462 0.326*

(0.125) (0.210) (0.138) (0.189)
Fed Dummies 0.778 *** 0.889*** 0.723*** 0.284*

(0.075) (0.207) (0.109) (0.163)
Inflation Only 0.716*** 0.824*** 0.437*** -0.178

(0.062) (0.223) (0.105 ) (0.240)

Table B.6: Core inflation as regressor - IQR

Coefficients for IQR Regressions
All Observations EJRS

Specification 1977-2014 1985-2014 1977-2014 1985-2014
Inflation Only -0.412*** -0.676*** -0.461*** -0.803***

(0.060) (0.081) (0.068) (-0.086)
Fed Dummies -0.354*** -0.686*** -0.401*** -0.824***

(0.082) (0.095) (0.095) (0.099)
Fed & Expected Infl -0.366*** -0.485** -0.429*** -0.594***

(0.127) (0.117) (0.142) (0.128)

Table B.7: Smoothed and seasonal adjusted series - IQR

Coefficients for IQR Regressions
All Observations EJRS

Specification 1977-2014 1985-2014 1977-2014 1985-2014
Inflation Only -0.301*** -0.493*** -0.330*** -0.561***

(0.043) (0.073) (0.047) (0.086)
Fed Dummies -0.241*** -0.495*** -0.249*** -0.556***

(0.048) (0.084) (0.054) (0.097)
Fed & Expected Infl -0.164** -0.377** -0.178** -0.431 ***

(0.069) (0.073) (0.075) (0.083)
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Table B.8: Core inflation as regressor - skewness

Coefficients for Skewness Regressions
All Observations EJRS

Specification 1977-2014 1985-2014 1977-2014 1985-2014
Inflation Only 4.537*** 2.131 4.315*** 1.658

(1.306) (2.062) (1.285) (1.895)
Fed Dummies 7.546*** 3.716 6.997*** 3.396

(1.686) (2.270) (1.572) (2.087)
Fed & Expected Infl 4.683 6.224* 4.039* 5.991

(2.870) (3.316) (2.657) (3.136)

Table B.9: Smoothed and seasonal adjusted series - skewness

Coefficients for Skewness Regressions
All Observations EJRS

Specification 1977-2014 1985-2014 1977-2014 1985-2014
Inflation Only 3.656*** 1.208 3.263*** 0.699

(0.776) (1.222) (0.776) (1.148)
Fed Dummies 3.683*** 0.925 3.404*** 0.688

(0.689) (1.349) (0.680) (1.245)
Fed & Expected Infl 0.969 0.453 0.785 0.152

(1.206) (1.504) (1.182) (1.367)

Table B.10: Core inflation as regressor - Kelly skewness

Coefficients for Kelly Skewness Regressions
All Observations

Specification 1977-2014 1985-2014
Inflation Only 2.973*** -0.603

(0.537) (0.512)
Fed Dummies 4.035*** 0.504

(0.713) (0.606)
Fed & Expected Infl 2.066** 0.136*

(1.047) (0.721)
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Table B.11: Smoothed and seasonal adjusted series - Kelly skewness

Coefficients for Kelly Skewness Regressions
All Observations

Specification 1977-2014 1985-2014
Inflation Only 2.465*** -0.088

(0.342) (0.394)
Fed Dummies 2.479*** 0.282

(0.329) (0.435)
Fed & Expected Infl 1.636** 0.204

(0.731) (-0.430)

rises with inflation, the dispersion falls, and the skewness does not fall with inflation (the

relationship is positive but not significant in the low inflation period, and positive and mostly

significant in the whole sample).
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