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Abstract

We have developed an architecture and realization of a framework for hypermedia collaboration environments
that support purposeful work by orchestrated teams� The hypermedia represents all plausible multimedia
artifacts concerned with the collaborative task�s� at hand that can be placed or generated on�line� from
application�speci�c materials �e�g�� source code� chip layouts� blueprints� to formal documentation to digital
library resources to informal email and chat transcripts� The environment capabilities include both internal
�hypertext� and external �link server� links among these artifacts� which can be added incrementally as
useful connections are discovered� project�speci�c hypermedia search and browsing� automated construction
of artifacts and hyperlinks according to the semantics of the group and individual tasks and the overall
process work	ow� application of tools to the artifacts� and collaborative work for geographically dispersed
teams�

We present a general architecture for what we call hypermedia subwebs� and imposition of groupspace services
operating on shared subwebs� based on World Wide Web technology 
 which could be applied over the
Internet and�or within an organizational intranet� We describe our realization in OzWeb� which reuses
object�oriented data management for application�speci�c subweb organization� and work	ow enactment and
cooperative transactions as built�in groupspace services� which were originally developed for the Oz process�
centered software development environment framework� Further� we present a general architecture for a
WWW�based distributed tool launching service� This service is implemented by the generic Rivendell
component� which could be employed in a stand�alone manner� but has been integrated into OzWeb as an
example �foreign
 �i�e�� add�on� groupspace service�

Keywords� Computer�supported cooperative work� Environment frameworks� Hypermedia� Process� Tools�
Transactions� Work	ow
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� INTRODUCTION

In general� collaboration environments seek to improve end�result quality and team productivity during both
pre�arranged and ad hoc group activities and projects� ranging from industrial decision support and mili�
tary command and control� to healthcare management and delivery� to software engineering and engineering
design� to publishing and education� to crisis management and emergency response� Collaboration envi�
ronments assist information workers� both individually and together in a group� via data organization and
search� coordination of concurrent access� process work	ow � modeling and enactment� application program
launching� and other services� Collaboration environment frameworks provide generic facilities that can
easily and rapidly be tailored to a speci�c e�ort�

Hypermedia collaboration environments intertwine support for planning and execution of purposeful work by
assisting informationworkers in generating� discovering� retrieving� updating� cross�referencing and exploiting
all on�line materials that may plausibly be relevant to an endeavor� The conventional application�speci�c
artifacts� e�g�� press releases and intelligence reports� formally produced and consulted during the conduct
of a project may make up only a small proportion of the relevant hypermedia� There could also be arbitrary
informal documents such as email and newsgroup archives� meeting minutes perhaps including video and
audio components� even scanned�in diagrams sketched on napkins� as well as traces of the process that has
been followed to date during the project� with various analyses and metrics regarding the progress of the
e�ort� Without such broad support� ad hoc e�orts may be slowed down� particularly during their initial
stages� due to lack of organized information access� Further� the documentation available after project
completion may not include all the nitty details that came up during meetings� email� discussion groups�
etc�� apparent minutiae� some of which may later be quite valuable for desiderata and post�mortem analysis�
has likely been lost�

Hypermedia materials need not reside in a single repository constructed speci�cally for that project or internal
to the encompassing organization� but could potentially reference documents from arbitrary external sources
and even add on links between external data of arbitrary types whose native repositories or formats provide no
hyperlink capabilities� End�users and the environment�s task engine should be able to introduce links on top
of and orthogonal to any hyperlinks embedded in documents by the authors� to add references to materials the
authors never thought of� did not know about or that did not exist when the documents were written� Note
this permits hyperlinking materials generated and managed independently from the collaborative activity�
such as digital library publications� technical reports from unrelated institutions that provided inspiration or
insights� videos or transcripts of seminars or television presentations with some bearing on the work� public
resources� etc� These features are particularly useful for activities whose participating organizations and�or
information resources must be drawn together quickly with limited time to set up a project�speci�c database
and reformat existing data as hypermedia�

This is very nearly what the World Wide Web �WWW� provides� Thus we choose Web technology� particu�
larly HyperText Transfer Protocol �HTTP� and HyperText Markup Language �HTML�� as the infrastructure
on which to construct hypermedia collaboration environments� Web technology can be applied within an
organizational intranet� with references to external resources tunneled through ��rewalls
� obviously� pro�
prietary or secret materials would not be made publicly available on the Internet� However� Web technology
alone� or in tandem with other distributed computing infrastructures �e�g�� DCE� OLE� CORBA�� does not
provide the services necessary for collaboration�

� There is little organization of Web documents� a great advantage for generic use� but consequently
project�speci�c navigation and search are challenging� Although new Web pages can be created with

�We use the terms �process� and �work�ow� interchangeably throughout this paper� ignoring the quibble that work�ows

are generally relatively short and a long�lived process may encompass many work�ows�
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links to documents elsewhere on the Web� there is no general way to add on application�speci�c types�
attributes and links to arbitrary materials� Application�speci�c organization would provide a common
context for collaborative information sharing�

� There is no support for work�ow modeling and enactment regarding access to Web pages� A work	ow
engine can present to users� and guide and assist them in following� a medical care plan� design process�
business practice� etc� whose information components are stored as Web hypermedia� Work	ow would
provide a structured means for coordinating the roles that participants take in collaborative tasks�

� Although the Web may soon support versioning and con�guration management following the �checkout
model
� there is little concept of transactions �� with either the classical atomicity� consistency� isolation
and durability properties� or permitting relaxations proposed for long�duration� interactive� and�or
cooperative work ���� ���� The �rst author argues in ���� why the checkout model is less attractive for
collaborative e�orts than the emerging variety of cooperative transaction models� Concurrency control
of some sort is a key requirement for managing concurrent access to shared information�

Both collaborative and solo work involve more than browsing of HTML documents� artifacts stored in
hypermedia collaboration environments come in many di�erent formats� There is no standard means of
using these disparate forms of information once found� particularly as inputs to tools� Software tools and
application programs are to information workers as the hammer and chisel are to the carpenter� essential
components in accomplishing the tasks required by their work� Imagine telling a carpenter that some of her
favorite tools could only be used on a speci�c style of workbench� and other tools she uses every day can
only be used on a di�erent style of workbench� and a third set of tools are only available on a particular
workbench located in a neighboring city� Users of collaboration environments face an analogous problem�
To treat the Web as a repository for hypermedia collaboration environments� it is necessary to apply both
conventional tools �document editors� spreadsheets� virtual whiteboards� etc�� and emerging Web�aware
tools �HTML editors� emailers� etc�� to Web entities� and place tool results back onto the Web� Many useful
tools run only on particular computing platforms �e�g�� Solaris versus Windows�� and economic constraints
may restrict licensing to a particular host �because either the hardware or software is very expensive� e�g�� a
Cray numerical analysis package�� making it di�cult to integrate the use of these tools with a user�s task at
hand 
 preferably performed sitting at that user�s o�ce workstation or on a mobile host in the �eld�

All these hurdles get in the users� way� They must remember not only where they can run certain tools� but
also the speci�cs on starting them �including environment variables needed� command line options� etc��� A
distributed tool service can solve many of these problems by handling the knowledge about how and where
to run a tool� All the user need do is request a tool from the tool server� The tool server is then responsible
for remembering and deciding the speci�cs on running the tool� Many existing systems can bene�t from
the addition of �or integration of� a tool services component� The problem of managing the use of software
resources needed by an organization �making tools as easy to run and as ubiquitous as possible� is one which
can be solved by incorporating a tool server into the use of the system� We are particularly concerned here�
of course� with integration of distributed tool services into hypermedia collaboration environments�

We propose functionality in terms of �subwebs
 and �groupspaces
� and then present an innovative architec�
ture that makes it relatively easy to add application�speci�c subweb �subset of Web� organization� navigation
and search� and work	ow� transactions� tool launching and related groupspace �multi�user workspace� ser�
vices� to the World Wide Web infrastructure� Our approach does not require a special browser� any browser
that supports the HTTP ��� standard ��� is su�cient� Our approach does not require use of a special server�
any HTTP�compliant web server will do� The �trick
 is to use HTTP proxy servers� which can mediate all
tra�c from�to any browser with respect to any servers and can be con�gured to apply to all WWW browsers
throughout a site� HTTP proxies are generally used for implementing shared caches and tunneling WWW
tra�c through organizational �rewalls� and but can be applied for any purpose where automatic �ltering of
all URLs �Web Universal Resource Locators� is desired�

�Note that we use the term �transaction� as it appears in the database literature� to mean a sequence of operations generally

taking a collection of data from one semantically consistent state to another� as opposed to its common usage in reference to

WWW� i�e�� a single request from a browser to a website server and the corresponding response�
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We have implemented a prototype hypermedia collaboration environment framework called OzWeb� and
several working environment instances� This research is concerned with how to apply project�speci�c data
management� work	ow� and cooperative transactions to Web materials� not which speci�c data de�nition
notation� process modeling language and enactment model� concurrency control mechanism� etc� might
be best for a particular class of collaboration environment� Thus we adapted these facilities from the Oz

process�centered environment ��� to our architecture� rather than attempting to invent new ones or arguing
in favor of our old ones� However� it was necessary to devise a new approach to tool management amenable
to deployment over WWW� Thus we also describe an architecture for a generic Web�based tool server� our
prototype implementation of such a system� dubbed Rivendell� and its integration with OzWeb� Finally�
WWW admits to a wide range of user interfaces� Our sample graphical user interface �GUI� assumes the
HTML ��� standard ��� �e�g�� frames�� but the GUI is completely replaceable and a less sophisticated non�
frames version or a more sophisticated Java�based GUI could easily be substituted� We are working the
latter� where a Java window interacts with the user and browser windows only display HTML documents�

We �rst give two motivating scenarios� one a �real life
 situation that we sought to contend with in developing
subwebs and groupspaces� and the other a hypothetical but realistic example of when distributed tool services
are needed� Then in Section � we propose functionality for subweb organization and groupspace services to
achieve hypermedia collaboration environments� Section � describes our architecture on top of the World
Wide Web infrastructure� followed by Section � with our implementation in OzWeb� Section � focuses
on our distributed tool service� as a groupspace service added on the OzWeb� covering requirements and
approach� architecture� realization and integration� We conclude with evaluation of our results� in Section ��
comparison to related work in Section �� and contributions and future work ideas in Section ��

��� Motivating Scenario �

The Spring ���� Introduction to Software Engineering course at Columbia involved a team project where
groups designed� coded and tested a query processor for a given object�oriented database system �OODB��
The objectbase implementation was supplied as C header �les and object code libraries� and a functional
speci�cation for the ideal query processor was given� Each group developed a structured design for the query
processor� The design documents were swapped with other groups� who performed design review and then
coded this design� The groups inspected and revised their own code� and swapped with another group for
testing� Since only two groups had complete implementations� the �lobster
 group tested the code from the
�whitespace
 group and all other groups tested lobster�s code� � Some groups submitted their homework in
HTML or postscript format from their Web pages�

The students in the lobster group were invited to take the Undergraduate Projects in Computer Science
course in Summer ����� to extend their query processor� Several graduate students and a sta� member were
concurrently working on the same OODB� and on the Oz and OzWeb systems constructed on top� everyone
was working against tight deadlines� This was not �homework
� they were developing a signi�cant piece
of our system 
 but would soon graduate and disappear� so their code would ultimately be maintained by
other people�

We had numerous potentially useful artifacts on�line� The OODB manual� source code� interface and library�
class lecture notes� homework assignments� required readings� etc�� the functional speci�cation for the as�
signed query processor and the student proposal for its extensions� design documents from several groups�
baseline code �at semester end� and new code �in progress� from the lobster group� lobster�s code inspection
reports� the sample data model and objectbase supplied for testing� testing reports and journals from other
groups on lobster�s code� email between the students and instructor� and the class newsgroup archive� One
could also imagine talk�chat transcripts� and video and�or audio meeting records�

Simply placing these materials on�line is inadequate� Manually creating and maintaining cross�references as
the work continues and documents change would be an enormous undertaking� Instead� useful hyperlinks

�The student groups invent their own names� e�g�� now during the Spring �		
 course one group calls themselves �three

stooges��
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should be automatically generated when possible� and be automatically added as the materials undergo
further evolution� Environment users should be able to introduce hyperlinks incrementally as they discover
useful relationships� either manually or through automated agents� We emphasize useful� because simply
indexing or cross�referencing every appearance of a given word or phrase would result in a densely linked
mass of little value� Instead� we advocate a �loose
 schema categorizing and organizing entities of interest�
process modeling to indicate semantic dependencies� and work	ow automation to automatically add�remove
hyperlinks as tasks are completed� as key value�adding services�

��� Motivating Scenario �

Imagine a situation in which a company� XYZ Industries� follows a sprocket design process that involves
mathematical simulations using a rather expensive software package running on a Cray supercomputer�
Related CAD work is done on SGI UNIX workstations running AutoCad� XYZ has standardized on the
UNIX version of Adobe�s FrameMaker for all their internal documentation� and they use a mix of the UNIX
and Windows versions of Adobe Photoshop for creating illustrations for the documentation� Microsoft
Project is used for scheduling projects� including tasks like producing and updating Gantt charts of project
milestones and deadlines� All the engineers at the company require access to all these tools in order to
complete their work�

Unfortunately� XYZ Industries has let things get a little out of hand� Every engineer sits in front of either
a SGI workstation or a Windows PC� Problems occur because all the users require access to all the tools�
no matter what kind of computer they happen to be sitting in front of� Training is a nightmare� because
Windows PC users do not want to learn UNIX commands� and UNIX users don�t want to be forced to
borrow a Windows PC whenever they need a tool from that environment� Giving each engineer both a
UNIX workstation and a PC on their desks is prohibitively expensive�

In addition� complicating things even further� is the need to share tools among multiple sites on the XYZ
corporate wide area network �WAN�� Engineers in Palo Alto and New York must access the Cray numerical
analysis tools� and the Cray happens to reside at the Chicago o�ce� Everyone needs access to AutoCad
running on the powerful SGI Onyx in the Palo Alto o�ce� XYZ can a�ord the relatively inexpensive telecom�
munications links between these three cities� but they cannot a�ord to duplicate the extremely expensive
Cray and associated software at every corporate site� Figure � illustrates this hypothetical WAN�LAN setup�

WWW technology provides a unique platform for distributed tool services� whether throughout the Internet
or within an organizational intranet �i�e�� WAN� separated from the Internet by �rewalls� The HTTP protocol
includes facilities that allow a client to request something from a server �the HTTP GET method�� This
request format can be generalized to allow a client to request a tool from a tool server �masquerading

as a Web server� The client� in this case� can be either a standard unmodi�ed WWW browser �including
Netscape Navigator� Microsoft Internet Explorer� or NCSA Mosaic� or any application capable of making
an HTTP GET request�

� APPROACH

��� Subwebs

A subweb organizes on�line materials of plausible interest to a project or organization� such as in our �rst and
second motivating scenarios� respectively� over its life�time� A subweb supports structured associative and
navigational queries� and unstructured information retrieval and hyperlink following� Some materials may
be updated for unrelated purposes� so it is not always appropriate to copy everything to a project�speci�c
repository� some documents should continue to reside at their original homes but be treated as part of the
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WebObj �� superclass ENTITY�

URL � string�

type � �Reference� Copy� Updatable�

� Reference�

content � binary � �	html��

updateinfo � text � �	updinfo��

my links � set of link ENTITY�

my children � set of ENTITY

end

Figure �� WebObj Superclass

project�s information base� perhaps without the authors� knowledge �for publicly available materials�� and
possibly with external hyperlinks added on� constituting two�level hypertext�

Subweb organization follows what we call a �loose
 schema because it speci�es the existence� names and types
of possible composition and referential links imposed on top of the materials� as well as other attributes� but
does not de�ne or a�ect any hyperlinks that may be embedded in their content� In particular� the schema
may introduce external links among documents� images� etc� that are unknown �and perhaps irrelevant�
to the authors of those materials� Thus a subweb server is a form of link server with an object�oriented
database veneer� in which those objects that are instances of� say� the WebObj class correspond to WWW
URLs� Note URLs need not refer to full pages or images� but may correspond to a point within a document�
e�g�� using the fragment name feature of HTML �
A HREF��			�
name�� and 
A NAME��			����

Figure � shows a sample WebObj class� Its attributes represent the WWW anchor� i�e�� a fully�quali�ed
canonical URL� as an ascii string �following the HTTP standard to retain compatibility with arbitrary
backend services�� the access type� which defaults to Reference� cache the hypermedia entity content

in an opaque binary �le� and store related information such as timestamp �from website� and location �if
moved� in the updateinfo text �le� The my links and my children attributes allow arbitrary references
and composition of objects� in addition to any typed link and composite attributes that might be de�ned by
subclasses inheriting from WebObj�

The Reference access type refers in virtual form to whatever entity is found by accessing the anchor� The
entity might be changed �out from under
 the subweb� or become inaccessible at any time �although the
content �eld is used as a cache�� Repeated accesses �e�g�� HTTP conditional GET� might not retrieve
the identical document� All accesses via the subweb are read�only� Updatable is the same as reference�
except that subweb users can modify the entity �e�g�� using HTTP PUT�� The subweb may �own
 the
website� for storing project�speci�c materials� or an agreement might be made between website and subweb
administrators� Process constraints are employed� so not necessary all users of a given subweb can make
updates� perhaps only specially privileged users� or user roles� and then only when particular prerequisites
are satis�ed�

Copy refers to a subweb�resident copy� made when the web object is �rst instantiated� or re�instantiated
on demand later on �e�g�� a Web crawler might periodically check for modi�cations and notify users�� The
copy can be modi�ed by subweb users �although a particular environment instance might add a �read�only

attribute enforced by process constraints�� but is not intended as a write�through cache� changes to and
new versions of the copy do not in any way impact the original� If the process depends on controlling all
updating �or deleting� of a particular web page� i�e�� changes to that web page �out from under
 the process
engine as above are not acceptable� that page should be designated as Copy 
 or� alternatively� the website
directory hierarchy should be protected so that it can be modi�ed only via the subweb server�

In addition to schema�based queries� subwebs provide text�matching search analogous to Yahoo� Lycos�
AltaVista� etc� But search is restricted to only those hypermedia documents represented by a selected set of
web objects �perhaps the entire subweb�� or a subset of the documents reachable via embedded links from
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the web objects �e�g�� on the same website as the originating web object�� Current Web search engines can
restrict to or exclude a particular website and�or subdirectory hierarchy� but cannot consider an externally
imposed application�speci�c collection of Web entities arbitrarily strewn over multiple websites� In practice�
netsearch often presents many screenfuls of seemingly random materials� whereas subweb search will likely
to result in a much smaller and more precise retrieval�

The user may write the entity� e�g�� using an HTML editor or tool output� only if the target web object is
Copy or Updatable� For Copy� the local copy in the web object content attribute is replaced �or a new
version created�� for Updatable� both the content cache and the original are modi�ed �e�g�� via HTTP
PUT�� If the URL points to a directory or otherwise results in generation of an HTML page� that page is
treated as the content� but writing may not be meaningful�

WWW supports forms whereby the user enters input to arbitrary backend programs� to be transmitted and
processed via the standard Common Gateway Interface �CGI� protocol ���� �i�e�� HTTP POST�� There are
several user interaction models� The user might intend the web object to represent the blank form �to submit
arbitrary queries later�� or the �lled�in form �e�ectively a particular query that might be resubmitted later
with di�erent results�� Although it would correspond to a di�erent URL� the user might have in mind the
output of submitting the form with particular inputs �the result of a previous query�� Each of these models
incurs di�erent read�write implications� Selection among models can be done in several ways� including
hardwiring a particular choice into a given subweb server� de�ning a subclass of WebObj corresponding to
each of the choices� adding an attribute whose value determines the choice for that particular web object
instance� or prompting the user when the choice is to be made during execution�

��� Groupspaces

To construct fully functional collaboration environments on top of hypermedia subwebs� we add what we
call groupspace services consisting of multi�participant process automation� concurrency control and failure
recovery for collaborative work� and tool management technologies� We allow for addition of other services�
such as knowledge�based search�classi�cation agents� content�based security mechanisms and general access
control� not explored here� Some or all groupspace services could be omitted in a given implementation� and
subwebs would still be useful for organizing materials� We choose the term �groupspace
 because we think
of each a�ected Web browser as the user�s personal workspace� and collaboration support through these
services turns the relevant portion of the Web into a cooperative forum�

Any process�work	ow paradigm �Petri nets� rules� task graphs� etc� ���� ���� can be adapted to hypermedia�
A process model includes partially ordered tasks� allowing for alternatives and iteration� Tasks usually have
parameters involving process state and�or product artifacts� actions that may involve invocation of external
tools� may form a hierarchy of subtasks� may have prerequisites and consequences� and may specify resource
needs� Parallel work by human participants may be synchronized�

Once a subweb mechanism is in place� process modeling and analysis needs relatively little extension to
work with hypermedia� We identify the three main concerns of such extension� treating hypermedia ac�
cesses as tasks on which process constraints may be applied� treating hypermedia entities as arguments to
conventionally de�ned tasks� and re	ecting dependencies among data items as hyperlinks�

In addition to whatever task de�nition mechanism is already provided� the process notation should support
read �HTTP GET� and write �HTTP PUT� of a hypermedia entity� follow of an external hyperlink �follow
might not be distinguished from read where the user enters the desired URL explicitly� since both correspond
to HTTP GET�� and link�unlink of an external hyperlink� These operations then could be used in the
prerequisites and consequences of tasks� and their results serve as the arguments to task actions� Further�
these operations should be treatable as primitive tasks in themselves� i�e�� the operations are themselves the
actions� with process�speci�c prerequisites and consequences 
 generally with di�erent prerequisites and
consequences for di�erent subclasses of WebObj�
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Then the normal task aggregation facility can be used to support composite hypermedia operations� such
as reading or writing a compound document consisting of multiple entities� And partial ordering� synchro�
nization� prerequisites and consequences� etc� can be applied to these operations in the same manner as
for other tasks de�ned in the process system�s native notation� For example� prerequisites must be satis�ed
before a browser may successfully retrieve �HTTP GET� or update �HTTP PUT� the WWW entity associ�
ated with a web object� No prerequisites are enforced when accessing URLs �e�g�� a friend�s home page or
www�olympic�att�com� outside the subweb� This extension to process concepts may not involve signi�cant
changes� if the original language already includes read of a project datum� etc� In a hypermedia collabo�
ration environment� these operations apply to web objects as objects� and to their underlying hypermedia
entities� as well as to other data� An ideal subweb implementation would make this distinction completely
transparent�

The process de�nition notation should also include facilities for specifying those dependencies among entities
where composite and�or referential links are required to be explicitly placed under human supervision versus

those links that could�should be inferred and implicitly placed via process automation� For instance� a task
prerequisite may require that a particular link exist between two of its parameters� or an implicit parameter
might be derived by following a speci�ed link �whose absence might result in failure to satisfy the prerequisite�
depending on the logic written by the process designer�� Or a task consequence may introduce or remove a
link between its inputs �parameters and derived parameters� and outputs� including parameters derived via
associative queries or information retrieval�

Such prerequisites and consequences could be de�ned manually by the process designer� to carefully determine
the cases where hyperlinks should be placed by a cognizant user versus automatically inserted� Or the process
model might be mechanically transformed according to template�s� constructed by the process designer or
provided by the collaboration environment framework� although freewheeling automation may result in a
dense and useless mass of cross�links� This extension to process concepts may not involve any syntactic
or semantic changes� if the original language already includes such support �operating on its native data
repository�� Again� the subweb should hide the distinction between web objects and native data from the
process engine�

Enactment of the groupspace�speci�c process� and visualization of the process while it is in progress� requires
that all Web browser requests be intercepted so that prerequisites� consequences� synchronization� etc� are
enforced and automated� tasks and task segments operating on WWW entities are automatically initiated
and controlled� users are noti�ed when tasks they are supposed to do become enabled or tasks that a�ect
them are completed� and visualization display�s� are updated as the process unfolds� Di�erent process
systems may not provide all these capabilities� e�g�� some process systems attempt to automate satisfaction
of prerequisites and assertion of consequences and thus might introduce appropriate hyperlinks without
human intervention� whereas others support more limited work	ow that only prompts the human to do the
work� For all these functions� interception of all HTTP tra�c emanating from a participating Web browser
is mandatory� thus our choice of a proxy server�based approach�

If the process formalism is adapted to cover changes to hypermedia content� particularly Reference and
Updatable web objects that change independently of the subweb� then a polling scheme is needed� e�g��
a periodic Web crawler that noti�es a�ected subwebs �we cannot assume a noti�cation capability by the
website itself� since subwebs and groupspaces must work with all HTTP servers�� Such noti�cation must
trigger proper process enactment� perhaps without an attending human user� Some process systems may
already handle external changes �outside their control� to their data repositories or other �o��line
 invocation�

Process measurement and evolution do not seem particularly complicated by hypermedia 
 except that the
underlying entities may be manipulated outside the subweb mechanism� Thus it is virtually impossible for
groupspaces to maintain fully accurate statistics or guarantee that any process state embedded in WWW
components change only through controlled evolution� This is more insidious that the inherent problem
where a user becomes �root
 and arbitrarily manipulate a project repository through operating system
facilities� because WWW�based hypermedia has no central authority�

Groupspaces do not require any particular transaction model for collaborative work� but there must be
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some model 
 preferably one that takes process semantics into account to permit appropriate serializability
con	icts �e�g�� when using groupware tools� and avoid inappropriate rollback of partial changes interrupted by
failures �e�g�� when human labor versus regeneratable tool output is at stake�� To enforce that two groupspace
users are not updating the same Web entity or related entities at the same time� or over writing each others�
changes when transaction properties disallow it� the system must again intercept all Web accesses�

Finally� any collaboration environment must support tools� including both commercial o��the�shelf �COTS�
tools with no notion of hypermedia and emerging Web�aware tools �e�g�� HTML editors and emailers�� If
Web�aware tools can be invoked directly from the operating system� the subweb implementation should
still guarantee that the tool will receive the appropriate view� e�g�� the subweb�s local copy if the web
object is of type Copy� as opposed to the original entity from its home website� Otherwise� tools can easily
�and unintentionally� subvert groupspace services� If a non�Web tool is invoked outside the groupspace
interface� say directly on the underlying �le system� it is generally impossible to impose groupspace services
or subweb discipline except through access control� Other requirements for a general distributed tool service
are discussed in Section ��

� ARCHITECTURE

��� Subweb Discipline

Figure � illustrates our subweb architecture� The key component is the subweb proxy� through which all
Web tra�c is funneled� as for any HTTP proxy� Two distinct subwebs are shown� The subweb on the
right contains six web objects� whose URL attributes point to Web pages or images located one at website
A� two at website B� one at website C� and two at the subweb�s own websites� Subweb users are depicted
as WWW browsers� The browsers are con�gured to transmit all their tra�c through the subweb�s proxy
server� These may be daisy�chained with other proxy servers before and after the subweb proxy� performing
other functions� as in OreO�s stream transducers ����� The same subweb could be accessed through multiple
subweb proxies� The browsers� proxy server�s�� subweb server� subweb website�s� and any other relevant
websites may reside on di�erent machines dispersed across the Internet or an intranet� Normally� there would
be a much larger number of objects in a populated subweb� perhaps thousands or more� and more users per
subweb� both numbers depending on the application�

When one of these browsers sends an HTTP GET request for a URL� the subweb proxy asks its subweb
server if that URL corresponds to any web object contained in that subweb� If not� the subweb proxy
behaves like a conventional HTTP proxy and contacts the website server indicated in the URL to retrieve
the entity� which is sent to the browser in the normal fashion� In our realization� described in Section �� the
proxy server also sends along a second HTML frame with its groupspace logo and some menu items that
may be relevant to non�subweb documents� e�g�� a command to add the current document to the subweb
�and determine its canonical URL� since it might have been referenced relative to some other document��
Note other user interface models are possible� The proxy server and subweb lookup add a small overhead to
each non�subweb access� negligible compared to network delay� on the same order of �� milliseconds as for a
caching proxy such as Harvest �����

If the requested URL matches a web object� then subweb discipline is imposed� meaning the proxy diverts
the request to the subweb server� The subweb server is then responsible for providing the contents of the
requested URL to the proxy and hence to the browser� The mechanics of subweb server retrieval depends
on the access type� the subweb server contacts the originating website with an HTTP conditional GET for
a Reference or Updatable web object 
 and updates its local cache in the content attribute� but supplies
its private copy for Copy 
 also from the content attribute� The proxy server tacks on additional materials
�groupspace icon� etc� as above� only for those browsers listed in the proxy server�s con�guration �le� to be
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Figure �� Subweb Proxy Server Protocol

matched against the standard HTTP User�Agent �eld� the point is to support arbitrary Web�aware tools�
which would not be listed unless they are capable of handling add�ons in a reasonable fashion� to operate
within the subweb discipline� Ignoring our GUI�s use of frames� which adds an HTTP Redirect exchange�
the basic protocol is shown in Figure ��

HTTP PUT works similarly� If the associated URL is not resident in the subweb server� the proxy attempts
to PUT directly to the appropriate website server� That server may of course refuse the PUT� if the end�user�
or the subweb server acting on his�her behalf� is not properly authorized� in which case an error message is
returned to the browser� If the URL is in the subweb� then the PUT and corresponding content is sent to
the subweb server� If the web object is of Reference access type� the PUT is rejected� since by de�nition the
subweb treats the underlying Web entity as read�only� If the web object is Updatable� then the PUT is sent
to the website server� if the PUT succeeds� then the local cache� i�e�� the web object�s content attribute� is
also updated� Finally� if the web object is of type Copy� then only the local content is changed and there is
no interaction with the website associated with the URL�

��� Imposition of Groupspace Services

At the subweb server� as an extension of subweb discipline� the retrieval �or update� is sandwiched between
applicable groupspace services� For example� process and concurrency control constraints might be applied
�rst to determine whether or not the read �or write� operation can succeed at this time and by this user in the
current context� The operation might be rejected if the user does not have proper authorization with respect
to the given web object� if the process prerequisites have not been satis�ed �and cannot be automatically
satis�ed through process automation�� or if there is a concurrency control con	ict with another user who is
concurrently accessing the same web object as part of a transaction�

In the case of HTTP GET� the subweb server performs process�speci�c operations indicating the consequences
of the read immediately after sending the document to the subweb proxy �and hence to the user�s browser��
This may trigger process automation to ful�ll the implications� Note this is di�erent from the usual process
enactment model� where the e�ects are asserted only after the entire task has been completed� It is impossible
to determine in the Web browser case when the user is �done
 with his�her reading� Although another icon
could be added to the document display� which the user would click to indicate completion� this cannot be
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taken as proof that the user will not return to reading the document later on without notifying the subweb
server since the document could be stored in the browser�s own cache and access via the �back
 button�
There is a similar issue regarding concurrency control� since arbitrary browsers do not signal when reading
is �done
�

A related problem arises with HTTP PUT� because by de�nition the write task has been completed at the
time of the PUT operation� If the PUT is denied for process or concurrency control reasons� the user�s e�orts
may not have been totally wasted� generally the modi�ed content is still available in the user�s browser�editor
and the PUT can be retried later� Of course� the PUT can be denied at the underlying website server because
the end�user does not have proper authorization� independent of subweb discipline or groupspace services�
The general problem of client�server transactions� and proposed solutions appropriate to process�work	ow�
is the main focus of other work� e�g�� see ����� and not addressed further here�

The architecture and realization of our tool service are independent of �although complementary to� sub�
webs�groupspaces and their implementation in OzWeb� and are presented later in Section ��

� OZWEB REALIZATION

��� Oz Background

OzWeb reuses the process modeling language and enactment engine� the transaction manager� and the
object�oriented database management system developed for the Oz process�centered environment ��� ����
Oz provides a rule�based process notation in which a rule generally corresponds to a work	ow step� Each
rule speci�es the step�s name as it would appear in a user menu or agenda� typed parameters and bindings
of local variables from the project objectbase� a condition to be satis�ed before initiating the step�s activity�
the tool invocation script and arguments for the activity� and a set of e�ects� one of which asserts the
actual results of completing the activity� The return value of the tool script selects the appropriate e�ect�
Built�in operations like add� delete� etc� are modeled as standard rules� and can be overloaded based on the
parameter type� e�g�� to introduce type�speci�c conditions and e�ects on those operations� built�in operations
can also be used in the e�ects of arbitrary rules�

Oz enforces that rule conditions are satis�ed� and automates the process via forward and backward chaining�
When a user requests to perform a step whose condition is not currently satis�ed� the process engine backward
chains to execute other rules whose e�ect may satisfy the condition� if all possibilities are exhausted� the user
is informed that the chosen step cannot be enacted at this time� When a rule completes� its asserted e�ect
may trigger automatic enactment of other rules whose condition has become satis�ed� Users usually control
the process by selecting rules representing entry points into composite tasks consisting of one main rule and
a small number of auxiliary rules �reached via chaining�� but it is possible to de�ne complete work	ows in
either goal�driven �backward chaining� or event�driven �forward chaining� fashion�

Oz employs a client�server architecture� Clients provide one of several user interfaces �XView� Motif and
tty� and invoke tool scripts� which in turn fork and manage external tools as described in ���� ���� Servers
context�switch among multiple clients� and include the process engine� transaction manager� and database�
An Oz environment usually consists of several servers� each with its own data schema� objectbase� process
model and tool scripts� Clients are always connected to one �local
 server� and may also open and close
connections to �remote
 servers in the same con�guration� Servers communicate among themselves to
establish and operate alliances supporting process interoperability and limited data and task sharing across
processes�
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��� OzWeb Implementation

OzWeb extends the Oz server to operate as a subweb server 
 and also as a general�purpose HTTP
server �ftp� gopher� etc� protocols are not supported�� The subweb proxy is a client of the OzWeb server�
communicatingwith it via HTTP� Native Oz clients continue to work with the OzWeb server� and are useful
for debugging� The user browsers� proxy server�s�� subweb server� subweb website�s� and any other websites
represented in a subweb may all reside on di�erent machines dispersed across the Internet� but could also
reside on the same host� OzWeb subweb and proxy servers run on Solaris ����� Of course� browser clients
of the subweb proxy run on any platform where WWW browsers are supported�

When the proxy asks the subweb server whether or not a given URL is represented in the subweb� an
objectbase query is formulated to search for an instance of WebObj� or one of its subclasses� with that URL�
Although �built in
 to the subweb server� the WebObj implementation is formulated as a separate layer from
the OODB� so that another database system could potentially be substituted� �We are working on other such
layers for CORBA objects ����� Chimera objects ���� etc�� to apply subweb discipline� groupspace services
and� eventually� alliances to backend servers other than website servers and the native Oz objectbase� we
also plan to add frontend access protocols for CORBA clients� Chimera clients� etc��

Oz�s process engine was extended with read and write operations that can be overloaded by process�speci�c
rules� thus adding prerequisites and consequences to these primitive tasks� The subweb mechanism trans�
parently supplies or modi�es the requested �le attribute for all objectbase objects� In the case of a web
object and its content attribute� the retrieval or update proceeds as in Section ���� only the objectbase�s �le
attribute is a�ected in the case of native Oz objects or other �le attributes of web objects� read and write

could alternatively have been implemented purely as process�speci�c rules� rather than built�in operations�
but this approach permits us to use them in the e�ects of arbitrary rules and is more e�cient� Oz already
provided built�in link and unlink operations that can similarly be overloaded as well as used in rule e�ects�
There is no distinction between how link and unlink are applied to web objects compared to native Oz

objects� in particular� the external links are represented in the subweb objectbase and do not in any way
a�ect any HTML links embedded in WWW entity content�

The distinction between WebObj instances and native Oz objects is completely transparent to the process
engine� transaction manager and underlying OODB� The process engine was modi�ed only to support prim�
itive read and write operations on all types of objects� No changes were made in either the transaction
manager or OODB� which leads to a �loophole
 in both concurrency control and failure recovery� locks
to enforce serializability� and undo logs used to guarantee failure atomicity� apply only to the web object
representation inside the subweb server�s objectbase� There is nothing preventing other users� not employing
the subweb�s proxy� to arbitrarily access and modify a website directory hierarchy directly if permitted by
that �le system�s protection mechanism� This issue is addressed further in Section ��

The standard Oz commands were augmented to include a search command� When applied to the contents
attribute of a web object� an implicit read operation is performed �perhaps updating the local cache in the
case of Reference and Updatable types�� If the underlying WWW entity consists of HTML or other ascii
text� an internal index is updated using the Glimpse utility ����� Then the actual search is performed on the
appropriate subset of the index corresponding to those web objects of interest� that is� more than one web
object can be speci�ed as arguments to the same search� The same search mechanism also applies to the
text �le attributes of all Oz objects�

When a registered browser is sent any WWW entity �whether in the subweb or not� by the proxy server� an
additional HTML frame is sent to display �at the top of the browser window� an OzWeb panel with an icon
to select the OzWeb control screen� When web object content or any object�s �le attribute is read from
a subweb� the subweb server also sends to the proxy server this icon� plus the values of primitive attributes
de�ned by the object�s class and its superclasses� HTML links corresponding to each �le� composite and
reference attribute �multiple links for set values�� and additional subweb�speci�c materials� e�g�� there might
be a �message of the day
 to all subweb users plus user�speci�c notices�
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Selection of the control screen icon brings up another browser window giving the full Action Menu and an
objectbase display formatted in HTML� The objectbase is represented as a two�column table with a list
of the names of objects at the �current
 level on the left hand side and the names of the children of the
currently selected object on the right hand side� all represented as HTML links� Selecting a child moves it
�and its siblings� to the left� with the selected child now the �current
 object� and shows its own children
on the right� there is also a link for moving up in the objectbase composition hierarchy� The values of
primitive attributes and links representing �le� composite and reference attribute of the �current
 object
are shown below this table� Selecting any link in the Action Menu brings up browser windows for entering
arguments to the corresponding command� When an argument may be an object� a browsing table similar
to the objectbase display is shown� textual entry �e�g�� for search patterns� is also supported� Several sample
screenshots are shown in Section ����

The objectbase display and browsing tables contain URLs referring to the OzWeb subweb server rather
than some conventional website� For example� the current position in the objectbase is encoded in the URL
transmitted to the browser in the form �http�

��
website�
ObjectView
OID�� So the URL that the
browser sees may not be the same as the entity�s home URL� i�e�� the URL �eld of the web object with
the given OID �Object IDenti�er�� Selecting an HTML link from an objectbase table thus works slightly
di�erently than for access through standard WWW browser windows� the OzWeb server transforms the
URL and uses HTTP Redirect to force the browser to re�request the entity from its proper location� subweb
lookup is not needed� since objectbase links always refer to subweb materials�

� TOOL SERVICE

��� Requirements

We identify a number of requirements for a distributed tool server system�

� Run tools on multiple platforms
Users should be able to request tools that run on a range of machine architectures and operating
systems� Users should not have to remember� for example� that the Cray software is in Chicago and
the associated network commands to access it� They should be able to ask any one of a set of �well
known
 tool servers for the tool� and each tool server should be responsible for knowing either the
details on how to start the tool itself� or to which of its peer tool servers to forward the request�

Although it may seem that an organization might need a large number of tool servers running� say if
there is one per host where tools reside� each uses relatively few system resources compared to many
users logging into the system in order to run tools� In addition� if resources are scarce and the tool
server is needed infrequently� it could be started automatically upon a user request by a lightweight
system daemon that starts up when a user tries to connect to its TCP request port�

� No local tools required on client hosts
It should be possible to request all tools from the tool server� The tool server may be able to exploit
locally available applications �i�e�� software installed on the user�s computer�� but it must be able to
make remote tools available via display redirection facilities like those of X Windows� This minimizes
user and system administrator burden� since it is then unnecessary for popular packages to be installed
on every computer�

� Run tools on the user�s own UNIX workstation� PC� or Macintosh when possible

A tool server should be able to decide that a given tool can and should be run locally on the client
user�s machine� This is intended as an optimization� since it�s often more e�cient �in terms of network
bandwidth� to run a tool locally than to run a tool remotely and redirect its GUI using a remote
display facility like X Windows� However� in the case of data�intensive tools� it might be preferable to
run the tool on the same host where that data resides �which might be a shared �le server rather than
the user�s machine��
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� Wrap tools and sequences of tools
It should be possible to �wrap
 sequences of tools and have the wrapper appear to the user as a single
activity that they are able to request from the tool server� This is useful for tools whose input and�or
output must be converted between �le formats� Wrappers can also handle startup con�gurations�
including moving all relevant data �les to a temporary directory� setting environment variables� etc�

� Easy to use
Users should be able to connect to a tool server to receive a list of available tools or activities� without
the creation of a heavyweight user interface that would need to be ported to all computing platforms
in use and learned by all users�

� Easy integration with existing systems
A tool service should be easy to integrate with existing systems that might bene�t from a tool launching
facility� such as CAD�CAM� software development environments� and work	ow or medical care plan
automation systems in addition to simple menu�based systems that present a list of potential tasks to
the user� This requires the tool server to provide an Application Programming Interface �API� of some
sort for program�to�program requests and responses without user intervention�

��� Component Architecture

We have devised an architecture that combines a collection of cooperating tool servers running on a variety
of �server
 computers with a �personal tool services
 component that runs on each user�s own machine� We
use the phrase tool server to denote a remote tool server running on a server computer� and the phrase
personal tool server �or PTS� to refer to a tool server that runs tools on a user�s behalf directly on his�her
local UNIX workstation� PC or Macintosh�

The tool server is modeled as an HTTP server� and uses HTTP as the communication method not only
between itself and clients� but also between peer tool servers� HTTP �as opposed to� say� RPC or CORBA�
was selected because it is a simple TCP�IP�based request�response protocol� making it easy to �graft

onto existing systems �possibly using toolkits like libWWW ���� from the World Wide Web Consortium
or ASHeS ����� the Application Speci�c HTTP Services toolkit from our research group�� The HTTP
speci�cation provides methods for a client to request a document �HTTP GET� and send data �HTTP
PUT� to a server� In our architecture� the URL is treated as a request for a tool�

Users connect to tool servers via standard Web browsers� When a tool execution is desired� the user� or an
existing system that needs to run a tool on a user�s behalf� simply requests an appropriate URL from a tool
server� Rather than returning a document� as would a standard website server� the tool server invokes the
tool �or a tool wrapper�� perhaps by employing a peer tool server or personal tool server� Any return code
or output from a terminating tool is sent to the user�s Web browser�

When a tool server starts up �e�g�� during system boot of a server machine�� it contacts other tool servers
to exchange information� These peers may be speci�ed in a con�guration �le or may be inquired from a
directory service� By storing information on what tools each known remote tool server is capable of running�
it is possible for tool servers to handle requests for tools it may not be able to run directly� When a request
for tool execution arrives from a client� the tool server can simply relay the request to a peer tool server that
knows how to perform the execution� Figure � depicts a user requesting a tool from a given tool server� where
that tool server then forwards the request to a peer� Note this makes possible a �clearinghouse
 approach
to tool management� In this scheme� most tool servers are set up to know how to run a speci�c class of tools
on a particular architecture� host� etc� In addition� one or more �clearinghouse
 servers are con�gured to
contact the other servers and retrieve their tool de�nitions� Users can then connect to a clearinghouse server
to request tools that actually reside on any one of the other servers�

Implementing tool servers as WWW servers makes it easy to run tools directly on the user�s local machine�
We employ the Web�s standard mechanism for capability augmentation� a new Multipurpose Internet Mail
Extensions �MIME ����� type and corresponding MIME helper application� Every response from an HTTP
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Figure �� Response headers from an HTTP transaction

server is tagged with a MIME type tag� Figure � shows an example response and its associated MIME type
�eld� Every Web browser can be con�gured to start what is known as aHelper Application �or app� when
it receives data with a certain MIME type� If received data is destined for a helper app� the browser simply
saves that data to a temporary �le and starts the helper app� giving it the temporary �le name as input�

For example� suppose a tool server receives a request from a PC user who wishes to run Microsoft Excel

 which happens to be installed locally on that user�s computer� The user�s system administrator has
con�gured her browser so that receipt of data with the MIME type �application�x�toolserv
 causes a MIME
helper application to be started on the computer� This helper app is the Personal Tool Server� which is
responsible for actually starting the tool� as illustrated in Figure �� The data from the HTTP server tells the
PTS which local application is being requested and the pathname to the executable program� The pathname
may point to either the application itself or a wrapper� When the user terminates the tool� the PTS closes
down and exits�
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��� Activities and Scenarios

For some classes of tools� there may be multiple individual tools �e�g�� running on di�erent platforms or
hosts� which can accomplish the same task� Imagine Jane� an employee of XYZ Industries� wishes to edit a
C source code �le� If Jane uses a UNIX workstation� it may be appropriate for the tool server to run the
Emacs text editor� If she happens to sit in front of a PC� it may be better to start a Windows tool� In both
cases� Jane will accomplish the same task� editing a source �le� The user requesting the tool may leave it
up to the tool server to determine which tool is more appropriate in a given situation�

Our tool server models Activities and Scenarios to address such situations� Jane�s Activity might be
called �Edit
� The possible Scenarios for Edit might be Emacs on Sparc�Solaris and WinEdit on Windows
��� When users request tools from the tool server �see below�� they can specify a particular scenario name
if they need to run a speci�c tool from the available choices� otherwise only the activity is speci�ed�

The tool request sent by the client is a standard HTTP GET for a URL of the following form�
GET �Activity Name�Scenario Name�Arch�Host�Parameter ������Parameter N

� Activity Name is the only required parameter� It tells the tool server which Activity the user is
requesting�

� Scenario Name chooses a particular Scenario� 
�
 indicates no preference�

� Arch allows the user to specify that this Activity must run on a particular computer platform� encoding
both architecture and operating system �for instance� �Sparc�Solaris
 or �Intel�Solaris
�� This can be
used to di�erentiate among Activities that use the same parameters as input but generate di�erent
side�e�ects when executed� For example� a �Compile
 activity may have two possibilities de�ned� one
for the HP�UX operating system and another for Solaris� One source code �le may be used to generate
object code on either platform� which the Arch parameter allows to be chosen� Again� 
�
 may be
speci�ed for tools where the platform does not matter�

� Host requests that a particular Activity be run on a speci�c host� overriding the tool server�s choice
of which host would be the best place to run the selected tool� 
�
 refers to this default�

� After the Host parameter� any other portions of the URL are considered parameters to be passed on
the command line when starting the tool �or wrapper��

��� Rivendell Realization

Our preliminary implementation of a distributed tool server component is known as Rivendell and follows
the architecture outlined above� running on Solaris ����� Linux ���� and Windows NT� Rivendell acts as a
standard HTTP ��� server� receiving GET requests of the form speci�ed above to launch tools� Rivendell is
currently started during system boot� although it would be possible to employ a daemon to start Rivendell
only when a user request is received�

During startup� a Rivendell tool server attempts to read its con�guration �les� which specify the Activities
and Scenarios it knows how to run� as well as the peer tool servers it should contact� and then contacts
those peer tool servers 
 running on other machines on a LAN� across a corporate WAN �or intranet�� or
even across the Internet� When a peer tool server is contacted� Rivendell attempts to download the list of
activities and scenarios known by the foreign server� Once this has been accomplished� Rivendell performs
an HTTP PUT to upload into the foreign server the list of activities and scenarios it has been con�gured
to handle� Figure � shows an example Rivendell con�guration �le� The format strongly resembles the tool
base information from MTP ����� a previous tool management e�ort in our lab� which allowed for �among
other things� specifying particular hosts where tools had to run� MTP focused on shared groupware tools�
one of the extensions we hope to make to Rivendell during our future work�
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Peer: "pearl.psl.cs.columbia.edu:7777";
Peer: "marginal.psl.cs.columbia.edu:7777";

PTS_MIME: "application/x−toolserv";

Tool Editor
[ Name : "Emacs";
  Arch : "Sparc/Solaris";
  Host : "*";
  Exec : "/usr/local/gnu/bin/emacs";
  Graphical : T;
];
[ Name : "WinEdit";
  Arch : "Intel/Windows";
  Host : "*";
  Exec : "\edit\winedit.exe";
  Graphical : T;
];

Tool Compiler
[ Name : "GCC";
  Arch : "Sparc/Solaris";
  Host : "*";
  Exec : "/usr/local/gnu/bin/gcc";
  Graphical : F;
];
[ Name : "SparcWorks";
  Arch : "Sparc/Solaris";
  Host : "pearl.psl.cs.columbia.edu";
  Exec : "/opt/SUNWspro/bin/cc";
  Graphical : T;
]; 

Figure �� Sample Rivendell Con�guration

� The �rst portion of the con�guration �le� the Peer� lines� tell this particular Rivendell instance
how to locate its peer tool servers� These tool servers will be contacted� and con�guration infor�
mation shared with them� at startup time� This Rivendell instance has two peers� running on
�pearl�psl�cs�columbia�edu
 and �marginal�psl�cs�columbia�edu
� both on TCP port �����

� The PTS MIME� line tells Rivendell what MIME type to send to the user�s Web browser in order to
tell the browser to start the PTS for local tool execution� The browser must have been con�gured
beforehand to start the PTS upon receipt of this MIME type� This con�guration is often handled for
users by an organization�s system administrators�

� Following the MIME type de�nition are the de�nitions for the Activities and Scenarios known to this
particular Rivendell instance� Two Activities are de�ned� �Editor
 and �Compiler
� each of which
has two scenarios� The Editor Activity de�nes a Scenario called �Emacs
 on Sparc�Solaris� as well as
one called �WinEdit
 on Intel�Windows�

� The actual pathname to the executable tool� or wrapper� is given in the Exec parameter in each
Scenario�

� The Graphical parameter tells Rivendell if the tool has a GUI or is a batch tool�

After the con�guration �le has been read� Rivendell contacts each of its peer tool servers� issuing the
following HTTP GET request�
GET �Rivendell ACTIVITIES

The remote tool server is expected to respond with its Activities and Scenarios� The following example
illustrates this format� which is the same format as the Activity de�nitions from the con�guration �le read
at startup�

Tool Project

� Name � �MS Project��

Arch � �Intel�Windows��

Host � �	��

Exec � �
msoffice
project
project�exe��
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Graphical � T�
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This response indicates that the contacted tool server de�nes one local Activity� called �Project
� Rivendell
stores this information� and if a client requests the Project Activity� that request will be forwarded to this
Peer Tool Server� Once Rivendell has downloaded the Activity and Scenario information from the remote
server� it performs an HTTP PUT of the following form�
PUT �Rivendell ACTIVITIES �local activity information�

Rivendell thus sends the Activity de�nitions from its con�guration �le to the remote peer� It contacts each
peer tool server in this fashion� transferring information� Once this has been completed� Rivendell is ready
to receive user requests�

A user�s tool request is an HTTP GET where the URL speci�es the Activity the user wishes to run� Again
using an example from XYZ Industries� imagine that Bob needs to run the Emacs text editor� Bob�s tool
server de�nes an activity called �Editor
� which includes an �Emacs
 scenario� The closest tool server to
Bob� who is in New York� is running on TCP port ���� on a machine called �nyserv�xyz�com
� In this case�
Bob points his Netscape browser at the following URL�
http���nyserv�xyz�com������Editor�Emacs�	�	�

When the nyserv tool server receives Bob�s request� it �rst checks that there is an Activity named Editor
and a Scenario named Emacs de�ned� The Activity can be one from nyserv�s own con�guration �le� or one
informed by a peer tool server� Once nyserv has determined that the request is valid� it checks whether
Bob�s UNIX workstation is able to run Emacs �via a personal tool server�� The tool server on nyserv has no
special knowledge of Bob�s machine� Since the Editor Activity is locally de�ned �i�e�� it was not downloaded
from a foreign tool server�� nyserv moves on to the architecture and hostname requirements� which can be
set in an Activity de�nition� Since these are both 
�
� this Activity is free of restrictions� Thus� nyserv
deems itself the best place to run Emacs for Bob� and does so� X�� display redirection is used to move the
Emacs display to Bob�s workstation� i�e�� the DISPLAY environment variable is set to Bob�s workstation
before the tool is invoked�

If the Editor Activity from this example had been from a remote peer tool server� nyserv would have
forwarded the request to that remote tool server� Bob would not need to know that his request had been
forwarded� it would be the responsibility of the tool server on nyserv to do this transparently�

In addition to X�� Windows� Rivendell also interoperates with the WinDD software from Tektronix �����
WinDD allows a user at a UNIX workstation to remotely execute tools on aWindows NT Server machine with
the GUI display redirected to the user�s machine� WinDD employs special software� running on the UNIX
workstation� to contact the Windows NT server� When Rivendell runs a tool whose Arch con�guration
parameter is set to Intel�Windows� a WinDD client is started for the user� and WinDD is then instructed
to execute the required tool� Figure � is a screen shot of WinDD running an application on a Windows NT
server and displaying on a UNIX workstation� Similar software� notably NTrigue from Insignia Solutions ����
and WinFrame from Citrix ���� accomplishes the same function as WinDD and could be integrated as well�

��� Integration with OzWeb

Introduction of Rivendell as a new groupspace service within the OzWeb hypermedia collaboration envi�
ronment framework described in Section � required small changes in the OzWeb server� In particular� we
modi�ed OzWeb to pass on all tool invocations to its a�liated Rivendell tool server� speci�ed as part of
the OzWeb instance�s con�guration� This was done by having OzWeb issue an HTTP GET to Rivendell
each time tool execution was needed �e�g�� for a work	ow step�� The connection to the Rivendell server
is transparent to the OzWeb user 
 the tool is simply brought up on the user�s behalf� In the case of a
tool executed by a personal tool server� the only user intervention necessary is the one�time con�guration of
their Web browser to run the PTS upon receipt of the relevant MIME type� if this is done beforehand by a
system administrator� no user intervention is required�
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Figure �� Using WinDD
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� EVALUATION

The implementation presented here is OzWeb ����� which combines an earlier OzWeb ��� and Rivendell�
The most signi�cant limitation of OzWeb ���� is we ignore any version and con�guration management
facilities that may be present in the underlying websites from which subweb materials are obtained ����� A
process designer may explicitly include version control of web objects in the process� as was often done in
Oz instances� but this a�ects the web object content for only the Copy access type� We are working on
an extension to OzWeb�s transaction management facilities� as described in ����� to take advantage of any
locking� �check out
� versioning� etc� facilities in backend website servers to more fully enforce transactional
properties�

We previously developed another system calledOzWeb �e�ectively version ��� described in ����� It provided a
general�purpose Web�based GUI to the unmodi�edOz � analogous to the Web interfaces to some commercial
work	ow systems� e�g�� Action Work	ow Metro ��� or Lotus Notes Domino ���� �we separately developed
a special�purpose Web�based GUI for a proof�of�concept Oz environment instance supporting medical care
plans ������ The original architecture involved an HTTP proxy server and would work with any HTTP
browser� but that is where the similarity ends� There was no hypermedia� none of the entities were in HTML
format or included embedded links� There were no subwebs� and thus no ability to incorporate external
materials fromWWW or elsewhere� all documents resided in the Oz�s native objectbase� The browser had to
explicitly request Oz functionality via a URL of the form �http���oz�command�argument��argument�����
�
if the �oz
 site was not included in the URL� nothing happened beyond the usual retrieval of the page
from its website server� This is an important distinction� our subweb proxy supports automatic application
of full groupspace services �process� transactions� tool invocation� etc�� to every URL represented in the
corresponding subweb� whether explicitly requested or selected via link selection� whose actual Web page
may reside anywhere on the Internet or intranet�

The functionality �beyond Oz itself� was implemented for version � in a heavyweight proxy server constructed
by modifying an Oz tty client� It used HTTP to communicate with Web browsers� but directly used the
peculiar Oz client�server protocol to communicate with the Oz server� In contrast� the main functionality
in ���� resides in the OzWeb subweb server� which communicates with its proxy using HTTP� The OzWeb

server was implemented by extensive modi�cations to the old Oz server� The ���� proxy alone is very
lightweight� the main thing it does di�erently from a standard HTTP proxy �e�g�� used for caching� is to
query the OzWeb server to see whether or not the requested URL is in the subweb and �optionally� add on
presentation of subweb object attributes� otherwise it just does everything the browsers and OzWeb server
tell it to do via standard HTTP�

We also developed the experimental subweb server described in ����� We used a rather convoluted implemen�
tation involving direct requests for invocation of CGI scripts� rather than a proxy� It was thus impossible
to intercept all Web accesses as in our current system� No groupspace services were supported� this was
purely an organizational facility� We explored �view objects
� to describe application�speci�c reformatting
of HTML materials� not yet implemented in OzWeb�

There are several limitations ofOzWeb ���� regarding our goals for subwebs and groupspaces� For example�
each subweb proxy is currently hardwired to a particular subweb� For an end�user to move to a di�erent
groupspace� he�she must designate a di�erent proxy in his�her Web browser con�guration� It is not possible
for an end�user to be operating in multiple groupspaces at the same time from the same browser� This limi�
tation is easy to remove by connecting each subweb proxy to a directory service� e�g�� using the Lightweight
Directory Access Protocol �LDAP ����� 
 an industry standard that allows for simple queries to be made
to X���� compliant directory servers� through which it can interact with any number of registered subwebs�
We have not changed the implementation� however� because of a conceptual complication regarding what
should be done when a browser accesses a URL represented in two or more subwebs� This is part of our
in�progress research on extending Oz alliances to OzWeb� to support interoperability among groupspaces
with di�erent process models� data schemas� etc�� see Section ��

In OzWeb ���� all tools were invoked via scripts forked by the subweb proxy� A tool�s GUI was redirected to
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Figure ��� Linking QA Report and Code

the end�user�s screen via X Windows capabilities� so hosts not running X Windows were limited to command
line tools with no interactive user prompts� this has been alleviated somewhat by the extension to WinDD
with personal tool servers running on Windows NT� Scripts and thus tools in OzWeb ��� were always
run using the operating system userid under which the subweb proxy was invoked� say �oz
� introducing a
potential security concern� In the OzWeb ���� integration with Rivendell� tool servers continue to launch
tools under a common userid like �oz
� but personal tool servers always execute tools under the relevant
user�s own userid� The shared�userid problem could be solved by installing tool servers with �root
 privileges�
in which case they could fork child operating system processes under any local userid� but then each remote
end�user would be required to have a userid on the host where the relevant tool server runs� Note there
may be con	icts between userids from di�erent administrative domains� e�g�� multiple users of the same
groupspace with userid �yang
�

��� Revisit Motivating Scenario �

We have developed a demonstration OzWeb environment supporting our �rst motivating scenario� Users
edit� compile� test� etc� C code for the evolving OODB system and query processor� stored in the subweb
along with other project materials� GUI�oriented activities like editing are performed on each user�s own
workstation� whereas CPU�intensive work such as compilation and system build are performed by tools on
a shared server machine� Source code is automatically converted to cross�referenced hypertext �i�e�� uses of
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Figure ��� Cross�Linked Code and Tool
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Figure ��� Subweb�speci�c Search

identi�ers are linked to their de�nitions� via process automation that invokes a home�grown utility called
Hi�C� Email archives were converted to HTML using Hypermail ����� and the subweb is populated with the
code� design� testing and informal materials described previously� which are divided among three Columbia
websites �two public� representing the course materials �as is
 developed independently of this research� and
one internal for the subweb��

To give a 	avor regarding how this hypercode environment might be used� we go through two small process
fragments� A user� say Laura� a member of the �lobster
 group from our �rst motivating scenario� views some
test reports regarding the baseline code through a standard Web browser� Then she requests the OzWeb

GUI and adds an external link between one test report and a code �le that she believes likely to contain the
bug� as depicted in Figure ��� Note Laura is not the author of this test report� which was written by another
student group in the spring ���� class� so she cannot edit it to directly embed a hyperlink� A link operation
in the rule e�ect �task consequences� automatically adds a reverse link�A link operation in the overloaded
rule e�ect automatically adds a reverse link�

Now in Figure ��� Laura takes a look at the hypertext source code in her browser� and selects the edit

task link from the Action Menu� In this process segment� a regular ascii editor tool is invoked instead of
an HTML editor �and the HTML is generated�� but an alternative process could support a Web editor and
strip o� the HTML tags before presenting to the C compiler and other COTS C tools� The editor �emacs� is
invoked by the subweb proxy and displays on Laura�s workstation� The edit rule indicates to use the plain
source code as the tool script argument� not the hypertext version� After the edit task completes� Hi�C
incrementally updates the cross�references�

��



Figure ��� Adding to a Subweb
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Meanwhile� say another lobster student Hugh searches through informal �proprietary
 documents like email�
newsgroup archives� lecture notes� etc� As shown in Figure ��� he uses OzWeb search to �nd subweb docu�
ments containing the string ��Darkover�GetNameByOID��� because he is working on this function �Darkover
is the name of the relevant OODB�� Then Hugh decides to search the full WWW� not just the subweb� using
a standard search engine� He �nds a �public
 page he deems relevant� and adds it to the subweb as depicted
in Figure ���

� RELATED WORK

ComMentor ���� annotation servers are similar to our subweb servers� adding external application�speci�c
super�structures on top of pre�existing hypermedia� but without the active capabilities of groupspace ser�
vices� Annotation servers are realized via modi�ed WWW browsers or �plug�ins
 to standard browsers�
WebMake ���� supports hierarchical structuring of Web �les� checkout for editing� and invocation of �le�
based tools like make� A special Web client hides details from users� otherwise WebMake uses standard
facilities� CGI and MIME types� Data may be temporarily transmitted to another locale for tool execution
�e�g�� to compile for a particular architecture� using XMosaic remote control� but the entirety of a struc�
tured document normally resides at the same website� There are no transactions operating across separate
accesses� and no process� WAIBA ���� produced a suite of utilities useful to collaborative endeavors� such
as shared annotations� search engines that �nd what�s changed in categories of interest� what�s changed
in recently viewed pages� what�s out there that�s �similar
 to what the user is currently viewing� displays
link composition to a given depth� displays browsing history graphically� etc� over public and private web�
sites� Meteor ���� is a transactional work	ow engine that submits work	ow tasks to the Web �and backend
databases� using CGI� but does not support work	ow over Web �i�e�� URL� accesses�

Databases often support access from the Web to a database� but not vice versa �e�g�� the O� Web Gate�
way ������ A few databases have been constructed on top of hypermedia� akin to our subwebs� although none
are close enough to warrant attempted reuse� Most have no support for either work	ow or transactions� and
are centralized �the equivalent of a single website�� Some exceptions� Hyperform ���� is a hypertext database
with an extensible object�oriented schema� It allows choice between checkout of individual attributes or
entire objects �dirty reads are allowed�� and conventional transactions over multiple objects� An application
must be implemented by a method of the relevant class in the hyperbase schema to use transactions� but
methods written in Scheme can be added dynamically� DHT ���� overlays hypertext to add on transpar�
ent access and external organization to distributed� heterogeneous� autonomously�maintained repositories�
Repository data is transformed to�from a common structured hypermedia format by a repository�speci�c
gateway� Only navigational access is supported� Update requests are turned down if the object has changed
since last retrieved� but there are no transactions� and no process�

WebCard ���� is one of several systems that supports representation of Web pages in the style of email�news
folders� Lightweight Databases ���� extends HTML to map relational database schemas onto hypertext
documents� to support database�style queries that rely on semantic knowledge of the structure and content
of documents� Relationships among hypertext pages augment the usual links� However� data content must
be modi�ed to include the entity class� attributes� and relationships� Either client or server�side processing
is supported� In contrast� Hyper�G ��� supports hierarchical structuring of aggregate collections of Web
pages� where a collection may be a component of multiple parents and collections can be spread across
websites� Links are represented externally to the hypermedia content� Scaling is supported by replication
and caching �with weak consistency�� Hyper�G uses its own SGML ��� format� but converts to HTML when
serving a WWW client� It provides an interchange format and utilities for importing and exporting external
collections� None of these systems supports process or transactions�

Field ���� uses a message bus to incorporate tools into an integrated software development architecture� This
requires either source code availability �to modify the tool to understand Field messages� or an existing API
through which the capability can be added� There is little support for integrating other types of tools� Sun�s
ToolTalk ���� protocol allows applications from di�ering vendors to share information via a message bus type
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architecture� ToolTalk could conceivably be employed as another communication option via which users could
request tools from a tool server� Integration with Sun development tools would be made easier� since they
support the integration of third�party software via the ToolTalk protocol� HP�s SoftBench ���� framework� a
tool�integration platform that provides an open� common set of communication and user interface services to
all tools integrated with the SoftBench environment would also be a useful platform with which to integrate
a tool services component� A tool server which connected to SoftBench would make it possible to more easily
add non SoftBench�aware tools to the development system�

Matchmaker ���� is a distributed computing interface speci�cation language which allows a programmer to
de�ne RPC interfaces between remote processes� A multi�targeted compiler then generates C� Pascal� Lisp�
or Ada code which implements the interfaces de�ned� Polylith ���� extends this concept to allow executing
distributed system components to be temporarily shut down and moved among hosts� These and other
related models of tool integration are subsumed by the event�based framework presented in ���� We do not
intend to compete with such work� but will consider how to build on top as part of our future directions on
groupspace tool servers�

Ockerbloom ���� proposes an alternative to MIME types� called Typed Object Model �TOM�� that could
conceivably be employed instead of a MIME extension to incorporate a Personal Tool Server into our ar�
chitecture� Objects types exported from anywhere on the Internet can be registered in �type oracles
�
specialized servers that may communicate among themselves to uncover the de�nitions of types registered
elsewhere� Web browsers that happen upon a type they do not understand can ask one of the type oracles
how to convert it into a known supertype� In this way� the Web browser would not have to be set up to
handle a new MIME type� They could simply query the type oracle� which could return information on how
to run the tools�

� CONTRIBUTIONS AND FUTURE WORK

We have designed a general approach to hypermedia collaboration environments centered on subweb reposito�
ries and groupspace services� investigated many of the technical issues 
 particularly distributed tool services

 in depth� developed a feasible architecture and implementation techniques based on WWW technology�
and realized a prototype environment framework and several sample OzWeb environments� including the
�WebCity
 environment we use for our own day�to�day team software development work�

OzWeb reuses Oz�s process engine and transaction manager more�or�less �as is
� the same OODB is used
in the subweb implementation� A new tool service component� Rivendell� replaced Oz�s native tool man�
agement mechanism� In future work we would like to further exploit our recent componentization direction�
where these components have been tugged apart� are in principle replaceable within Oz� and have been
experimentally introduced into foreign systems� such as ProcessWEAVER ����� as described in ���� ���� For
example� a later version ofOzWeb might employ an alternative process engine� or a synergized set of process
engines� e�g�� ���� explains how we integrated Oz�s �and now OzWeb�s� process engine with TeamWare �����

Our subweb architecture seems reasonably general� simple and elegant for adapting existing client�server
process�centered environments into a hypermedia collaboration environment framework� The server for a
process�centered environment would already provide basic groupspace functionality and could be augmented
by the subweb mechanism� as we described for Oz� Native clients would be replaced by Web browsers and
proxy servers� Peer�peer process�centered environments where the peers already share a common repos�
itory ���� may be adaptable to multiple groupspace servers sharing a common subweb server� but that
investigation is outside our scope�

For fully distributed� �shared nothing
 multi�server systems� for example to scale up to collaborative work
among teams� as opposed to among individual members of one team� we plan to expand the �International
Alliance
 metaphor developed for Oz ���� The gist is that groupspaces would register with one or more
LDAP�s to become available to their subweb proxy servers� Groupspaces a�liated with the same LDAP
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could optionally form �Treaties
 with one or more other such groupspaces to agree to share selected portions
of their schemas� subwebs� process models and�or tools� and specify how to handle situations where the same
ultimate hypermedia entity is represented by multiple web objects and�or is moved among subwebs� Then
�Summits
 would implement one groupspace performing a process task on behalf of another groupspace�
users and tools from multiple groupspaces collaboratively performing process tasks� movement of users and
data from one groupspace to another� etc� This model is illustrated in Figure ���

For navigation and movement of users� data and tasks among groupspaces� we plan to develop a �meta�web

analogous to multi�user domains �MUDs� e�g�� Lambda MOO ������ where users can move from room to
adjacent room �sometimes through trap�doors� and pick up an object in one room and carry it to another
�but the object may transform from a trunk �lled with gold to a monkey�� Work	ow�based MUDs have
already been investigated in Promo ����� However� in our case the same groupspace may participate in
multiple alliances� each corresponding to a MUD� so exactly what a user can do and what objects he�she can
access may depend on how that user arrived in the groupspace� This does not seem as challenging technically
as from a user interface perspective� so we are working on what we call the �Twilight Zone Fifth Dimension

user model to address the end�user confusion that could naturally occur�

It is tempting to consider how other distributed computing infrastructures� besides WWW�might serve as the
basis for subweb and groupspace implementation� We studied CORBA � as a candidate� but it is currently
lacking the key ingredient� a standard component that supports complete interception and mediation in the
style of HTTP proxy servers� This problem may be ameliorated by the various proposed integrations of
HTTP and CORBA�s Internet Inter�Orb Protocol� which we plan to explore as an alternative standard on
which to base subwebs and groupspaces�
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