
WWW�based Collaboration Environments

with Distributed Tool Services

Gail E� Kaiser� Stephen E� Dossick� Wenyu Jiang�
Jack Jingshuang Yang� Sonny Xi Ye

Columbia University
Department of Computer Science

���� Amsterdam Avenue� Mail Code ����
New York� NY ������ UNITED STATES

���	
�
	����
fax����	
�
	����
kaiser�cs�columbia�edu

CUCS	���	
�

February ��� �

�

Abstract

We have developed an architecture and realization of a framework for hypermedia collaboration environments
that support purposeful work by orchestrated teams� The hypermedia represents all plausible multimedia
artifacts concerned with the collaborative task�s� at hand that can be placed or generated on�line� from
application�speci�c materials �e�g�� source code� chip layouts� blueprints� to formal documentation to digital
library resources to informal email and chat transcripts� The environment capabilities include both internal
�hypertext� and external �link server� links among these artifacts� which can be added incrementally as
useful connections are discovered� project�speci�c hypermedia search and browsing� automated construction
of artifacts and hyperlinks according to the semantics of the group and individual tasks and the overall
process work	ow� application of tools to the artifacts� and collaborative work for geographically dispersed
teams�

We present a general architecture for what we call hypermedia subwebs� and imposition of groupspace services
operating on shared subwebs� based on World Wide Web technology
 which could be applied over the
Internet and�or within an organizational intranet� We describe our realization in OzWeb� which reuses
object�oriented data management for application�speci�c subweb organization� and work	ow enactment and
cooperative transactions as built�in groupspace services� which were originally developed for the Oz process�
centered software development environment framework� Further� we present a general architecture for a
WWW�based distributed tool launching service� This service is implemented by the generic Rivendell
component� which could be employed in a stand�alone manner� but has been integrated into OzWeb as an
example �foreign
 �i�e�� add�on� groupspace service�

Keywords� Computer�supported cooperative work� Environment frameworks� Hypermedia� Process� Tools�
Transactions� Work	ow

�

� INTRODUCTION

In general� collaboration environments seek to improve end�result quality and team productivity during both
pre�arranged and ad hoc group activities and projects� ranging from industrial decision support and mili�
tary command and control� to healthcare management and delivery� to software engineering and engineering
design� to publishing and education� to crisis management and emergency response� Collaboration envi�
ronments assist information workers� both individually and together in a group� via data organization and
search� coordination of concurrent access� process work	ow � modeling and enactment� application program
launching� and other services� Collaboration environment frameworks provide generic facilities that can
easily and rapidly be tailored to a speci�c e�ort�

Hypermedia collaboration environments intertwine support for planning and execution of purposeful work by
assisting informationworkers in generating� discovering� retrieving� updating� cross�referencing and exploiting
all on�line materials that may plausibly be relevant to an endeavor� The conventional application�speci�c
artifacts� e�g�� press releases and intelligence reports� formally produced and consulted during the conduct
of a project may make up only a small proportion of the relevant hypermedia� There could also be arbitrary
informal documents such as email and newsgroup archives� meeting minutes perhaps including video and
audio components� even scanned�in diagrams sketched on napkins� as well as traces of the process that has
been followed to date during the project� with various analyses and metrics regarding the progress of the
e�ort� Without such broad support� ad hoc e�orts may be slowed down� particularly during their initial
stages� due to lack of organized information access� Further� the documentation available after project
completion may not include all the nitty details that came up during meetings� email� discussion groups�
etc�� apparent minutiae� some of which may later be quite valuable for desiderata and post�mortem analysis�
has likely been lost�

Hypermedia materials need not reside in a single repository constructed speci�cally for that project or internal
to the encompassing organization� but could potentially reference documents from arbitrary external sources
and even add on links between external data of arbitrary types whose native repositories or formats provide no
hyperlink capabilities� End�users and the environment�s task engine should be able to introduce links on top
of and orthogonal to any hyperlinks embedded in documents by the authors� to add references to materials the
authors never thought of� did not know about or that did not exist when the documents were written� Note
this permits hyperlinking materials generated and managed independently from the collaborative activity�
such as digital library publications� technical reports from unrelated institutions that provided inspiration or
insights� videos or transcripts of seminars or television presentations with some bearing on the work� public
resources� etc� These features are particularly useful for activities whose participating organizations and�or
information resources must be drawn together quickly with limited time to set up a project�speci�c database
and reformat existing data as hypermedia�

This is very nearly what the World Wide Web �WWW� provides� Thus we choose Web technology� particu�
larly HyperText Transfer Protocol �HTTP� and HyperText Markup Language �HTML�� as the infrastructure
on which to construct hypermedia collaboration environments� Web technology can be applied within an
organizational intranet� with references to external resources tunneled through ��rewalls
� obviously� pro�
prietary or secret materials would not be made publicly available on the Internet� However� Web technology
alone� or in tandem with other distributed computing infrastructures �e�g�� DCE� OLE� CORBA�� does not
provide the services necessary for collaboration�

� There is little organization of Web documents� a great advantage for generic use� but consequently
project�speci�c navigation and search are challenging� Although new Web pages can be created with

�We use the terms �process� and �work�ow� interchangeably throughout this paper� ignoring the quibble that work�ows

are generally relatively short and a long�lived process may encompass many work�ows�

�

links to documents elsewhere on the Web� there is no general way to add on application�speci�c types�
attributes and links to arbitrary materials� Application�speci�c organization would provide a common
context for collaborative information sharing�

� There is no support for work�ow modeling and enactment regarding access to Web pages� A work	ow
engine can present to users� and guide and assist them in following� a medical care plan� design process�
business practice� etc� whose information components are stored as Web hypermedia� Work	ow would
provide a structured means for coordinating the roles that participants take in collaborative tasks�

� Although the Web may soon support versioning and con�guration management following the �checkout
model
� there is little concept of transactions �� with either the classical atomicity� consistency� isolation
and durability properties� or permitting relaxations proposed for long�duration� interactive� and�or
cooperative work ���� ���� The �rst author argues in ���� why the checkout model is less attractive for
collaborative e�orts than the emerging variety of cooperative transaction models� Concurrency control
of some sort is a key requirement for managing concurrent access to shared information�

Both collaborative and solo work involve more than browsing of HTML documents� artifacts stored in
hypermedia collaboration environments come in many di�erent formats� There is no standard means of
using these disparate forms of information once found� particularly as inputs to tools� Software tools and
application programs are to information workers as the hammer and chisel are to the carpenter� essential
components in accomplishing the tasks required by their work� Imagine telling a carpenter that some of her
favorite tools could only be used on a speci�c style of workbench� and other tools she uses every day can
only be used on a di�erent style of workbench� and a third set of tools are only available on a particular
workbench located in a neighboring city� Users of collaboration environments face an analogous problem�
To treat the Web as a repository for hypermedia collaboration environments� it is necessary to apply both
conventional tools �document editors� spreadsheets� virtual whiteboards� etc�� and emerging Web�aware
tools �HTML editors� emailers� etc�� to Web entities� and place tool results back onto the Web� Many useful
tools run only on particular computing platforms �e�g�� Solaris versus Windows�� and economic constraints
may restrict licensing to a particular host �because either the hardware or software is very expensive� e�g�� a
Cray numerical analysis package�� making it di�cult to integrate the use of these tools with a user�s task at
hand
 preferably performed sitting at that user�s o�ce workstation or on a mobile host in the �eld�

All these hurdles get in the users� way� They must remember not only where they can run certain tools� but
also the speci�cs on starting them �including environment variables needed� command line options� etc��� A
distributed tool service can solve many of these problems by handling the knowledge about how and where
to run a tool� All the user need do is request a tool from the tool server� The tool server is then responsible
for remembering and deciding the speci�cs on running the tool� Many existing systems can bene�t from
the addition of �or integration of� a tool services component� The problem of managing the use of software
resources needed by an organization �making tools as easy to run and as ubiquitous as possible� is one which
can be solved by incorporating a tool server into the use of the system� We are particularly concerned here�
of course� with integration of distributed tool services into hypermedia collaboration environments�

We propose functionality in terms of �subwebs
 and �groupspaces
� and then present an innovative architec�
ture that makes it relatively easy to add application�speci�c subweb �subset of Web� organization� navigation
and search� and work	ow� transactions� tool launching and related groupspace �multi�user workspace� ser�
vices� to the World Wide Web infrastructure� Our approach does not require a special browser� any browser
that supports the HTTP ��� standard ��� is su�cient� Our approach does not require use of a special server�
any HTTP�compliant web server will do� The �trick
 is to use HTTP proxy servers� which can mediate all
tra�c from�to any browser with respect to any servers and can be con�gured to apply to all WWW browsers
throughout a site� HTTP proxies are generally used for implementing shared caches and tunneling WWW
tra�c through organizational �rewalls� and but can be applied for any purpose where automatic �ltering of
all URLs �Web Universal Resource Locators� is desired�

�Note that we use the term �transaction� as it appears in the database literature� to mean a sequence of operations generally

taking a collection of data from one semantically consistent state to another� as opposed to its common usage in reference to

WWW� i�e�� a single request from a browser to a website server and the corresponding response�

�

We have implemented a prototype hypermedia collaboration environment framework called OzWeb� and
several working environment instances� This research is concerned with how to apply project�speci�c data
management� work	ow� and cooperative transactions to Web materials� not which speci�c data de�nition
notation� process modeling language and enactment model� concurrency control mechanism� etc� might
be best for a particular class of collaboration environment� Thus we adapted these facilities from the Oz

process�centered environment ��� to our architecture� rather than attempting to invent new ones or arguing
in favor of our old ones� However� it was necessary to devise a new approach to tool management amenable
to deployment over WWW� Thus we also describe an architecture for a generic Web�based tool server� our
prototype implementation of such a system� dubbed Rivendell� and its integration with OzWeb� Finally�
WWW admits to a wide range of user interfaces� Our sample graphical user interface �GUI� assumes the
HTML ��� standard ��� �e�g�� frames�� but the GUI is completely replaceable and a less sophisticated non�
frames version or a more sophisticated Java�based GUI could easily be substituted� We are working the
latter� where a Java window interacts with the user and browser windows only display HTML documents�

We �rst give two motivating scenarios� one a �real life
 situation that we sought to contend with in developing
subwebs and groupspaces� and the other a hypothetical but realistic example of when distributed tool services
are needed� Then in Section � we propose functionality for subweb organization and groupspace services to
achieve hypermedia collaboration environments� Section � describes our architecture on top of the World
Wide Web infrastructure� followed by Section � with our implementation in OzWeb� Section � focuses
on our distributed tool service� as a groupspace service added on the OzWeb� covering requirements and
approach� architecture� realization and integration� We conclude with evaluation of our results� in Section ��
comparison to related work in Section �� and contributions and future work ideas in Section ��

��� Motivating Scenario �

The Spring ���� Introduction to Software Engineering course at Columbia involved a team project where
groups designed� coded and tested a query processor for a given object�oriented database system �OODB��
The objectbase implementation was supplied as C header �les and object code libraries� and a functional
speci�cation for the ideal query processor was given� Each group developed a structured design for the query
processor� The design documents were swapped with other groups� who performed design review and then
coded this design� The groups inspected and revised their own code� and swapped with another group for
testing� Since only two groups had complete implementations� the �lobster
 group tested the code from the
�whitespace
 group and all other groups tested lobster�s code� � Some groups submitted their homework in
HTML or postscript format from their Web pages�

The students in the lobster group were invited to take the Undergraduate Projects in Computer Science
course in Summer ����� to extend their query processor� Several graduate students and a sta� member were
concurrently working on the same OODB� and on the Oz and OzWeb systems constructed on top� everyone
was working against tight deadlines� This was not �homework
� they were developing a signi�cant piece
of our system
 but would soon graduate and disappear� so their code would ultimately be maintained by
other people�

We had numerous potentially useful artifacts on�line� The OODB manual� source code� interface and library�
class lecture notes� homework assignments� required readings� etc�� the functional speci�cation for the as�
signed query processor and the student proposal for its extensions� design documents from several groups�
baseline code �at semester end� and new code �in progress� from the lobster group� lobster�s code inspection
reports� the sample data model and objectbase supplied for testing� testing reports and journals from other
groups on lobster�s code� email between the students and instructor� and the class newsgroup archive� One
could also imagine talk�chat transcripts� and video and�or audio meeting records�

Simply placing these materials on�line is inadequate� Manually creating and maintaining cross�references as
the work continues and documents change would be an enormous undertaking� Instead� useful hyperlinks

�The student groups invent their own names� e�g�� now during the Spring �		
 course one group calls themselves �three

stooges��

�

should be automatically generated when possible� and be automatically added as the materials undergo
further evolution� Environment users should be able to introduce hyperlinks incrementally as they discover
useful relationships� either manually or through automated agents� We emphasize useful� because simply
indexing or cross�referencing every appearance of a given word or phrase would result in a densely linked
mass of little value� Instead� we advocate a �loose
 schema categorizing and organizing entities of interest�
process modeling to indicate semantic dependencies� and work	ow automation to automatically add�remove
hyperlinks as tasks are completed� as key value�adding services�

��� Motivating Scenario �

Imagine a situation in which a company� XYZ Industries� follows a sprocket design process that involves
mathematical simulations using a rather expensive software package running on a Cray supercomputer�
Related CAD work is done on SGI UNIX workstations running AutoCad� XYZ has standardized on the
UNIX version of Adobe�s FrameMaker for all their internal documentation� and they use a mix of the UNIX
and Windows versions of Adobe Photoshop for creating illustrations for the documentation� Microsoft
Project is used for scheduling projects� including tasks like producing and updating Gantt charts of project
milestones and deadlines� All the engineers at the company require access to all these tools in order to
complete their work�

Unfortunately� XYZ Industries has let things get a little out of hand� Every engineer sits in front of either
a SGI workstation or a Windows PC� Problems occur because all the users require access to all the tools�
no matter what kind of computer they happen to be sitting in front of� Training is a nightmare� because
Windows PC users do not want to learn UNIX commands� and UNIX users don�t want to be forced to
borrow a Windows PC whenever they need a tool from that environment� Giving each engineer both a
UNIX workstation and a PC on their desks is prohibitively expensive�

In addition� complicating things even further� is the need to share tools among multiple sites on the XYZ
corporate wide area network �WAN�� Engineers in Palo Alto and New York must access the Cray numerical
analysis tools� and the Cray happens to reside at the Chicago o�ce� Everyone needs access to AutoCad
running on the powerful SGI Onyx in the Palo Alto o�ce� XYZ can a�ord the relatively inexpensive telecom�
munications links between these three cities� but they cannot a�ord to duplicate the extremely expensive
Cray and associated software at every corporate site� Figure � illustrates this hypothetical WAN�LAN setup�

WWW technology provides a unique platform for distributed tool services� whether throughout the Internet
or within an organizational intranet �i�e�� WAN� separated from the Internet by �rewalls� The HTTP protocol
includes facilities that allow a client to request something from a server �the HTTP GET method�� This
request format can be generalized to allow a client to request a tool from a tool server �masquerading

as a Web server� The client� in this case� can be either a standard unmodi�ed WWW browser �including
Netscape Navigator� Microsoft Internet Explorer� or NCSA Mosaic� or any application capable of making
an HTTP GET request�

� APPROACH

��� Subwebs

A subweb organizes on�line materials of plausible interest to a project or organization� such as in our �rst and
second motivating scenarios� respectively� over its life�time� A subweb supports structured associative and
navigational queries� and unstructured information retrieval and hyperlink following� Some materials may
be updated for unrelated purposes� so it is not always appropriate to copy everything to a project�speci�c
repository� some documents should continue to reside at their original homes but be treated as part of the

�

Chicago Office LAN

Cray Server

New York LAN

New York PC’s, Mac’s
and Workstations

Palo Alto LAN

Palo Alto PC’s, Macs
and Workstations

XYZ Industries Corporate WAN

Chicago PC’s, Macs,
and Workstations

SGI Onyx

Figure �� XYZ Corporate WAN

�

WebObj �� superclass ENTITY�

URL � string�

type � �Reference� Copy� Updatable�

� Reference�

content � binary � �	html��

updateinfo � text � �	updinfo��

my links � set of link ENTITY�

my children � set of ENTITY

end

Figure �� WebObj Superclass

project�s information base� perhaps without the authors� knowledge �for publicly available materials�� and
possibly with external hyperlinks added on� constituting two�level hypertext�

Subweb organization follows what we call a �loose
 schema because it speci�es the existence� names and types
of possible composition and referential links imposed on top of the materials� as well as other attributes� but
does not de�ne or a�ect any hyperlinks that may be embedded in their content� In particular� the schema
may introduce external links among documents� images� etc� that are unknown �and perhaps irrelevant�
to the authors of those materials� Thus a subweb server is a form of link server with an object�oriented
database veneer� in which those objects that are instances of� say� the WebObj class correspond to WWW
URLs� Note URLs need not refer to full pages or images� but may correspond to a point within a document�
e�g�� using the fragment name feature of HTML �
A HREF��			�
name�� and
A NAME��			����

Figure � shows a sample WebObj class� Its attributes represent the WWW anchor� i�e�� a fully�quali�ed
canonical URL� as an ascii string �following the HTTP standard to retain compatibility with arbitrary
backend services�� the access type� which defaults to Reference� cache the hypermedia entity content

in an opaque binary �le� and store related information such as timestamp �from website� and location �if
moved� in the updateinfo text �le� The my links and my children attributes allow arbitrary references
and composition of objects� in addition to any typed link and composite attributes that might be de�ned by
subclasses inheriting from WebObj�

The Reference access type refers in virtual form to whatever entity is found by accessing the anchor� The
entity might be changed �out from under
 the subweb� or become inaccessible at any time �although the
content �eld is used as a cache�� Repeated accesses �e�g�� HTTP conditional GET� might not retrieve
the identical document� All accesses via the subweb are read�only� Updatable is the same as reference�
except that subweb users can modify the entity �e�g�� using HTTP PUT�� The subweb may �own
 the
website� for storing project�speci�c materials� or an agreement might be made between website and subweb
administrators� Process constraints are employed� so not necessary all users of a given subweb can make
updates� perhaps only specially privileged users� or user roles� and then only when particular prerequisites
are satis�ed�

Copy refers to a subweb�resident copy� made when the web object is �rst instantiated� or re�instantiated
on demand later on �e�g�� a Web crawler might periodically check for modi�cations and notify users�� The
copy can be modi�ed by subweb users �although a particular environment instance might add a �read�only

attribute enforced by process constraints�� but is not intended as a write�through cache� changes to and
new versions of the copy do not in any way impact the original� If the process depends on controlling all
updating �or deleting� of a particular web page� i�e�� changes to that web page �out from under
 the process
engine as above are not acceptable� that page should be designated as Copy
 or� alternatively� the website
directory hierarchy should be protected so that it can be modi�ed only via the subweb server�

In addition to schema�based queries� subwebs provide text�matching search analogous to Yahoo� Lycos�
AltaVista� etc� But search is restricted to only those hypermedia documents represented by a selected set of
web objects �perhaps the entire subweb�� or a subset of the documents reachable via embedded links from

�

the web objects �e�g�� on the same website as the originating web object�� Current Web search engines can
restrict to or exclude a particular website and�or subdirectory hierarchy� but cannot consider an externally
imposed application�speci�c collection of Web entities arbitrarily strewn over multiple websites� In practice�
netsearch often presents many screenfuls of seemingly random materials� whereas subweb search will likely
to result in a much smaller and more precise retrieval�

The user may write the entity� e�g�� using an HTML editor or tool output� only if the target web object is
Copy or Updatable� For Copy� the local copy in the web object content attribute is replaced �or a new
version created�� for Updatable� both the content cache and the original are modi�ed �e�g�� via HTTP
PUT�� If the URL points to a directory or otherwise results in generation of an HTML page� that page is
treated as the content� but writing may not be meaningful�

WWW supports forms whereby the user enters input to arbitrary backend programs� to be transmitted and
processed via the standard Common Gateway Interface �CGI� protocol ���� �i�e�� HTTP POST�� There are
several user interaction models� The user might intend the web object to represent the blank form �to submit
arbitrary queries later�� or the �lled�in form �e�ectively a particular query that might be resubmitted later
with di�erent results�� Although it would correspond to a di�erent URL� the user might have in mind the
output of submitting the form with particular inputs �the result of a previous query�� Each of these models
incurs di�erent read�write implications� Selection among models can be done in several ways� including
hardwiring a particular choice into a given subweb server� de�ning a subclass of WebObj corresponding to
each of the choices� adding an attribute whose value determines the choice for that particular web object
instance� or prompting the user when the choice is to be made during execution�

��� Groupspaces

To construct fully functional collaboration environments on top of hypermedia subwebs� we add what we
call groupspace services consisting of multi�participant process automation� concurrency control and failure
recovery for collaborative work� and tool management technologies� We allow for addition of other services�
such as knowledge�based search�classi�cation agents� content�based security mechanisms and general access
control� not explored here� Some or all groupspace services could be omitted in a given implementation� and
subwebs would still be useful for organizing materials� We choose the term �groupspace
 because we think
of each a�ected Web browser as the user�s personal workspace� and collaboration support through these
services turns the relevant portion of the Web into a cooperative forum�

Any process�work	ow paradigm �Petri nets� rules� task graphs� etc� ���� ���� can be adapted to hypermedia�
A process model includes partially ordered tasks� allowing for alternatives and iteration� Tasks usually have
parameters involving process state and�or product artifacts� actions that may involve invocation of external
tools� may form a hierarchy of subtasks� may have prerequisites and consequences� and may specify resource
needs� Parallel work by human participants may be synchronized�

Once a subweb mechanism is in place� process modeling and analysis needs relatively little extension to
work with hypermedia� We identify the three main concerns of such extension� treating hypermedia ac�
cesses as tasks on which process constraints may be applied� treating hypermedia entities as arguments to
conventionally de�ned tasks� and re	ecting dependencies among data items as hyperlinks�

In addition to whatever task de�nition mechanism is already provided� the process notation should support
read �HTTP GET� and write �HTTP PUT� of a hypermedia entity� follow of an external hyperlink �follow
might not be distinguished from read where the user enters the desired URL explicitly� since both correspond
to HTTP GET�� and link�unlink of an external hyperlink� These operations then could be used in the
prerequisites and consequences of tasks� and their results serve as the arguments to task actions� Further�
these operations should be treatable as primitive tasks in themselves� i�e�� the operations are themselves the
actions� with process�speci�c prerequisites and consequences
 generally with di�erent prerequisites and
consequences for di�erent subclasses of WebObj�

�

Then the normal task aggregation facility can be used to support composite hypermedia operations� such
as reading or writing a compound document consisting of multiple entities� And partial ordering� synchro�
nization� prerequisites and consequences� etc� can be applied to these operations in the same manner as
for other tasks de�ned in the process system�s native notation� For example� prerequisites must be satis�ed
before a browser may successfully retrieve �HTTP GET� or update �HTTP PUT� the WWW entity associ�
ated with a web object� No prerequisites are enforced when accessing URLs �e�g�� a friend�s home page or
www�olympic�att�com� outside the subweb� This extension to process concepts may not involve signi�cant
changes� if the original language already includes read of a project datum� etc� In a hypermedia collabo�
ration environment� these operations apply to web objects as objects� and to their underlying hypermedia
entities� as well as to other data� An ideal subweb implementation would make this distinction completely
transparent�

The process de�nition notation should also include facilities for specifying those dependencies among entities
where composite and�or referential links are required to be explicitly placed under human supervision versus

those links that could�should be inferred and implicitly placed via process automation� For instance� a task
prerequisite may require that a particular link exist between two of its parameters� or an implicit parameter
might be derived by following a speci�ed link �whose absence might result in failure to satisfy the prerequisite�
depending on the logic written by the process designer�� Or a task consequence may introduce or remove a
link between its inputs �parameters and derived parameters� and outputs� including parameters derived via
associative queries or information retrieval�

Such prerequisites and consequences could be de�ned manually by the process designer� to carefully determine
the cases where hyperlinks should be placed by a cognizant user versus automatically inserted� Or the process
model might be mechanically transformed according to template�s� constructed by the process designer or
provided by the collaboration environment framework� although freewheeling automation may result in a
dense and useless mass of cross�links� This extension to process concepts may not involve any syntactic
or semantic changes� if the original language already includes such support �operating on its native data
repository�� Again� the subweb should hide the distinction between web objects and native data from the
process engine�

Enactment of the groupspace�speci�c process� and visualization of the process while it is in progress� requires
that all Web browser requests be intercepted so that prerequisites� consequences� synchronization� etc� are
enforced and automated� tasks and task segments operating on WWW entities are automatically initiated
and controlled� users are noti�ed when tasks they are supposed to do become enabled or tasks that a�ect
them are completed� and visualization display�s� are updated as the process unfolds� Di�erent process
systems may not provide all these capabilities� e�g�� some process systems attempt to automate satisfaction
of prerequisites and assertion of consequences and thus might introduce appropriate hyperlinks without
human intervention� whereas others support more limited work	ow that only prompts the human to do the
work� For all these functions� interception of all HTTP tra�c emanating from a participating Web browser
is mandatory� thus our choice of a proxy server�based approach�

If the process formalism is adapted to cover changes to hypermedia content� particularly Reference and
Updatable web objects that change independently of the subweb� then a polling scheme is needed� e�g��
a periodic Web crawler that noti�es a�ected subwebs �we cannot assume a noti�cation capability by the
website itself� since subwebs and groupspaces must work with all HTTP servers�� Such noti�cation must
trigger proper process enactment� perhaps without an attending human user� Some process systems may
already handle external changes �outside their control� to their data repositories or other �o��line
 invocation�

Process measurement and evolution do not seem particularly complicated by hypermedia
 except that the
underlying entities may be manipulated outside the subweb mechanism� Thus it is virtually impossible for
groupspaces to maintain fully accurate statistics or guarantee that any process state embedded in WWW
components change only through controlled evolution� This is more insidious that the inherent problem
where a user becomes �root
 and arbitrarily manipulate a project repository through operating system
facilities� because WWW�based hypermedia has no central authority�

Groupspaces do not require any particular transaction model for collaborative work� but there must be

�

some model
 preferably one that takes process semantics into account to permit appropriate serializability
con	icts �e�g�� when using groupware tools� and avoid inappropriate rollback of partial changes interrupted by
failures �e�g�� when human labor versus regeneratable tool output is at stake�� To enforce that two groupspace
users are not updating the same Web entity or related entities at the same time� or over writing each others�
changes when transaction properties disallow it� the system must again intercept all Web accesses�

Finally� any collaboration environment must support tools� including both commercial o��the�shelf �COTS�
tools with no notion of hypermedia and emerging Web�aware tools �e�g�� HTML editors and emailers�� If
Web�aware tools can be invoked directly from the operating system� the subweb implementation should
still guarantee that the tool will receive the appropriate view� e�g�� the subweb�s local copy if the web
object is of type Copy� as opposed to the original entity from its home website� Otherwise� tools can easily
�and unintentionally� subvert groupspace services� If a non�Web tool is invoked outside the groupspace
interface� say directly on the underlying �le system� it is generally impossible to impose groupspace services
or subweb discipline except through access control� Other requirements for a general distributed tool service
are discussed in Section ��

� ARCHITECTURE

��� Subweb Discipline

Figure � illustrates our subweb architecture� The key component is the subweb proxy� through which all
Web tra�c is funneled� as for any HTTP proxy� Two distinct subwebs are shown� The subweb on the
right contains six web objects� whose URL attributes point to Web pages or images located one at website
A� two at website B� one at website C� and two at the subweb�s own websites� Subweb users are depicted
as WWW browsers� The browsers are con�gured to transmit all their tra�c through the subweb�s proxy
server� These may be daisy�chained with other proxy servers before and after the subweb proxy� performing
other functions� as in OreO�s stream transducers ����� The same subweb could be accessed through multiple
subweb proxies� The browsers� proxy server�s�� subweb server� subweb website�s� and any other relevant
websites may reside on di�erent machines dispersed across the Internet or an intranet� Normally� there would
be a much larger number of objects in a populated subweb� perhaps thousands or more� and more users per
subweb� both numbers depending on the application�

When one of these browsers sends an HTTP GET request for a URL� the subweb proxy asks its subweb
server if that URL corresponds to any web object contained in that subweb� If not� the subweb proxy
behaves like a conventional HTTP proxy and contacts the website server indicated in the URL to retrieve
the entity� which is sent to the browser in the normal fashion� In our realization� described in Section �� the
proxy server also sends along a second HTML frame with its groupspace logo and some menu items that
may be relevant to non�subweb documents� e�g�� a command to add the current document to the subweb
�and determine its canonical URL� since it might have been referenced relative to some other document��
Note other user interface models are possible� The proxy server and subweb lookup add a small overhead to
each non�subweb access� negligible compared to network delay� on the same order of �� milliseconds as for a
caching proxy such as Harvest �����

If the requested URL matches a web object� then subweb discipline is imposed� meaning the proxy diverts
the request to the subweb server� The subweb server is then responsible for providing the contents of the
requested URL to the proxy and hence to the browser� The mechanics of subweb server retrieval depends
on the access type� the subweb server contacts the originating website with an HTTP conditional GET for
a Reference or Updatable web object
 and updates its local cache in the content attribute� but supplies
its private copy for Copy
 also from the content attribute� The proxy server tacks on additional materials
�groupspace icon� etc� as above� only for those browsers listed in the proxy server�s con�guration �le� to be

�

 Subweb
 Server

 subweb
 website

 Groupspace
 services

 external
 website

 external
 website

 external
 website

 Internet

N
NS

 Subweb
 Proxy

 WWW
browsers

 OODB internal
 website

Figure �� Subweb Architecture

��

Browser sends �GET
URL�� to proxy server	

Proxy server sends �GET
QueryAttr

URL��

to subweb server	

If the subweb contains the
URL�

Then the subweb server sends �HTTP
�	� ���

OK�nContent�type� text
html�n�n

content�� to proxy server	

Proxy server sends the same thing on

to browser	

Else if not

Then the subweb server sends �HTTP
�	� ���

Not Found� to proxy server	

Proxy server performs standard �GET
URL��	

End if

Figure �� Subweb Proxy Server Protocol

matched against the standard HTTP User�Agent �eld� the point is to support arbitrary Web�aware tools�
which would not be listed unless they are capable of handling add�ons in a reasonable fashion� to operate
within the subweb discipline� Ignoring our GUI�s use of frames� which adds an HTTP Redirect exchange�
the basic protocol is shown in Figure ��

HTTP PUT works similarly� If the associated URL is not resident in the subweb server� the proxy attempts
to PUT directly to the appropriate website server� That server may of course refuse the PUT� if the end�user�
or the subweb server acting on his�her behalf� is not properly authorized� in which case an error message is
returned to the browser� If the URL is in the subweb� then the PUT and corresponding content is sent to
the subweb server� If the web object is of Reference access type� the PUT is rejected� since by de�nition the
subweb treats the underlying Web entity as read�only� If the web object is Updatable� then the PUT is sent
to the website server� if the PUT succeeds� then the local cache� i�e�� the web object�s content attribute� is
also updated� Finally� if the web object is of type Copy� then only the local content is changed and there is
no interaction with the website associated with the URL�

��� Imposition of Groupspace Services

At the subweb server� as an extension of subweb discipline� the retrieval �or update� is sandwiched between
applicable groupspace services� For example� process and concurrency control constraints might be applied
�rst to determine whether or not the read �or write� operation can succeed at this time and by this user in the
current context� The operation might be rejected if the user does not have proper authorization with respect
to the given web object� if the process prerequisites have not been satis�ed �and cannot be automatically
satis�ed through process automation�� or if there is a concurrency control con	ict with another user who is
concurrently accessing the same web object as part of a transaction�

In the case of HTTP GET� the subweb server performs process�speci�c operations indicating the consequences
of the read immediately after sending the document to the subweb proxy �and hence to the user�s browser��
This may trigger process automation to ful�ll the implications� Note this is di�erent from the usual process
enactment model� where the e�ects are asserted only after the entire task has been completed� It is impossible
to determine in the Web browser case when the user is �done
 with his�her reading� Although another icon
could be added to the document display� which the user would click to indicate completion� this cannot be

��

taken as proof that the user will not return to reading the document later on without notifying the subweb
server since the document could be stored in the browser�s own cache and access via the �back
 button�
There is a similar issue regarding concurrency control� since arbitrary browsers do not signal when reading
is �done
�

A related problem arises with HTTP PUT� because by de�nition the write task has been completed at the
time of the PUT operation� If the PUT is denied for process or concurrency control reasons� the user�s e�orts
may not have been totally wasted� generally the modi�ed content is still available in the user�s browser�editor
and the PUT can be retried later� Of course� the PUT can be denied at the underlying website server because
the end�user does not have proper authorization� independent of subweb discipline or groupspace services�
The general problem of client�server transactions� and proposed solutions appropriate to process�work	ow�
is the main focus of other work� e�g�� see ����� and not addressed further here�

The architecture and realization of our tool service are independent of �although complementary to� sub�
webs�groupspaces and their implementation in OzWeb� and are presented later in Section ��

� OZWEB REALIZATION

��� Oz Background

OzWeb reuses the process modeling language and enactment engine� the transaction manager� and the
object�oriented database management system developed for the Oz process�centered environment ��� ����
Oz provides a rule�based process notation in which a rule generally corresponds to a work	ow step� Each
rule speci�es the step�s name as it would appear in a user menu or agenda� typed parameters and bindings
of local variables from the project objectbase� a condition to be satis�ed before initiating the step�s activity�
the tool invocation script and arguments for the activity� and a set of e�ects� one of which asserts the
actual results of completing the activity� The return value of the tool script selects the appropriate e�ect�
Built�in operations like add� delete� etc� are modeled as standard rules� and can be overloaded based on the
parameter type� e�g�� to introduce type�speci�c conditions and e�ects on those operations� built�in operations
can also be used in the e�ects of arbitrary rules�

Oz enforces that rule conditions are satis�ed� and automates the process via forward and backward chaining�
When a user requests to perform a step whose condition is not currently satis�ed� the process engine backward
chains to execute other rules whose e�ect may satisfy the condition� if all possibilities are exhausted� the user
is informed that the chosen step cannot be enacted at this time� When a rule completes� its asserted e�ect
may trigger automatic enactment of other rules whose condition has become satis�ed� Users usually control
the process by selecting rules representing entry points into composite tasks consisting of one main rule and
a small number of auxiliary rules �reached via chaining�� but it is possible to de�ne complete work	ows in
either goal�driven �backward chaining� or event�driven �forward chaining� fashion�

Oz employs a client�server architecture� Clients provide one of several user interfaces �XView� Motif and
tty� and invoke tool scripts� which in turn fork and manage external tools as described in ���� ���� Servers
context�switch among multiple clients� and include the process engine� transaction manager� and database�
An Oz environment usually consists of several servers� each with its own data schema� objectbase� process
model and tool scripts� Clients are always connected to one �local
 server� and may also open and close
connections to �remote
 servers in the same con�guration� Servers communicate among themselves to
establish and operate alliances supporting process interoperability and limited data and task sharing across
processes�

��

��� OzWeb Implementation

OzWeb extends the Oz server to operate as a subweb server
 and also as a general�purpose HTTP
server �ftp� gopher� etc� protocols are not supported�� The subweb proxy is a client of the OzWeb server�
communicatingwith it via HTTP� Native Oz clients continue to work with the OzWeb server� and are useful
for debugging� The user browsers� proxy server�s�� subweb server� subweb website�s� and any other websites
represented in a subweb may all reside on di�erent machines dispersed across the Internet� but could also
reside on the same host� OzWeb subweb and proxy servers run on Solaris ����� Of course� browser clients
of the subweb proxy run on any platform where WWW browsers are supported�

When the proxy asks the subweb server whether or not a given URL is represented in the subweb� an
objectbase query is formulated to search for an instance of WebObj� or one of its subclasses� with that URL�
Although �built in
 to the subweb server� the WebObj implementation is formulated as a separate layer from
the OODB� so that another database system could potentially be substituted� �We are working on other such
layers for CORBA objects ����� Chimera objects ���� etc�� to apply subweb discipline� groupspace services
and� eventually� alliances to backend servers other than website servers and the native Oz objectbase� we
also plan to add frontend access protocols for CORBA clients� Chimera clients� etc��

Oz�s process engine was extended with read and write operations that can be overloaded by process�speci�c
rules� thus adding prerequisites and consequences to these primitive tasks� The subweb mechanism trans�
parently supplies or modi�es the requested �le attribute for all objectbase objects� In the case of a web
object and its content attribute� the retrieval or update proceeds as in Section ���� only the objectbase�s �le
attribute is a�ected in the case of native Oz objects or other �le attributes of web objects� read and write

could alternatively have been implemented purely as process�speci�c rules� rather than built�in operations�
but this approach permits us to use them in the e�ects of arbitrary rules and is more e�cient� Oz already
provided built�in link and unlink operations that can similarly be overloaded as well as used in rule e�ects�
There is no distinction between how link and unlink are applied to web objects compared to native Oz

objects� in particular� the external links are represented in the subweb objectbase and do not in any way
a�ect any HTML links embedded in WWW entity content�

The distinction between WebObj instances and native Oz objects is completely transparent to the process
engine� transaction manager and underlying OODB� The process engine was modi�ed only to support prim�
itive read and write operations on all types of objects� No changes were made in either the transaction
manager or OODB� which leads to a �loophole
 in both concurrency control and failure recovery� locks
to enforce serializability� and undo logs used to guarantee failure atomicity� apply only to the web object
representation inside the subweb server�s objectbase� There is nothing preventing other users� not employing
the subweb�s proxy� to arbitrarily access and modify a website directory hierarchy directly if permitted by
that �le system�s protection mechanism� This issue is addressed further in Section ��

The standard Oz commands were augmented to include a search command� When applied to the contents
attribute of a web object� an implicit read operation is performed �perhaps updating the local cache in the
case of Reference and Updatable types�� If the underlying WWW entity consists of HTML or other ascii
text� an internal index is updated using the Glimpse utility ����� Then the actual search is performed on the
appropriate subset of the index corresponding to those web objects of interest� that is� more than one web
object can be speci�ed as arguments to the same search� The same search mechanism also applies to the
text �le attributes of all Oz objects�

When a registered browser is sent any WWW entity �whether in the subweb or not� by the proxy server� an
additional HTML frame is sent to display �at the top of the browser window� an OzWeb panel with an icon
to select the OzWeb control screen� When web object content or any object�s �le attribute is read from
a subweb� the subweb server also sends to the proxy server this icon� plus the values of primitive attributes
de�ned by the object�s class and its superclasses� HTML links corresponding to each �le� composite and
reference attribute �multiple links for set values�� and additional subweb�speci�c materials� e�g�� there might
be a �message of the day
 to all subweb users plus user�speci�c notices�

��

Selection of the control screen icon brings up another browser window giving the full Action Menu and an
objectbase display formatted in HTML� The objectbase is represented as a two�column table with a list
of the names of objects at the �current
 level on the left hand side and the names of the children of the
currently selected object on the right hand side� all represented as HTML links� Selecting a child moves it
�and its siblings� to the left� with the selected child now the �current
 object� and shows its own children
on the right� there is also a link for moving up in the objectbase composition hierarchy� The values of
primitive attributes and links representing �le� composite and reference attribute of the �current
 object
are shown below this table� Selecting any link in the Action Menu brings up browser windows for entering
arguments to the corresponding command� When an argument may be an object� a browsing table similar
to the objectbase display is shown� textual entry �e�g�� for search patterns� is also supported� Several sample
screenshots are shown in Section ����

The objectbase display and browsing tables contain URLs referring to the OzWeb subweb server rather
than some conventional website� For example� the current position in the objectbase is encoded in the URL
transmitted to the browser in the form �http�

��
website�
ObjectView
OID�� So the URL that the
browser sees may not be the same as the entity�s home URL� i�e�� the URL �eld of the web object with
the given OID �Object IDenti�er�� Selecting an HTML link from an objectbase table thus works slightly
di�erently than for access through standard WWW browser windows� the OzWeb server transforms the
URL and uses HTTP Redirect to force the browser to re�request the entity from its proper location� subweb
lookup is not needed� since objectbase links always refer to subweb materials�

� TOOL SERVICE

��� Requirements

We identify a number of requirements for a distributed tool server system�

� Run tools on multiple platforms
Users should be able to request tools that run on a range of machine architectures and operating
systems� Users should not have to remember� for example� that the Cray software is in Chicago and
the associated network commands to access it� They should be able to ask any one of a set of �well
known
 tool servers for the tool� and each tool server should be responsible for knowing either the
details on how to start the tool itself� or to which of its peer tool servers to forward the request�

Although it may seem that an organization might need a large number of tool servers running� say if
there is one per host where tools reside� each uses relatively few system resources compared to many
users logging into the system in order to run tools� In addition� if resources are scarce and the tool
server is needed infrequently� it could be started automatically upon a user request by a lightweight
system daemon that starts up when a user tries to connect to its TCP request port�

� No local tools required on client hosts
It should be possible to request all tools from the tool server� The tool server may be able to exploit
locally available applications �i�e�� software installed on the user�s computer�� but it must be able to
make remote tools available via display redirection facilities like those of X Windows� This minimizes
user and system administrator burden� since it is then unnecessary for popular packages to be installed
on every computer�

� Run tools on the user�s own UNIX workstation� PC� or Macintosh when possible

A tool server should be able to decide that a given tool can and should be run locally on the client
user�s machine� This is intended as an optimization� since it�s often more e�cient �in terms of network
bandwidth� to run a tool locally than to run a tool remotely and redirect its GUI using a remote
display facility like X Windows� However� in the case of data�intensive tools� it might be preferable to
run the tool on the same host where that data resides �which might be a shared �le server rather than
the user�s machine��

��

� Wrap tools and sequences of tools
It should be possible to �wrap
 sequences of tools and have the wrapper appear to the user as a single
activity that they are able to request from the tool server� This is useful for tools whose input and�or
output must be converted between �le formats� Wrappers can also handle startup con�gurations�
including moving all relevant data �les to a temporary directory� setting environment variables� etc�

� Easy to use
Users should be able to connect to a tool server to receive a list of available tools or activities� without
the creation of a heavyweight user interface that would need to be ported to all computing platforms
in use and learned by all users�

� Easy integration with existing systems
A tool service should be easy to integrate with existing systems that might bene�t from a tool launching
facility� such as CAD�CAM� software development environments� and work	ow or medical care plan
automation systems in addition to simple menu�based systems that present a list of potential tasks to
the user� This requires the tool server to provide an Application Programming Interface �API� of some
sort for program�to�program requests and responses without user intervention�

��� Component Architecture

We have devised an architecture that combines a collection of cooperating tool servers running on a variety
of �server
 computers with a �personal tool services
 component that runs on each user�s own machine� We
use the phrase tool server to denote a remote tool server running on a server computer� and the phrase
personal tool server �or PTS� to refer to a tool server that runs tools on a user�s behalf directly on his�her
local UNIX workstation� PC or Macintosh�

The tool server is modeled as an HTTP server� and uses HTTP as the communication method not only
between itself and clients� but also between peer tool servers� HTTP �as opposed to� say� RPC or CORBA�
was selected because it is a simple TCP�IP�based request�response protocol� making it easy to �graft

onto existing systems �possibly using toolkits like libWWW ���� from the World Wide Web Consortium
or ASHeS ����� the Application Speci�c HTTP Services toolkit from our research group�� The HTTP
speci�cation provides methods for a client to request a document �HTTP GET� and send data �HTTP
PUT� to a server� In our architecture� the URL is treated as a request for a tool�

Users connect to tool servers via standard Web browsers� When a tool execution is desired� the user� or an
existing system that needs to run a tool on a user�s behalf� simply requests an appropriate URL from a tool
server� Rather than returning a document� as would a standard website server� the tool server invokes the
tool �or a tool wrapper�� perhaps by employing a peer tool server or personal tool server� Any return code
or output from a terminating tool is sent to the user�s Web browser�

When a tool server starts up �e�g�� during system boot of a server machine�� it contacts other tool servers
to exchange information� These peers may be speci�ed in a con�guration �le or may be inquired from a
directory service� By storing information on what tools each known remote tool server is capable of running�
it is possible for tool servers to handle requests for tools it may not be able to run directly� When a request
for tool execution arrives from a client� the tool server can simply relay the request to a peer tool server that
knows how to perform the execution� Figure � depicts a user requesting a tool from a given tool server� where
that tool server then forwards the request to a peer� Note this makes possible a �clearinghouse
 approach
to tool management� In this scheme� most tool servers are set up to know how to run a speci�c class of tools
on a particular architecture� host� etc� In addition� one or more �clearinghouse
 servers are con�gured to
contact the other servers and retrieve their tool de�nitions� Users can then connect to a clearinghouse server
to request tools that actually reside on any one of the other servers�

Implementing tool servers as WWW servers makes it easy to run tools directly on the user�s local machine�
We employ the Web�s standard mechanism for capability augmentation� a new Multipurpose Internet Mail
Extensions �MIME ����� type and corresponding MIME helper application� Every response from an HTTP

��

Tool
Server

Tool
Server

N

Application

HTTP
Request

HTTP Request

Figure �� Peer Tool Servers

HTTP
�	� ��� OK

Date� Fri� �� Oct ���� �������� GMT

Server� Apache
�	�	�

Content�type� text
html

Content�length� ����

Last�modified� Wed� �� Aug ���� �������� GMT

more data			�

Figure �� Response headers from an HTTP transaction

server is tagged with a MIME type tag� Figure � shows an example response and its associated MIME type
�eld� Every Web browser can be con�gured to start what is known as aHelper Application �or app� when
it receives data with a certain MIME type� If received data is destined for a helper app� the browser simply
saves that data to a temporary �le and starts the helper app� giving it the temporary �le name as input�

For example� suppose a tool server receives a request from a PC user who wishes to run Microsoft Excel

 which happens to be installed locally on that user�s computer� The user�s system administrator has
con�gured her browser so that receipt of data with the MIME type �application�x�toolserv
 causes a MIME
helper application to be started on the computer� This helper app is the Personal Tool Server� which is
responsible for actually starting the tool� as illustrated in Figure �� The data from the HTTP server tells the
PTS which local application is being requested and the pathname to the executable program� The pathname
may point to either the application itself or a wrapper� When the user terminates the tool� the PTS closes
down and exits�

��

Application

Tool
Server

N

HTTP
Request

Personal
 Tool
 Server

Figure �� Personal Tool Server

��

��� Activities and Scenarios

For some classes of tools� there may be multiple individual tools �e�g�� running on di�erent platforms or
hosts� which can accomplish the same task� Imagine Jane� an employee of XYZ Industries� wishes to edit a
C source code �le� If Jane uses a UNIX workstation� it may be appropriate for the tool server to run the
Emacs text editor� If she happens to sit in front of a PC� it may be better to start a Windows tool� In both
cases� Jane will accomplish the same task� editing a source �le� The user requesting the tool may leave it
up to the tool server to determine which tool is more appropriate in a given situation�

Our tool server models Activities and Scenarios to address such situations� Jane�s Activity might be
called �Edit
� The possible Scenarios for Edit might be Emacs on Sparc�Solaris and WinEdit on Windows
��� When users request tools from the tool server �see below�� they can specify a particular scenario name
if they need to run a speci�c tool from the available choices� otherwise only the activity is speci�ed�

The tool request sent by the client is a standard HTTP GET for a URL of the following form�
GET �Activity Name�Scenario Name�Arch�Host�Parameter ������Parameter N

� Activity Name is the only required parameter� It tells the tool server which Activity the user is
requesting�

� Scenario Name chooses a particular Scenario�
�
 indicates no preference�

� Arch allows the user to specify that this Activity must run on a particular computer platform� encoding
both architecture and operating system �for instance� �Sparc�Solaris
 or �Intel�Solaris
�� This can be
used to di�erentiate among Activities that use the same parameters as input but generate di�erent
side�e�ects when executed� For example� a �Compile
 activity may have two possibilities de�ned� one
for the HP�UX operating system and another for Solaris� One source code �le may be used to generate
object code on either platform� which the Arch parameter allows to be chosen� Again�
�
 may be
speci�ed for tools where the platform does not matter�

� Host requests that a particular Activity be run on a speci�c host� overriding the tool server�s choice
of which host would be the best place to run the selected tool�
�
 refers to this default�

� After the Host parameter� any other portions of the URL are considered parameters to be passed on
the command line when starting the tool �or wrapper��

��� Rivendell Realization

Our preliminary implementation of a distributed tool server component is known as Rivendell and follows
the architecture outlined above� running on Solaris ����� Linux ���� and Windows NT� Rivendell acts as a
standard HTTP ��� server� receiving GET requests of the form speci�ed above to launch tools� Rivendell is
currently started during system boot� although it would be possible to employ a daemon to start Rivendell
only when a user request is received�

During startup� a Rivendell tool server attempts to read its con�guration �les� which specify the Activities
and Scenarios it knows how to run� as well as the peer tool servers it should contact� and then contacts
those peer tool servers
 running on other machines on a LAN� across a corporate WAN �or intranet�� or
even across the Internet� When a peer tool server is contacted� Rivendell attempts to download the list of
activities and scenarios known by the foreign server� Once this has been accomplished� Rivendell performs
an HTTP PUT to upload into the foreign server the list of activities and scenarios it has been con�gured
to handle� Figure � shows an example Rivendell con�guration �le� The format strongly resembles the tool
base information from MTP ����� a previous tool management e�ort in our lab� which allowed for �among
other things� specifying particular hosts where tools had to run� MTP focused on shared groupware tools�
one of the extensions we hope to make to Rivendell during our future work�

��

Peer: "pearl.psl.cs.columbia.edu:7777";
Peer: "marginal.psl.cs.columbia.edu:7777";

PTS_MIME: "application/x−toolserv";

Tool Editor
[Name : "Emacs";
 Arch : "Sparc/Solaris";
 Host : "*";
 Exec : "/usr/local/gnu/bin/emacs";
 Graphical : T;
];
[Name : "WinEdit";
 Arch : "Intel/Windows";
 Host : "*";
 Exec : "\edit\winedit.exe";
 Graphical : T;
];

Tool Compiler
[Name : "GCC";
 Arch : "Sparc/Solaris";
 Host : "*";
 Exec : "/usr/local/gnu/bin/gcc";
 Graphical : F;
];
[Name : "SparcWorks";
 Arch : "Sparc/Solaris";
 Host : "pearl.psl.cs.columbia.edu";
 Exec : "/opt/SUNWspro/bin/cc";
 Graphical : T;
];

Figure �� Sample Rivendell Con�guration

� The �rst portion of the con�guration �le� the Peer� lines� tell this particular Rivendell instance
how to locate its peer tool servers� These tool servers will be contacted� and con�guration infor�
mation shared with them� at startup time� This Rivendell instance has two peers� running on
�pearl�psl�cs�columbia�edu
 and �marginal�psl�cs�columbia�edu
� both on TCP port �����

� The PTS MIME� line tells Rivendell what MIME type to send to the user�s Web browser in order to
tell the browser to start the PTS for local tool execution� The browser must have been con�gured
beforehand to start the PTS upon receipt of this MIME type� This con�guration is often handled for
users by an organization�s system administrators�

� Following the MIME type de�nition are the de�nitions for the Activities and Scenarios known to this
particular Rivendell instance� Two Activities are de�ned� �Editor
 and �Compiler
� each of which
has two scenarios� The Editor Activity de�nes a Scenario called �Emacs
 on Sparc�Solaris� as well as
one called �WinEdit
 on Intel�Windows�

� The actual pathname to the executable tool� or wrapper� is given in the Exec parameter in each
Scenario�

� The Graphical parameter tells Rivendell if the tool has a GUI or is a batch tool�

After the con�guration �le has been read� Rivendell contacts each of its peer tool servers� issuing the
following HTTP GET request�
GET �Rivendell ACTIVITIES

The remote tool server is expected to respond with its Activities and Scenarios� The following example
illustrates this format� which is the same format as the Activity de�nitions from the con�guration �le read
at startup�

Tool Project

� Name � �MS Project��

Arch � �Intel�Windows��

Host � �	��

Exec � �
msoffice
project
project�exe��

��

Graphical � T�

��

This response indicates that the contacted tool server de�nes one local Activity� called �Project
� Rivendell
stores this information� and if a client requests the Project Activity� that request will be forwarded to this
Peer Tool Server� Once Rivendell has downloaded the Activity and Scenario information from the remote
server� it performs an HTTP PUT of the following form�
PUT �Rivendell ACTIVITIES �local activity information�

Rivendell thus sends the Activity de�nitions from its con�guration �le to the remote peer� It contacts each
peer tool server in this fashion� transferring information� Once this has been completed� Rivendell is ready
to receive user requests�

A user�s tool request is an HTTP GET where the URL speci�es the Activity the user wishes to run� Again
using an example from XYZ Industries� imagine that Bob needs to run the Emacs text editor� Bob�s tool
server de�nes an activity called �Editor
� which includes an �Emacs
 scenario� The closest tool server to
Bob� who is in New York� is running on TCP port ���� on a machine called �nyserv�xyz�com
� In this case�
Bob points his Netscape browser at the following URL�
http���nyserv�xyz�com������Editor�Emacs�	�	�

When the nyserv tool server receives Bob�s request� it �rst checks that there is an Activity named Editor
and a Scenario named Emacs de�ned� The Activity can be one from nyserv�s own con�guration �le� or one
informed by a peer tool server� Once nyserv has determined that the request is valid� it checks whether
Bob�s UNIX workstation is able to run Emacs �via a personal tool server�� The tool server on nyserv has no
special knowledge of Bob�s machine� Since the Editor Activity is locally de�ned �i�e�� it was not downloaded
from a foreign tool server�� nyserv moves on to the architecture and hostname requirements� which can be
set in an Activity de�nition� Since these are both
�
� this Activity is free of restrictions� Thus� nyserv
deems itself the best place to run Emacs for Bob� and does so� X�� display redirection is used to move the
Emacs display to Bob�s workstation� i�e�� the DISPLAY environment variable is set to Bob�s workstation
before the tool is invoked�

If the Editor Activity from this example had been from a remote peer tool server� nyserv would have
forwarded the request to that remote tool server� Bob would not need to know that his request had been
forwarded� it would be the responsibility of the tool server on nyserv to do this transparently�

In addition to X�� Windows� Rivendell also interoperates with the WinDD software from Tektronix �����
WinDD allows a user at a UNIX workstation to remotely execute tools on aWindows NT Server machine with
the GUI display redirected to the user�s machine� WinDD employs special software� running on the UNIX
workstation� to contact the Windows NT server� When Rivendell runs a tool whose Arch con�guration
parameter is set to Intel�Windows� a WinDD client is started for the user� and WinDD is then instructed
to execute the required tool� Figure � is a screen shot of WinDD running an application on a Windows NT
server and displaying on a UNIX workstation� Similar software� notably NTrigue from Insignia Solutions ����
and WinFrame from Citrix ���� accomplishes the same function as WinDD and could be integrated as well�

��� Integration with OzWeb

Introduction of Rivendell as a new groupspace service within the OzWeb hypermedia collaboration envi�
ronment framework described in Section � required small changes in the OzWeb server� In particular� we
modi�ed OzWeb to pass on all tool invocations to its a�liated Rivendell tool server� speci�ed as part of
the OzWeb instance�s con�guration� This was done by having OzWeb issue an HTTP GET to Rivendell
each time tool execution was needed �e�g�� for a work	ow step�� The connection to the Rivendell server
is transparent to the OzWeb user
 the tool is simply brought up on the user�s behalf� In the case of a
tool executed by a personal tool server� the only user intervention necessary is the one�time con�guration of
their Web browser to run the PTS upon receipt of the relevant MIME type� if this is done beforehand by a
system administrator� no user intervention is required�

��

Figure �� Using WinDD

��

� EVALUATION

The implementation presented here is OzWeb ����� which combines an earlier OzWeb ��� and Rivendell�
The most signi�cant limitation of OzWeb ���� is we ignore any version and con�guration management
facilities that may be present in the underlying websites from which subweb materials are obtained ����� A
process designer may explicitly include version control of web objects in the process� as was often done in
Oz instances� but this a�ects the web object content for only the Copy access type� We are working on
an extension to OzWeb�s transaction management facilities� as described in ����� to take advantage of any
locking� �check out
� versioning� etc� facilities in backend website servers to more fully enforce transactional
properties�

We previously developed another system calledOzWeb �e�ectively version ��� described in ����� It provided a
general�purpose Web�based GUI to the unmodi�edOz � analogous to the Web interfaces to some commercial
work	ow systems� e�g�� Action Work	ow Metro ��� or Lotus Notes Domino ���� �we separately developed
a special�purpose Web�based GUI for a proof�of�concept Oz environment instance supporting medical care
plans ������ The original architecture involved an HTTP proxy server and would work with any HTTP
browser� but that is where the similarity ends� There was no hypermedia� none of the entities were in HTML
format or included embedded links� There were no subwebs� and thus no ability to incorporate external
materials fromWWW or elsewhere� all documents resided in the Oz�s native objectbase� The browser had to
explicitly request Oz functionality via a URL of the form �http���oz�command�argument��argument�����
�
if the �oz
 site was not included in the URL� nothing happened beyond the usual retrieval of the page
from its website server� This is an important distinction� our subweb proxy supports automatic application
of full groupspace services �process� transactions� tool invocation� etc�� to every URL represented in the
corresponding subweb� whether explicitly requested or selected via link selection� whose actual Web page
may reside anywhere on the Internet or intranet�

The functionality �beyond Oz itself� was implemented for version � in a heavyweight proxy server constructed
by modifying an Oz tty client� It used HTTP to communicate with Web browsers� but directly used the
peculiar Oz client�server protocol to communicate with the Oz server� In contrast� the main functionality
in ���� resides in the OzWeb subweb server� which communicates with its proxy using HTTP� The OzWeb

server was implemented by extensive modi�cations to the old Oz server� The ���� proxy alone is very
lightweight� the main thing it does di�erently from a standard HTTP proxy �e�g�� used for caching� is to
query the OzWeb server to see whether or not the requested URL is in the subweb and �optionally� add on
presentation of subweb object attributes� otherwise it just does everything the browsers and OzWeb server
tell it to do via standard HTTP�

We also developed the experimental subweb server described in ����� We used a rather convoluted implemen�
tation involving direct requests for invocation of CGI scripts� rather than a proxy� It was thus impossible
to intercept all Web accesses as in our current system� No groupspace services were supported� this was
purely an organizational facility� We explored �view objects
� to describe application�speci�c reformatting
of HTML materials� not yet implemented in OzWeb�

There are several limitations ofOzWeb ���� regarding our goals for subwebs and groupspaces� For example�
each subweb proxy is currently hardwired to a particular subweb� For an end�user to move to a di�erent
groupspace� he�she must designate a di�erent proxy in his�her Web browser con�guration� It is not possible
for an end�user to be operating in multiple groupspaces at the same time from the same browser� This limi�
tation is easy to remove by connecting each subweb proxy to a directory service� e�g�� using the Lightweight
Directory Access Protocol �LDAP �����
 an industry standard that allows for simple queries to be made
to X���� compliant directory servers� through which it can interact with any number of registered subwebs�
We have not changed the implementation� however� because of a conceptual complication regarding what
should be done when a browser accesses a URL represented in two or more subwebs� This is part of our
in�progress research on extending Oz alliances to OzWeb� to support interoperability among groupspaces
with di�erent process models� data schemas� etc�� see Section ��

In OzWeb ���� all tools were invoked via scripts forked by the subweb proxy� A tool�s GUI was redirected to

��

Figure ��� Linking QA Report and Code

the end�user�s screen via X Windows capabilities� so hosts not running X Windows were limited to command
line tools with no interactive user prompts� this has been alleviated somewhat by the extension to WinDD
with personal tool servers running on Windows NT� Scripts and thus tools in OzWeb ��� were always
run using the operating system userid under which the subweb proxy was invoked� say �oz
� introducing a
potential security concern� In the OzWeb ���� integration with Rivendell� tool servers continue to launch
tools under a common userid like �oz
� but personal tool servers always execute tools under the relevant
user�s own userid� The shared�userid problem could be solved by installing tool servers with �root
 privileges�
in which case they could fork child operating system processes under any local userid� but then each remote
end�user would be required to have a userid on the host where the relevant tool server runs� Note there
may be con	icts between userids from di�erent administrative domains� e�g�� multiple users of the same
groupspace with userid �yang
�

��� Revisit Motivating Scenario �

We have developed a demonstration OzWeb environment supporting our �rst motivating scenario� Users
edit� compile� test� etc� C code for the evolving OODB system and query processor� stored in the subweb
along with other project materials� GUI�oriented activities like editing are performed on each user�s own
workstation� whereas CPU�intensive work such as compilation and system build are performed by tools on
a shared server machine� Source code is automatically converted to cross�referenced hypertext �i�e�� uses of

��

Figure ��� Cross�Linked Code and Tool

��

Figure ��� Subweb�speci�c Search

identi�ers are linked to their de�nitions� via process automation that invokes a home�grown utility called
Hi�C� Email archives were converted to HTML using Hypermail ����� and the subweb is populated with the
code� design� testing and informal materials described previously� which are divided among three Columbia
websites �two public� representing the course materials �as is
 developed independently of this research� and
one internal for the subweb��

To give a 	avor regarding how this hypercode environment might be used� we go through two small process
fragments� A user� say Laura� a member of the �lobster
 group from our �rst motivating scenario� views some
test reports regarding the baseline code through a standard Web browser� Then she requests the OzWeb

GUI and adds an external link between one test report and a code �le that she believes likely to contain the
bug� as depicted in Figure ��� Note Laura is not the author of this test report� which was written by another
student group in the spring ���� class� so she cannot edit it to directly embed a hyperlink� A link operation
in the rule e�ect �task consequences� automatically adds a reverse link�A link operation in the overloaded
rule e�ect automatically adds a reverse link�

Now in Figure ��� Laura takes a look at the hypertext source code in her browser� and selects the edit

task link from the Action Menu� In this process segment� a regular ascii editor tool is invoked instead of
an HTML editor �and the HTML is generated�� but an alternative process could support a Web editor and
strip o� the HTML tags before presenting to the C compiler and other COTS C tools� The editor �emacs� is
invoked by the subweb proxy and displays on Laura�s workstation� The edit rule indicates to use the plain
source code as the tool script argument� not the hypertext version� After the edit task completes� Hi�C
incrementally updates the cross�references�

��

Figure ��� Adding to a Subweb

��

Meanwhile� say another lobster student Hugh searches through informal �proprietary
 documents like email�
newsgroup archives� lecture notes� etc� As shown in Figure ��� he uses OzWeb search to �nd subweb docu�
ments containing the string ��Darkover�GetNameByOID��� because he is working on this function �Darkover
is the name of the relevant OODB�� Then Hugh decides to search the full WWW� not just the subweb� using
a standard search engine� He �nds a �public
 page he deems relevant� and adds it to the subweb as depicted
in Figure ���

� RELATED WORK

ComMentor ���� annotation servers are similar to our subweb servers� adding external application�speci�c
super�structures on top of pre�existing hypermedia� but without the active capabilities of groupspace ser�
vices� Annotation servers are realized via modi�ed WWW browsers or �plug�ins
 to standard browsers�
WebMake ���� supports hierarchical structuring of Web �les� checkout for editing� and invocation of �le�
based tools like make� A special Web client hides details from users� otherwise WebMake uses standard
facilities� CGI and MIME types� Data may be temporarily transmitted to another locale for tool execution
�e�g�� to compile for a particular architecture� using XMosaic remote control� but the entirety of a struc�
tured document normally resides at the same website� There are no transactions operating across separate
accesses� and no process� WAIBA ���� produced a suite of utilities useful to collaborative endeavors� such
as shared annotations� search engines that �nd what�s changed in categories of interest� what�s changed
in recently viewed pages� what�s out there that�s �similar
 to what the user is currently viewing� displays
link composition to a given depth� displays browsing history graphically� etc� over public and private web�
sites� Meteor ���� is a transactional work	ow engine that submits work	ow tasks to the Web �and backend
databases� using CGI� but does not support work	ow over Web �i�e�� URL� accesses�

Databases often support access from the Web to a database� but not vice versa �e�g�� the O� Web Gate�
way ������ A few databases have been constructed on top of hypermedia� akin to our subwebs� although none
are close enough to warrant attempted reuse� Most have no support for either work	ow or transactions� and
are centralized �the equivalent of a single website�� Some exceptions� Hyperform ���� is a hypertext database
with an extensible object�oriented schema� It allows choice between checkout of individual attributes or
entire objects �dirty reads are allowed�� and conventional transactions over multiple objects� An application
must be implemented by a method of the relevant class in the hyperbase schema to use transactions� but
methods written in Scheme can be added dynamically� DHT ���� overlays hypertext to add on transpar�
ent access and external organization to distributed� heterogeneous� autonomously�maintained repositories�
Repository data is transformed to�from a common structured hypermedia format by a repository�speci�c
gateway� Only navigational access is supported� Update requests are turned down if the object has changed
since last retrieved� but there are no transactions� and no process�

WebCard ���� is one of several systems that supports representation of Web pages in the style of email�news
folders� Lightweight Databases ���� extends HTML to map relational database schemas onto hypertext
documents� to support database�style queries that rely on semantic knowledge of the structure and content
of documents� Relationships among hypertext pages augment the usual links� However� data content must
be modi�ed to include the entity class� attributes� and relationships� Either client or server�side processing
is supported� In contrast� Hyper�G ��� supports hierarchical structuring of aggregate collections of Web
pages� where a collection may be a component of multiple parents and collections can be spread across
websites� Links are represented externally to the hypermedia content� Scaling is supported by replication
and caching �with weak consistency�� Hyper�G uses its own SGML ��� format� but converts to HTML when
serving a WWW client� It provides an interchange format and utilities for importing and exporting external
collections� None of these systems supports process or transactions�

Field ���� uses a message bus to incorporate tools into an integrated software development architecture� This
requires either source code availability �to modify the tool to understand Field messages� or an existing API
through which the capability can be added� There is little support for integrating other types of tools� Sun�s
ToolTalk ���� protocol allows applications from di�ering vendors to share information via a message bus type

��

architecture� ToolTalk could conceivably be employed as another communication option via which users could
request tools from a tool server� Integration with Sun development tools would be made easier� since they
support the integration of third�party software via the ToolTalk protocol� HP�s SoftBench ���� framework� a
tool�integration platform that provides an open� common set of communication and user interface services to
all tools integrated with the SoftBench environment would also be a useful platform with which to integrate
a tool services component� A tool server which connected to SoftBench would make it possible to more easily
add non SoftBench�aware tools to the development system�

Matchmaker ���� is a distributed computing interface speci�cation language which allows a programmer to
de�ne RPC interfaces between remote processes� A multi�targeted compiler then generates C� Pascal� Lisp�
or Ada code which implements the interfaces de�ned� Polylith ���� extends this concept to allow executing
distributed system components to be temporarily shut down and moved among hosts� These and other
related models of tool integration are subsumed by the event�based framework presented in ���� We do not
intend to compete with such work� but will consider how to build on top as part of our future directions on
groupspace tool servers�

Ockerbloom ���� proposes an alternative to MIME types� called Typed Object Model �TOM�� that could
conceivably be employed instead of a MIME extension to incorporate a Personal Tool Server into our ar�
chitecture� Objects types exported from anywhere on the Internet can be registered in �type oracles
�
specialized servers that may communicate among themselves to uncover the de�nitions of types registered
elsewhere� Web browsers that happen upon a type they do not understand can ask one of the type oracles
how to convert it into a known supertype� In this way� the Web browser would not have to be set up to
handle a new MIME type� They could simply query the type oracle� which could return information on how
to run the tools�

� CONTRIBUTIONS AND FUTURE WORK

We have designed a general approach to hypermedia collaboration environments centered on subweb reposito�
ries and groupspace services� investigated many of the technical issues
 particularly distributed tool services

 in depth� developed a feasible architecture and implementation techniques based on WWW technology�
and realized a prototype environment framework and several sample OzWeb environments� including the
�WebCity
 environment we use for our own day�to�day team software development work�

OzWeb reuses Oz�s process engine and transaction manager more�or�less �as is
� the same OODB is used
in the subweb implementation� A new tool service component� Rivendell� replaced Oz�s native tool man�
agement mechanism� In future work we would like to further exploit our recent componentization direction�
where these components have been tugged apart� are in principle replaceable within Oz� and have been
experimentally introduced into foreign systems� such as ProcessWEAVER ����� as described in ���� ���� For
example� a later version ofOzWeb might employ an alternative process engine� or a synergized set of process
engines� e�g�� ���� explains how we integrated Oz�s �and now OzWeb�s� process engine with TeamWare �����

Our subweb architecture seems reasonably general� simple and elegant for adapting existing client�server
process�centered environments into a hypermedia collaboration environment framework� The server for a
process�centered environment would already provide basic groupspace functionality and could be augmented
by the subweb mechanism� as we described for Oz� Native clients would be replaced by Web browsers and
proxy servers� Peer�peer process�centered environments where the peers already share a common repos�
itory ���� may be adaptable to multiple groupspace servers sharing a common subweb server� but that
investigation is outside our scope�

For fully distributed� �shared nothing
 multi�server systems� for example to scale up to collaborative work
among teams� as opposed to among individual members of one team� we plan to expand the �International
Alliance
 metaphor developed for Oz ���� The gist is that groupspaces would register with one or more
LDAP�s to become available to their subweb proxy servers� Groupspaces a�liated with the same LDAP

��

N

S N

 Subweb
 Server

 Groupspace
 services

Subweb
LDAP L

Subweb
LDAP M

 Subweb
 Proxy P

 Subweb
 Proxy Q

 WWW
browsers

Figure ��� Alliances Architecture

��

could optionally form �Treaties
 with one or more other such groupspaces to agree to share selected portions
of their schemas� subwebs� process models and�or tools� and specify how to handle situations where the same
ultimate hypermedia entity is represented by multiple web objects and�or is moved among subwebs� Then
�Summits
 would implement one groupspace performing a process task on behalf of another groupspace�
users and tools from multiple groupspaces collaboratively performing process tasks� movement of users and
data from one groupspace to another� etc� This model is illustrated in Figure ���

For navigation and movement of users� data and tasks among groupspaces� we plan to develop a �meta�web

analogous to multi�user domains �MUDs� e�g�� Lambda MOO ������ where users can move from room to
adjacent room �sometimes through trap�doors� and pick up an object in one room and carry it to another
�but the object may transform from a trunk �lled with gold to a monkey�� Work	ow�based MUDs have
already been investigated in Promo ����� However� in our case the same groupspace may participate in
multiple alliances� each corresponding to a MUD� so exactly what a user can do and what objects he�she can
access may depend on how that user arrived in the groupspace� This does not seem as challenging technically
as from a user interface perspective� so we are working on what we call the �Twilight Zone Fifth Dimension

user model to address the end�user confusion that could naturally occur�

It is tempting to consider how other distributed computing infrastructures� besides WWW�might serve as the
basis for subweb and groupspace implementation� We studied CORBA � as a candidate� but it is currently
lacking the key ingredient� a standard component that supports complete interception and mediation in the
style of HTTP proxy servers� This problem may be ameliorated by the various proposed integrations of
HTTP and CORBA�s Internet Inter�Orb Protocol� which we plan to explore as an alternative standard on
which to base subwebs and groupspaces�

	 ACKNOWLEDGEMENTS

We thank George Heineman� Dick Taylor� Sankar Virdhagriswaran and Alex Wolf for useful technical discus�
sions� Laura Xiaoyu Xu participated in the development of the �rst motivating scenario� OzWeb ���� has
been released in beta form to Brown University and the University of California at Irvine� and is available
for other external use�

E�ort sponsored by the Defense Advanced Research Projects Agency� and Rome Laboratory� Air Force Materiel Command� USAF�

under agreements number F������	
�C���	��F������	��������� by NSF CDA�	
�	��
� and by New York State Science and Technology

Foundation� Center for Advanced Technology � High Performance Computing and Communications in Healthcare� The views and

conclusions contained in this document are those of the authors and should not be interpreted as representing the o�cial policies or

endorsements� either expressed or implied� of the Defense Advanced Research Projects Agency� the Air Force� the U�S� Government�

NSF or NYSSTF�

References

��� Action Work�ow Metro World�Wide�Work�ow� November �		
�
www�actiontech�com�metrotour�resources�Metwp�htm�

��� Kenneth M� Anderson� Richard N� Taylor� and E� James Whitehead� Jr� Chimera
 Hypertext for
heterogeneous software environments� In ���� European Conference on Hypermedia Technology� pages 	������
Edinburgh� Scotland� September �		��

��� Keith Andrews� Frank Kappe� and Hermann Maurer� Serving information to the Web with Hyper�G� In �rd

International World�Wide Web Conference� Darmstadt� Germany� April �		
� Elsevier Science B�V�
www�igd�fhg�de�www�www	
�proceedings�papers���
�hgw��html�

��� Standard for electronic manuscript preparation and markup� �	���

�
� Daniel J� Barrett� Lori A� Clarke� Peri L� Tarr� and Alexander E� Wise� A framework for event�based software
integration� ACM Transactions on Software Engineering and Methodology�
���
�������� October �		��

��

��� Israel Ben�Shaul and Gail E� Kaiser� A Paradigm for Decentralized Process Modeling� Kluwer Academic
Publishers� Boston� �		
�

��� Israel Z� Ben�Shaul and Gail E� Kaiser� An interoperability model for process�centered software engineering
environments and its implementation in Oz� Technical Report CUCS�����	
� Columbia University Department
of Computer Science� December �		
� ftp
��ftp�psl�cs�columbia�edu�pub�psl�CUCS�����	
�ps�Z�

��� T� Berners�Lee and D� Connolly� Hypertext Markup Language � ���� November �		
� Network Working Group
Request For Comments
 ������

�	� T� Berners�Lee� R� Fielding� and H� Frystyk� Hypertext Transfer Protocol � HTTP����� May �		�� Network
Working Group Request For Comments
 �	�
�

���� Gregory Alan Bolcer and Richard N� Taylor� Endeavors
 A process system integration infrastructure� In
Wilhelm Sch�afer� editor� �th International Conference on the Software Process� Software Process �

Improvement and Practice� December �		�� In press�

���� N� Borenstein and N� Freed� MIME �Multipurpose Internet Mail Extensions� part one
 Mechanisms for
specifying and describing the format of Internet message bodies� September �		�� Network Working Group
Request for Comments
 �
���

���� Charles Brooks� Murray S� Mazer� Scott Meeks� and Jim Miller� Application�speci�c proxy servers as HTTP
stream transducers� In World Wide Web Journal� �th International World Wide Web Conference� pages

�	�
��� Boston MA� December �		
� O�Reilly � Associates�

���� Marc H� Brown� WebCard
 Integrated and uniform access to mail� news� and the Web� Technical Report ��	a�
DEC Systems Research Center� July �		�� ftp�digital�com�pub�DEC�SRC�research�reports�SRC���	a�html�

���� cgi�ncsa�uiuc�edu� The Common Gateway Interface� hoohoo�ncsa�uiuc�edu�cgi�overview�html�

��
� Citrix� Inc� Citrix WinFrame� http
��www�citrix�com��

���� World�Wide�Web Consortium� W�C Reference Library� http
��www�w��org�pub�WWW�Library��

���� Bill Curtis� Marc I� Kellner� and Jim Over� Process modeling� Communications of the ACM� �
�	�
�
�	��
September �		��

���� Umesh Dayal� Hector Garcia�Molina� Mei Hsu� Ben Kao� and Ming�Chien Shan� Third generation TP
monitors
 A database challenge� In ���� SIGMOD International Conference on Management of Data� pages
�	���	�� May �		�� Special issue of SIGMOD Record� ������ June �		��

��	� S�A� Dobson and V�A� Burrill� Lightweight databases� In �rd International World�Wide Web Conference�
Darmstadt� Germany� April �		
� Elsevier Science B�V�
www�igd�fhg�de�www�www	
�proceedings�papers�
��darm�html�

���� John C� Doppke� Software processing modeling and execution within virtual environments� Technical Report
CU�CS���
�	�� University of Colorado Department of Computer Science� July �		��

���� Stephen E� Dossick and Gail E� Kaiser� WWW access to legacy client�server applications� In �th International

World Wide Web Conference� pages 	���	��� Paris� France� May �		�� Elsevier Science B�V� Special issue of
Computer Networks and ISDN Systems	 The International Journal of Computer and Telecommunications

Networking� ��������� May �		�� http
��www�psl�cs�columbia�edu�papers�CUCS�����	��html�

���� Ahmed K� Elmagarmid� editor� Database Transaction Models for Advanced Applications� Morgan Kaufmann�
San Mateo CA� �		��

���� Christer Fernstr�om� PROCESS WEAVER
 Adding process support to UNIX� In
nd International Conference

on the Software Process� Continuous Software Process Improvement� pages ������ Berlin� Germany� February
�		�� IEEE Computer Society Press�

���� Dimitrios Georgakopoulos� Mark Hornick� and Amit Sheth� An overview of work�ow management
 From
process modelling to work�ow automation infrastructure� Distributed and Parallel Databases� ����
��	��
��
�		
�

��
� Mark A� Gisi and Gail E� Kaiser� Extending a tool integration language� In Mark Dowson� editor� �st
International Conference on the Software Process� Manufacturing Complex Systems� pages �������� Redondo
Beach CA� October �		�� IEEE Computer Society Press� ftp
��ftp�psl�cs�columbia�edu�pub�psl�icsp	��ps�Z�

���� The Harvest information discovery and access system� December �		
� harvest�cs�colorado�edu��

���� George T� Heineman� A Transaction Manager Component for Cooperative Transaction Models� PhD thesis�
Columbia University Department of Computer Science� June �		�� CUCS�����	��
ftp
��ftp�psl�cs�columbia�edu�pub�psl�CUCS�����	��ps�gz�

���� Kevin Hughes� Hypermail� �		�� www�eit�com�goodies�software�hypermail��

��	� Insignia Solutions� Inc� What is NTrigue�
http
��www�insignia�com�marcom�DataSheets�NTrigue DataSheet�html�

��

���� Gail E� Kaiser Jack Jingshuang Yang and Stephen E� Dossick� An external transaction service for www�
Technical Report CUCS�����	�� Columbia University Department of Computer Science� December �		��

���� Astrid M� Julienne and Brian Holtz� ToolTalk � Open Protocols� Inter�Application Communication� Prentice
Hall� Englewood Cli�s NJ� �		��

���� Gail E� Kaiser� Cooperative transactions for multi�user environments� In Won Kim� editor� Modern Database

Systems� The Object Model	 Interoperability	 and Beyond� chapter ��� pages ��	����� ACM Press� New York
NY� �		�� ftp
��ftp�psl�cs�columbia�edu�pub�psl�CUCS�����	��ps�Z�

���� Gail E� Kaiser� Israel Z� Ben�Shaul� Steven S� Popovich� and Stephen E� Dossick� A metalinguistic approach to
process enactment extensibility� In Wilhelm Sch�afer� editor� �th International Conference on the Software

Process� Improvement and Practice� Brighton� UK� December �		��
ftp
��ftp�psl�cs�columbia�edu�pub�psl�CUCS�����	��ps�gz�

���� Wenke Lee� Gail E� Kaiser� Paul D� Clayton� and Eric H� Sherman� OzCare
 A work�ow automation system
for care plans� In James J� Cimino� editor� ���� American Medical Informatics Association Annual Fall

Symposium� pages
���
��� Washington DC� October �		��

��
� Lotus �domino� http
��domino�lotus�com�

���� Jean�Claude Mamou� OBDC and Mosaic� October �		
� www�w��org�hypertext�WWW�Gateways�OQL�html�

���� Udi Manber� Sun Wu� and Burra Gopal� GLIMPSE
 A tool to search entire �le systems� �		��
glimpse�cs�arizona�edu��

���� Christian Mogensen Martin Roscheisen and Terry Winograd� Beyond browsing
 Shared commands� soaps�
trails� and on�line communities� In �rd International World�Wide Web Conference� April �		
�
www�igd�fhg�de�www�www	
�proceedings�papers����TR�WWW	
�html�

��	� Richard F� Rashid Michael B� Jones and Mary R� Thompson� Matchmaker
 An interface speci�cation language
for distributed processing� In �
th Annual ACM Symposium on Principles of Programming Languages� pages
��
���
� New Orleans LA� January �	�
�

���� Michael Baentsch� Georg Molter and Peter Sturm� WebMake
 Integrating distributed software development in
a structure�enhanced Web� In �rd International World�Wide Web Conference� Darmstadt� Germany� April
�		
� Elsevier Science B�V� www�igd�fhg�de�www�www	
�proceedings�papers�
��WebMake�WebMake�html�

���� John Noll and Walt Scacchi� A hypertext system for integrating heterogeneous autonomous software
repositories� In �rd Irvine Software Symposium� pages �	���� Irvine CA� April �		��

���� Object Management Group� The Common Object Request Broker� Architecture Speci
cation Revision
��� July
�		
� www�omg�org�corba��cover�htm�

���� John Ockerbloom� Introducing structured data types into Internet�scale information systems� May �		�� PhD
Thesis Proposal� www�cs�cmu�edu�afs�cs�cmu�edu�user�spok�www�proposal�html�

���� OSF Research Institute� Intelligent Browsing Assistant for the World Wide Web and GroupWare for the Web�
October �		
� www�osf�org�www�waiba�index�html�

��
� Burkhard Peuschel and Stefan Wolf� Architectural support for distributed process centered software
development environments� In Wilhelm Sch�afer� editor� �th International Software Process Workshop� State of

the Practice in Process Technology� pages �������� Wadern� Germany� March �		�� Position paper�

���� Steven S� Popovich� An Architecture for Extensible Work�ow Process Servers� PhD thesis� Columbia
University Department of Computer Science� January �		�� CUCS�����	��
ftp
��ftp�psl�cs�columbia�edu�pub�psl�CUCS�����	��ps�gz�

���� Programming Systems Laboratory� Application Speci�c Http Services �ASHeS��
www�psl�cs�columbia�edu�software�ashes�html�

���� Programming Systems Laboratory� Oz ��
 Manual Set� July �		�� Columbia University Department of
Computer Science� ftp�psl�cs�columbia�edu�pub�psl�oz�����manuals�

��	� James M� Purtilo and Christine R� Hofmeister� Dynamic recon�guration of distributed programs� In ��th

International Conference on Distributed Computing Systems� pages
���
��� Arlington TX� May �		�� IEEE
Computer Society Press�

�
�� Steven P� Reiss� Connecting tools using message passing in the Field environment� IEEE Software� ����

�����
July �		��

�
�� Hans Schuster� Stefan Jablonski� and Christoph Buvler� Client�server qualities
 A basis for reliable distributed
work�ow management systems� In ��th International Conference on Distributed Computing Systems�
Baltimore MD� May �		�� In press�

�
�� Amit Sheth� Private communication� June �		�� See lsdis�cs�uga�edu�work�ow��

��

�
�� Tektronix� Inc� WinDD Network Display�
http
��www�tek�com�Network Displays�Support�PAPERS�Web�
�doc�html�

�
�� Gary Thunquest� Supporting task management � process automation in the softbench development
environment� In Ian Thomas� editor� �th International Software Process Workshop� Communication and

Coordination in the Software Process� pages ������
� Yountville CA� October �		�� IEEE Computer Society
Press�

�

� Giuseppe Valetto and Gail E� Kaiser� Enveloping sophisticated tools into process�centered environments�
Journal of Automated Software Engineering� �
��	���
� �		��
ftp
��ftp�psl�cs�columbia�edu�pub�psl�CUCS�����	
�ps�gz�

�
�� Jim Whitehead� Working group on versioning and con�guration management of World Wide Web content�
June �		�� www�ics�uci�edu�
ejw�versioning��

�
�� U�e K� Wiil� Hyperform
 Rapid prototyping of hypermedia services� Communications of the ACM�
�����
��	����� August �		
�

�
�� Lambda MOO� telnet
��lambda�parc�xerox�com
�����

�
	� Jack Jingshuang Yang and Gail E� Kaiser� An architecture for integrating OODBs with WWW� In �th

International World Wide Web Conference� pages �������
�� Paris� France� May �		�� Elsevier Science B�V�
Special issue of Computer Networks and ISDN Systems	 The International Journal of Computer and

Telecommunications Networking� ��������� May �		��
http
��www�psl�cs�columbia�edu�papers�CUCS�����	��html�

���� W� Yeong� T� Howes� and S� Kille� Lightweight Directory Access Protocol� March �		
� Network Working
Group Request For Comments
 ����� andrew��andrew�cmu�edu�rfc�rfc�����html�

��

