Random Paths to Stability in the Roommate Problem

Effrosyni Diamantoudi
Eiichi Miyagawa
Licun Xue

Discussion Paper #:0102-65

Department of Economics
Columbia University
New York, NY 10027
June 2002
Abstract

This paper studies whether a sequence of myopic blockings leads to a stable matching in the roommate problem. We prove that if a stable matching exists and preferences are strict, then for any unstable matching, there exists a finite sequence of successive myopic blockings leading to a stable matching. This implies that, starting from any unstable matching, the process of allowing a randomly chosen blocking pair to form converges to a stable matching with probability one. This result generalizes those of Roth and Vande Vate (1990) and Chung (2000) under strict preferences.

*We thank Alvin Roth for pointing out a false statement in the previous version. Parts of this work were conducted while the authors were visiting the Department of Economics and Wallis Institute of Political Economy at the University of Rochester, followed by Diamantoudi and Xue’s visit of the Department d’Economia i d’Història at the Universitat Autònoma de Barcelona (UAB) and Miyagawa’s visit of the Department of Economics at Kobe University. We would like to acknowledge these institutions for their hospitality, the seminar participants at UAB for helpful comments, and Hideo Konishi for helpful conversations.
1 Introduction

This paper studies whether a decentralized process of successive myopic blockings leads to the core in the roommate problem. Knuth (1976) addresses the issue for the marriage problem and provides an example in which a sequence of blockings generates a cycle. That is, he constructs a cycle of matchings such that each matching is generated from the previous one by letting a blocking pair form.

On the other hand, Roth and Vande Vate (1990) answer the question in the affirmative for the marriage problem by showing that the process does converge to a stable matching if the blocking pairs are chosen appropriately at each step of the process. That is, they show that for any unstable matching, there exists a finite sequence of successive blockings leading to a stable matching. This result is interesting since it implies that if a blocking pair is chosen randomly and every blocking pair is chosen with a positive probability, then the random process converges to a stable matching with probability one.

Chung (2000) generalizes the result of Roth and Vande Vate (1990) to the roommate problem. Chung identifies a condition, called the “no odd rings” condition, that is sufficient for the existence of a stable matching when preferences are not necessarily strict. Moreover, he shows that, under the same condition, the core convergence of Roth and Vande Vate extends to the roommate problem. Chung’s result generalizes Roth and Vande Vate’s since the “no odd rings” condition holds always in the marriage problem.

When preferences are strict, the “no odd rings” condition says that there exists no ordered subset of agents \((i_1, \ldots, i_K)\) such that \(K \geq 3\) is odd and (subscript modulo \(K\)) \(i_{k+1} \succ_i i_k \succ_{i_{k-1}} i_k\) for all \(k \in \{1, \ldots, K\}\). The follow-

\footnote{For the roommate problem, Gale and Shapley (1962) show that there exists a preference profile for which a stable matching does not exist. Tan (1991) identifies a necessary and sufficient condition for the existence of a stable roommate matching when preferences are strict.}
ing four-agent example, taken from Chung (2000), shows that the “no odd rings” condition is not necessary for either the non-emptiness of the core or convergence to the core.

\[
\begin{align*}
2 & \succ_1 1 \succ_1 \cdots \\
1 & \succ_2 3 \succ_2 4 \succ_2 2 \\
4 & \succ_3 2 \succ_3 3 \succ_3 1 \\
2 & \succ_4 3 \succ_4 4 \succ_4 1
\end{align*}
\]

While an odd ring exists, i.e., \((2, 3, 4)\), there exists a stable roommate matching, \(\mu = \{\{1, 2\}, \{3, 4\}\}\). Moreover, it is easy to see that starting from any other matching, there exists a sequence of blocking pairs leading to \(\mu\). Indeed, 1 and 2 are each other’s top choices and they would block any matching that has them apart. Once pair \(\{1, 2\}\) is formed, 3 and 4 will also get together (if not already) since they prefer it to being alone.

We show that in the roommate problem, when a stable matching exists and preferences are strict, the process of myopic blockings leads to a stable matching whether or not the “no odd rings” condition is satisfied. This result generalizes that of Chung (2000) (and Roth and Vande Vate (1990)) under the assumption of strict preferences, since the “no odd rings” condition is sufficient but not necessary for the existence of a stable matching. On the other hand, while our result requires strict preferences, Chung’s holds with weak preferences as long as the “no odd rings” condition is satisfied. It should be noted that our result does not generalize to the roommate problem with indifferences. Indeed, Chung (2000) shows that convergence does not necessarily occur in the roommate problem when preferences are not strict and there exists an odd ring.

The convergence result does not easily extend to the case in which coalitions of any sizes can form, even when preferences are strict and satisfy reasonable restrictions. Counter-examples are given in Section 3.

There are a few papers that study the same issue in more abstract settings. Green (1974) and Feldman (1974) obtain convergence results for certain subclasses of NTU games, but their results do not apply to the roommate problem. Sengupta and Sengupta (1996) show that a similar convergence result holds for any TU game with non-empty core.
2 Main Result

We consider a roommate problem (Gale and Shapley, 1962), which is a list $(N,(\succ_i)_{i \in N})$ where N is a finite set of agents and, for each $i \in N$, \succ_i is a complete and transitive preference relation defined over N. The strict preference associated with \succ_i is denoted by \succ_i. We limit ourselves to a roommate problem in which preferences are strict, i.e., $k \succ_i j$ and $j \succ_i k$ only if $k = j$. Thus, $k \succ_i j$ means that either $k \succ_i j$ or $k = j$.

A matching is a function $\mu : N \to N$ such that for all $i, j \in N$, if $\mu(i) = j$, then $\mu(j) = i$. Here, $\mu(i)$ denotes the agent with whom agent i is matched. We allow $\mu(i) = i$, which means that agent i is alone. We sometimes write $\mu \succ_i \mu'$, which means $\mu(i) \succ_i \mu'(i)$. A marriage problem (Gale and Shapley, 1962) is a roommate problem $(N,(\succ_i)_{i \in N})$ such that N is the union of two disjoint sets M and W, and each agent in M (respectively W) prefers being alone to being matched with any other agent in M (respectively W).

A matching μ is blocked by a pair $\{i, j\} \subseteq N$ (possibly $i = j$) if

$$ j \succ_i \mu(i) \text{ and } i \succ_j \mu(j). \quad (1) $$

That is, i and j both prefer each other to their mates at μ. We allow $i = j$, in which case (1) means that $i \succ_i \mu(i)$, i.e., i prefers being alone to being matched with $\mu(i)$. When (1) holds, we call $\{i, j\}$ a blocking pair of μ. A matching is stable if there exists no blocking pair.

Given a blocking pair $\{i, j\}$ of a matching μ, another matching μ' is obtained from μ by satisfying the pair if $\mu'(i) = j$ and for all $k \in N \setminus \{i, j\}$,

$$ \mu'(k) = \begin{cases}
 k & \text{if } \mu(k) \in \{i, j\}, \\
 \mu(k) & \text{otherwise.}
\end{cases} $$

That is, once i and j are matched, their mates (if any) at μ are alone in μ', and the other agents are matched as in μ.

The following is our main result.

Theorem 1. Consider any roommate problem in which preferences are strict and a stable matching exists. Then for any unstable matching μ, there exists a finite sequence of matchings $(\mu = \mu_1, \mu_2, \ldots, \mu_K)$ such that for any
$k \in \{1, 2, \ldots, K - 1\}$, μ_{k+1} is obtained from μ_k by satisfying a blocking pair of μ_k and μ_K is stable.

Proof. Let μ' be a stable matching. Given any unstable matching μ, let $n(\mu)$ denote the number of pairs that are common to both μ and μ'. It suffices to show the following.

Claim. For any unstable matching μ, there exists a finite sequence of matchings $(\mu = \mu_1, \mu_2, \ldots, \mu_L)$ such that for each $\ell \in \{1, 2, \ldots, L - 1\}$, $\mu_{\ell+1}$ is obtained from μ_ℓ by satisfying a blocking pair of μ_ℓ and that $n(\mu_L) \geq n(\mu) + 1$.

This implies that, starting from any unstable matching μ, a finite number of myopic blockings can lead to a stable matching, although the stable matching is not necessarily μ' itself. The above claim is trivial if μ is blocked by $\{i, j\}$ (possibly $i = j$) such that $\mu'(i) = j$, since then satisfying the pair induces a matching μ_2 for which $n(\mu_2) \geq n(\mu) + 1$. Thus, in what follows, we fix an unstable matching μ that satisfies the following.

D1. There exists no pair $\{i, j\} \subseteq N$ (possibly $i = j$) such that $\mu'(i) = j$, $\mu' \succ_i \mu$, and $\mu' \succ_j \mu$.

Since μ' is stable, it is not blocked by a pair that is matched under μ. Thus the following holds.

D2. There exists no pair $\{i, j\} \subseteq N$ (possibly $i = j$) such that $\mu(i) = j$, $\mu \succ_i \mu'$, and $\mu \succ_j \mu'$.

The symmetry between D1 and D2 simplifies the argument that follows.

We define a function $f : N \rightarrow N$ by

$$f(i) = \begin{cases}
\mu(i) & \text{if } \mu \succ_i \mu', \\
\mu'(i) & \text{otherwise.}
\end{cases}$$

That is, $f(i)$ is whomever agent i prefers between $\mu(i)$ and $\mu'(i)$. Note that since preferences are strict, if agent i is indifferent between $\mu(i)$ and $\mu'(i)$, then $\mu(i) = \mu'(i) = f(i)$.

We now let each agent i “point” to $f(i)$. Since the number of agents is finite, there exists at least one “cycle.” A cycle is an ordered set of distinct agents $c = (i_1, i_2, \ldots, i_m)$ such that i_1 points to i_2, i_2 points to i_3, \ldots, and i_m points to i_1. The above claim is trivial if μ is blocked by $\{i, j\}$ (possibly $i = j$) such that $\mu'(i) = j$, since then satisfying the pair induces a matching μ_2 for which $n(\mu_2) \geq n(\mu) + 1$. Thus, in what follows, we fix an unstable matching μ that satisfies the following.

D1. There exists no pair $\{i, j\} \subseteq N$ (possibly $i = j$) such that $\mu'(i) = j$, $\mu' \succ_i \mu$, and $\mu' \succ_j \mu$.

Since μ' is stable, it is not blocked by a pair that is matched under μ. Thus the following holds.

D2. There exists no pair $\{i, j\} \subseteq N$ (possibly $i = j$) such that $\mu(i) = j$, $\mu \succ_i \mu'$, and $\mu \succ_j \mu'$.

The symmetry between D1 and D2 simplifies the argument that follows.

We define a function $f : N \rightarrow N$ by

$$f(i) = \begin{cases}
\mu(i) & \text{if } \mu \succ_i \mu', \\
\mu'(i) & \text{otherwise.}
\end{cases}$$

That is, $f(i)$ is whomever agent i prefers between $\mu(i)$ and $\mu'(i)$. Note that since preferences are strict, if agent i is indifferent between $\mu(i)$ and $\mu'(i)$, then $\mu(i) = \mu'(i) = f(i)$.

We now let each agent i “point” to $f(i)$. Since the number of agents is finite, there exists at least one “cycle.” A cycle is an ordered set of distinct agents $c = (i_1, i_2, \ldots, i_m)$ such that i_1 points to i_2, i_2 points to i_3, \ldots, and i_m points to i_1. The above claim is trivial if μ is blocked by $\{i, j\}$ (possibly $i = j$) such that $\mu'(i) = j$, since then satisfying the pair induces a matching μ_2 for which $n(\mu_2) \geq n(\mu) + 1$. Thus, in what follows, we fix an unstable matching μ that satisfies the following.

D1. There exists no pair $\{i, j\} \subseteq N$ (possibly $i = j$) such that $\mu'(i) = j$, $\mu' \succ_i \mu$, and $\mu' \succ_j \mu$.

Since μ' is stable, it is not blocked by a pair that is matched under μ. Thus the following holds.

D2. There exists no pair $\{i, j\} \subseteq N$ (possibly $i = j$) such that $\mu(i) = j$, $\mu \succ_i \mu'$, and $\mu \succ_j \mu'$.
points to i_1. It is easy to see that if $\mu(i) = \mu'(i) = i$, then i alone forms a cycle of size 1. If $\mu(i) = \mu'(i) = j \neq i$, then $\{i, j\}$ forms a cycle of size 2.

Step 1. For all $i \in N$,

$$f(i) = i \iff \mu(i) = \mu'(i) = i.$$ The “\iff” part is mentioned above. To see the converse, suppose $f(i) = i$. If $\mu \succ_i \mu'$, then i is alone in μ and prefers μ, in violation of D2. Similarly, if $\mu' \succ_i \mu$, then i is alone in μ' and prefers μ', in violation of D1. Thus $\mu(i) = \mu'(i) = i$.

Step 2. For all $i \in N$, if $f(i) = j \neq i$, then

$$f(i) = \mu(i) \implies f(j) = \mu'(j)$$

$$f(i) = \mu'(i) \implies f(j) = \mu(j).$$

To show the first part, suppose, by way of contradiction, that $f(j) = \mu(j) \neq \mu'(j)$. This implies $\mu \succ_j \mu'$. Furthermore, since $\mu'(j) \neq \mu(j) = i$, we have $\mu(i) \neq \mu'(i)$. This and $f(i) = \mu(i)$ imply $\mu \succ_i \mu'$. But then D2 is violated since i and j are matched under μ. The second part follows from a similar argument that leads to a violation of D1.

This step trivially implies that for all $i \in N$,

$$\mu \succ_i \mu' \implies \mu' \succ_{f(i)} \mu$$

$$\mu' \succ_i \mu \implies \mu \succ_{f(i)} \mu'.$$

Step 3. For all $i \in N$,

$$f(f(i)) = i \iff \mu(i) = \mu'(i).$$

If $f(i) = i$, then this follows from Step 1. So, suppose that $f(i) = j \neq i$. The “\iff” part is mentioned prior to Step 1. To show the converse, assume, without loss of generality, that $j = \mu(i)$. Then, Step 2 implies $f(j) = \mu'(j)$. Since $f(j) = i$, it follows that i and j are matched with each other in both μ and μ'. 6
Step 4. For all \(i \in N \), there exists \(M \in \{1, 2, \ldots \} \) such that \(f^M(i) = i \).\(^2\) To see this, take any \(i \in N \) and consider the sequence of agents \(\sigma_i = (i, f^1(i), f^2(i), \ldots) \). Since the number of agents is finite, some agents appear more than once in this sequence. Let \(M \) be the minimum number for which \(f^M(i) = f^m(i) \) for some \(m < M \). We show that \(f^M(i) = i \). Suppose, by way of contradiction, that \(f^M(i) \neq i \). Then the sequence looks like

\[
\sigma_i = (i, i_1, i_2, \ldots, i_{m-1}, i_m, i_{m+1}, \ldots, i_{M-1}, i_m, i_{m+1}, \ldots)
\]

where \(i_m \neq i \). Note that agent \(i_m \) is matched with each of \(\{i_{m-1}, i_{m+1}, i_{M-1}\} \) in either \(\mu \) or \(\mu' \); i.e., \(\{\mu(i_m), \mu'(i_m)\} = \{i_{m-1}, i_{m+1}, i_{M-1}\} \). Then at least two agents in \(\{i_{m-1}, i_{m+1}, i_{M-1}\} \) are identical. By the definitions of \(M \) and \(m \), we have \(i_{m-1} \neq i_{m+1} \) and \(i_{m-1} \neq i_{M-1} \). Hence, the only possibility is that \(i_{m+1} = i_{M-1} \), which occurs when either \(M = m + 2 \) or \(M = m + 1 \). Then the sequence looks like either

\[
\sigma_i = (i, i_1, i_2, \ldots, i_{m-1}, i_m, i_{m+1}, i_m, i_{m+1}, \ldots) \quad \text{or} \quad \sigma_i = (i, i_1, i_2, \ldots, i_{m-1}, i_m, i_m, i_m, \ldots).
\]

In either case, Steps 1 and 3 imply that \(\mu(i_m) = \mu'(i_m) \in \{i_m, i_{m+1}\} \). But then \(i_{m-1} \) is not matched with \(i_m \) in either matching, a contradiction.

This step shows that each agent belongs to a unique cycle. Thus, we let \(c_i \) denote the cycle that \(i \) belongs to and let \(S_i \subseteq N \) denote the set of agents who belong to the cycle. Since \(c_i \) is a cycle, it follows that for all \(i, j \in N \), if \(j \in S_i \), then \(S_j = S_i \). Thus \(\{S_i\}_{i \in N} \) generates a partition of \(N \).

Step 5. For all \(i \in N \), if \(\mu(i) \neq \mu'(i) \), then \(|S_i| \geq 4 \). To see this, let us denote \(c_i = (i_1, i_2, \ldots, i_m) \) where \(i_1 = i \). Suppose, by way of contradiction, that \(m \leq 3 \). If \(m = 1 \), then Step 1 implies \(\mu(i) = \mu'(i) \), a contradiction. Similarly, if \(m = 2 \), then Step 3 implies \(\mu(i) = \mu'(i) \), a contradiction. Thus, suppose \(m = 3 \). Assume, without loss of generality, that

\[
i_2 = \mu(i). \quad (2)
\]

\(^2\)Here, \(f^{k+1}(i) = f(f^k(i)) \) for all \(k \in \{1, 2, \ldots\} \) and \(f^1(i) = f(i) \).
Then by Step 2, $i_3 = \mu'(i_2)$. If we apply Step 2 again, we obtain $i = \mu(i_3)$, in contradiction with (2).

Step 6. For all $i \in N$, if $\mu(i) \neq \mu'(i)$, then $|S_i|$ is even. To see this, denote $c_i = (i = i_1, i_2, \ldots, i_m)$ and assume $\mu(i) = i_2$. Then by Step 2, $i_{\ell+1} = \mu(i_\ell)$ for all odd $\ell \leq m$. Thus, if m is odd, then $i = \mu(i_m)$, which is not possible since $\mu(i) = i_2$ and $i_2 \neq i_m$.

Step 7. To complete the proof, let $\{i, j\} \subseteq N$ (possibly $i = j$) be a blocking pair of μ. We first note that $\mu' \succ_h \mu$ for some $h \in \{i, j\}$. Indeed, if $\mu \succeq_h \mu'$ for all $h \in \{i, j\}$, then $\{i, j\}$ also blocks μ', in contradiction with the stability of μ'. Thus we assume, without loss of generality, that agent $i = 1$ prefers μ' to μ, and that $c_1 = (1, 2, 3, \ldots, m)$. By Steps 5 and 6, $m \geq 4$ and m is even.

Since agent 1 prefers μ' to μ, Step 2 implies that $i + 1 = \mu'(i)$ if i is odd, and $i + 1 = \mu(i)$ if i is even. Matchings μ and μ' look like

$$
\mu' = \{(1, 2), (3, 4), \ldots, (m-3, m-2), (m-1, m), \ldots\}
$$

$$
\mu = \{(2, 3), (4, 5), \ldots, (m-2, m-1), (m, 1), \ldots\}.
$$

Let μ_2 denote the matching that is obtained from $\mu_1 \equiv \mu$ by satisfying $\{1, j\}$. Note that $j \neq 2$ since $f(2) = \mu(2) = 3$ and so 2 prefers 3 to 1. Then

$$
n(\mu_2) = \begin{cases}
n(\mu) & \text{if } \mu(j) \neq \mu'(j) \\
n(\mu) - 1 & \text{if } \mu(j) = \mu'(j).
\end{cases}
$$

The second case follows from the fact that if $\mu(j) = \mu'(j)$, then the blocking of $\{1, j\}$ breaks pair $\{j, \mu'(j)\}$.

Under μ_2, agent m is alone. Since μ' is stable, it is individually rational, which implies that m prefers being matched with $m - 1$ to being alone.

3Suppose that, in Steps 1–6, μ is also a stable matching. Then both D1 and D2 are satisfied; hence, Steps 1–6 apply to any pair μ, μ' of stable matchings. An implication of these steps is that if μ and μ' are stable and agent i prefers μ' to μ, then both $\mu'(i)$ and $\mu(i)$ prefer μ to μ'. This is a generalization of the *decomposition lemma* of Knuth (1976) (see also Roth and Sotomayor (1990)) to the roommate problem. In fact, there are similarities between our proof of Step 4 and Knuth’s proof of his decomposition lemma for the marriage problem. A corollary of the lemma is that the set of agents who are single is the same in all stable matchings.
Moveover, since \(f(m - 1) = m \), agent \(m - 1 \) prefers \(m \) to \(m - 2 \). Hence, \(\{m - 1, m\} \) blocks \(\mu_2 \) provided that \(m - 1 \neq j \). We thus distinguish two cases.

Case 1. \(m - 1 \neq j \). Then, \(\{m - 1, m\} \) blocks \(\mu_2 \) as we just noted. Let \(\mu_3 \) denote the matching obtained by satisfying this blocking pair. Then \(n(\mu_3) = n(\mu_2) + 1 \). If \(\mu(j) \neq \mu'(j) \), then \(n(\mu_3) = n(\mu) + 1 \) as desired.

So, suppose \(\mu(j) = \mu'(j) \), which implies \(j \notin \{1, \ldots, m\} \). Then \(n(\mu_3) = n(\mu) \) and \(\mu_3 \) looks like

\[
\mu_3 = [\{2, 3\}, \{4, 5\}, \ldots, \{m - 2\}, \{m - 1, m\}, \{1, j\}, \ldots, \{\mu'(j)\}, \ldots].
\]

In this matching, \(m - 2 \) is alone. It suffices to show that this matching is blocked by \(\{m - 3, m - 2\} \). This is easy to see if \(m \geq 6 \) since \(m - 2 \) prefers being matched with \(m - 3 \) to being alone and \(m - 3 \) prefers \(m - 2 \) to \(m - 4 \). Thus, suppose \(m = 4 \), i.e., \(c_1 = (1, 2, 3, 4) \). Then

\[
\mu' = [\{1, 2\}, \{3, 4\}, \ldots, \{j, \mu'(j)\}, \ldots]
\]
\[
\mu = [\{2, 3\}, \{4, 1\}, \ldots, \{j, \mu'(j)\}, \ldots]
\]
\[
\mu_2 = [\{2, 3\}, \{4\}, \{1, j\}, \ldots, \{\mu'(j)\}, \ldots]
\]
\[
\mu_3 = [\{2\}, \{3, 4\}, \{1, j\}, \ldots, \{\mu'(j)\}, \ldots].
\]

Since \(\mu' \) is stable, it is not blocked by \(\{1, j\} \). Since \(\{1, j\} \) blocks \(\mu \), agent \(j \) prefers \(1 \) to \(\mu(j) = \mu'(j) \). Thus, agent \(1 \) prefers \(\mu'(1) = 2 \) to \(j \), which implies that \(\{1, 2\} \) blocks \(\mu_3 \). This blocking generates a matching \(\mu_4 = [\{1, 2\}, \{3, 4\}, \ldots, \{j\}, \{\mu'(j)\}, \ldots] \) and \(n(\mu_4) = n(\mu) + 1 \), as desired.

Case 2. \(m - 1 = j \). Since \(c_i \) is a cycle, we can use the above argument letting agent \(m - 1 \) play the role of agent \(1 \).\(^4\) We then conclude that the desired result follows if \(m - 3 \neq 1 \). That is, if \(m \geq 6 \), then \(\{m - 2, m - 3\} \) blocks \(\mu_2 \) inducing a matching \(\mu_3 \) such that \(k(\mu_3) = k(\mu) + 1 \).

Thus, we are left with the case in which \(m = 4 \). That is, \(c_1 = (1, 2, 3, 4) \)

\(^4\)Note that, by Step 2, agent \(m - 1 \) also prefers \(\mu' \) to \(\mu \).
and \(\{i, j\} = \{1, 3\} \). Then

\[
\begin{align*}
\mu' &= \{\{1, 2\}, \{3, 4\}, \ldots\} \\
\mu &= \{\{2, 3\}, \{4, 1\}, \ldots\} \\
\mu_2 &= \{\{1, 3\}, \{2\}, \{4\}, \ldots\}.
\end{align*}
\]

Since \(\mu' \) is stable, it is not blocked by \(\{1, 3\} \). Thus we can assume, without loss of generality, that agent 1 prefers \(\mu'(1) = 2 \) to 3. Since 2 is alone in \(\mu_2 \), it follows that \(\{1, 2\} \) blocks \(\mu_2 \). This blocking generates a matching \(\mu_3 = [\{1, 2\}, \{3\}, \{4\}, \ldots] \) and \(n(\mu_3) = n(\mu) + 1 \).

Theorem 1 differs from the result of Chung (2000, Lemma 1) in two respects. First, when preferences are strict, Chung’s result holds under the “no odd rings” condition, while our result holds as long as a stable matching exists. As mentioned in the introduction, the “no odd rings” condition is sufficient but not necessary for the existence of a stable matching.

Second, Chung’s result holds with weak preferences provided that the “no odd rings” condition is satisfied, while we consider only strict preferences. In fact, our result cannot be generalized to the roommate problem with indifferences. Indeed, if preferences are not strict and an odd ring exists, then convergence does not hold necessarily. This is shown by Chung (2000) through the following four-agent example:

\[
\begin{align*}
2 &\sim_1 1 \succ_1 \cdots \\
1 &\succ_2 3 \succ_2 4 \succ_2 2 \\
4 &\succ_3 2 \succ_3 3 \succ_3 1 \\
2 &\succ_4 3 \succ_4 4 \succ_4 1
\end{align*}
\]

Note that agent 1 is indifferent between being matched with 2 and being alone. In this example, \((2, 3, 4)\) is an odd ring and there exists a unique stable matching, \(\mu = [\{1, 2\}, \{3, 4\}]\). It can be easily checked that, starting with any matching where 1 is alone, no sequence of myopic blockings leads to \(\mu\) since being alone is a top choice for 1.

Recall that the class of roommate problems subsumes marriage problems and that a stable matching exists for any marriage problem (Gale and Shapley, 1962).
Thus we obtain the following corollary.

Corollary 1. Consider any marriage problem with strict preferences. Then for any unstable matching \(\mu \), there exists a finite sequence of matchings \((\mu, \mu_1, \mu_2, \ldots, \mu_K) \) such that for any \(k \in \{1, 2, \ldots, K - 1\} \), \(\mu_{k+1} \) is obtained from \(\mu_k \) by satisfying a blocking pair of \(\mu_k \) and \(\mu_K \) is stable.

This result has been obtained by Roth and Vande Vate (1990). Their result holds even when preferences are not strict. On the other hand, they consider the marriage problem only.\(^5\)

It should also be noted that our result as well as those of Roth and Vande Vate (1990) and Chung (2000) say that myopic blockings can lead to *some* stable matching. It is not the case that myopic blockings can lead to *any* stable matching, as the following 3 \(\times \) 3 marriage example shows.

There exist only two stable matchings: \(\mu_1 = [\{m_1, w_1\}, \{m_2, w_2\}, \{m_3, w_3\}] \) and \(\mu_2 = [\{m_1, w_1\}, \{m_2, w_2\}, \{m_3, w_3\}] \). It is easy to see that, starting from \(\mu = [\{m_1, w_1\}, \{m_2, w_2\}, \{m_3, w_3\}] \), there exists no sequence of myopic blockings leading to \(\mu_2 \). The only blocking pair of \(\mu \) is \(\{m_3, w_3\} \) and satisfying this pair leads to \(\mu_1 \).

3 General Coalition Formation

Our result does not easily extend to the case in which coalitions of any sizes can form. To see this, we consider “hedonic games” (Banerjee *et al.*, 2001; Bogomolnaia and Jackson, 2002), where arbitrary coalitions can form and each agent has preferences over coalitions he belongs to. Consider the following\(^5\)

\(^5\)The result of Roth and Vande Vate (1990) is used by Jackson and Watts (2001) to show that, for a random process of myopic blockings with trembles, the support of the long-run stationary distribution coincides with the set of stable marriage matchings. It would be interesting to study whether the result of Jackson and Watts (2001) extends to the roommate problem.
example with \(N = \{1, 2, 3\} \), taken from Bogomolnaia and Jackson (2002):

\[
{1, 2} \succ_1 N \succ_1 {1, 3} \succ_1 \{1\} \\
{2, 3} \succ_2 N \succ_2 {1, 2} \succ_2 \{2\} \\
{1, 3} \succ_3 N \succ_3 {2, 3} \succ_3 \{3\}
\]

This preference profile satisfies a condition of ordinal balancedness in Bogomolnaia and Jackson (2002). The core is a singleton and consists of the partition in which the grand coalition forms. Myopic blockings generate the following cycle: \([\{1, 2\}, \{3\}] \rightarrow [\{2, 3\}, \{1\}] \rightarrow [\{1, 3\}, \{2\}] \rightarrow [\{1, 2\}, \{3\}]\). Moreover, for each partition in the cycle, there exists only one blocking coalition. Hence there exists no path coming out of the cycle.

Separable preferences do not guarantee convergence either.\(^6\) Consider the following example with \(N = \{1, 2, 3, 4\} \).

\[
\{1, 2, 3\} \succ_1 N \succ_1 \{1, 2\} \succ_1 \{1, 2, 4\} \succ_1 \{1, 3\} \succ_1 \{1, 3, 4\} \succ_1 \{1\} \succ_1 \{1, 4\} \\
\{2, 3, 4\} \succ_2 N \succ_2 \{2, 3\} \succ_2 \{1, 2, 3\} \succ_2 \{2, 4\} \succ_2 \{1, 2, 4\} \succ_2 \{2\} \succ_2 \{1, 2\} \\
\{1, 3, 4\} \succ_3 N \succ_3 \{3, 4\} \succ_3 \{2, 3, 4\} \succ_3 \{3, 4\} \succ_3 \{1, 2, 3\} \succ_3 \{3\} \succ_3 \{2, 3\} \\
\{1, 2, 4\} \succ_4 N \succ_4 \{1, 4\} \succ_4 \{1, 3, 4\} \succ_4 \{2, 4\} \succ_4 \{2, 3, 4\} \succ_4 \{4\} \succ_4 \{3, 4\}
\]

The core is a singleton consisting of the partition in which the grand coalition forms. Myopic blockings generate the following cycle: \([\{1, 2, 3\}, \{4\}] \rightarrow [\{2, 3, 4\}, \{1\}] \rightarrow [\{1, 3, 4\}, \{2\}] \rightarrow [\{1, 2, 4\}, \{3\}] \rightarrow [\{1, 2, 3\}, \{4\}]\). Again, for every partition in the cycle, there exists only one blocking coalition.

It is also easy to construct examples that satisfy the weak top coalition property of Banerjee et al. (2001) where myopic blockings do not lead to the core.

\(^6\)Agent \(i \)'s antisymmetric preferences \(\succ_i \) defined over \(S \subseteq N : i \in S \) are separable if for all \(S \subseteq N \) such that \(i \in S \) and for all \(j \in N \setminus S \), \(S \cup \{j\} \succ_i S \) if and only if \(\{i, j\} \succ_i \{i\} \).
References

