Secreted Frizzled-Related Protein 4

An Angiogenesis Inhibitor

Ajit Muley,* Syamantak Majumder,* Gopi Krishna Kolluru,* Steve Parkinson,† Helena Viola,‡ Livia Hool,‡ Frank Arfuso,† Ruth Ganss,§ Arun Dharmarajan,† and Suvro Chatterjee*

From the AU-KBC Research Centre,* Anna University, Chennai, India; the School of Anatomy and Human Biology,† Faculty of Life and Physical Sciences, and the School of Biomedical, Biomolecular, and Chemical Sciences,‡ The University of Western Australia, Perth; and the Western Australian Institute for Medical Research,§ UWA Centre for Medical Research, Perth, Western Australia, Australia

Wnt signaling is involved in developmental processes, cell proliferation, and cell migration. Secreted frizzled-related protein 4 (sFRP4) has been demonstrated to be a Wnt antagonist; however, its effects on endothelial cell migration and angiogenesis have not yet been reported. Using various in vitro assays, we show that sFRP4 inhibits endothelial cell migration and the development of sprouts and pseudopodia as well as disrupts the stability of endothelial rings in addition to inhibiting proliferation. sFRP4 interfered with endothelial cell functions by antagonizing the canonical Wnt/β-catenin signaling pathway and the Wnt/planar cell polarity pathway. Furthermore, sFRP4 blocked the effect of vascular endothelial growth factor on endothelial cells. sFRP4 also selectively induced apoptotic events in endothelial cells by increasing cellular levels of reactive oxygen species. In vivo assays demonstrated a reduction in vasculature after sFRP4 treatment. Most importantly, sFRP4 restricted tumor growth in mice by interfering with endothelial cell function. The data demonstrate sFRP4 to be a potent angiogenesis inhibitor that warrants further investigation as a therapeutic agent in the control of angiogenesis-associated pathology. (Am J Pathol 2010, 176:1505–1516; DOI: 10.2353/ajpath.2010.090465)

Wnt signaling pathways have been implicated in the proliferation, survival, differentiation, and migration of various cell types,1–4 including endothelial cells.5,6 Furthermore, Wnt plays an important role in the development of the vasculature under different conditions, including embryonic angiogenesis,7,8 and is known to exert its effect by modulating both cellular and transcriptional events.9,10

The Wnt proteins are a diverse family of secreted glycoproteins that transduce cellular signals by binding to two coreceptor molecules: the transmembrane frizzled receptors and lipoprotein receptor-related proteins 5 or 6.7 There are three Wnt signaling pathways: (i) the canonical, or Wnt-β-catenin pathway, which targets a key cellular regulatory molecule β-catenin; (ii) the Wnt-Calcium-mediated pathway, which mobilizes intracellular calcium to activate calcium/calmodulin-dependant protein kinase II and protein kinase C; and (iii) the Wnt-planar cell polarity pathway, which signals through Rho-associated kinase and c-Jun–N-terminal kinase.11

Secreted frizzled-related protein 4 (sFRP4) is a member of the secreted frizzled-related protein family of Wnt inhibitors that bind directly to Wnt and antagonize both canonical and noncanonical Wnt pathways.12 We have previously shown antiproliferative and proapoptotic roles for sFRP4 during normal homeostasis in tissues such as ovary, corpus luteum, placenta, and mammary gland13–16 but, surprisingly, in pathological states such as mesothelioma17 and colorectal carcinoma,18 sFRP4 did not induce apoptosis of tumor cells.

The exact mechanisms by which Wnt affects angiogenesis remains poorly understood; however, Wnt signal-
ing and the requirements of the canonical Wnt pathway appear to be essential in endothelial cell (EC) commitment developing from embryonic stem cells.\(^{19}\) Furthermore, coexpression of Wnt proteins and Wnt pathway inhibitors by endothelial cells is implicated in the regulation of angiogenesis.\(^{20,21}\)

To date there are no published data demonstrating the involvement of sFRP4 in angiogenesis. We report our investigations on the role of sFRP4 on EC physiology using a variety of in vitro assays and its effect on physiological and tumor-associated angiogenesis using in vivo models.

Materials and Methods

Cell Lines and Culture Media

ECV-304 cells were a donation from V. Shah, GI Research Unit, Mayo Clinic, Rochester, MN; Li EA.hy926 cells were donated by C. Edgel, Tissue Culture Facility, UNC Lineburger Comprehensive Cancer Center, University of North Carolina, Chapel Hill; porcine aortic endothelial cells (PAECs) were donated by R. Rieben, University of Bern, Switzerland. Human umbilical vein endothelial cells (HUVECs) were a donation from Dr Chooi-May Lai, Lions Eye Institute, The University of Western Australia. All experiments were performed using EA.hy926 cells, but crucial experiments were repeated in HUVECs and representative experiments are shown whenever possible. However, results were comparable with all cell lines used. Dulbecco’s modified Eagle’s medium (DMEM) was purchased from Hi-Media, Mumbai, India. Fetal bovine serum was supplied by In Vitrogen Life Technologies. Anti-β-catenin antibodies were purchased from Millipore. Matrigel was obtained from BD Biosciences, San Jose, CA. Polyether-polyurethane foam sponge was obtained from Amersham Biosciences (SF) Corp., Piscataway, NJ. All other chemicals were of reagent grade and were obtained commercially. For cell culture, cells were maintained in DMEM supplemented with 10% FBS (v/v), 1% penicillin (w/v) and streptomycin (w/v) at 37°C/5% CO\(_2\). sFRP4 was supplied by Upstate (Lake Placid, NY).

Animals

Experiments using Wistar rats were conducted with the approval of the Animal Ethics Committee of Anna University, Chennai, India. Homozygous female BALB/c nu/nu athymic mice experiments were conducted with approval from The University of Western Australia Animal Ethics Committee.

In Vitro Studies

Endothelial Wound Scratch Assay

Primary PAECs and 2 immortalized cell lines (ECV-304 and EA.hy926) were cultured in 24-well plates coated in collagen type 2 at 2 \(\times\) 10\(^5\) cells per well to produce confluent monolayers. The monolayers were wounded in a line using a standard 100-μl pipette tip and washed with PBS (pH 7.4) to remove cell debris before incubation with different concentrations of sFRP4 (125 and 250 pg/ml). The area of the cell-free wound at selected time points (0 and 8 hours) was recorded using a Nikon digital camera and analyzed using Image J image analysis software (Release α 4.0 3.2). The wound healing effect was calculated as the percentage of remaining cell-free area (at 8 hours) compared with the initial wound area. The reversibility of the sFRP4-mediated effect was studied by washing the cells with PBS 24 hours post treatment.

Endothelial Cell Chemotactic Assay

Migration in endothelial cells was examined using a Boyden chamber migration assay. Collagen-treated polycarbonate membranes (pore size 8 μm) were used for the assay. HUVECs were pre-treated with different concentrations of sFRP4 (0 and 125 pg/ml) for 2 hours and trypsinized; 1 \(\times\) 10\(^5\) cells were loaded in the upper chamber of the Boyden apparatus with or without sFRP4. After 4 hours of incubation at 37°C and 5%CO\(_2\), the nonmigrated cells of the upper chamber were removed using a cotton swab. The migrated cells on the underside were fixed with 4% paraformaldehyde in PBS (pH 7.4) and stained with propidium iodide (1 μg/ml). The migrated cells were counted at \(\times\)20 magnification using a fluorescent microscope (Olympus IX71).

Endothelial Ring Formation

HUVECs were seeded on collagen-coated 12-well plates (1 \(\times\) 10\(^5\) cells per well). After 4 hours of incubation at 37°C/5%CO\(_2\), the media was changed to medium supplemented with sFRP4 (0 or 125 pg/ml). The cells were incubated with sFRP4 overnight (12 hours) at 37°C/5%CO\(_2\). The endothelial cells formed ring-like structures on overnight incubation. The number of rings formed was counted at \(\times\)20 magnification using a brightfield phase contrast microscope.

Stability Studies of Ring Structures

HUVECs were seeded as above (1 \(\times\) 10\(^5\) cell per well), but on coverslips coated with collagen type 2 in 12-well plates and incubated for 12 hours at 37°C/5%CO\(_2\). The endothelial cells formed ring-like structures on overnight incubation. Each coverslip was mounted on a customized live cell chamber and placed on the microscope stage. Single ring structures were identified and the microscope stage was fixed in place, after which the cells were monitored for up to 15 minutes with or without sFRP4 treatment (125 pg/ml). Images were taken at various time points.

Effect of Vascular Endothelial Growth Factor on sFRP4 Action

EA.hy926 cells (which express the vascular endothelial growth factor [VEGF] receptor) were grown to confluence
as per the wound scratch protocol. After wounding, cells were incubated with either VEGF (20 mmol/L), Avastin (125 pg/ml), sFRP4 (125 pg/ml), a combination of VEGF and Avastin, or VEGF and sFRP4 for 12 hours. The amount of wound healing was recorded as previously described.

Functional Analysis of the Mechanism of sFRP4 Action in Vitro

Wound Healing under the Influence of LiCl

HUVECs were grown to confluence as per wound scratch assay. After wounding, they were washed with PBS (pH 7.4) to remove cell debris before incubation using the GSK-3β inhibitor, LiCl (500 μmol/L; Sigma, St Louis, MO), alone or in combination with sFRP4 (125 pg/ml) for 4 hours. The amount of cell migration was recorded as previously described.

Proliferation Assay

The proliferation assay was performed as previously reported. In summary, HUVECs were seeded at a density of 3000 cells per well in 96 wells and incubated overnight at 37°C/5% CO2, and the following day the cells were treated with sFRP4 (125 pg/ml) in the presence and absence of LiCl (500 μmol/L). The cells were further incubated for 48 hours at 37°C/5%CO2. After incubation the cells were trypsinized and counted in a hemocytometer (Nebauer Improved, Crown Scientific).

Determination of Intracellular Calcium

Calcium levels were determined as previously reported. Briefly, intracellular calcium was monitored in HUVECs using the fluorescent indicator Fura-2 ace-toxymethyl ester (Fura-2, 1 μmol/L, Molecular Probes). Fluorescence at 340/380 nm excitation and 510 nm emission wavelengths were measured at 1-minute intervals with an exposure of 50 milliseconds on a Hamamatsu Orca ER digital camera attached to an inverted Nikon TE2000-U microscope. Ratiometric 340/380-nm signal of individual HUVECs was quantified using Metamorph 6.3 to measure signal intensity of manually traced cell regions. An equivalent region not containing cells was used for background and was subtracted. Ratiometric 340/380-nm fluorescence was plotted relative to the pretreatment fluorescence and assigned a value of 1.0. Fluorescent ratios recorded for 3 minutes at 37°C just before and the last 3 minutes of a 10-minute exposure to 125 pg/ml sFRP4 were averaged, and increases in fluorescent ratios were reported as a percentage increase from the baseline average. After 10 minutes exposure to 125 pg/ml, a further 125 pg/ml of sFRP4 was added to create a final dose of 250 pg/ml, and the change in fluorescence was monitored as per the 125 pg/ml dose.

Immunoblotting

Whole cell lysates and Western blot analysis were performed as previously described with minor modifications. Briefly, HUVECs at 70% confluence were stimulated with LiCl (500 μmol/L; Sigma, St Louis, MO) in DMEM for 30 minutes at 37°C and then sFRP4 (125 pg/ml) or PBS was added and cells incubated for a further 4 hours at 37°C before being harvested for protein. Lysates were prepared by scraping cells in radio-immunoprecipitation assay buffer (150 mmol/L NaCl, 50 mmol/L Tris-HCl pH7.5, 1% triton X100, 0.5% sodium deoxycholate, 0.1% SDS and 0.1 mmol/L PMSF) on ice. The protein content of the lysates was normalized after quantification by Bradford protein estimation. The lysates were boiled in Laemmli buffer for 5 minutes at 90°C before loading onto 10% SDS-PAGE gel. After electrophoresis the proteins were transferred onto a nitrocellulose membrane using wet blotting apparatus (Biorad). The membranes were blocked using 5% nonfat milk in Tris-Buffered Saline Tween-20 (TBST) and probed for β-catenin using anti–β-catenin antibody at 1:1000 dilution in TBST (Cell Signaling) and horse radish peroxidase (HRP)-labeled secondary antibody at a dilution of 1:10,000 in TBST (Pierce). The blots were developed using SuperSignal West Pico Chemiluminescent Substrate (Pierce). β-actin antibody was used at a concentration of 1:5000 (Sigma). The secondary antibody was anti-mouse HRP used at 1:10,000 dilution (Pierce).

Isolation of nuclear fragments was performed as previously reported. HUVECs were harvested in incubation medium and spun down at 500g for 10 minutes at 4°C, resuspended in PBS, and spun down again using the same conditions. For isolation of nuclei, cell pellets were resuspended in 500 μl of nuclei isolation buffer (10 mmol/L PIPES, 10 mmol/L KCl, 2 mmol/L MgCl2, 1 mmol/L DTT, 0.1% protease-inhibitor cocktail, pH 7.4). Cells were homogenized using a glass potter, layered over 500 μl of 30% sucrose in nuclei isolation buffer, and centrifuged for 10 minutes at 800g and 4°C. The pellet was washed with nuclei isolation buffer and nuclei were lysed with nuclei isolation buffer containing 0.1% SDS for 30 minutes on ice. Cellular debris was spun down and the supernatant stored at −80°C. C-Jun antibody was used at a dilution of 1:10000 in TBST (Cell Signaling) and HRP-labeled secondary antibody at a dilution of 1:10000 in TBST (Pierce). The blots were developed as above, and protein content was quantified using the Bradford assay.

Determination of Levels of H2O2 in EA.hy926

EA.hy926 cells were grown overnight (12 hours) in tissue culture dishes to attain 60% confluence, then washed once with PBS and media changed to that supplemented with different concentrations of sFRP4 (0 or 125 pg/ml). The cells were incubated for 4 hours at 37°C/5%CO2, then the medium was aspirated and cells were washed with PBS (2 times). Cells were incubated in PBS supplemented with 10 μmol/L Amplex Red in the presence of 0.5U HRP for 15 minutes at 37°C/5%CO2. The cells were scraped and centrifuged at 2000g at 4°C.
and the supernatant was collected. Fluorometric readings using a Cary eclipse fluorometer (Varian, CA) were recorded at 563-nm excitation and 587-nm emission wavelength; the slit width was kept at 5 nm.

Determination of Levels of Superoxides in EA.hy926 Cells

EA.hy926 cells were grown overnight (12 hours) in 12-well plates coated in collagen type 2 (1 × 10^6 cells per well). The next morning cells were washed with PBS and the media changed to medium supplemented with sFRP4 (0 or 125 pg/ml). Cells were incubated for 4 hours at 37°C/5%CO₂, following which 1 mg/ml nitroblue tetrazolium was added to the media and cells incubated for a further 2 hours. After incubation the medium was aspirated and cells were washed with PBS (2 times). Formazan crystals formed by the action of superoxides on nitroblue tetrazolium were dissolved by adding 200 µl of DMSO and the optical density was measured at 540 nm using a spectrophotometer (Varian Cary 4000 uv-vis photometer, Varian, CA).

Catalase Activity Assay

EA.hy926 cells were grown overnight (12 hours) in tissue culture plates coated in collagen type 2 to attain 80% confluence, and the following morning cells were washed with PBS and the media changed to medium supplemented with sFRP4 (0 or 125 pg/ml). Cells were incubated for 4 hours in sFRP4 supplemented medium at 37°C/5%CO₂. After incubation, cells were washed 2 times with PBS, scraped in ice cold PBS (500 µl/35 mm dish), and centrifuged to form a pellet at 2000 g/4°C. Supernatant was discarded and the pellet was resuspended in 200 µl 50 mmol/L Tris-HCl buffer (pH 7.4). Cells were homogenized on ice using a Dounce homogenizer at 50 strokes. The sample was prepared by diluting lysate in 2 ml 0.1 mol/L PBS buffer (pH 7.4) and 0.1% H₂O₂ was added, after which the optical density was measured at 15-second intervals up to 3 minutes. The decrease in optical density corresponds to the breakdown of hydrogen peroxide by catalase activity. The activity of the enzyme was plotted as a function of time and expressed as the amount of H₂O₂ consumed/min/mg of protein.

Investigation of the Influence of Superoxide Dismutase on sFRP4 Wound Healing Effects

EA.hy926 cells were grown to confluence in 24-well plates as described in the wound healing assay. A wound was created as per the wound healing assay and then incubated with either superoxide dismutase (SOD) or nothing to determine whether SOD per se had any impact on wound healing. Next, cells were again grown to confluence and subjected to wounding followed by incubation with either sFRP4 (125 pg/ml) or sFRP4 (125 pg/ml) in combination with SOD (150 SI units). Wound healing was measured for the next 4 hours by taking images of the wound at 0 and 4 hours of incubation.

In Vivo Studies

Chicken Chorioallantoic Membrane Assay

Fourth day incubated chicken eggs were collected from the Poultry Research Station, Nandanam, Chennai. In a modification of the chicken chorioallantoic membrane assay, the eggs were broken and gently plated on a cellophane bed in Petri dishes under sterile conditions. Sterile filter paper disks soaked in sFRP4 (0 or 125 pg/ml) were then placed on the egg yolks and incubated for another 12 hours at 37°C. Images were taken using a Nikon digital camera with a stereo microscope at 0, 6, and 12 hours of incubation. Quantification of angiogenesis was performed by using Image J image analysis software (Release α 4.0 3.2).

Cotton Plug Method

Ten to 20 mg of sterile absorbent cotton plugs were implanted in the peritoneal cavity of Wistar rats with or without sFRP4 (125 pg/ml). After 8 days the animals were sacrificed and the cotton plug granulomas were extracted to measure the hemoglobin content.

Matrigel Sponge Assay

A polyether-polyurethane sponge (0.5 cm²) was soaked in Matrigel that had been thawed at 4°C and the sponge was implanted in the peritoneal cavity of Wistar rats with or without sFRP4 (125 pg/ml). The animals were sacrificed after eight days, and the resulting granulomas were removed to measure the hemoglobin levels.

Matrigel Plug Assay

Matrigel (20 mg/ml) was injected into the peritoneal cavity of Wistar rats with or without sFRP4 (125 pg/ml). The animals were sacrificed after 8 days to extract the matrigel pellet. The hemoglobin content of the pellet was measured spectrophotometrically.

Image Analysis of Implants

Images of the implants were converted to gray scale and adjusted to suitable brightness and contrast using Adobe Photoshop 7.0 to perform automated image analysis using AngioQuant. Next, the images were processed with AngioQuant software as directed by the software tools. The number of junctions (which reflects the number of vessels formed in the implants) was taken as an index of angiogenesis.

Mouse Tumor Models

BALB/c nude mice were injected subcutaneously with 5 × 10⁶ SKOV-3 cells, a human cell line derived from...
of 8 sites, each site being 150 mm² in size. Counts were performed for PBS, sFRP4, and Avastin treatment groups.

Immunohistochemistry

Cryostat sections of frozen tissue were cut at 6 μm, placed on Super Frost Plus slides, and stored at −20°C until use. Immediately before commencing immunostaining, the sections were washed in PBS buffer for 2 minutes before incubation with 3% H₂O₂ (in methanol) for 25 minutes at room temperature to block endogenous peroxide activity before 3% bovine serum albumin in PBS for 60 minutes at room temperature to block nonspecific binding. Sections were stained using Mec 13.3 antibody (rat anti-mouse CD-31) at a 1:100 dilution (BD Pharmingen, San Diego, CA) overnight at 4°C and then washed in PBS buffer (2 × 2 minutes) at room temperature. The secondary biotinylated antibody (anti-rat) was applied at a 1:500 dilution (Universal secondary, Vector Laboratories Inc., Burlingame, CA) for 90 minutes at room temperature, followed by 2 × 2 minute washes in PBS. The ABC kit (Vectastain Elite ABC, Vector Laboratories Inc., Burlingame, CA) was added for 60 minutes, again followed by 2 × 2 minute PBS washes. Diaminobenzidine (Sigma, Australia) was used as a chromogen to visualize the antibody–antigen complex. Sections were counterstained in Harris’s hematoxylin for 45 seconds, dehydrated, cleared, and mounted in DPX. Slides were examined using an Olympus BX50 with MicroFire (Optronics) microscope connected to a Micro Brightfield MBF camera and, using Stereo Investigator software, both normal and apoptotic endothelial cells were counted at ×40 magnification by random sampling of 8 sites, each site being 150 μm × 150 μm in size. Counts were performed for PBS, sFRP4, and Avastin treatment groups.

Detection of Apoptosis

TUNEL Assay

Cell death was localized in tissue by TUNEL analysis. Paraffin sections were cut (4 μm) using a microtome and then dewaxed by two washes in toluene (5 minutes). Sections were rehydrated through a graded series of ethanol and PBS and then incubated with proteinase K (20 μg/ml) in PBS for 30 minutes at 37°C. Thereafter, an in situ apoptosis kit (Aptosis Detection kit, Chemicon International, Temecula, CA) was used for nick-end labeling according to the manufacturer’s protocol. Nuclei with DNA cleavage were visualized with DAB (3,3’-diaminobenzidine tetrahydrochloride), and sections were counterstained with methyl green. Postweaning mammary gland was used as a positive control. Labeling was visualized indirectly with peroxidase-labeled antidigoxigenin antibody. Sections that were near the maximal diameter of the tumor were selected for investigation. Slides were examined using an Olympus BX50 with MicroFire (Optronics) microscope connected to a Micro Brightfield MBF camera and, using Stereo Investigator software, both normal and apoptotic endothelial cells were counted at ×40 magnification by random sampling of 8 sites, each site being 150 μm × 150 μm in size. Counts were performed for PBS, sFRP4, and Avastin treatment groups.

JC-1 Assay

Initiation of apoptosis was determined using the JC-1 technique. At the onset of apoptosis the mitochondrial membrane is rapidly depolarized. When the mitochondrial membrane is polarized the JC-1 dye (5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethyl-benzimidazolyl-carbocyanine iodide) aggregates and fluoresces red. On depolarization, JC-1 forms a green fluorescent monomer, so the ratio of aggregated to monomeric JC-1 gives a quantitative representation of the extent of mitochondrial membrane permeability. Apoptotic cells primarily demonstrate green fluorescence, whereas healthy cell fluoresce red/green. Briefly, cells were grown at 1 × 10⁵ c/ml in 96-well plates for 24 hours. After either 1 or 3 hours of 2.5 mM/L JC-1 (Molecular Probes T-3168) dye diluted 1:75 in Hams F12-K was added and incubated for 60 minutes. Positive controls were conducted by the addition of 50 μmol/L FCCP (carbonyl cyanide p-[trifluoromethoxy] phenylhydrazone). JC-1 was removed and cells washed with 5% bovine serum albumin in PBS. Plates were analyzed using a Fluostar fluorescent plate reader. The green monomeric form has absorption/emission maxima of 510/527 nm while the aggregate (red) form has absorption/emission maxima of 585/590 nm. Raw values at 590 nm were divided by the raw values of the corresponding well at 520 nm.

Statistical Analyses

Data are presented as mean ± SEM. n for each experiment is indicated in figure legends and refers to the number of well replicates per group. Analysis of variance was used to assess variation between control and treatment groups. For comparisons in which F test for the analysis of variance reached statistical significance (P < 0.05), differences were assessed by least significant difference test.

Results

In Vitro Studies

We used a wound scratch assay using two concentrations of sFRP4 (125pg/ml and 250pg/ml) on three different endothelial cell lines; primary PAECs and the immor-
talized human EC lines, ECV-304 and EA.hy926. In all three cell types, sFRP4 induced a significant reduction ($P < 0.05$) in EC migration (Figure 1A). Treatment with 250 pg/ml and 125 pg/ml were equally effective in inhibiting wound healing (Figure 1A), thus the 125 pg/ml dose was used in subsequent studies. Inhibitory effects of sFRP4 on PAEC migration were maintained up to 24 hours after treatment as indicated in the time course results (Figure 1B). However, this inhibition was abolished within three hours of washing for the 125 pg/ml dose. The duration of these inhibitory effects on EC migration healing suggest that sFRP4 exerts its effect by inhibiting both proliferation and migration of endothelial cells.

Chemotactic migration of endothelial cells is a key event in angiogenesis, and we investigated the effect of sFRP4 on EC migration using a Boyden’s chamber migration assay and HUVECs. EC migration was significantly reduced ($P < 0.01$) after sFRP4 treatment of 125 pg/ml (Figure 1C).

Endothelial cell ring formation and ring stability also were examined using HUVECs. sFRP4 administration induced a significant reduction in numbers of endothelial rings formed ($P < 0.01$; Figure 1D) and a reduction of pseudopodia, together with a loss of stability of ring structures within 30 minutes of sFRP4 treatment (Figure 1E). Together these results demonstrate inhibition of endothelial cell spreading, development of pseudopodia, and sprout formation, all of which are important in the initiation and development of angiogenesis.

The interaction between sFRP4 and VEGF was also examined using the wound scratch assay. Addition of VEGF to EA.hy926 cells (which express the VEGF receptor) predictably increased the percentage of wound healing ($P < 0.01$), whereas addition of the VEGF receptor blocker Avastin restored wound healing activity to control levels. sFRP4, both in the presence or absence of VEGF, significantly reduced ($P < 0.01$) wound healing (Figure 1F) to a greater extent than observed for Avastin ($P < 0.01$). Thus, exogenous VEGF is unable to block the effects of sFRP4 on cell migration.

Functional Analysis of sFRP4-Wnt Signaling Pathway Interaction in Vitro

Our *in vitro* data demonstrated a significant effect of sFRP4 on migration; therefore, we examined the expres-
sFRP4: An Angiogenesis Inhibitor

Wnt/Calcium Pathway

The impact of sFRP4 on the Wnt/calcium pathway was examined using HUVECs. After administration of sFRP4 there was a steady time-dependent increase in intracellular calcium levels. The resultant significant increase ($P < 0.05$) in intracellular calcium levels once steady state was reached is shown in Figure 2C. Our findings indicate that sFRP4 not only blocks the Wnt/β-catenin pathway but it also activates the Wnt/Calcium pathway.

Wnt/Planar Cell Polarity Pathway

Involvement of sFRP4 in the planar cell polarity/c-Jun NH2-terminal kinase (JNK) pathway was also examined using HUVECs. Western blot analysis demonstrated a reduction in nuclear c-Jun protein expression after treatment with 125 and 250 pg/ml sFRP4 (Figure 2D). Therefore, our data demonstrate a regulatory role of sFRP4 in all three Wnt signaling pathways.

Involvement of sFRP4 in Redox Activation

Reactive oxygen species (ROS), particularly H_2O_2, promote cell death in tumor models via a stress-induced apoptotic pathway,32 whereas FoxO (a Forkhead transcription factors class) antagonizes ROS effects.33 ROS may perform a role in the antiangiogenic effects of sFRP4 through the β-catenin–T-cell factor (Tcf) axis because FoxO-mediated transcription requires binding of β-catenin.34 β-catenin is required for the transcriptional activity of the Tcf family of transcription factors, which are the downstream effectors of the Wnt/β-catenin pathway.9,35 The involvement of ROS as a possible effector pathway for sFRP4 was investigated in vitro with EA.hy926 cells. Incubation with sFRP4 increased levels of both superoxide and H_2O_2 (Figure 3, A and B), a consequence of reduced levels of cellular catalase (Figure 3C), a free radical scavenger essential for maintenance of normal cell function. Administration of SOD, which can counteract the activation of the ROS pathway, resulted in restoration of the inhibitory effect of sFRP4 on wound healing (Figure 3D). These results indicate that sFRP4 is able to activate ROS, most likely because of its ability to block Wnt/β-catenin interaction, thereby interfering with FoxO-mediated transcription and, subsequently, Tcf activity.

Thus, sFRP4 clearly demonstrated antiangiogenic effects on endothelial cells in vitro, and subsequent investigations examined its potential as an angiogenesis inhibitor in vivo.

Investigation of sFRP4 Effects in an in Vivo Environment

We examined the effect of recombinant sFRP4 on the whole vascular bed of the developing embryo (day 3) using a modified chicken chorioallantoic membrane assay.26 A significant reduction in vascularity was observed in the area of sFRP4 application. This reduction of vascularity is illustrated in Figure 4A, which comprises con-
trol and sFRP4 treated groups at 0, 6, and 12 hours posttreatment, together with their corresponding mean vessel lengths.

Vessel formation and the effect of sFRP4 were examined using three in vivo assays (cotton plug, Matrigel sponge, and Matrigel plug implants). After sFRP4 treatment, all groups showed a significant decrease in the amount of hemoglobin (Figure 4B), indicating a reduction in vascularization from control levels. The number of junctions (branch points) was also quantified, with all treatment groups showing a significant reduction (Figure 4C).

Finally, the effect of sFRP4 on the growth of an established aggressive tumor was then examined using a murine tumor model. SKOV-3 cells, an aggressive human tumor cell line derived from ovarian serous cystadenocarcinoma, were implanted subcutaneously into BALB/c nude mice. Strikingly, over a treatment period of 3 weeks, the efficacy of sFRP4 to inhibit angiogenesis mimicked the effects of the VEGF-blocking antibody Avastin, a clinically approved angiogenesis inhibitor (Figure 5, A and B). Furthermore, endothelial cell numbers were significantly reduced (P < 0.05) in both sFRP4 and Avastin-treated groups compared with the control (Figure 5C).

Microscopically, there was no evidence of cellular degeneration among the tumor cells, however the cytoplasm within the SKOV cells in the treated groups (Avastin and sFRP4) was enlarged and resembled cysts (see Supplemental Figure S2 at http://ajp.amjpathol.org). Treatment with sFRP4 or Avastin did not result in any evidence of systemic toxicity or adverse effects as illustrated by unchanged animal behavior, bodyweight, or macroscopic appearance of the liver or kidney at necropsy. Liver and kidney samples examined using light microscopy showed no adverse effects of treatment (see Supplemental Figure S3 at http://ajp.amjpathol.org).

sFRP4 and Avastin treated tumors showed few apoptotic events that did not differ from control levels, as determined using TUNEL assay (Figure 5D). The few sites of apoptotic activity were localized to the endothelium of sFRP4 and Avastin-treated tumors (Figure 5E). This observation, together with strong in vitro evidence, suggests that sFRP4 acts on tumor blood vessels and thus indirectly restricts tumor growth. To test this hypothesis, HUVECs and SKOV-3 cells were exposed to sFRP4 in vitro for 24 hours and, using a JC-1 assay, we observed that sFRP4 induced apoptosis in HUVECs (Figure 5F). In contrast, SKOV-3 cells exhibited no change in viability, suggesting that sFRP4 indeed predominantly inhibits angiogenesis by selectively targeting EC.

Discussion

Although the sFRPs are normally associated with antagonism of the Wnt signaling pathway, depending on their concentration, they may promote Wnt activity.12 Our data demonstrate a steady increase in intracellular calcium levels after sFRP4 treatment, and it has been shown that such a prolonged but low increase in total intracellular
Recent studies have shown that sFRP2 can stimulate the Wnt/Ca⁺/H11001 pathway by dephosphorylation of cytoplasmic nuclear factor associated with T cells (NFAT) by calcineurin, leading to translocation of NFAT into the nucleus where it acts as a transcription factor. This may explain the ability of sFRP4 to activate the Wnt/Ca⁺/H11001 pathway in our studies.

LiCl has been shown to block the activation of GSK3-β, thereby increasing cytoplasmic β-catenin levels and allowing β-catenin translocation to the nucleus. In the nucleus it can bind to transcription factors of the T-cell factor/lymphocyte enhancing factor family (Tcf/Lef) and upregulate genes associated with angiogenesis such as the matrix metalloproteinase 7 and the extracellular matrix component fibronectin; as well as genes associated with migration and proliferation such as cyclin D1, c-myc, cyclooxygenase-2, and VEGF. A recent report has demonstrated that, in mice, Wnt7a and Wnt7b are required for normal angiogenesis in the brain and that blockade of Wnt/β-catenin also disrupts angiogenesis in the developing mouse brain.

We have demonstrated that sFRP4 suppresses the translocation of β-catenin into the nucleus of HUVECs to adversely affect EC functions (see Supplemental Figure S1 at http://ajp.amjpathol.org). Furthermore, the ability of sFRP4 to antagonize the Wnt/Planar Cell Polarity pathway by reducing nuclear c-Jun expression has a synergistic effect on reducing EC functions because JNK is required for β-catenin nuclear localization. The ability for sFRP4 to antagonize both the canonical β-catenin and noncanonical c-JNK pathways is in accordance with a previous study, which reported that sFRP4 antagonized Wnt7a signaling via both the canonical β-catenin and noncanonical c-JNK pathways in endometrial cancer cells.

Therefore, sFRP4 exhibits a multilevel effect on β-catenin. It directly antagonizes the canonical Wnt/β-catenin pathway and also the noncanonical Wnt/planar cell polarity pathway. Additionally, its activation of the Wnt/Ca⁺²⁺ pathway has an indirect effect in that it can antagonize the Wnt/β-catenin pathway. Furthermore, reduction of β-catenin correlates with EC apoptosis. Our data are in accordance with earlier findings, which reported that Wnt/β-catenin signaling is involved in the regulation of EC migration and cell cycle progression. Based on our findings we have proposed a model through which sFRP4 interacts with the Wnt signaling pathway (Figure 6).

It has recently been reported that bone morphogenetic protein 2 (BMP-2) can induce angiogenesis in human PAECs by activating both Wnt/β-catenin and Wnt/PCP signaling pathways. Our data are in accordance with earlier findings, which reported that Wnt/β-catenin signaling is involved in the regulation of EC migration and cell cycle progression. Based on our findings we have proposed a model through which sFRP4 interacts with the Wnt signaling pathway (Figure 6).

Our investigations into the effect of sFRP4 on ROS demonstrated a significant increase in the generation of superoxide and H₂O₂. It has been shown that increased cellular oxidative stress (exemplified by H₂O₂) relocalizes FOXO to the nucleus where it promotes the association of FOXOs with β-catenin and competes with the binding of
β-catenin to Tcf. H2O2 promotes FOXO-mediated transcription at the expense of β-catenin/Tcf-mediated transcription.50,51 Nitric Oxide (NO) synthesized by endothelial NO synthase (eNOS) is essential for EC survival, migration, and postnatal neovascularization. The transcriptional repression of eNOS by FOXOs might also contribute to the antiangiogenic effects of FOXOs on EC. In addition, changes in expression of several extracellular matrix proteins, such as collagen and matrix metalloproteinases, indicate that FOXOs might also be involved in regulating vessel remodeling.52 Our data demonstrated that sFRP4 facilitates the selective apoptosis of endothelial cells in vitro (Figure 5F) and this may, in part, be related to the activation of cellular reactive oxygen species, which then facilitate nuclear entry of FOXO (which preferentially binds to the limited pool of nuclear β-catenin), thus driving the cell toward apoptosis. A proposed model for the interaction between ROS and Wnt (through its action on nuclear β-catenin) is shown in Figure 7.

Our examination of a possible interaction between sFRP4 and VEGF found that the application of exogenous VEGF was unable to block the effects of sFRP4 on cell migration. A relationship between VEGF and the Wnt pathway has been reported previously,53 and the authors reported that VEGF induced EC migration and proliferation of ECs, but also drives ECs toward apoptosis and, thereby, inhibits angiogenesis.

In summary, these studies demonstrate a previously unknown role of sFRP4 as an inhibitor of angiogenesis and illustrate sFRP4 inhibition of blood vessel formation through tyrosine phosphorylation of β-catenin that was dependent on protein kinase C. Recently the Wnt/β-catenin pathway has been reported to regulate VEGF-A gene transcription.54 Our in vitro results indicate that sFRP4 inhibits EC migration and proliferation by blocking β-catenin entry into the nucleus, thereby preventing transcription of angiogenesis-associated genes (eg, VEGF). The non-canonical Wnt5a signaling pathway has been recently demonstrated to induce proliferation and survival of ECs while up-regulating matrix metalloproteinase-1 expression in ECs.5 The primary step in angiogenesis involves breakdown of the extracellular matrix,35 and our in vitro data demonstrate that sFRP4 prevents formation of pseudopodia, EC ring formation, and disruption of ring structures in EC via its effects on both canonical and noncanonical Wnt signaling pathways by reducing nuclear entry of β-catenin. In addition, the activation of ROS by sFRP4 also reduces the nuclear levels of β-catenin. The net result is that sFRP4 not only reduces migration and proliferation of ECs, but also drives ECs toward apoptosis and, thereby, inhibits angiogenesis.
both in vitro and in vivo. This unique antiangiogenic effect of sFRP4 affects the Wnt/β-catenin and PCP signaling pathways to inhibit the accumulation of β-catenin in the nucleus of endothelial cells. As a consequence, sFRP4 inhibits the migration and proliferation of endothelial cells, both crucial steps in angiogenesis. In addition, sFRP4 is able to increase levels of ROS in ECs, thereby promoting EC apoptosis. Thus, our data promote sFRP4 as a potent angiogenesis inhibitor, which has therapeutic potential for the control of angiogenesis-dependent pathologies.

Acknowledgments

We thank Vijay Shah (GI Research Unit, Mayo Clinic, Rochester, MN) for the ECV-304 cells, Cora-Jean Edgel (Tissue Culture Facility, UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill) for the Li EA.hy926 cells Robert Rieben (University of Bern, Switzerland) for the PAECs and Dr. Chooi-May Lai (Lions Eye Institute, The University of Western Australia) for the HUVECs. We thank Robert Friis (University of Bern, Switzerland) for his scientific advice. We also thank Mary Lee, Leonie Khoo, Guy Bell-Arn, Make Bollen, Greg Cozens, Uttara Saran, Simon Mahoney, David Longman, and Bernadette Pedersen (School of Anatomy and Human Biology, The University of Western Australia) for their technical assistance and Simon handheld (Office of Industry and Innovation, The University of Western Australia) for his support and help with the patent application and commercialization of this protein.

References

6. Goodwin AM, Kitajewski J, D’Amore PA: Wnt1 and Wnt5a affect endothelial proliferation and capillary length; Wnt2 does not. Growth Factors 2007, 25:25–32
15. Drake JM, Friis RR, Dharmarajan AM: The role of sFRP4, a secreted frizzled-related protein, in ovulation. Apoptosis 2003, 8:389–397
23. Viola HM, Arthur PG, Hool LC: Transient exposure to hydrogen peroxide causes an increase in mitochondria-derived superoxide as a result of sustained alteration in L-type Ca2+ channel function in the absence of apoptosis in ventricular myocytes. Circ Res 2007, 100:1036–1044
34. Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering

