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ABSTRACT 

Engineering Hypertrophic Chondrocyte-based Grafts for Enhanced Bone 

Regeneration 

Jonathan C. Bernhard 

Bone formation occurs through two ossification processes, intramembranous and endochondral. 

Intramembranous ossification is characterized by the direct differentiation of stem cells into 

osteoblasts, which then create bone. Endochondral ossification involves an intermediate step, as 

stem cells first differentiate into chondrocytes and produce a cartilage anlage. The chondrocytes 

mature into hypertrophic chondrocytes, which transform the cartilage anlage into bone. Bone 

tissue engineering has predominantly mimicked intramembranous ossification, creating 

osteoblast-based grafts through the direct differentiation of stem cells. Though successful in 

specific applications, greater adoption of osteoblast-based grafts has failed due to incomplete 

integration, limited regeneration, and poor mechanical maintenance. To overcome these 

obstacles, inspiration was drawn from native bone fracture repair, creating tissue engineered 

bone grafts replicating endochondral ossification.  

Hypertrophic chondrocytes, the key cell in endochondral ossification, were differentiated from 

mesenchymal stem cell sources by first generating chondrocytes and then instigating maturation 

to hypertrophic chondrocytes. Conditions influencing this differentiation were investigated, 

indicating the necessity of prolonged chondrogenic cultivation and elevated oxygen 

concentrations to ensure widespread hypertrophic maturation. Comparing the bone production 

performance of differentiated hypertrophic chondrocytes to differentiated osteoblasts revealed 

that hypertrophic chondrocytes deposit significantly greater volume of bone mineral at a higher 

density than osteoblasts, albeit in a more juvenile form. When implanted subcutaneously, the 

hypertrophic chondrocytes stimulated turnover of this juvenile template into compact-like bone, 

whereas osteoblasts proceeded with processes similar to bone remodeling, generating spongy-



 

like bone. Implanting these tissue engineered constructs into an orthotopic, critical-sized femoral 

defect saw hypertrophic chondrocyte-based constructs integrate quickly with the femur and 

facilitate the creation of significantly more bone, resulting in a successful bridging of the defect. 

The success of hypertrophic chondrocyte-based grafts in overcoming the failures of tissue 

engineered bone grafts demonstrates the potential of endochondral ossification inspired bone 

strategies and prompts its further investigation towards clinical utilization.   
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PART I 

INTRODUCTION 
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1 Background 

Bone is formed and maintained following an intricate and finely balanced set of 

processes that requires coordination and cooperation of various cell types, such as osteocytes, 

osteoblasts, and osteoclasts (1). These cells are sensitive to chemical and mechanical stimuli and 

actively communicate with one another (1, 2). Herein lays the greatest challenge for tissue 

engineers, as constructed bone grafts must adapt to the challenging environment and various cell 

types in order to be successful (3). Recently within tissue engineering, a “developmental 

paradigm” has gained popularity, attempting to closely mimic the native processes of tissue 

formation and repair to improve construct success (4). Therefore, native bone formation 

processes were used as inspiration to design new grafts with clinical potential.  

1.1 BONE BIOLOGY: 

Bone is a truly remarkable material, providing exceptional strength with minimal weight 

(5), which allows it to serve as the body’s support structure. In this role, bone protects the vital 

internal organs, withstands load, and serves as levers for muscle contraction to produce 

movement (2, 6). Though commonly seen as inert, bone is a dynamic organ, constantly 

remodeling in response to stimuli, participating in metabolic activity as a mineral reservoir, and 

housing the bone marrow (3, 7, 8).  

The skeleton is composed of a variety of bone types, geometries, and mechanical 

properties. Bone can be divided into two main types, cortical (80%) and cancellous bone (20%), 

which combine in different ratios to construct various bones (9). Cortical bone is compact, solid 

and strong (12-20 GPa stiffness) while cancellous bone forms in a honeycomb shape consisting 

of trabeculae filled with bone marrow (0.2-0.9 GPa stiffness) (9, 10). An example of the 
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combination of these two bone types is the femur, which contains an outer shell of cortical bone 

that surrounds an interior of bone marrow and cancellous bone (Figure 1.1 (11)).  

 

 

1.2 BONE DEVELOPMENT 

Bone formation occurs in humans about 4 weeks post-conception through the two 

ossification pathways, intramembranous ossification and endochondral ossification (2). In 

intramembranous ossification, osteoblasts directly differentiate from mesenchymal stem sources 

(MSC) and deposit bone within the existing fibrous matrix, with the formed bone often 

characterized by spicule formation (Figure 1.2) (12, 13). These spicules grow, fuse into 

trabeculae, and are later remodeled into mature bone (14, 15). Intramembranous ossification is 

responsible for the formation of the cranium and rib cage flat bones.  

Figure 1.1: Cortical and cancellous bone 
in the adult, human femur. The dense 
cortical bone forms a shell around the inner, 
porous cancellous bone. Within the pore 
space of the cancellous bone resides the  
bone marrow (11). 



 2 

 

Endochondral ossification is characterized by the formation of a cartilage intermediate 

that serves as the template for bone (Figure 1.3) (17). Endochondral ossification begins with the 

condensation of mesenchymal stem cells, and their subsequent differentiation into chondrocytes. 

After undergoing proliferation, these chondrocytes deposit matrix to form a cartilage anlage (18). 

After matrix production, the chondrocytes mature into an advanced state, hypertrophic 

chondrocytes, that orchestrate the breakdown of the cartilage anlage, the invasion of vasculature, 

Figure 1.2: Bone development through intramembranous ossification. Intramembranous 
ossification is initiated with mesenchymal stem cell condensation amid a fibrous environment. 
Within this cluster, osteoblasts differentiate to form an ossification center for bone formation (1). 
Within the ossification center, osteoblasts deposit bone matrix and expand the area of 
ossification. Osteoblasts that become entrapped within the deposited bone matrix differentiate 
into osteocytes (2). As the bone is being deposited, vascularization occurs within the ossification 
center causing a random deposition of bone and the formation of trabeculae (3). The external 
areas of the ossification center, with the help of the newly formed periosteum, become condensed 
cortical bone, as bone marrow is developed in the interstitial trabecular space (4). (16) 
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and the construction of bone (19, 20). After bone template deposition, osteoblasts and osteoclasts 

remodel the initial bone into mature bone (21). The source of these osteoblasts is under debate, 

as research has suggested that migration and differentiation of MSCs and the transdifferentiation 

of hypertrophic chondrocytes into osteoblasts are both feasible (22, 23). The majority of bones 

are developed through endochondral ossification and this process powers bone elongation 

through the growth plate (24). In addition, endochondral ossification has a primary role in the 

formation of bone marrow and hematopoiesis (25).  
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Figure 1.3: Bone development through endochondral ossification. Endochondral ossification 
is initiated with the condensation of mesenchymal stem cells. These cells differentiate into 
chondrocytes, and create a cartilage anlage (1). The chondrocytes mature to hypertrophic 
chondrocytes, which orchestrate the growth of the cartilage anlage and its ossification (2). In 
long bone development, this ossification begins at the center of the anlage, which will later 
become the diaphysis of the bone (3). Similar to intramembranous ossification, the introduction 
of vascularization coincides with bone deposition, creating randomly distributed trabeculae 
within the middle of the future diaphysis (3). Compact bone forms on the exterior, aided by the 
formed, highly vascularized periosteum (3). As the ossification center progresses from the center 
out to the ends of the long bone, secondary ossification centers occur in the bone heads, 
following the same cartilage to bone transition that occurred initially (4). With the secondary 
ossification centers forming the bone ends, the primary ossification center in the diaphysis 
continues to progress towards this secondary ossification, lengthening the bone and diminishing 
the amount of remaining cartilage anlage (5). The remaining cartilage anlage persists through 
adolescence, and is referred to as the growth plate. In early adulthood, the last of the cartilage 
anlage is eventually ossified, resulting in the closure of the growth plates and skeletal maturity 
(6). (26) 
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1.3 HYPERTROPHIC CHONDROCYTES 

The crux of endochondral ossification is the transformation of the cartilage anlage into a 

bone template, making hypertrophic chondrocytes the key cell type of this pathway (27, 28). 

Hypertrophic chondrocyte maturation is marked by the swelling of the chondrocyte volume by 

almost 20 fold (19), and progresses through a combination of three main signaling pathways, 

IHH/PTHrP, Wnt/ ß-catenin, and BMP pathways, with possible crosstalk occurring (29-31).  

 

Hypertrophic chondrocytes straddle the in between of chondrocytes and osteoblasts, 

being surrounded by a cartilage matrix, but releasing mineral matrix vesicles and upregulating 

expression of important bone genes such as RUNX2, ALPL, and IBSP (32, 33). However, 

unique to the hypertrophic chondrocyte is the deposition of collagen type X, a special form of 

collagen that helps facilitate the mineralization of the cartilage anlage (34). Hypertrophic 

chondrocytes also express vascular endothelial growth factor (VEGF), and studies have 

Figure 1.4: Chondrocyte maturation to hypertrophic chondrocytes. This figure represents the 
various states of chondrocyte maturation, demonstrating the associated cytokines and 
interactions with the perichondrium necessary for progression. Chondrocyte maturation begins 
with the resting chondrocyte, which is then activated into a proliferating state. Upon 
chondrocyte proliferation, chondrocytes progress to a prehypertrohpic state that culminates with 
the increase in cell volume 10-15 fold, and the final hypertrophic chondrocyte maturation. (19) 
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elucidated their pivotal role in stimulating vascularization, further accelerating turnover and 

providing a source of needed nutrients for bone formation (35-37).  

1.4 BONE FRACTURE REPAIR 

Bone is a unique tissue, as it is able to fully heal itself without scar formation (38). The 

highly vascular nature and proximity of stem cell sources allow seamless repair following the 

two main ossification pathways (Figure 1.5) (39). Computational modeling and animal studies 

have uncovered key variables that influence the ossification pathway followed. In a mechanically 

stable and well-perfused environment, intramembranous ossification is followed (20, 40-42). 

From a repair and regeneration standpoint, these situations occur with small breaks, as the direct 

reconnection of bone or a small gap can be easily overcome (43-45). In such small breaks, the 

general support structure of the bone is not compromised and the existing vasculature can 

provide the necessary factors and nutrients needed. Most broken bones are treated this way, 

through the common clinical practice of realignment and stabilization of the break.  
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In contrast, if the defect is unstable, critical in size, or contains a nutrient-poor 

environment due to the destruction of the existing vasculature, endochondral ossification occurs 

(47, 48). Chondrocytes are able to survive in low-nutrient, mechanically intensive environments, 

which sways the differentiation of invading stem cells towards chondrocyte differentiation, 

cartilage callus formation and endochondral ossification (Figure 1.6). The cartilage callus 

provides stabilization that the hematoma cannot. Upon maturation, hypertrophic chondrocytes 

act as key drivers of bone vascularization, and with stability and increased nutrient presence, the 

Figure 1.5: Differentiation of each key cell type in the ossification pathways. Endochondral 
ossification (top) progresses from mesenchymal stem cell to chondrocyte, proliferating 
chondrocyte, and mature into hypertrophic chondrocytes. The figure demonstrates important 
cytokines (PTH, BMP/Wnt, PTHrP) that facilitate this maturation. Intramembranous ossification 
(bottom) begins with the mesenchymal stem cell advancing to an osteoprogenitor, which then 
differentiates into an osteoblast, the main bone producer in intramembranous ossification. In this 
pathway, PTH/Wnt, Sclerostin, and DKK1 are all essential for osteoblast differentiation. In 
formed bone, the osteoblasts can become osteocytes, which manage the bone, potentially 
recruiting osteoclasts for bone catabolism. (46) 
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cartilage anlage is able to undergo transition into mature bone (49, 50). The processes used in 

fracture repair recapitulate the processes used in initial bone development (51).  

 

1.5 BONE REMODELING 

Throughout life, the skeletal system is constantly undergoing turnover, rebuilding the 

bodily framework for optimal structural support while using minimal material (6). Resorption of 

unwanted bone occurs through osteoclasts, giant multinucleated cells that are derived from 

hematopoietic cells. Osteoblasts balance this homeostasis by depositing new bone (52). A 

Figure 1.6: Long bone fracture repair. After fracture, inflammation occurs and a hematoma is 
formed. From this hematoma, differentiated chondrocytes form a soft callus through the 
deposition of a cartilage anlage. With the maturation of the chondrocytes to hypertrophic 
chondrocytes, the soft callus is mineralized and vascularized into a hard callus. Osteoblasts and 
osteoclasts then remodel the hard callus into bone, complete with entrapped osteocytes. (46) 
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majority of remodeling occurs in the same space, as osteoblasts deposit new bone into the 

osteoclast-mediated resorbed space, termed Howship’s lacunae (53). Osteocytes, the mature 

bone cell that differentiates from osteoblasts trapped within the bone matrix, control bone 

remodeling (54). Osteocytes respond to various external cues by releasing a number of proteins, 

both systemically and locally, to recruit and activate the specialized anabolic and catabolic cells 

(7).  

1.6 CLINICAL PROBLEM AND TREATMENTS 

The bone is a resilient organ, as it is one of the few structures in the body that is able to 

spontaneously regenerate without scar formation from the initial injury. However, the bone’s 

ability to self-repair can be overwhelmed, resulting in a fibrous tissue filled defect in the bone, 

termed a nonunion (Figure 1.7). Without complete structural continuity, bone is not able to 

perform its primary support functions, and the patient is severely disabled. ~10% of all long bone 

fractures result in a nonunion (55-57), requiring external intervention. Even worse, up to 30% of 

surgical interventions result in failure, requiring further surgery and an extension of patient 

disability (56). Autografts are the gold standard; however the amount of bone required for long 

bone nonunion treatment is usually too large to sacrifice. Therefore, new alternatives are being 

pursued in order to improve patient outcomes and replace autografts as the premiere treatment 

solution. One area of prime interest is in bone tissue engineering.   
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1.7 BONE TISSUE ENGINEERING 

With the ease of harvest and multi-lineage potential of mesenchymal stem cells (MSC), 

coupled with the recent advances in induced pluripotent stem cells (iPSC), tissue engineering 

aims to provide autograft-like results without the necessity of donor tissue harvest or associated 

complications. Over the last 20 years, most bone tissue engineering strategies have followed an 

intramembranous pathway (59). The simple, well-established protocol for osteoblast derivation 

has been supplemented with osteoinductive scaffolds and mechanically-stimulating bioreactors 

to produce advanced grafts that attempt to meet important graft requirements: mechanical 

stabilization, integration with native bone, stimulation of regeneration and vascularization (3, 

60). Despite heavy investment and the numerous variations studied, a viable, tissue engineered-

solution for long bone fracture has yet to reach fruition.  

 One possibility for the widespread underwhelming performance of tissue engineered 

bone grafts could be the ossification pathway utilized. In native fracture repair, endochondral 

ossification ensures mechanical stabilization of the defect, quick integration with the healthy 

bone, wide-scale vascularization, and rapid turnover of the callus into mature bone. These 

numerous benefits suggest the appeal of an endochondral ossification pathway for bone tissue 

Figure 1.7: Long bone nonunion. Improper 
healing of a long bone fracture results in the 
formation of a nonunion, as demonstrated 
by the disconnect in the humerus. This space 
is filled with fibrous tissue, instead of bone, 
compromising the support functions of the 
skeleton. (58) 
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engineered grafts (17). Recent advances have demonstrated the ability to derive hypertrophic 

chondrocytes, the key cell in endochondral ossification, from MSC sources (61, 62). These 

hypertrophic chondrocytes provide an enticing alternative pathway for bone tissue engineering 

(63). However, derived hypertrophic chondrocytes have not been extensively studied and require 

further investigation concerning their ability and suitability for bone tissue engineered grafts.   
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2 Objective 

2.1 HYPOTHESIS 

The hypothesis is that the development of hypertrophic chondrocyte-based tissue engineered 

grafts enhances bone regeneration.   

2.2 SPECIFIC AIMS 

The goal of this dissertation is to better understand the factors that influence hypertrophic 

chondrocyte derivation and utilize this knowledge for the creation of superior bone tissue 

engineered grafts. The first two aims focus on elucidating the biochemical factors that influence 

hypertrophic maturation and modulate bone template deposition. The final aim evaluates the 

performance of hypertrophic chondrocyte-based tissue engineered bone grafts in in vivo 

environments, elucidating mineral deposition and vascularization in a subcutaneous (ectopic) 

model and the stimulation of bone regeneration in a critical-sized long bone defect (orthotopic) 

model.  

 Aim 1: Elucidate the impact of oxygen concentration on the hypertrophic 

maturation of derived chondrocytes 

A defining trait of cartilage is its hypoxic environment, as the lack of vasculature restricts 

oxygen and nutrient delivery. In endochondral ossification, the maturation of hypertrophic 

chondrocytes correlates with vascular invasion of the cartilage anlage and a rise in the local 

oxygen concentration (64). In vitro cultivation has demonstrated that culturing MSC-derived 

chondrocytes in hypoxic conditions, in essence replicating the native cartilage oxygen tension, 

enhances chondrogenesis and resists hypertrophic maturation (65-67). The goal of this aim was 
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to determine the effect that oxygen tension has on induced hypertrophic chondrocyte 

differentiation and to probe if an endochondral ossification-mimicking oxygen environment can 

enhance hypertrophic maturation by overcoming the resistive effects of hypoxia. The hypothesis 

stated that transitory application of hypoxia during chondrogenic differentiation suppresses 

induced hypertrophic maturation.  

 Aim 2: Measure the effect of advanced chondrogenic states on hypertrophic 

maturation and bone production 

Endochondral ossification progresses along a defined pathway, progressing through various 

states from MSC condensation to final osteoblast-mediated bone remodeling (19). Hypertrophic 

chondrocytes are derived from advanced chondrocyte states, which have produced extensive 

cartilage matrix and have started to enlarge in cell size (68). The published work on hypertrophic 

chondrocyte differentiation of MSC sources in vitro does not include an extensive 

characterization of the chondrocyte state before hypertrophic maturation (61, 62, 69). The 

transient nature of MSC-derived chondrocytes allows the replication of various chondrocyte 

states through the duration of culture (70-72). The goal of this study was to characterize the 

chondrocyte state before induction of hypertrophic maturation, measuring the importance that 

chondrocyte state has on hypertrophic maturation and bone production. The hypothesis stated 

that advanced chondrocyte states, created by prolonged chondrogenic culture, results in superior 

hypertrophic maturation and bone template deposition.  
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 Aim 3: Evaluate the ability of hypertrophic chondrocytes to mediate fast, 

vascularized bone deposition that integrates with host bone.   

In long bone fractures, the mechanical instability and scarcity of nutrients within the bone 

regeneration environment favors endochondral ossification over intramembranous ossification 

(73-75). Until recently, bone tissue engineers have primarily utilized derived osteoblasts, despite 

the similarity in state of a freshly implanted bone graft to a long bone fracture environment: the 

mechanical instability caused by a native bone/ graft property mismatch and the nutrient scarce 

environment caused by a lack of mature vasculature (73-75). The goal of this aim was to study 

the performance of hypertrophic chondrocyte-based bone grafts, assessing their ability to 

stimulate bone formation and fracture repair through two studies. The first study investigated the 

bone template deposition and the incorporation of host vasculature in a subcutaneous, ectopic 

model, with the hypothesis stating that hypertrophic chondrocytes facilitate localized mineral 

deposition and promote widespread vascularization. The second study implanted hypertrophic 

chondrocyte-based bone grafts into a critical sized femoral defect and evaluated regeneration. 

The hypothesis of the second study stated that hypertrophic chondrocyte-based scaffolds rapidly 

enhanced long bone defect regeneration.  
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3 Motivation and Approach 

Aim 1: Elucidate the impact of oxygen concentration on the hypertrophic maturation of 

derived chondrocytes 

3.1 MOTIVATION FOR AIM 1  

Though referred to as normoxia, cell culture is usually conducted at the ambient oxygen 

concentration of ~21%, substantially higher than physiological levels in the developing cartilage. 

During the various developmental stages, the oxygen concentration in the cartilage anlage can 

vary between 2-10% (76, 77). Studies probing the impact of oxygen concentration on cell 

behavior have shown that these superoxic conditions elicit unusual activity, characterized by 

higher metabolic activity and acceleration in maturation that may cause mutagenesis (78, 79). 

Chondrogenically differentiated MSCs in a hypoxic environment that matched native cartilage, 

enhanced chondrogenesis and suppressed hypertrophic maturation (65, 80) despite the well-

documented transient nature of MSC-derived chondrocytes (70-72). Hypoxic environments even 

repressed induced hypertrophic maturation with thyroid hormones (81), as it has been shown that 

low oxygen situations mediate the upregulation of hypertrophy resistive genes (82, 83).  

In endochondral ossification, hypertrophic chondrocyte presence corresponds with 

vascular invasion (Figure 1.3), with hypertrophic chondrocytes locally preceding the infiltration 

of vasculature. The proximity of hypertrophic chondrocytes to new vasculature possibly suggests 

the requirement of elevated oxygen concentrations for chondrocyte hypertrophy. This study 

aimed to replicate the endochondral process with regards to oxygen tension, by chondrogenically 

differentiating in low oxygen concentrations and hypertrophically maturating in elevated oxygen 
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concentrations, to understand if the change in oxygen concentration influences hypertrophic 

differentiation and bone matrix production.  

3.2 APPROACH AND RATIONALE FOR AIM 1 

To elucidate the impact of oxygen concentration on hypertrophic maturation, we 

differentiated mesenchymal cell pellets in either hypoxic (5%) or normoxic (21%) 

concentrations. To replicate endochondral ossification, an experimental group was created in 

which pellets were transferred from hypoxia to normoxia at the culmination of chondrogenic 

differentiation and the initiation of hypertrophic maturation. Hypertrophic maturation and bone 

deposition were evaluated through gene expression and matrix deposition, utilizing histology and 

µCT.  

In this study, pellet cultures were utilized based on previous literature. Studies have 

validated the pellet culture as a satisfactory model of cartilage development (84), and a majority 

of the existing MSC, hypoxia literature was conducted in pellet culture (85-88). Another benefit 

of pellet culture is their relatively low cell number requirements, which allowed for fewer 

medium changes and thereby a more steady medium oxygen concentration. The hypertrophic 

induction protocol was based on published literature (61, 62).   

Aim 2: Measure the effect of advanced chondrogenic states on hypertrophic maturation 

and bone production 

3.3 MOTIVATION FOR AIM 2 

Endochondral ossification is utilized in situations requiring extensive bone formation and 

a lack of mechanical stability (89, 90). The progression of defined chondrocyte states in 
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endochondral ossification corresponds directly with this environment, as the differentiation of 

chondrocytes allows extensive, mechanically-stable matrix deposition within a nutrient scarce 

defect region (28, 91). It is after the deposition of this cartilage matrix that hypertrophic 

chondrocytes mature, utilizing the established matrix as a template to attract vasculature and 

create bone (28, 38, 51, 91).  

Though native endochondral ossification occurs along a defined pathway, tissue 

engineered mimicking of this pathway does not need to faithfully match each progression. With 

the end goal being the development of translational technologies, bypassing certain steps of the 

native process provides multiple benefits, including specification of graft properties and faster 

graft generation. Published literature has already demonstrated this technique, removing the 

inflammatory and preparatory phases of endochondral ossification and beginning with the 

condensation of mesenchymal stem cells (69, 92, 93). However, these studies did not investigate 

the importance of the chondrogenic differentiation, routinely utilizing 3 weeks of chondrogenic 

culture before inducing hypertrophy (61, 62, 69, 93-95). Though native endochondral 

ossification would suggest the differentiation of late stage chondrocytes before inducing 

hypertrophic maturation, tissue engineered solutions can replace cartilage matrix deposition with 

a designed strategy. Therefore, tissue engineers only require the most beneficial chondrocyte 

state for hypertrophic chondrocyte differentiation and bone formation.  

3.4 APPROACH AND RATIONALE FOR AIM 2 

To measure the effect of chondrogenic state on hypertrophic maturation, 16wt% silk 

fibroin scaffolds were created. Scaffolds were seeded with a standard concentration of MSCs, 30 

million cells per milliliter. Progressive chondrocyte states were produced by increasing the 
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duration of chondrogenic culture, with 1, 2.5, and 4 weeks of chondrogenic culture chosen based 

on the experience of cartilage tissue engineers (96, 97). Upon completion of chondrogenic 

culture, a portion of the constructs were harvested and the remaining constructs were 

hypertrophically induced for three weeks. The chondrocyte state was determined through gene 

expression and matrix deposition, and the degree of hypertrophy and bone deposition was 

measured through similar means, utilizing histology and µCT for visualization of matrix 

deposition. 

The transient nature of chondrogenically differentiated MSCs allowed the generation of 

various chondrocyte states by controlling the duration of chondrogenic culture (97). It has been 

shown that with increasing culture durations, chondrogenically differentiated MSCs will produce 

increasing amounts of hypertrophic markers, such as collagen type X (94, 97). Extended duration 

even results in bone formation when chondrogenically differentiated MSCs are implanted (71, 

72). This differentiation regime was carried out in silk-based scaffolds due to the scaffold 

stiffness’ similarity with values that promote chondrogenesis (98, 99). The non-human nature of 

silk and the lack of mineral in the scaffold allowed easy visualization and characterization of 

chondrocyte and hypertrophic markers and bone deposition. 

Aim 3: Evaluate the ability of hypertrophic chondrocytes to mediate fast, vascularized 

bone deposition that integrates with host bone 

3.5 MOTIVATION FOR AIM 3 

Natively, endochondral and intramembranous ossification are utilized in different 

circumstances (1). Endochondral ossification is utilized in situations requiring extensive bone 

deposition and mechanical stabilization (27). In contrast, intramembranous ossification occurs in 
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nutrient-rich environments and is responsible for the generation of mature bone (20, 40, 41). In 

line with the differing circumstances, the manner in which the key cell types of these two 

processes deposit bone and stimulate regeneration is also different. Hypertrophic chondrocytes 

deposit immature mineral containing excessive amounts of phosphate within a 

glycosaminoglycan-rich environment (100, 101), whereas polarized osteoblasts deposit mature 

mineral into a collagen-rich environment with deposition heavily influenced by the presence of 

mineral nucleators (102). Hypertrophic chondrocytes are responsible for the conversion of the 

cartilage template to bone, and multiple analyses have shown the importance of hypertrophic 

chondrocytes in prompting angiogenesis and creating a regenerative environment (103-105). Due 

to the nature of both key cell types, a characterization of the deposition tendencies and 

regenerative ability of these mimicked ossification pathways would allow tissue engineers 

further control in graft development.  

One example of the importance of understanding the abilities of derived key cell types is 

the relative futility of osteoblast-based tissue engineered grafts in repairing long bone fractures 

(3). A critical sized long bone defect presents unique challenges, requiring strong integration into 

the native skeleton, the promotion of widespread vascularization, and rapid bone deposition to 

bridge the defect, all of this taking place in a challenging mechanical environment (regardless of 

the presence of fixators). Though osteoblast-based scaffolds have largely proven unsuccessful, 

the utilization of a hypertrophic chondrocyte-based graft might regenerate the defect. 

Endochondral ossification is the natural process for long bone fracture repair, and hypertrophic 

chondrocytes stimulate vascularization and robust mineral deposition (106, 107). 

Characterization of regeneration and long bone repair will demonstrate the attributes and 

potential of hypertrophic chondrocytes for bone tissue engineering.  
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3.6 APPROACH AND RATIONALE FOR AIM 3.1 

Characterization of the mineral deposition and bone regeneration mediated by 

hypertrophic chondrocytes and osteoblasts was performed in 16wt% silk fibroin scaffolds. 

Scaffolds were seeded with the standard concentration of MSCs, 30 million cells per milliliter 

and cultured in appropriate differentiation medium for a total of five weeks. At the end of 

culture, a portion of constructs were harvested to analyze deposition and cell behavior, with the 

remaining constructs implanted subcutaneously in nude mice. Constructs were harvested at 

regular time points to analyze bone regeneration.  

Scaffolds were created from silk due to the non-human nature of silk and the lack of 

incorporated mineral, which allowed for easy visualization and characterization of the deposited 

bone matrix both after in vitro culture and in vivo implantation. No external stimuli were applied 

to the scaffolds, as it would have distorted the baseline ability of the differentiated cells. 

Implantations were conducted in the subcutaneous model, as this location provides a nutrient-

rich, stress-free environment that promotes bone formation (108, 109).  

3.7 APPROACH AND RATIONALE FOR AIM 3.2 

Bone tissue engineered constructs were created by seeding adipose derived stem cells 

(ADSCs) within decellularized bone scaffolds at the standard concentration, 30 million cells per 

milliliter, and then cultured in the appropriate medium for five weeks. External stimuli were 

applied to optimize the constructs according to published literature, with hypertrophic 

chondrocyte-based constructs statically cultured and osteoblast-based constructs cultured in 

perfusion bioreactors (93, 110). Constructs were implanted into a 5 mm femoral defect in nude 
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rats, and stabilized with an internal fixator. Defect regeneration was evaluated in vivo by µCT 

over twelve weeks, with complete defect evaluation completed upon harvest.  

The study was conducted as an analysis of critical sized defect repair, but to also evaluate 

the clinical feasibility of hypertrophic chondrocyte-based grafts. Therefore, clinically relevant 

ADSCs were utilized, as their ease of harvest and rapid doubling makes them an attractive source 

for translated tissue engineered technologies. Before use, multiple donors of ADSC were 

evaluated in comparison to various MSC donors for their ability to undergo hypertrophic 

chondrocyte differentiation (Appendix). ADSCs showed a similar ability to undergo 

hypertrophic chondrocyte differentiation. In the defect model, mechanical stress is still applied to 

the implanted graft despite the internal fixation; therefore, decellularized trabecular bone was 

utilized due to its ability to match the properties of native bone.   
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PART II  

ELUCIDATE THE IMPACT OF OXYGEN CONCENTRATION ON THE 

HYPERTROPHIC MATURATION OF DERIVED CHONDROCYTES 
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4 Transitory application of hypoxia during chondrocyte differentiation stunts 

induced hypertrophic maturation 

 

4.1 ABSTRACT 

Objective: The study investigated the temporal importance of hypoxia in preventing hypertrophic 

maturation of chondrogenically derived bone marrow stem cells (BMSC) for tissue engineering. 

We hypothesized that initial, transitory hypoxic chondrogenic differentiation was sufficient to 

delay induced hypertrophic maturation and suppress bone template formation. 

Methods: BMSC were pelleted and chondrogenically differentiated in either hypoxia (5% O2) or 

normoxia (~21% O2) for two weeks. After chondrogenic differentiation, a group of hypoxic 

pellets were transferred to normoxia, noted as the Switch group.  All pellet groups were then 

cultured for an additional three weeks in medium that promotes hypertrophic maturation.  

Hypertrophic maturation and bone template formation were analyzed through gene expression 

and histology.   

Results: Chondrogenic differentiation of pellets in hypoxia resulted in reduced gene expression 

and matrix deposition of key cartilage markers compared to normoxia; however, sufficient 

chondrogenesis was achieved. The switch and hypoxia groups delayed hypertrophy and 

prevented bone template formation at similar levels. Gene expression of important hypertrophic 

(COL10A1, MMP13, IHH) and bone formation (IBSP, ALPL, BGLAP, SPP1) markers for both 

groups were similar, and significantly less than the normoxia group. Histological analysis of the 

normoxia group showed immediate, widespread deposition of collagen type X, bone formation 
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markers, and mineral, whereas the switch and hypoxia groups had delayed and reduced 

deposition.  

Conclusion: The switch group’s ability to delay hypertrophy and prevent bone template 

formation after transitory hypoxic differentiation confirms the temporal importance of hypoxia in 

cartilage tissue engineering. 

4.2 INTRODUCTION 

 The characteristic inability of cartilage to repair itself has driven significant research into 

the development of cartilage tissue engineered grafts. The unique properties of cartilage have 

provided a difficult challenge, and in response, a number of biomaterials, cell sources, and 

stimulation techniques have been developed and utilized (111, 112). In particular, stem cells 

derived from bone marrow (BMSC) have been extensively studied due to their widespread 

availability and their potential for generating patient-specific treatments (113). Differentiation 

protocols have long been established that produce chondrocytes, and with the right combination 

of elements, cartilage grafts that mimic native morphology and approach physiological properties 

have been produced (114). However, one significant drawback of BMSC use is the tendency for 

derived chondrocytes to undergo hypertrophy while in culture (61, 72, 115).  Upon implantation, 

hypertrophic chondrocyte presence facilitates endochondral ossification and ectopic bone 

formation.   

 To mitigate hypertrophic maturation, researchers have investigated controlling the 

oxygen tension at which BMSCs are cultured. Providing a more physiologic oxygen tension, 

termed hypoxia (1-5% (77)), has shown to delay hypertrophic maturation in vitro and provide a 

more stable cartilage graft (65, 80). Though debate still exists concerning hypoxia’s benefit to 
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chondrogenic differentiation and matrix production, hypoxia’s success in limiting hypertrophic 

maturation has seen it extensively used in BMSC-based tissue engineered cartilage grafts (116).   

 Due to ambient oxygen concentration, termed normoxia (~21%), maintaining long-term 

hypoxia for cartilage development can prove challenging and expensive.  Recent work in our lab 

has demonstrated that a transient exposure of embryonic stem cells (ESC) to hypoxia during 

preparation had a significant, positive effect in the ESCs ability to chondrogenically differentiate 

and produce a cartilage-like matrix (88).  In addition, this short-term exposure to hypoxia 

diminished hypertrophic maturation and stifled collagen type X deposition (a key hypertrophic 

chondrocyte marker). In response, the objective of this study was to determine the temporal 

importance of hypoxia in preventing BMSC hypertrophic maturation and bone template 

deposition via endochondral ossification. To address this objective, cell pellets were cultured for 

two weeks in chondrogenic medium under hypoxic (5%) or normoxic (21%) conditions.  After 

chondrogenic differentiation, a group of pellets were transferred from hypoxia to normoxia, and 

the newly created group (Switch), plus the original two groups (Hypoxia and Normoxia), were 

cultured for an additional three weeks in hypertrophic maturation medium. Based on our 

laboratory’s recent work, we hypothesized that the initial two weeks of chondrogenic 

differentiation in hypoxia was sufficient to delay induced hypertrophic maturation and suppress 

bone template formation.   

4.3 METHOD 

All reagents were purchased from Sigma Aldrich (St. Louis, MO) unless otherwise 

specified.   
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Cell expansion and pellet formation 

Fresh human bone marrow aspirates were obtained from Lonza (Allendale, NJ) and bone 

marrow stem cells (BMSC) were isolated and characterized following previously described 

protocols (117). Expansion of the isolated BMSCs occurred in high-glucose Dulbecco’s 

Modified Eagle Medium (DMEM, ThermoFisher, Waltham, MA) supplemented with 10% FBS 

(Atlanta Biologicals, Flowery Branch, GA), 1% penicillin streptomycin (ThermoFisher, 

Waltham, MA), and 1 ng/mL basic fibroblast growth factor (ThermoFisher, Waltham, MA). 

Figure 4.1: Pellet culture regime to determine the role of temporal hypoxia on induced 
hypertrophic maturation. Hypertrophy was induced by first deriving chondrocytes from bone 
marrow stem cells (BMSC) during two weeks in chondrogenic medium, then switching to a 
hypertrophy inducing medium for the last three weeks of culture. Two oxygen tensions were 
utilized to create the three experimental groups, 5% (hypoxia, yellow) and ~21% (normoxia, 
blue). The Hypoxia group was entirely cultivated in hypoxia, the Normoxia group entirely 
cultivated in normoxia, and the Switch group underwent chondrogenic differentiation in hypoxia, 
and then was transferred to a normoxic environment for the remaining three weeks of 
hypertrophic induction.  Pellets were harvested at the end of chondrogenic differentiation 
(Chond), one week into hypertrophic induction (Hyper Short) and at the culmination of 
cultivation (Hyper Long).  
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Cells were pelleted at the fifth passage by aliquoting 250,000 cells into 96 U-bottom well plates 

(ThermoFisher, Waltham, MA), and centrifuging at 300g for 5 minutes.   

Culture regime 

A specific culture medium regime was followed to induce hypertrophy (Figure 4.1).  

During the first two weeks, pellets were cultured in chondrogenic medium consisting of high 

glucose DMEM, 1% penicillin streptomycin, 1% ITS+ (Corning, Corning, NY), 100 nM 

dexamethasone, 50 µg/mL L-proline, 100 µg/mL sodium pyruvate, 10 mM HEPES buffer 

(Corning, Corning, NY) 50 µg/mL ascorbic acid 2-phosphate, 10 ng/mL TGF-β3 (Peprotech, 

Rocky Hill, NJ) at one of two oxygen tensions.  After two weeks of chondrogenic differentiation, 

pellets were cultured in hypertrophic medium for three additional weeks.  Hypertrophic medium 

had a similar recipe as chondrogenic medium, except for the reduction in dexamethasone 

concentration to 1 nM, removal of TGF-β3, addition of L-thyroxine at 50 ng/mL, and the 

addition of 5 mM sodium β-glycerophosphate.   

After pelleting, chondrogenic medium culture was initiated and the pellets were split into 

three experimental groups based on oxygen tension and duration (Figure 4.1). The three groups 

were referred to as Hypoxia, Switch (hypoxia to normoxia), and Normoxia. Hypoxia culture was 

maintained at 5% oxygen concentration through the use of a New Brunswick Galaxy incubator 

(Eppendorf, Hauppauge, NY).  Normoxia culture was maintained at ambient oxygen 

concentrations, ~21%.  At the initiation of hypertrophic medium culture, the Switch group was 

removed from hypoxic culture and transferred to normoxia. The Hypoxia and Normoxia groups 

were maintained at their respective oxygen concentration throughout culture. As medium 

exchange occurred at normoxic conditions, medium was changed once a week for a total 
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duration less than 10 minutes to minimize any effect caused by the temporary increase in oxygen 

tension.   

Samples were harvested from each experimental group at three distinct time points: after 

two weeks of culture and the culmination of chondrogenic differentiation (“Chond”), one week 

after the initiation of hypertrophic maturation culture (3 weeks total, “Hyper Short”), and three 

weeks after the initiation of hypertrophic maturation culture (5 weeks total, “Hyper Long”).   

Quantitative biochemical analysis 

Pellets were digested with papain (40 Unites/ mg) in digest buffer (0.1M sodium acetate, 

10 mM cysteine HCl and 50 mM EDTA, pH 6.0) at 60 oC overnight. DNA content per pellet was 

measured from the digest using Quant-iT PicoGreen assay kit and the supplied lambda DNA 

standard (ThermoFisher, Waltham, MA). Sulfated glycosaminoglycan (GAG) content was 

measured using the dimethylmethylene blue assay with chondroitin 6 sulfate as a control. Each 

sample was run in duplicate, with n=4 for each experimental group and time point.   

RNA isolation and real time polymerase chain reaction (RT-PCR) 

Total RNA was extracted from pellets using the TRIzol method (ThermoFisher, 

Waltham, MA).  Contaminating DNA was removed from the extracted RNA through the use of 

DNase I treatment for ten minutes at 37 oC. cDNA was transcribed using the High Capacity 

cDNA Reverse Transcription kit (ThermoFisher, Waltham, MA) according to the manufacturer’s 

instructions. Quantitative RT-PCR was performed using Fast Sybr Green mix (ThermoFisher, 

Waltham, MA).  Expression levels were quantified applying the ΔCt method, with the Ct of 

GAPDH subtracted from the Ct of the gene of interest.  Forward and reverse primers for each 
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gene of interest are presented (Table 4.1). Samples were run in duplicate, with n=5 for each 

experimental group and time point. 

Histology and Immunohistochemistry 

Pellets from each experimental group and time point were fixed in 10% formalin, 

dehydrated, embedded in paraffin, and sectioned at 6 µm.  Pellets were stained with alcian blue 

and von Kossa following publicly available protocols. Antigen retrieval was required for bone 

sialoprotein (BSP) immunohistochemistry.  Slides were placed in a container filled with citrate 

buffer (1.8 mM citric acid, 8.2 mM sodium citrate, pH 6.0), and the container was submerged in 

boiling water for 20 min.  Slides were blocked with 0.3% hydrogen peroxide in absolute 

methanol for 20 minutes before following the Vectastain Elite Universal staining kit (Vector 

Laboratories, Burlingame, CA).  The primary antibody for BSP (EMD Millipore, 1/500 dilution, 

AB1854, Bilerica, MA) was incubated on the samples overnight at 4 oC.  The slides were 

counterstained with Hematoxylin QS (Vector Laboratories, Burlingame, CA). Slides for collagen 

type X immunohistochemistry followed the previously described protocol (118).  The primary 

antibody was obtained from Abcam (1/1000 dilution, AB49945, San Francisco, CA), and 

Hematoxylin QS was used as a counterstain.   

Micro-computed tomography 

Samples were scanned and reconstructed using a Scanco VivaCT 40 micro-computed 

tomography system (Scanco Medical, Bassersdorf, Switzerland). Scans were performed using 55 

kVp, 109 µA, and 200 ms integration time, and resulted in images with 21 µm isotropic voxel 

size. Reconstructed images were smoothed using a Gaussian filter (Sigma 0.8, support 1), 
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segmented using a global threshold of 22% maximum gray-scale value, and three-dimensional 

images were captured using the built in visualization software.   

Statistical Analysis 

Statistical analysis was performed using GraphPad Prism 5 (GraphPad, La Jolla, Ca).  

Analysis of the chondrogenic state was performed using Student’s t-tests, when only two 

experimental groups were analyzed.  The remaining statistical analysis was performed using 

analysis of variance with factors of time (Chond, Hyper Short, Hyper Long) and experimental 

group (Hypoxia, Switch, Normoxia).  Tukey post-tests for comparison between the groups were 

utilized.  Data is presented as mean ± standard deviation, with significance denoted by p<0.05.   

Table 4.1: List of RT-PCR primers. 
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4.4 RESULTS 

Influence of Oxygen Environment on Chondrogenic Differentiation 

 Two oxygen tensions were utilized during cultivation of the hBMSC pellets, hypoxia (5% 

O2) and normoxia (~21% O2).  Evaluation at the culmination of two weeks of chondrogenic 

differentiation demonstrated differences between the two groups (Figure 4.2).  Expression of key 

chondrocyte-related genes, COL2A1 and SOX9, were significantly higher in the normoxia group 

(Figure 4.2A).  Despite aggrecan (ACAN) gene expression not being significantly different 

between the groups, the amount of glycosaminoglycans (GAGs) deposited was significantly 

higher for the normoxia group (Figure 4.2A).  Histological staining and immunohistochemistry 

of deposited matrix proteins confirms the quantification, with the intense alcian blue staining of 

the normoxia group depicting an increase in the amount of GAGs present in the pellet (Figure 

4.2B).  The intensity and spread of collagen type 2, the cartilage-specific collagen, was also 

increased in the normoxia group (Figure 4.2B). Hypoxia promoted increased cellularity, as DNA 

content was significantly increased in hypoxic culture. In total, the increase in chondrocyte-

specific genes and cartilage-specific matrix deposition suggests that the normoxia group had 

enhanced chondrogenic differentiation.   
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Figure 4.2: Enhanced chondrogenic state of pellets cultured in normoxia based on increased 
expression of key chondrogenic genes and superior cartilage matrix deposition. (A) Gene 
expression of important chondrogenic genes relative to the GAPDH housekeeping gene and 
quantitation of the glycosaminoglycan (GAG) and DNA content per pellet. All data is presented 
as mean ± standard deviation with n=4-5 and * denoting significance of p<0.05. (B) Staining 
and immunohistochemistry for important cartilage matrix elements, GAG and collagen type 2. 
Scale bars = 100 µm.   
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Induced Hypertrophic Maturation of Pellet Cultures 

 To determine pellet maturation, expression of key hypertrophic chondrocyte-related 

genes was measured across all time points (Figure 4.3).   

 

Collagen type X is a unique marker of hypertrophic chondrocytes, and significant 

upregulation was seen in the normoxia group upon hypertrophic induction. Both the hypoxia and 

switch groups repressed collagen type X expression, with no significant differences between the 

two groups across all time points.  Matrix Metalloprotease 13 (MMP13), utilized in cartilage 

turnover during endochondral ossification, is an early indicator of hypertrophic maturation.  

Upon induction, all experimental groups had increased MMP13 expression.  Once again, the 

normoxia group had significantly higher MMP13 expression compared to the other two groups. 

At the earlier time point, the switch group had a significantly higher expression compared to the 

hypoxia group; however, by the Hyper Long time point, the hypoxia expression had risen to 

Figure 4.3: The Switch group suppressed key genes of hypertrophic maturation across all time 
points, which was similar to Hypoxia expression and significantly less than Normoxia.  
Progressive expression of collagen type X (unique hypertrophic chondrocyte protein), MMP13 
(key enzyme for cartilage callus turnover), and IHH (key signaling protein for hypertrophic 
maturation) normalized to GAPDH (housekeeping gene) across all three time points, data is 
presented as mean ± standard deviation, n=5 and * denotes significance of p<0.05.   
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match the switch group.  Indian Hedgehog (IHH) is a cell signaling protein for maturation and is 

a late indicator of hypertrophic chondrocytes. At the final time point, the hypoxia and switch 

groups had significantly reduced expression compared to the normoxia group, with minimal 

change compared to the initial Chond time point.  By the final time point, the normoxia group 

had a significant increase in IHH expression compared to the two earlier time points and the 

other groups.  

 

Figure 4.4: Delayed deposition of collagen type X by the Switch and Hypoxia groups.  
Immunohistochemistry of collagen type X to demonstrate hypertrophic maturation within cell 
culture pellets, scale bars = 100 µm.   
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 Immunohistochemical staining of collagen type X demonstrated the repressed 

hypertrophic maturation of the two experimental groups conditioned in a hypoxic environment 

(Figure 4.4).  In agreement with the collagen type X gene expression data, the hypoxia and 

switch groups had reduced deposition of collagen type X at the Chond and Hyper Short time 

points. The normoxia group appeared to have more collagen type X deposition during 

chondrogenic differentiation and had widespread collagen type X deposition at the Hyper Short 

time point, shortly after hypertrophic induction.  Extensive collagen type X staining wasn’t 

demonstrated until the Hyper Long time point in the hypoxia and switch groups. An advanced 

hypertrophic state was reached at the Hyper Long time point within the normoxia group, as 

mineral deposition can be seen by the intense purple staining present within the center of the 

pellet.   

 Pellet GAG content, shown with alcian blue staining (Figure 4.5), showed a quick 

turnover in matrix content that mirrored the collagen type X deposition.  At the earliest time 

point after induction, the normoxia group was almost absent of stained GAG.  This lack of GAG 

was in stark contrast to the intensely stained GAG present in the normoxia group at the Chond 

time point. At the late time point, alcian blue staining was present in the normoxia group, but 

associated with mineral deposition. In both the hypoxia and switch groups, GAG is still very 

much present at the Hyper Short time point, as shown by the intense blue staining present within 

the pellets. It is not until the Hyper Long time point that the hypoxia and switch groups are 

absent of GAG and resemble the normoxia group. The delayed disappearance of GAG in the 

hypoxia and switch groups matches that of the delayed appearance of collagen type X.   

  



 27 

 

Bone Template Matrix Production and Mineralization 

 Upon maturation, hypertrophic chondrocytes produced a bone template (Figure 4.6).  

Analysis of bone forming genes at the final time point consistently showed reduced expression in 

the hypoxia and switch groups. Normoxia demonstrated significantly elevated levels of IBSP, 

ALPL, BGLAP, and SPP1 expression (Figure 4.6A).  Deposition of Bone Sialoprotein (BSP), a 

key noncollagenous protein in the construction and mineralization of bone, was limited to the 

external surface in both the hypoxia and switch groups, but was deposited broadly in the 

Figure 4.5: Prolonged GAG presence and delayed cartilage matrix turnover in the Switch and 
Hypoxia groups. Alcian blue staining to portray GAG content, and its progressive change, 
within the cell culture pellets, scale bars = 100 µm.   
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normoxia group, especially in connection with the deposited mineral (Figure 4.6B). von Kossa 

staining depicts the phosphate in deposited mineral, and was heavily present in the normoxia 

group, indicating mineral location in the same internal position as the heavy GAG and BSP 

presence was seen in the previous stains (Figure 4.5, 4.6B).  Similar to the lack of BSP 

deposition, the hypoxia and switch groups were negative for von Kossa staining, demonstrating a 

lack of bone template deposition. Mineral deposition was investigated more extensively using 

micro computed tomography (µCT) (Figure 4.6B). Scanning and 3D reconstruction of the pellets 

showed a complete lack of mineral formed in both the hypoxia and switch pellets, but extensive 

deposition in the normoxia group.   
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Figure 4.6: The Switch group prevented bone template production and mineralization 
analogous to the Hypoxia group and in stark contrast to the template produced by the 
Normoxia group. (A) Expression of genes involved in bone production relative to the GAPDH 
housekeeping gene. Data is presented as mean ± standard deviation, n=5 and * denotes 
significance of p<0.05. (B) Immunohistochemistry for bone sialoprotein (BSP), a key non-
collagenous protein for bone formation, followed by von Kossa staining of the phosphate groups 
in deposited mineral. Micro-computed tomography (µCT) scan and three-dimensional 
reconstruction of the deposited mineral within the cell pellet. Scale bars = 100 µm.   
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4.5 DISCUSSION 

 Hypertrophic maturation of chondrocytes in tissue engineered cartilage grafts eventually 

leads to the unwanted recapitulation of endochondral ossification and ectopic bone formation.  

Traditionally, tissue engineered cartilage derived from mesenchymal stem cells has been plagued 

by this hypertrophic maturation (61, 83). Hypoxia has been shown to effectively delay the 

initiation of hypertrophy, reducing gene expression and deposition of the unique hypertrophic 

chondrocyte marker, collagen type X (81, 116). Recent work has shown that transitory pre-

conditioning of cells in a hypoxic environment before differentiation improves chondrogenic 

differentiation and matrix production and can limit hypertrophic maturation when in normoxic 

culture (88, 119). As other important chondrogenic induction and maintenance factors have 

shown a temporal aspect to their activity (120, 121), it was hypothesized that there is also a 

temporal importance of hypoxia for cell culture. In the current study, hypoxic culture of cell 

pellets during chondrogenic differentiation suppressed chemically-induced hypertrophic 

maturation, even after the pellets were transferred to a normoxic environment. The switching of 

pellets from hypoxia to normoxia at the time of hypertrophic induction had minimal impact on 

maturation, as Switch pellets displayed reduced gene expression and limited matrix deposition of 

key hypertrophic markers similar to pellets cultured exclusively in hypoxia.  Whereas normoxia 

pellets had extensive endochondral ossification, demonstrated by bone template deposition and 

mineralization, the groups initially cultured in hypoxia both did not produce bone template 

matrix. This study confirmed the hypothesis and clarified the temporal importance of hypoxia for 

cartilage tissue engineering, indicating that hypoxic conditioning during the initial chondrogenic 

differentiation was sufficient to hinder hypertrophic maturation.   
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There is an ongoing debate concerning the benefit of hypoxia to chondrogenic 

differentiation and MSC-derived chondrocyte matrix production (122, 123). During the initial 

chondrogenic differentiation of this study, normoxic pellets had broader chondrogenic 

differentiation and greater cartilage matrix deposition. These results agree with the literature that 

suggests that the availability of oxygen mediates matrix production and that hypoxia can result in 

diminished differentiation and matrix production (124-126). Despite significantly lower gene 

expression and significantly less GAG, the degree of cartilage matrix deposition of GAG and 

collagen type 2 by the hypoxic pellets does suggest chondrogenic differentiation. In agreement 

with established literature, the hypoxia group also experienced reduced expression and matrix 

deposition of key hypertrophic markers, specifically collagen type X.  

After chondrogenic culture, cell pellets were subjected to an altered culture medium 

composition, containing a thyroid hormone (L-Thyroxine) and a reduction in dexamethasone 

concentration, to induce hypertrophic maturation. This specific cell culture medium composition 

produces an advanced hypertrophic chondrocyte state and replicates endochondral ossification 

(62, 93). By initiating hypertrophic maturation through this medium composition, as opposed to 

the general hypertrophic progression of chondrogenically differentiated MSCs, it was shown that 

hypoxia not only delayed hypertrophic maturation, but also suppressed endochondral 

ossification. These findings are in agreement with existing literature, as hypoxia-mediated delay 

in maturation has been shown in a number of cell sources and cartilage tissue engineering 

manifestations (81, 127, 128). In explant cultivation of embryo forelimbs and fetal mouse tibia 

(66, 129), hypoxia prevented endochondral ossification-mediated bone formation.   

To address, the temporal importance of hypoxia, the primary objective of the study, 

pellets chondrogenically differentiated in hypoxia were transferred to a normoxic environment 
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concurrently with the initiation of hypertrophic induction. Across almost all measures of 

hypertrophic maturation and endochondral ossification conducted in this study, Switch pellets 

were not significantly different than pellets maintained exclusively in hypoxia. However, the 

Switch pellets were significantly different than the Normoxia group that clearly underwent 

hypertrophy and endochondral ossification. These results suggest that hypoxia provides initial 

cues that affect chondrocyte differentiation and pellet formation, and that prolonged hypoxic 

cultivation is not necessary to delay hypertrophic maturation.  This temporal importance of 

hypoxia has been alluded to in other studies (88, 119); however, these studies have not 

uncovered the specific mechanisms triggered by hypoxia. Therefore, knowledge gained during 

hypoxic chondrogenesis may allude to the initial effect hypoxia provides. In specific studies, 

hypoxia alone promoted chondrogenesis and the stabilization of a stable cartilage phenotype 

through the upregulation of important factors such as HIF-1Alpha, HDAC4 and Nkx3.2 (67, 

129-131). However, the explanation that temporal hypoxia cultivation upregulated chondrogenic 

factors and created a permanent chondrocyte state is not viable for this study, as expression of 

these important stable cartilage genes, HIF-1alpha, HDAC4, CHM-1, and MEF2C produced no 

significance difference or noticeable trends amongst the three pellet groups (data not shown).  In 

support of this data, it was obvious that a stable chondrocyte state was not reached in either 

hypoxia-related group, due to the substantial collagen type X deposition and the removal of 

matrix GAG over time, key processes undertaken by hypertrophic chondrocytes. Further studies 

are required to determine the exact impact of hypoxic culture in the first two weeks of 

chondrogenesis, and how this leads to the delay of hypertrophic maturation regardless of oxygen 

tension.   
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 In conclusion, the results of this study demonstrate that hypoxia is sufficient to delay 

induced hypertrophic chondrocyte maturation and suppress downstream bone template 

production and mineralization via endochondral ossification.  Of particular novelty, the transfer 

of hypoxia derived pellets to a normoxic environment did not alter behavior compared to pellets 

maintained solely in hypoxia. This confirms the hypothesis and indicates that only initial hypoxic 

cultivation is necessary for delaying induced maturation and suppressing endochondral 

ossification.  With the knowledge that only initial hypoxic conditioning is necessary, intensive 

studies can be conducted to further understand the mechanisms that delay hypertrophy and 

develop strategies to prolong this delay. Armed with this knowledge, researchers will be able to 

overcome ectopic bone formation and develop stable tissue engineered cartilage.   
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PART III 

MEASURE THE EFFECT OF ADVANCED CHONDROGENIC STATES 

ON HYPERTROPHIC MATURATION AND BONE PRODUCTION 
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5 Increased Duration of Chondrogenic Differentiation Enhances 

Hypertrophic Maturation and Bone Production 

 

5.1 ABSTRACT 

Endochondral ossification-based strategies for bone tissue engineering have demonstrated 

enhanced deposition of mature, vascularized bone. A key component of these strategies is the 

differentiation of hypertrophic chondrocytes from mesenchymal stem cell sources. In native 

endochondral ossification, a progression of chondrocyte states leads to the maturation of 

hypertrophic chondrocytes. However, current strategies have not evaluated the importance of the 

chondrocyte state preceding hypertrophic induction. The aim of this study was to evaluate the 

impact of the derived chondrocyte state on the differentiation and performance of hypertrophic 

chondrocytes. The chondrocyte state was controlled through the duration of chondrogenic 

differentiation, with the hypothesis stating that increased duration of chondrogenic culture will 

create an advanced chondrocyte state that will enhance hypertrophic maturation and bone 

production. Chondrogenic differentiation of human mesenchymal stem cells within porous silk 

scaffolds occurred for 1, 2.5, and 4 weeks, before being hypertrophically induced for 3 weeks. At 

the culmination of chondrogenesis, increased culture duration produced advanced chondrogenic 

states as seen with enhanced cartilage gene expression and matrix deposition and the initial 

presence of hypertrophic markers. Induced maturation resulted in widespread hypertrophic 

differentiation within the prolonged culture groups and corresponding bone template deposition. 

Though all groups produced similar volume of bone, the prolonged cultures contained small 

clumps spread across the scaffold. The similarity in bone template production of the 2.5 and 4 

week chondrogenic culture groups suggests a minimum threshold of chondrogenesis needed for 
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hypertrophic chondrocyte maturation and bone production in endochondral ossification-based 

strategies. 

5.2 INTRODUCTION 

Endochondral ossification, the process used in skeletal development, progresses along a 

defined pathway to produce bone (132). This pathway is initiated with the proliferation and 

condensation of mesenchymal stem cells and their subsequent differentiation into chondrocytes 

(133). These chondrocytes deposit a collagen type II and glycosaminoglycan (GAG)-rich 

cartilage matrix that will serve as the template for bone formation (133). After cartilage 

component deposition, the chondrocytes undergo maturation into hypertrophic chondrocytes, as 

noted by the increase in cell volume (19). Hypertrophic chondrocytes serve as the key cell type 

in endochondral ossification by orchestrating the progression of the cartilage template into bone 

(133). The hypertrophic chondrocyte mediates the breakdown of the cartilage matrix through 

MMP-13 production, the construction of the bone template through collagen type X and mineral 

deposition, and the vascularization of the template (24, 51, 132). Osteoblasts utilize this 

deposited bone template to complete this sequential process and generate mature bone.  

A recent tissue engineering paradigm has utilized this natural process as inspiration (4, 

134), recapitulating endochondral ossification to generate bone grafts. The paradigm was 

developed based on observations of cartilage tissue engineered constructs derived from 

mesenchymal stem cell sources. These cartilage constructs demonstrated hypertrophic markers 

during in vitro culture and formed bone when implanted, indicating the transient nature and the 

various, distinct states of stem cell derived chondrocytes (70-72). Bone tissue engineers have 

utilized this information and recreated many of the steps of endochondral ossification by 
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initiating condensation of mesenchymal stem cells, differentiating chondrocytes through TGFß 

stimulation, and enhancing hypertrophic maturation with the addition of thyroid hormones, the 

results of which produced vascularized bone in vivo (61, 62, 93). Interestingly, these studies 

maintained a three week duration of chondrogenic culture without characterization of the 

chondrocyte state. Therefore, the aim of this study was to investigate the impact of the derived 

chondrocyte state on hypertrophic differentiation and performance. Due to the transient nature of 

these stem cell derived chondrocytes, it is known that the duration of chondrogenic culture 

correlates with the chondrogenic state, as increasing cultivation time results in a greater presence 

of advanced state chondrocytes (94).  

In this study, the chondrocyte state was controlled by the duration of chondrogenic 

culture. After chondrogenic culture, the scaffolds were switched to medium that induced 

hypertrophic maturation. To depict varying chondrocyte states before induced maturation, 

chondrogenic culture was established for one, two and a half, and four weeks, corresponding to 

condensed MSC/ early stage chondrocyte, cartilage producing chondrocytes, and early 

hypertrophic chondrocytes. We hypothesized that increased duration of chondrogenic culture, 

and hence an advanced chondrocyte state, will enhance hypertrophic maturation and bone 

production. The results demonstrated that the chondrocyte state was important, as varying 

durations of chondrogenic cultivation modulated the deposition pattern and amount of key bone 

proteins.  

5.3 MATERIALS AND METHODS 

All materials were obtained from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise 

noted. 
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Figure 5.1: Scaffold creation and cell culture regime to produce various chondrocyte states. 
Silk scaffolds were prepared following the published protocol (68). 16% w/v bombyx mori silk 
fibroin in HFIP solution was poured over NaCl salt porogens 400-600 µm in diameter and 
allowed to dry. β-sheet formation was induced by submerging the constructs in methanol for 1-2 
days. After formation, constructs were subjected to incubation in multiple changes of deionized 
water to remove the salt porogen. After porogen removal, scaffolds were sized into cylinders of 4 
mm diameter and 2 mm height. Human bone marrow stem cells were seeded into the scaffolds, 
and the scaffolds were cultured based on the specified regime. Experimental groups were 
determined based on the duration of chondrogenic pre-culture, either 1 wk, 2.5 wks, or 4 wks.  
After chondrogenic culture, all scaffolds were induced to hypertrophic maturation through 
cultivation in hypertrophic medium for three weeks. After cultivation, all scaffolds were analyzed 
for matrix content, gene expression, and histology. 
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Scaffold fabrication: 

Porous silk scaffolds were fabricated based on published methods (135), Figure 5.1. 

Briefly, 16% w/v bombyx mori silk fibroin in HFIP solution was poured over NaCl salt porogens 

400-600 µm in diameter and allowed to dry. ß sheet formation was induced by submerging the 

constructs in methanol for 1-2 days. After formation, constructs were subjected to incubation in 

multiple changes of deionized water to remove the salt porogen. After porogen removal, 

scaffolds were sized into cylinders of 4 mm diameter and 2 mm height. Scaffolds were 

disinfected in sterile-filtered 70% ethanol prior to use.  

Mesenchymal stem cell expansion, seeding, and cultivation: 

Human bone marrow stem cells (hBMSCs, Lonza, Basel, CH) were expanded until 

passage five in expansion medium consisting of high glucose medium with L-glutamine, 10% 

fetal bovine serum, and 1% penicillin/ streptomycin. Cells were trypsinized, resuspended in 

culture medium at a concentration of 30M cells/ mL, and were drip seeded into the scaffolds. 

Seeded scaffolds were incubated in expansion medium for an additional day to promote cell 

stabilization within the constructs. Cells were then switched to chondrogenic medium consisting 

of high glucose DMEM (ThermoFisher, Waltham, MA) supplemented with 100 nM 

dexamethasone, 50 µg/mL ascorbic acid, 50 µg/ mL proline, 100 µg/mL sodium pyruvate, 1% 

ITS+, 1% P/S, 10 ng/mL BMP6 and 10 ng/mL TGF-β3. The duration of chondrogenic culture 

dictated the three different experimental groups, with constructs cultured for 1, 2.5, and 4 weeks 

(Figure 5.1). The names of the experimental groups matched the duration of chondrogenic 

culture. At the culmination of chondrogenic culture at the specified duration, a portion of 

constructs were harvested, while the remaining constructs were incubated for three weeks in 
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hypertrophic medium with the same base composition as chondrogenic medium but without 

TGF-β3, a dexamethasone concentration of 1 nM, 50 ng/mL of L-thyroxine, and 5mM of β-

glycerophosphate. After three weeks of hypertrophic culture, constructs were harvested and 

analyzed.  

Construct matrix biochemical quantitation: 

At harvest, constructs were weighed and then digested with papain (40 units/ mg) in 

digest buffer (0.1M sodium acetate, 10 mM cysteine HCl and 50 mM EDTA, pH 6.0) at 60 oC 

overnight. DNA content was measured using the Quant-iT PicoGreen assay kit (ThermoFisher, 

Waltham, MA) following the manufacturer’s instructions, with content normalized by the 

construct wet weight. Construct glycosaminoglycan (GAG) content was determined using the 

dimethylmethylene blue assay (136). Collagen quantitation through hydroxyproline (OHP) 

concentration was conducted per the author’s instructions (137). Samples were run in duplicate 

for each analysis, with n=4 for each experimental group.   

RNA isolation and RT-PCR: 

Construct RNA was extracted using provided TRIzol-based methods (ThermoFisher, 

Waltham, MA), with total RNA content measured using NanoDrop spectrophotometric 

quantitation (ThermoFisher, Waltham, MA). DNase incubation was utilized to remove any 

contaminating DNA and cDNA was transcribed from the isolated RNA using the High Capacity 

cDNA Reverse Transcription kit (ThermoFisher, Waltham, MA) according to the manufacturer’s 

instructions. Once cDNA was obtained, quantitative RT-PCR was performed using Fast Sybr 

Green mix (ThermoFisher, Waltham, MA). Quantitation was normalized using the ΔCt, with the 

Ct of GAPDH subtracted from the Ct of the gene of interest. Forward and reverse primers for 



 41 

each gene are present in Table 5.1. Samples were run in duplicate, with n=4 for each 

experimental group. 

Table 5.1: Primers used in RT-PCR 
Gene Forward Reverse 
GAPDH AAGGTGAAGGTCGGAGTCAAC GGGGTCATTGATGGCAACAATA 
RUNX2 CCGTCTTCACAAATCCTCCCC CCCGAGGTCCATCTACTGTAAC 
COL1A1 GATCTGCGTCTGCGACAAC GGCAGTTCTTGGTCTCGTCA 
MMP13 CCAGACTTCACGATGGCATTG  GGCATCTCCTCCATAATTTGGC  
IHH AACTCGCTGGCTATCTCGGT GCCCTCATAATGCAGGGACT 
ALPL GGGACTGGTACTCAGACAACG GTAGGCGATGTCCTTACAGCC 
IBSP GAACCTCGTGGGGACAATTAC  CATCATAGCCATCGTAGCCTTG 
COL10A1 CATAAAAGGCCCACTACCCAAC ACCTTGCTCTCCTCTTACTGC 
BGLAP GGCGCTACCTGTATCAATGG GTGGTCAGCCAACTCGTCA 
SPARC CCCAACCACGGCAATTTCCTA CGTCTCGAAAGCGGTTCC 
SOX9 AGCGAACGCACATCAAGAC CTGTAGGCGATCTGTTGGGG 
AGC AGACTTGCGTCTACCCCAATC GCAGGCGTAGGAAGGTCATC 

Histology and Immunohistochemistry: 

At harvest, constructs were preserved in 10% formalin for 24 hours then dehydrated 

through serial ethanol solutions. After dehydration, constructs were embedded in paraffin and 

sectioned at 6 µm per slice. Constructs were stained with alcian blue for construct-immobilized 

GAG and von Kossa for phosphate presence in deposited mineral following established 

protocols. Collagen type X and bone sialoprotein (BSP) presence were visualized through 

immunohistochemistry. For collagen type X, the protein was exposed by first subjecting samples 

to hyaluronidase treatment (2 mg/mL, type IV) for 60 minutes at 37oC, then treated with Pronase 

E (1 mg/mL) for 60 minutes at 37oC. In contrast, BSP underwent antigen retrieval, with slides 

submerged in citrate buffer within a container of boiling water and allowed to incubate for 20 

minutes. After these preparation steps, both sets of stains were blocked through incubation of 

samples in 0.3% hydrogen peroxide for 30 minutes and then the Vectastain Elite Universal 

staining kit (PK-6200, Vector Laboratories, Burlingame, CA) was utilized to prepare and detect 
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the primary antibody (Vector Laboratories, Burlingame, CA). Primary antibodies for collagen 

type X (AbCam, 1/1000 dilution, AB49945, San Francisco, CA) and BSP (EMD Millipore, 

1/500 dilution, AB1854, Bilerica, MA) were incubated on the slides overnight at 4 oC. Samples 

were counterstained with Hematoxylin QS (Vector Laboratories, Burlingame, CA).  

Micro-computed tomography (µCT): 

Constructs were scanned on a vivaCT 40 (Scanco Medical, Bruttisellen, Switzerland) 

system using a modified protocol by Liu, X.S. et al (138). Scanner settings were as follows: 

voltage 55 kV, current 0.109 mA, slice thickness 21 µm.  Scans had a 21 µm isotropic resolution. 

Three dimensional reconstructions and quantitation was performed by using thresholding set at 

200 mg HA/ cubic centimeter. Bone Volume, bone mineral density (BMD), and bone surface to 

bone volume ratio (BS/BV) were calculated for the scanned samples. n=4 for each experimental 

group. 

Mechanical testing: 

The equilibrium and Young’s modulus were determined for each construct (n=6) 

following previously published methods (102). An initial compressive load of 0.2N was applied 

to all samples, followed by a stress-relaxation step with compression occurring at a ramp 

velocity of 1% per second to 10% total strain, which was then held at 10% strain for 1800 s. The 

Young’s and equilibrium modulus were calculated based on the forces measured during this step. 

n=5 for each experimental group.  
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Statistics: 

All data is presented as mean ± standard deviation. Statistical significance of analyses 

were analyzed by using a one-way analysis of variance (ANOVA) followed by Tukey’s post-test, 

with significance determined by p<0.05 for each chondrogenic duration (Prism Software, 

GraphPad, La Jolla, CA, USA).  

5.4 Results 

Constructs were harvested after their respective chondrogenic cultivation durations (1, 

2.5, or 4 weeks) and were evaluated for their chondrocyte state (Figure 5.2). Over the additional 

three weeks of culture, the 4 wk constructs had significantly greater DNA and GAG content 

compared to the 1 wk group, suggesting a transition through a chondrocyte proliferation and 

matrix production stage (Figure 5.2A,B) (19). A state of enhanced matrix production was 

confirmed with gene expression, as the 4 wk group had significantly higher gene expression of 

important cartilage matrix proteins collagen type 2 (gene: COL2A1) and aggrecan (gene: AGC) 

(Figure 5.2C). Histological staining of sulfated GAGs through the use of alcian blue dye 

provides a good representation of the associated aggrecan present in the matrix. In agreement 

with the gene expression data, positive staining with alcian blue increased with increasing 

duration. The broadened deposition of GAG and the higher intensity of the blue staining suggest 

the varied states of chondrogenesis, with the early state chondrocytes depositing little aggrecan 

and the progression to mature states corresponding with broader and more plentiful deposition 

(Figure 5.2D, Alcian Blue). The maturation towards a hypertrophic chondrocyte state in these 

constructs was also shown in this gene expression data, as prolonged chondrogenic culture 

corresponded with a significant increase in gene expression of the unique hypertrophic 
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chondrocyte marker collagen type X (19) (gene: COL10A1) amongst all groups, and of one of 

the key signaling proteins for hypertrophic maturation, Indian hedgehog (139) (gene: IHH) for 

the longer cultivated groups compared to 1 wk. The presence of deposited collagen type X 

increased with prolonged cultivation, and hypertrophic-like chondrocytes were even present, as 

noted by their increased cell volume and pericellular staining of collagen type X (Figure 5.2D, 

Collagen Type X). Prolonged duration did correspond with advanced chondrocyte states, as 

evidenced by the significantly higher gene expression and widespread protein deposition.  
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Figure 5.2: Chondrocyte state determined by the duration of chondrogenic culture. Prolonged 
chondrogenic culture corresponded to an increase in cartilage matrix production and a more 
advanced chondrocyte state. Prolonged culture resulted in increased DNA and GAG present 
within the scaffolds, with 4 wks having significantly more DNA and GAG/ DNA compared to the 
1 wk group (5.2A,B).  Gene expression of key cartilage-related genes saw enhanced expression 
with increased duration across all genes studied, both in the chondrocyte-specific and in the 
more mature, hypertrophic genes (5.2C). Increased GAG deposition and collagen type X 
staining corresponded to increased duration of chondrogenic culture, with 4 wk demonstrating 
widespread GAG and collagen type X within the construct (5.2D). [n=4 and * denotes 
significance of p<0.05 (5.2A-C), Scale Bar = 50 µm, Insert Scale Bar = 500 µm (5.2D)]  
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After chondrogenic culture, all groups were incubated in hypertrophic medium for three 

weeks to induce maturation. After culture, constructs from each experimental group were 

harvested, and analyzed for their degree of hypertrophy. Expression of genes essential for 

hypertrophic chondrocyte performance were analyzed (19, 140): collagen type X (COL10A1), a 

unique collagen produced only by hypertrophic chondrocytes, RUNX2, a master regulatory for 

bone formation, IHH, a signaling protein to induce maturation, and matrix metalloprotease 13 

(MMP13), a cartilage degrading protease expressed during turnover (Figure 5.3A). The 

expression of COL10A1, RUNX2, and IHH all increased significantly with each experimental 

group and MMP13 was enhanced in the 2.5 wk group.  

 

Immunohistochemistry showed the collagen type X deposition followed the gene expression 

trends, with broader deposition and deeper intensity seen throughout the longer cultivated 

constructs (Fig3B, inset). Unlike the samples harvested after chondrogenic cultivation, all 

constructs contained the enlarged lacunae and pericellular collagen type X staining that are 

Figure 5.3: Enhanced hypertrophic maturation of constructs with increasing chondrogenic 
culture duration. At the culmination of the three week hypertrophic induction, the constructs 
with a prolonged chondrogenic culture demonstrated enhanced hypertrophic chondrocyte 
maturation.  Gene expression of hypertrophic markers significantly increased with increased 
chondrogenic culture (5.3A). All three groups contained cells with the trademark hypertrophic 
chondrocyte markers of an enlarged lacunae surrounded by collagen type X; however, a greater 
presence of collagen type X was seen with increased duration (5.3B). [n=4 and * denotes 
significance of p<0.05 (5.3A), Scale Bar = 50 µm, Insert Scale Bar = 500 µm (5.3B)] 
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hallmarks of hypertrophic chondrocytes (Figure 5.3B), but there was a clear increase in 

hypertrophic chondrocyte numbers with each increase in chondrogenic cultivation duration.  

The induced maturation did not have a dramatic effect on cell viability amongst the 

groups, as the DNA content per construct was not significantly different (Figure 5.4A). The 

maturation did initiate the deposition of a bone matrix within each construct. Genes related to 

bone formation were analyzed, and the two prolonged chondrogenic cultivations had enhanced 

expression in all genes studied, with collagen type I, bone sialoprotein (IBSP), and alkaline 

phosphatase (ALPL) were significantly higher than 1 wk (Figure 5.4B). Despite similarity in 

COL1A1 gene expression between 2.5 wk and 4 wk constructs, the 4 wk constructs had 

significantly more collagen at the end of the hypertrophic culture (Figure 5.4C). 

Immunohistochemistry for presence of the mineral nucleator bone sialoprotein (BSP) revealed 

similar deposition profiles between the 2.5 wk and 4 wk constructs, which had stronger staining 

than the 1 wk constructs.   
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The trends seen in BSP deposition matched the mineral deposition, as shown through von 

Kossa histological staining (Figure 5.5A). The 2.5 wk and 4 wk constructs had depositions at 

various points along the periphery of the construct, whereas the 1 wk constructs concentrated 

mineral at both ends of the scaffold. Three dimensional reconstructs of the µCT scans clearly 

demonstrated the differences in mineral deposition seen in the histological stains (Figure 5.5B). 

Figure 5.4: Advanced chondrocyte states corresponded to increased hypertrophic chondrocyte 
deposition of bone template matrix. Hypertrophic chondrocytes induced after prolonged 
chondrogenic culture deposited an enhanced bone template. After hypertrophic induction, there 
was no significant difference amongst the groups in the cellularity of the constructs (5.4A). Gene 
expression of key bone genes, COL1A1, IBSP, and ALPL, were all significantly higher with 
increasing chondrogenic culture (5.4B), and there was significantly more collagen content in the 
4 wk group, compared to the others (5.4C). Presence of bone sialoprotein was apparent in all 
three groups, but the longer durations showed increased and more widespread deposition across 
the construct. [n=4 and * denotes significance of p<0.05 (5.4A-C), Scale Bar = 50 µm, Insert 
Scale Bar = 500 µm (5.4D)] 
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The widespread mineral depositions seen in histology of the 2.5 and 4 wk constructs correlated 

with extensive mineral deposits, with many small, concentrated bundles of mineral. In contrast, 

the 1 wk constructs, with sparse histological staining for mineral except at the scaffold ends, had 

two large sheets of deposited mineral located on either side of the scaffold. Quantitation of the 

µCT scans demonstrated no significant difference in the amount or density of the deposited 

mineral (Figure 5.5C). The differences in deposition pattern were elucidated by quantitation, 

with the bone surface to bone volume ratio was significantly lower for the 1 wk constructs, 

agreeing with the observation of 1 wk constructs’ concentrated location for mineral deposition.  
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The mechanical properties of the constructs were evaluated upon harvest at the two 

essential time points (Figure 5.6). After chondrogenic culture, the 4 wk construct had a 

significantly higher elastic modulus than the 1 wk group. Induction of hypertrophic maturation 

Figure 5.5: Hypertrophic chondrocyte mineral deposition varies based on chondrocyte state. 
Prolonged chondrogenic culture resulted in a significantly different pattern of mineral 
deposition. Von Kossa staining demonstrated widespread mineral deposition throughout the 2.5 
wk and 4 wk constructs while the mineral deposition in the 1 wk constructs was localized to the 
scaffold edges (5.5A). Three dimensional reconstruction of µCT scans showed widespread 
deposition of small clumps of mineral for the two prolonged culture constructs. In contrast, the 1 
wk constructs deposited sheet-like mineral in a continuous manner (5.5B). The µCT scans were 
quantified, with the bone volume and bone mineral density (BMD) not significantly different 
amongst the different constructs (5.5C). The bone surface/ volume ratio was significantly higher 
for 2.5 and 4 wk constructs, elucidating the deposition pattern differences. [Scale Bar = 50 µm, 
Insert Scale Bar = 500 µm (5.5A), Scale bar = 1 cm (5.5B), n=4 and * denotes significance of 
p<0.05 (5.5C)] 
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and bone matrix deposition did increase the stiffness of the constructs, as the 1 wk construct after 

hypertrophic culture still had a higher mechanical stiffness than the 4 wk construct after 

chondrogenic culture. Despite the increase in mechanical stiffness, the same trends held after 

hypertrophic cultivation, with the 4 wk construct significantly stiffer than the other constructs.  

 

5.5 DISCUSSION 

Endochondral ossification-based strategies show promise for bone tissue engineering by 

facilitating rapid bone deposition and vascularization of constructs (62, 69, 93). These strategies 

hinge on the ability to derive hypertrophic chondrocytes, the cells that orchestrate key events for 

bone formation (132). In native endochondral ossification, hypertrophic chondrocyte 

Figure 5.6: Elastic modulus of constructs at various stages of differentiation. The elastic 
modulus is presented of constructs harvested at the culmination of both chondrogenic and 
hypertrophic cultivation. Prolonged chondrogenic culture resulted in enhanced mechanical 
properties, as the 4 wk constructs had a significantly greater elastic modulus than the 1 wk 
constructs for both the chondrogenic and hypertrophic harvests, and a significantly greater 
elastic modulus than the 2.5 wk constructs for the hypertrophic harvest. [n=5 and * denotes 
significance of p<0.05] 
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differentiation is the culmination of a progression through various chondrocyte states (19). The 

aim of this study was to investigate the importance of replicating this progression, to determine if 

advanced chondrogenic states result in an enhanced maturation to hypertrophic chondrocytes.  

The various chondrogenic states of endochondral ossification were replicated by 

controlling the cultivation duration of constructs in chondrogenic medium. By culturing for 1, 

2.5, and 4 weeks in chondrogenic medium, clear construct characteristics were developed that 

allow an approximation of the chondrogenic state. The 1 wk constructs were clearly at an early 

chondrogenic state as they had significantly lower cartilage gene expression and matrix 

deposition, and the DNA content of the constructs was significantly lower than the 4 week 

group, suggesting that the chondrocyte proliferation and matrix deposition hadn’t yet taken place 

(4). The 2.5 wk constructs were more similar to the matrix-producing chondrocyte state seen 

natively. The constructs contained noticeable deposition of GAG, had strongly upregulated 

chondrocyte-specific genes, and even contained some pre-hypertrophic and hypertrophic cells, as 

referenced by hypertrophic gene expression and collagen type X deposition. The 4 wk constructs 

were firmly in the advanced chondrocyte state. These constructs had the highest expression of 

hypertrophic genes, and had trademark collagen type X deposition surrounding the increased 

lacunae of the derived hypertrophic chondrocytes.  

TGF-ß and dexamethasone are strong promoters of chondrogenesis (141), and their 

removal, coupled with the addition of a thyroid hormone (142, 143), progressed hypertrophic 

maturation. Over the three week hypertrophic culture, cells in all three experimental groups 

underwent maturation, as shown by the trademark hypertrophic chondrocyte lacunae surrounded 

by collagen type X. The elevation in expression of hypertrophic genes confirms this analysis, as 

each group experienced a significant increase from the chondrogenic culture to hypertrophic 
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culture. Though research suggests various states of hypertrophic chondrocytes (140, 144, 145), 

the differences in elevated gene expressions between groups is most likely related to the number 

of matured hypertrophic chondrocytes within each construct. This point is further validated 

through collagen type X staining, with each increase in chondrogenic cultivation duration 

corresponding to more extensive staining of collagen type X.  

The importance of the chondrogenic state in facilitating hypertrophic maturation is 

evident, as the constructs with the most advanced, widespread chondrocyte differentiation 

resulted in the highest concentration of hypertrophic chondrocytes. Interestingly, the 1 wk 

constructs that represented early chondrogenesis, with reduced chondrocyte gene expression and 

minimal cartilage deposition, still contained hypertrophic chondrocytes at the end of cultivation. 

The delivery and accessibility of growth factors plays an integral role in differentiation. TGFß, 

the powerful growth factor utilized in chondrogenic medium (70), has been shown to stimulate 

small clusters of chondrogenic differentiation within just 1 week of cultivation, even though 

prolonged culture produced widespread differentiation (146). In addition, mesenchymal stem 

cells are heterogeneous, with various subpopulations behaving differently in response to stimuli 

(147, 148). The ability of TGFß to stimulate localized differentiation coupled with the known 

effects of MSC heterogeneity, suggests that various chondrogenic states existed even within the 

constructs. In the 1 wk group, it is likely that more advanced chondrocytes had differentiated in 

specific locations during the one week of cultivation, and were subsequently matured into 

hypertrophic chondrocytes.  

The lack of chondrocytes and hypertrophic chondrocytes in the interior of the constructs 

was also due to growth factor accessibility. Exogenously added TGFß is readily confined to the 

exterior of constructs due to cell activity, preventing growth factor penetration to the interior of 
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the construct and mitigating chondrocyte differentiation in these parts (149). Recent work 

demonstrated that the utilization of a latent phase of TGFß was able to bypass the exterior cells 

and localize to the interior of the constructs, and upon activation, stimulated chondrogenic 

differentiation (150). Therefore, the limited diffusion of TGFß restricted chondrocyte 

differentiation to the exterior of the construct. The sole localization of hypertrophic chondrocytes 

within the areas of chondrocyte differentiation demonstrates the importance of the chondrocyte 

differentiation in successful hypertrophic chondrocyte differentiation.   

Similar to the presence of hypertrophic chondrocyte markers, bone formation markers 

increased with increasing duration of chondrogenic culture. The deposition of BSP correlated 

with collagen type X deposition, indicating that it was in fact the matured hypertrophic 

chondrocytes that contributed to the bone template formation (140) and suggests that the 

elevated gene expression values were due to the larger number of hypertrophic chondrocytes. 

Despite having a larger number of hypertrophic chondrocytes, the amount of mineral deposited 

within each construct was not significantly different amongst the groups. The deposition pattern 

was different, as demonstrated by the bone surface to volume ratio, with the prolonged durations 

producing small clustered groups throughout the construct and the 1 wk group producing 

continuous, large sheets. Hypertrophic chondrocytes release a number of cell signaling 

molecules, some of which are responsible for controlling the chondrogenic state of nearby cells 

(i.e. growth plate) (19, 24, 133). The continuous nature of the 1 wk depositions suggests an 

alignment in production, possibly orchestrated by the hypertrophic maturation of a centralized 

location that prompted the subsequent advanced chondrogenesis and maturation of the 

surrounding cells. Quantitation showed a significant increase in the deposited amount of GAG 

between the end of chondrogenic culture and hypertrophic culture, indicating differentiation to a 
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cartilage-producing chondrogenic state occurred even after the removal of TGFß. In addition, 

recent work within our laboratory has shown that localized hypertrophic chondrocyte 

differentiation can stimulate chondrogenesis and spatial alignment in the surrounding tissue. In 

contrast, that widespread advanced chondrogenic state found in the prolonged duration 

constructs possibly impeded the ability of a localized group to control widespread deposition. It 

appears that hypertrophic chondrocytes differentiated within multiple, separate scaffold pores 

organizing mineralization within their local environment.  

Interestingly, despite significant difference in the original chondrocyte state and 

expression of hypertrophic markers, bone gene expression and protein/ mineral deposition was 

not different between the 2.5 wk and 4 wk groups. The only noticeable difference between the 

two groups was the stiffness of the constructs, which can be attributed to the significant 

difference in GAG content (151) between the two groups, and not necessarily the hypertrophic 

differentiation and matrix deposition. The similarity in hypertrophic chondrocyte performance 

suggests that there is a chondrocyte state threshold, that once reached allows the widespread 

differentiation of hypertrophic chondrocytes and subsequent bone template deposition.  

5.6 CONCLUSION 

Varying chondrogenic states were derived in MSC constructs by prolonging the duration 

of chondrogenic culture. Prolonged culture produced enhanced chondrocyte gene expression and 

cartilage deposition, as well as increased expression and deposition of hypertrophic markers. 

Upon induced hypertrophic maturation, the advanced chondrocyte state constructs had more and 

broader hypertrophic chondrocyte differentiation. Whereas the early chondrocyte state created by 

1 wk of chondrogenic culture prompted minimal bone template deposition from the localized 
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hypertrophic chondrocytes, the 2.5 wk and 4 wk groups had similar levels of bone template 

deposition and mineralization. The results demonstrate the partial truth of our hypothesis that 

advanced chondrocyte states do enhance hypertrophic chondrocyte differentiation, but that a 

threshold exists in the chondrocyte state between 1 wk and 2.5 wks. The attainment of the 

threshold allows the widespread hypertrophic chondrocyte differentiation and bone template 

deposition needed for bone tissue engineering.  
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PART IV 

EVALUATE THE ABILITY OF HYPERTROPHIC CHONDROCYTES TO 

MEDIATE FAST, VASCULARIZED BONE DEPOSITION THAT 

INTEGRATES WITH HOST BONE 
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6 Mimicked Ossification Pathway influences Differentiated Stem Cell Bone 

Matrix Deposition and Remodeling 

 

6.1 ABSTRACT 

In the native skeleton, bone formation occurs through two ossification pathways, 

intramembranous and endochondral. Advancements in tissue engineering have demonstrated the 

ability to mimic these pathways by differentiating mesenchymal stem cells into osteoblasts for 

intramembranous and hypertrophic chondrocytes for endochondral. In this study, we created and 

implanted constructs derived from both differentiated cell types with the aim to analyze and 

compare the characteristics and regenerative capabilities of each mimicked pathway. After 

cultivation, the differentiated osteoblasts were uniquely present along the scaffold walls, where 

all deposited bone matrix was located. In contrast, the differentiated hypertrophic chondrocytes 

formed within the scaffold pore space, and produced a greater amount of mineral, but of 

immature composition, compared to the osteoblasts. Upon implantation, differentiated 

osteoblasts facilitated enhanced deposition of mineral onto the scaffold, but moderate overall 

construct regeneration. The differentiated hypertrophic chondrocytes stimulated turnover of the 

construct, with remodeling of the deposited bone matrix into cortical-like bone and extensive 

construct vascular infiltration. This study reveals the suitability of differentiated hypertrophic 

chondrocytes for use in bone repair situations that require fast bone formation and 

vascularization, whereas differentiated osteoblasts should be paired with advanced bone 

scaffolds to orchestrate remodeling and incorporation.  
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6.2 SIGNIFICANCE 

Bone tissue engineering has yet to deliver on its promise for improved long bone repair due to 

inconsistencies in integration, remodeling, and mechanical maintenance. The ability to mimic the 

natural ossification pathways through stem cell differentiation provides another variable that 

tissue engineers can use to address these problems. In the proposed study, we investigated the 

characteristics and performance of each mimicked pathway, elucidating key attributes that 

dictate each pathway’s suitability for tissue engineering. With the presented data, tissue 

engineers can make informed decisions and develop complex strategies to finally deliver on bone 

tissue engineering’s promise.   

6.3 INTRODUCTION 

In humans, bone formation occurs through two ossification pathways, intramembranous 

and endochondral (132). Intramembranous ossification is characterized by direct differentiation 

of stem cells into osteoblasts, is utilized in the repair of small, stabilized fractures and is 

responsible for bone formation during turnover and remodeling (41, 133, 152). In contrast, 

endochondral ossification is characterized by an initial deposition of a cartilage anlage, formed 

by stem cell derived chondrocytes (19, 41, 51). After cartilage deposition, these chondrocytes 

mature into hypertrophic chondrocytes, and initiate the formation of bone from the cartilage 

template (19, 24, 132). Endochondral ossification is the process by which the growth plate 

stimulates bone lengthening and is the primary method for bone regeneration after long bone 

fracture (24, 51). As noted, each ossification process has specific situations in which it 

contributes to the generation and maintenance of the skeletal system.  
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Tissue engineering has mimicked each ossification pathway by differentiating the key 

cell type of each process from stem cell sources. For intramembranous ossification, osteoblasts 

are directly differentiated, with bone production confirmed both in vitro, and in a number of in 

vivo applications (59, 153-155). Endochondral ossification is mimicked through the initial 

differentiation of chondrocytes and deposition of a cartilage-like matrix. After a set cultivation 

period, the chondrocytes are matured, through the addition of hormones, into hypertrophic 

chondrocytes (61, 62, 143, 156). The derived hypertrophic chondrocytes deposit mineral in vitro 

and have produced a bone marrow containing bone model upon in vivo implantation (93). 

Though successful bone production has occurred through both processes, implantation of tissue 

engineered constructs into orthotopic models has produced inconsistent results, largely because 

of failure attributed to one of three reasons: failure to integrate, inability to stimulate native bone 

generation, or mechanical property insufficiency (3, 157). It is possible that these failures occur 

due to a poor understanding of the capabilities of the chosen tissue engineered ossification 

pathway, as even natively, the followed ossification pathway is based on the fracture 

environment (41).  

The aim of this study was to characterize the bone produced using each key cell type in 

an attempt to elucidate the attributes and abilities of each mimicked ossification pathway. A 

better understanding of the pathways would allow tissue engineers to promote better bone 

regeneration and design the next generation of clinically-feasible grafts. We created 

representative tissue engineered constructs from the key cell type in each mimicked ossification 

pathway, osteoblasts and hypertrophic chondrocytes, by differentiating each from human 

mesenchymal stem cells according to the existing literature (59, 61, 62). Upon  differentiation, 

constructs were analyzed for cellular behavior with regards to bone formation and matrix 
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deposition. Constructs were then implanted subcutaneously in nude mice and harvested regularly 

to understand the differing bone regeneration events instigated by the cell types. 

6.4 MATERIALS AND METHODS 

All materials were purchased from Sigma Aldrich (St. Louis, MO) unless otherwise 

noted.   

Scaffold Fabrication: 

Bombyx mori silk fibroin solution at 16 wt% in HFIP was prepared following published 

methods (135). Porous scaffolds were formed using NaCl salt, 400-600 µm in diameter, as a 

porogen. The HFIP silk solution was poured over the salt and allowed to solidify. After 

solidification, ß-sheet formation was induced by submerging the silk-NaCl scaffolds in 

methanol for 1-2 days. NaCl was removed from the scaffolds by washing in diH2O for 2 days, 

and then the scaffolds were sized into cylinders of 4 mm in dimeter and 2 mm in height. 

Scaffolds were disinfected in sterile-filtered 70% ethanol before use.  

Cell Expansion, Seeding, Differentiation and Cultivation: 

Human bone marrow stem cells (hBMSCs, Lonza, Basel, CH) were expanded in 

expansion medium consisting of high glucose medium with L-glutamine, 10% fetal bovine 

serum, and 1% penicillin/ streptomycin. After disinfection in 70% ethanol, scaffolds were 

incubated in expansion medium for one day. Passage 5 hBMSCs were trypsinized, resuspended 

in culture medium at 30M cells/ mL, and the cells were seeded into the scaffolds using the drip 

method. Seeded scaffolds were incubated in expansion medium for an additional day and then 

switched to the appropriate cultivation regime. Intramembranous-mimicking constructs (termed 
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Osteo) were generated by differentiating hBMSCs into osteoblasts over five weeks in osteogenic 

medium, low glucose DMEM (ThermoFisher, Waltham, MA), 100 nM dexamethasone, 50 

ug/mL ascorbic acid, 10 mM HEPES buffer, 10% fetal bovine serum, 1% P/S, and 5mM β-

glycerophosphate. Endochondral-mimicking constructs (termed Hyper) were generated by first 

differentiating the hBMSCs into chondrocytes for two weeks in chondrogenic medium, high 

glucose DMEM (ThermoFisher, Waltham, MA) supplemented with 100 nM dexamethasone, 50 

µg/mL ascorbic acid, 50 µg/ mL proline, 100 µg/mL sodium pyruvate, 1% ITS+, 1% P/S, 10 

ng/mL BMP6 and 10 ng/mL TGF-β3. After the successful differentiation and cartilage matrix 

deposition, the chondrocytes were induced to hypertrophic chondrocytes for three weeks by the 

change in medium composition. Hypertrophic chondrocyte maturation medium had the same 

composition as chondrogenic medium but without TGF-β3, a dexamethasone concentration of 1 

nM, 50 ng/mL of L-thyroxine, and 5mM of β-glycerophosphate.  

Real time PCR: 

Construct RNA was extracted using TRIzol (ThermoFisher, Waltham, MA), with total 

RNA content measured using NanoDrop spectrophotometric quantitation (ThermoFisher, 

Waltham, MA). Contaminating DNA was removed through treatment with DNase, and cDNA 

was transcribed using the High Capacity cDNA Reverse Transcription kit (ThermoFisher, 

Waltham, MA) according to the manufacturer’s instructions. Once cDNA was obtained, 

quantitative RT-PCR was performed using Fast Sybr Green mix (ThermoFisher, Waltham, MA). 

Quantitation was normalized using the ΔCt, the Ct of GAPDH subtracted from the Ct of the gene 

of interest. Forward and reverse primers for each gene are present in Table 6.1. Samples were 

run in duplicate, with n=4 for each experimental group. 
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Table 6.1: Primers used in RT-PCR 
Gene Forward Reverse 
GAPDH AAGGTGAAGGTCGGAGTCAAC GGGGTCATTGATGGCAACAATA 
RUNX2 CCGTCTTCACAAATCCTCCCC CCCGAGGTCCATCTACTGTAAC 
COL1A1 GATCTGCGTCTGCGACAAC GGCAGTTCTTGGTCTCGTCA 
IBSP GAACCTCGTGGGGACAATTAC  CATCATAGCCATCGTAGCCTTG 
ALPL GGGACTGGTACTCAGACAACG GTAGGCGATGTCCTTACAGCC 
BGLAP GGCGCTACCTGTATCAATGG GTGGTCAGCCAACTCGTCA 
SPARC CCCAACCACGGCAATTTCCTA CGTCTCGAAAGCGGTTCC 
SPP1 GTTTCGCAGACCTGACATCCA GCTTTCCATGTGTGAGGTGAT 

DNA and Matrix Quantitation:  

Constructs were weighed and then digested with papain (40 units/ mg) in digest buffer 

(0.1M sodium acetate, 10 mM cysteine HCl and 50 mM EDTA, pH 6.0) at 60 oC overnight. 

DNA content per wet weight was measured from the digest using the Quant-iT PicoGreen assay 

kit (ThermoFisher, Waltham, MA) following the manufacturer’s instructions and with the 

supplied lambda DNA as the standard.  

Construct collagen content was determined through a modified protocol from Reddy and 

Enwemeka (137), where papain digest solution was incubated in 6M HCl at 110 oC overnight, 

then reacted with Chloramine T and Elrich’s reagent to visualize the amount of hydroxyproline 

present within the samples, as determined by spectrophotometry and the hydroxyproline 

standard.  

After harvest, constructs were snap frozen in liquid nitrogen and stored at -20 oC. 

Calcium was extracted from the samples through incubation with 5% trichloroacetic acid 

solution and quantified using the Calcium (CPC) Liquicolor kit (Stanbio Laboratory, Boerne, 

TX). 
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Histology and Immunohistochemistry (Pre-implantation):  

Samples were preserved in 10% formalin for 24 hours, then rinsed excessively in PBS, 

and dehydrated in solutions of ascending ethanol concentrations. After dehydration, constructs 

were embedded in paraffin and sectioned at 6 µm per slice. Constructs were stained with 

hematoxylin and eosin for construct morphology and von Kossa for phosphate presence in 

deposited mineral following easily accessible and established protocols. Collagen type I and 

bone sialoprotein (BSP) presence were visualized through immunohistochemistry. For collagen 

type I, the protein was exposed by first incubating samples in 0.01% trypsin for 15 minutes at 

37oC. In contrast, BSP underwent antigen retrieval, with slides placed in a container filled with 

citrate buffer and that container submerged in boiling water for 20 minutes. After these 

preparation steps, both sets of stains were blocked through incubation of samples in 0.3% 

hydrogen peroxide for 30 minutes and then Vectastain Elite Universal staining kit (PK-6200, 

Vector Laboratories, Burlingame, CA) was utilized to prepare and detect the primary antibody 

(Vector Laboratories, Burlingame, CA). Primary antibodies for collagen type I (AbCam, 1/200 

dilution, AB6308, San Francisco, CA) and BSP (EMD Millipore, 1/500 dilution, AB1854, 

Bilerica, MA) were incubated on the slides overnight at 4 oC. Samples were counterstained with 

Hematoxylin QS (Vector Laboratories, Burlingame, CA).  

Micro-Computed Tomography (µCT) and Quantitation (Pre-Implantation) 

Pre-implantation, constructs were scanned on a vivaCT 40 (Scanco Medical, Bruttisellen, 

Switzerland) system using a modified protocol by Liu, X.S. et al (138). Scanner settings were as 

follows: voltage 55 kV, current 0.109 mA, slice thickness 21 µm.  Scans had a 21 µm isotropic 

resolution. Three dimensional reconstructions and quantitation was performed by using 
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thresholding set at 220. Bone Volume, bone mineral density (BMD), and bone surface to bone 

volume ratio (BS/BV) were calculated for the scanned samples.  

Fourier Transform Infrared Spectroscopy (FTIR): 

FTIR spectra were recorded using a Nicolet iS5 (ThermoFisher, Waltham, MA) with an 

iD5 ATR accessory containing a diamond window. 6 µm thick, paraffin-embedded sections, 15 

for each sample, were measured from a specimen for each group. The spectra were acquired 

using scans with a resolution of 4 cm-1 thick ranging from 400-4000 cm-1. After acquisition, the 

regions of interest (900-1200 cm-1 & 1590-1720 cm-1) were isolated, baselined and normalized 

for further post-processing using the Omnic software (ThermoFisher, Waltham, MA). The 

normalized data was de-convoluted, using a genetic algorithm, utilizing Matlab software 

(Mathworks, Natick, MA) that fit up to 12 Gaussian distributions. The peak intensity of the 

subpeaks of interest was recorded for each measurement. 

Mechanical Compression Testing:  

The equilibrium and Young’s modulus were determined for each construct (n=6) 

following previously published methods (102). An initial compressive load of 0.2N was applied 

to all samples, followed by a stress-relaxation step with compression occurring at a ramp 

velocity of 1% per second to 10% total strain, which was then held at 10% strain for 1800 s. The 

Young’s and equilibrium modulus were calculated based on the forces measured during this step.   
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Construct Subcutaneous Implantation 

After five weeks of cultivation, constructs from both experimental groups, Hyper and 

Osteo, were placed in nude mouse subcutaneous pouches. Constructs were implanted for 3, 6, 

and 12 weeks, with sample harvest occurring at each designated time point.   

Micro-Computed Tomography (µCT) and Quantitation (Post-Implantation) 

After explant of the constructs following 3 weeks (n=4), 6 weeks (n=6), and 12 weeks 

(n=4) in vivo, constructs were scanned on a µCT 50 (Scanco Medical, Bruttisellen, Switzerland) 

using scanner settings as follows: voltage 70 kV, current 0.200 mA, slice thickness 10 µm. Scans 

had a 10 µm isotropic resolution. Three dimensional reconstructions and quantitation was 

performed by using a global thresholding technique set at 282.9 mg HA/ cm3. Bone Volume, 

bone mineral density (BMD), and bone surface to bone volume ratio (BS/BV) were calculated 

for the scanned samples.  

Hard Bone Histology:  

Subcutaneous implants were immersed in 4% neutral-buffered formaldehyde solution for 

24 hours, split in half, then dehydrated in ascending grades of ethanol and imbedded in light 

curing resin (Technovit 7200 VLC; Kulzer & Co., Wehrheim, Germany). Undecalcified thin 

ground sections along the longitudinal axis of the constructs were produced according to Donath 

(158) and stained with Levai-Laczko (159) dye. Histological specimens were digitized with the 

Olympus dotSlide 2.4, digital virtual microscopy system (Olympus, Japan, Tokyo) at a resolution 

of 0.32 µm per pixel. Sample number for 3 weeks (n=4), 6 weeks (n=6), and 12 weeks (n=4) 
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Immunohistochemistry (Post-implantation) 

The remaining half of the harvested subcutaneous implants were extensively washed in 

PBS post 4% formaldehyde submersion, then decalcified using a formic acid based solution 

(Immunocal Decalcifier, StatLab, McKinney, TX). After decalcifying, grafts were washed 

multiple times with PBS, dehydrated, embedded in paraffin, and sectioned at 6 µm. Antigen 

retrieval and subsequent staining was conducted as described previously, but this time with the 

Vectastain ABC Kit for Rabbit IgG (PK-4001, Vector Laboratories, Burlingame, CA). Primary 

antibody for CD31 (AbCam, AB28364, San Francisco, CA) was incubated on the slides 

overnight at 4 oC. Samples were counterstained with Hematoxylin QS (Vector Laboratories, 

Burlingame, CA). Utilizing ImageJ, semi-quantitative values for the number of blood vessels, the 

area of the construct and blood vessels, and the distance of blood vessels were determined by 

two independent, blinded researchers on the 6 week (n=6) harvested constructs. 

Statistics:   

All data is presented as mean ± standard deviation. Statistical significance of pre-

implantation analyses and the post-implantation semi-quantitative histology images was 

determined using a Student’s T-Test, α = 0.05, with significance determined by p<0.05 (Prism 

Software, GraphPad, La Jolla, CA, USA). Statistical significance of µCT quantitation post-

implantation was determined by using a one-way analysis of variance (ANOVA) followed by 

Tukey’s post-test, α=0.05, with significance determined by p<0.05 for each construct type.    
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Figure 6.1: Methodology of mimicked ossification pathways. Silk fibroin scaffolds were created 
by pouring 16% w/v silk dissolved in HFIP over NaCl particles 400-600 microns in size. 
Methanol was used to induce ß-sheet formation within the silk and the salt porogen was removed 
through multiple washes in deionized water. Scaffolds were sized, disinfected, and seeded with 
human bone marrow stem cells (hBMSC). Seeded constructs were cultured over five weeks 
corresponding to their designated experimental group. Hypertrophic chondrocyte-based 
constructs (Hyper) were derived by first inducing chondrogenesis in chondrogenic medium for 
two weeks, followed by hypertrophic maturation in hypertrophic medium for three weeks. 
Osteoblast-based constructs (Osteo) were formed by differentiating the stem cells in osteogenic 
medium for the entire five weeks.  
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6.5 RESULTS 

Cell behavior and matrix deposition: 

After 5 weeks of their respective, designated culture regimes (Figure 6.1), the expression 

profiles of bone forming genes of the Hyper and Osteo constructs were explored (Figure 6.2A). 

RUNX2, a master regulator of bone formation (160), had significantly higher expression in the 

Hyper constructs, as was the main bone protein collagen type I (COL1A1). Important proteins 

related to matrix deposition and mineralization (IBSP, ALPL, BGLAP, SPARC, and SPP1) were 

all enhanced in the hypertrophic chondrocyte-based constructs. The DNA content was not 

significantly different between the constructs (Figure 6.2B), but H&E staining showed cellularity 

of the Hyper spread throughout the scaffold’s pore space, whereas the Osteo cells were group 

together in close proximity to the scaffold walls (Figure 6.2D). Quantitation of the collagen 

content within the constructs was also not significantly different, but immunohistochemical 

staining of collagen type I showed differences, with Hyper constructs depositing collagen type I 

within the pore space and Osteo deposition largely confined to the construct walls on the 

periphery of the construct. Additional staining for the bone matrix protein bone sialoprotein 

showed deposition within the pore space of the Hyper constructs, but was again confined to the 

construct boundaries within the Osteo group. 
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Figure 6.2: Gene expression and matrix deposition for the differentiated key cells. Expression 
of key genes related to the deposition of bone was significantly upregulated in the Hyper 
constructs (Figure 6.2A). The cellularity of each construct at the end of cultivation demonstrated 
increased DNA content within the Osteo constructs, though it was not significant (Figure 6.2B). 
The amount of collagen, determined through hydroxyproline quantitation, was also not 
significantly different with a slight increase seen in the Hyper constructs (Figure 6.2C). The 
disparity in DNA content wasn’t noticeable upon histological analysis, as H&E staining showed 
widespread cell content in both constructs (Figure 6.2D, H&E). Though not significantly 
different, immunohistochemistry staining of collagen type I showed very different deposition 
patterns between the two groups (Figure 6.2D, collagen type I). The deposition of BSP was 
localized to locations of collagen type I, indicating a difference in the deposition pattern of 
important bone matrix proteins. [RT-PCR primers are provided in Table 6.1, expression values 
displayed in logarithmic scale, n=4, Student’s T-test with *= p<0.05 (6.2A), n=4, Student’s T-
test with *= p<0.05 (6.2B-C), Scale bar = 50 µm, with inset Scale Bar = 500 µm] 
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Mineralization: 

The mineralization of the bone matrix is essential for its structural competency, and was 

extensively analyzed in these constructs. Three dimensional reconstructions of the µCT scans 

revealed a noticeable difference in deposition pattern (Figure 6.3A). Mineral deposition in the 

hypertrophic chondrocyte-based constructs was clumped at a set distance from the scaffold edge 

(white circle depicts the scaffolds dimensions). Viewed from an angle, the mineral was also 

confined in the vertical direction, with the mineral deposited all in close proximity in a hollow 

cylindrical shape. In contrast, the osteoblast-based constructs produced mineral in spindles along 

the periphery of the scaffold. The mineral depositions were well spaced, but tended to form a 

shell defined by the exterior of the scaffold, as seen in the angled view. Quantitation of the 

mineral detected in the scans matched observations (Figure 6.3B), with the Hyper constructs 

containing significantly more and significantly denser mineral than the Osteo constructs. The 

bone surface to bone volume (BS/BV) was approximated for each group of constructs, and 

mirrored the deposition patterns prevalent from the 3D reconstructions. The BS/BV of the Hyper 

constructs was significantly lower than the Osteo construct, demonstrating a more compact 

mineral pattern in the Hypers compared to the spread, spindle shape suggested by the higher 

Osteo BS/BV. Using biochemical quantitation methods, the amount of calcium was significantly 

increased in the Hyper constructs compared to the Osteo, agreeing with the scans.   
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To better understand the spatial aspect of the mineral deposition within the scaffolds’ 

interior architecture, histological slices were stained with von Kossa for mineral presence (Figure 

6.3C). In the Hyper constructs, mineral was deposited in the area immediately surrounding the 

hypertrophic chondrocytes, confined to the pore space of the scaffolds. Osteo staining showed 

that considerable mineral was present within the cells, but that deposited mineral was localized 

to the scaffold surface. With the deposition profiles being so drastically different, we analyzed 

the chemical composition of each construct’s deposited matrix through FTIR (Figure 6.3D). 

Interestingly, the mineral to matrix ratio was not significantly different between the groups, 

showing that the mineral content per deposited matrix is not significantly different between the 

groups even though the total amount of mineral was quantifiably different. However, differences 

were present when investigating the maturity of the mineral and collagen content present within 

the constructs. The Hyper had significantly less mature mineral, but significantly more mature 

collagen. From the FTIR, it became apparent that not only was the deposition pattern different 

Figure 6.3: Mineralization of tissue engineered constructs (previous page). Representative 
three-dimensional µCT reconstructions are presented demonstrating the differences in 
deposition between the constructs (Figure 6.3A). The associated scans were quantified to 
determine the volume (Bone Volume Fraction), density (BMD), and the ratio of surface area to 
volume (BS/BV). Hyper constructs contained significantly more volume, denser mineral, and a 
less surface area per volume than Osteo constructs (Figure 6.3B). Quantitation of the amount of 
calcium within the constructs showed significantly more calcium in the Hyper groups (Figure 
6.3B). Histological sections were sliced and stained with von Kossa to reveal the presence of 
mineral within the constructs. Hypertrophic chondrocytes deposited mineral within the pore 
space, in areas surrounding the cells, whereas the osteoblasts contained mineral within the cell 
and externally deposited into the scaffold (Figure 6.3C). FTIR analysis of the mineral within the 
constructs was conducted to elucidate the mineral to matrix ratio, the deposited mineral 
maturity, and the collagen matrix maturity (Figure 6.3D). The mineral to matrix ratio was 
similar between the two constructs, less than native bone. The Hyper constructs contained 
significantly less mature mineral but significantly more mature collagen. [Scale Bar = 1 cm 
(6.3A), n=5, Student’s T-test with *= p<0.05 (6.3B), Scaffold Scale Bar = 500 µm, Magnified 
Scale Bar = 50 µm (6.3C), n=15, Student’s T-test with *= p<0.05 (6.3D)] 
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between the two groups, but the composition of the deposited mineral was different as well. The 

increased mineral content and the widespread glycosaminoglycan content of the Hyper 

constructs contributed to its increased mechanical properties, as the hypertrophic chondrocyte-

based constructs had a significantly higher elastic and equilibrium moduli compared to just the 

silk scaffold and the osteoblast-based construct (Figure 6.4).  

 

Subcutaneous Implantation Bone Turnover and Regeneration: 

The unique matrix deposition pattern and composition by each key cell type prompted 

investigation as to whether these differences would influence bone regeneration in vivo. 

Constructs from each group were placed subcutaneously in nude mice, with samples being 

harvested at 3, 6, and 12 weeks post implantation. 3D reconstructions of µCT scans 

demonstrated the progression of bone formation within the constructs (Figure 6.5A,C). In the 

Figure 6.4: Mechanical properties of the differentiated constructs. Constructs were 
compressed at a strain of 1% per second for 10 seconds, with the strain than held for the next 
1800 s. From this compression, elastic and equilibrium moduli were calculated for the two 
experimental constructs, and scaffolds on the day of seeding. Hyper constructs had significantly 
higher moduli, with the Day 0 and Osteo constructs not being significantly different from each 
other. [n=4, One-way ANOVA with Tukey post-test, significant *=p<0.05] 
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Hyper constructs, no noticeable increase in the amount of deposited mineral was noticeable, but 

the constructs appeared to refine the existing mineral, removing mineral particulates and creating 

a dense, smooth composition. The Osteo constructs saw a drastic increase in the amount of 

designated mineral with the deposition pattern closely matching, in appearance, the original silk 

scaffolds. Quantitation of the computed scans demonstrate unique trends for each construct 

(Figure 6.5E). In agreement with the visual evidence, the Hyper constructs didn’t significantly 

increase the amount of mineral present within the constructs. However, the mineral density did 

significantly increase, with the mineral density at 12 weeks approaching native values of cortical 

bone (1050 vs 1200 mm HA/cm3) (161). The Osteo constructs were almost opposite in behavior, 

as there was a significant increase in the deposited mineral within the construct, but not a 

significant change in the mineral density. The pattern of mineral deposition was altered in the 

Osteo constructs, as an increase in bone volume corresponded to a significant decrease in the 

bone surface to volume ratio. Hard bone histology was performed on the samples with Levai-

Laczko staining utilized to demonstrate bone regeneration (Figure 6.5B,D). Overtime, the 

turnover of the Hyper constructs was evident, as the calcified cartilage nodules (dark blue/ 

purple) seen at 3 weeks were remodeled into mature, compact bone with embedded cells at 12 

weeks (Figure 6.5B). New bone deposition seams are clearly present at the borders between the 

different stages of bone formation. For Osteo samples, the increase in bone volume is clearly 

visible, as the progression from 3 weeks to 12 weeks demonstrates a clear change in the quantity 

and spread of deposited mineral within the constructs (dark blue/ purple) (Figure 6.5D). Osteoid 

deposition can be visualized by the light purple forming on the scaffold at 3 weeks, which 

becomes heavily mineralized (dark purple) at 12 weeks.   
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Figure 6.5: Bone regeneration upon subcutaneous implantation. Scaffolds were evaluated 3, 6, 
and 12 weeks after subcutaneous implantation. Representative three-dimensional µCT 
reconstruction are presented to demonstrate the progression in bone regeneration during in vivo 
cultivation of each construct (6.5A,C). Hyper constructs didn’t change substantially, with slight 
refinement in the grouping of the mineral. In contrast, the Osteo constructs dramatically 
increased in the volume of mineral deposited, resembling the scaffold at 12 weeks. Hard bone 
histology was performed on harvested constructs, with Levai-Laczko staining utilized to 
elucidate the different aspects of the bone regeneration (6.5B,D). Hyper constructs underwent 
extensive remodeling, with calcified cartilage (dark blue/ purple) refined into dense, mature 
bone (pink), complete with remodeling seams and entrapped cells. Osteo constructs continued to 
deposit mineral within the scaffold walls, and the increase in amount of mineral was evident in 
the progressive accumulation of dark purple mineral within the scaffold. The µCT scans were 
quantified at each time point to determine the progression in volume (Bone Volume Fraction), 
density (BMD), and the ratio of surface area to volume (BS/BV) (6.5E). Hyper constructs 
contained the same approximate amount of bone, but saw a significant increase in the density, 
approaching values measured in cortical bone. The mineral density of Osteo constructs stayed at 
cancellous-like levels, but underwent a significant increase in the bone volume and subsequent 
decrease in surface to volume ratio. [µCT Scale Bars = 1 cm (6.5A,C), Levai-Laczko Scale Bars 
= 50 µm (6.5B,D), One-way ANOVA within each construct type with Tukey post-test, significant 
*=p<0.05, 3 wk n = 4, 6 wk n =5, 12 wk n = 3 (6.5E)] 



 77 

Subcutaneous Implantation Vascularization: 

As the mimicked ossification pathway strongly influenced the bone formation, their 

effect on overall regeneration, as determined by construct vascularization, was studied. 

Immunohistochemical staining of CD31 elucidated blood vessels in both constructs (Figure 

6.6A), and semi-quantitation was utilized to confirm the visual differences seen within the 

constructs. The hypertrophic chondrocyte-derived constructs had a greater presence of blood 

vessels, as the number of vessels per construct area and the total blood vessel area was 

significantly higher than the osteoblast-derived constructs (Figure 6.6B,C). The Hyper constructs 

had a significantly deeper average vessel location, as measured from the nearest construct edge, 

and a greater maximum distance into the construct, also measured from the nearest construct 

edge (Figure 6.6E,F). A histogram created of the distances of vessels from the closest scaffold 

edge clearly indicated the differences in regeneration (Figure 6.6D). Whereas the Osteo 

constructs had a large majority of vessels located within 200 microns of the scaffold edge, the 

Hyper constructs had a more even distribution of vessels throughout the construct.  
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6.6 DISCUSSION 

Autologous mesenchymal stem cells provide the ideal cell source for bone tissue 

engineering, due to their ease of harvest and multipotent nature (162). Traditionally, bone tissue 

engineering strategies focused on the direct differentiation of osteoblasts (59), but researchers 

have recently discovered a way to mimic endochondral ossification utilizing mesenchymal stem 

Figure 6.6: Vascularization of subcutaneously implanted constructs. Immunohistochemistry 
staining for CD31+ vessels of constructs that were implanted for six weeks (Figure 6.6A). From 
images of each construct, the construct area, vessel area, distance of vessel to the closest 
construct boundary were calculated. Hyper constructs had a significantly higher number of 
vessels per construct area (Figure 6.6B) as well as a significantly greater total vessel area 
normalized to the construct area compared to the Osteo constructs (Figure 6.6C). Categorizing 
the blood vessels based on their distance from the construct periphery demonstrated a more even 
distribution of vessels throughout the Hyper constructs, with Osteo vessels primarily localized to 
the periphery (Figure 6.6D). This distribution was reflected in the average vessel distance and 
the maximum vessel distance from the scaffold edge, as Hyper constructs had larger distances in 
both measurements.[Scale Bars = 50 µm (6.6A), n=5, Student’s T-test with *= p<0.05 
(6.6B,C,E,F)] 
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cells by deriving hypertrophic chondrocytes (61, 62, 69, 143). This ability to now mimic both 

ossification processes provides tissue engineers a unique tool to dictate bone graft performance. 

Despite this ability, there is little published literature to aid in deciding which pathway is best for 

a given application. In this study, we differentiated human mesenchymal stem cells along the two 

mimicked ossification processes, documenting the differences in cell behavior, matrix 

production, bone formation, and graft regeneration.  

Upon the successful differentiation of each cell type, the gene expression profiles were 

compared with regards to bone formation. Interestingly, the differentiated hypertrophic 

chondrocytes had higher expression in every bone gene studied. The initial belief about 

hypertrophic chondrocytes would refute this data, as it was thought that hypertrophic 

chondrocytes recruited osteoblasts to facilitate bone deposition, not deposit themselves (163). 

However, recent studies have demonstrated that this process is more of a continuum, with 

hypertrophic chondrocytes depositing preliminary bone, with some studies suggesting that these 

hypertrophic chondrocytes even transdifferentiate into osteoblasts (22, 164, 165). The 

differentiated hypertrophic chondrocytes’ protein and mineral deposition would also agree with 

these recent studies, as the presence and distribution of the bone-related proteins collagen type I 

and BSP were present throughout the endochondral mimicking constructs and heavily localized 

to the area surrounding hypertrophic chondrocytes.  

The localization of the matrix depositions and mineral suggests the first major difference 

between the differentiated hypertrophic chondrocytes and osteoblasts. Whereas the differentiated 

osteoblasts deposited mineral along the scaffold walls, the differentiated hypertrophic 

chondrocytes deposited within the pore space. This behavior by differentiated osteoblasts has 

been seen in our other work, with mineral deposition only occurring along an established surface 
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(110), and agrees with the known polarized deposition nature of native osteoblasts (166, 167). 

The differentiated hypertrophic chondrocyte deposition also aligns with native behavior, as bone 

deposition in endochondral ossification occurs within the cartilage anlage produced by 

condensed chondrocytes (19, 51). Very little of the hypertrophic chondrocyte deposition 

occurred along the scaffold, indicating that hypertrophic chondrocytes deposit within their 

condensation. Investigation within our lab has shown that this deposition tendency is maintained 

by the hypertrophic chondrocytes regardless of the scaffold, depositing heavily wherever cells 

have enough space (usually within the pores) to condense. In contrast, we have shown that 

osteoblast deposition is dramatically influenced by the scaffold composition (102).  

The amount of mineral between the two types of constructs was significantly different, 

with differentiated hypertrophic chondrocytes consistently depositing more mineral, faster than 

the differentiated osteoblasts. The speed and volume of mineral deposition alludes to the 

instances in which each process is used in vivo. Endochondral ossification is utilized in 

situations where a lot of new bone is needed, such as in native skeletal development and long 

bone fracture repair (19, 41, 132). In contrast, intramembranous ossification is found in 

remodeling situations, where a methodical, coordinated process is utilized to deposit bone (41, 

132). Analyzing the deposited mineral maturity using FTIR, the hypertrophic chondrocytes 

deposited a significantly less mature mineral than the osteoblasts. Natively, calcified cartilage’s 

mineral is immature due to interactions with the localized GAG and poor organization of the 

apatite concurrently with an abundance of non-apatite phosphate ions (100, 101), a situation that 

appears consistent with the hypertrophic chondrocyte-based grafts (Figure 6.3). The osteoblast 

value was consistent with trabecular bone maturities, and suggests the advanced state of the 

differentiated osteoblasts (168). The maturity of the mineral appeared to also relate to its 
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turnover after implantation. The immature mineral deposited within the hypertrophic 

chondrocyte-based grafts underwent extensive remodeling by mouse cells, increasing greatly in 

bone density until it was cortical-like in density and appearance (161). Osteoblast deposited 

mineral didn’t undergo noticeable remodeling, but rather the constructs saw increased bone 

volume deposition within the scaffolds, transforming the scaffold into trabecular-like bone. 

Bone tissue engineering has been plagued by poor vascularization, experiencing construct 

necrosis before sufficient integration into the native skeleton (3, 157). Though numerous 

strategies have been investigated to address this problem, previous work has suggested that 

hypertrophic chondrocyte-based constructs might sufficiently address this issue, with the 

demonstration of vascularization and mature vessel formation (62, 69, 93). The results of the 

current study agree with their results, with substantial vascularization penetrating the 

hypertrophic chondrocyte-based construct. The osteoblast-based constructs had minimal 

vascularization, confined to the exterior of the construct, demonstrating the limited potential of 

osteoblasts to promote vascularization. The superior ability of hypertrophic chondrocytes agrees 

with native development, as hypertrophic chondrocyte knock-out has shown to halt vascular 

invasion into the cartilage anlage (169, 170). 

6.7 CONCLUSION 

To summarize, the differentiated hypertrophic chondrocytes quickly deposited dense, 

immature bone that facilitated extensive turnover and vascularization when implanted. In 

contrast, differentiated osteoblasts slowly produced mature bone confined to the scaffold walls 

that facilitated further deposition on just the existing scaffold when implanted. These results 

present clear evidence to dictate the situations in which each mimicked pathway should be 
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utilized. In strategies containing no or an insufficient scaffold and that require fast mineral 

production or the presence of extensive vascularization, hypertrophic chondrocytes should be 

utilized. In situations with an advanced scaffold ready for biological incorporation that will be 

implanted in a nutrient dense environment, osteoblasts should be utilized. This information also 

allows the future design of more complex systems, with the localization of select cell types to 

elicit specific repair events.  
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7 Derived hypertrophic chondrocyte grafts boost critical-sized long bone 

defect regeneration 

 

7.1 ABSTRACT 

Bone tissue engineering provides a tantalizing treatment option for critical long bone fractures, 

but hasn’t delivered on this promise due to the difficulties in creating large grafts and the 

inconsistencies these grafts have in regeneration. In the current study, we created novel, large 

tissue engineered constructs replicating natural endochondral ossification through hypertrophic 

chondrocyte differentiation, and compared these constructs to tissue engineering-established, 

intramembranous ossification-mimicked constructs fabricated with differentiated osteoblasts. 

The constructs were implanted into orthotopic, femoral critical-sized defects to evaluate the 

ability of each construct to stimulate healing and promote bone regeneration. With long bone 

fractures naturally healing through endochondral ossification, we hypothesized that the 

hypertrophic chondrocyte-based constructs would enhance bone regeneration. After 12 weeks in 

vivo, the hypertrophic chondrocyte-based grafts demonstrated enhanced bone regeneration by 

facilitating increased bone deposition, superior integration into the native skeleton, and 

widespread bone marrow formation. This enhanced bone regeneration corresponded to 7/8 

hypertrophic chondrocyte-based constructs successfully bridging the defect, compared to only 

1/8 defects bridged with osteoblast-based constructs. Despite replicating the intramembranous 

process, the osteoblast-based constructs still formed new bone through endochondral 

ossification, but to a significantly lesser degree than the derived hypertrophic chondrocytes. 

Further investigation of the defect space indicated that the derived hypertrophic chondrocytes 
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established a superior bone-forming environment, with reduced numbers of osteoclasts and an 

increased presence of M2-polarized macrophages. The success of hypertrophic chondrocyte-

based constructs indicates an importance in matching the tissue engineered development to the 

natural process, and beckons a more detailed investigation of hypertrophic chondrocyte-based 

constructs for clinical translation.  

7.2 SIGNIFICANCE 

Bone tissue engineering promises to revolutionize clinical treatment of fractures and bone 

defects by providing the benefits of the best treatment option, autografts, without the difficulties 

associated with harvesting. In this study, we mimicked the two natural bone forming processes in 

the body, endochondral and intramembranous ossification, by differentiating mesenchymal stem 

cells into the key cell type of each process, hypertrophic chondrocytes and osteoblasts. We 

evaluated each process’s ability to regenerate a critically-sized rat femur defect. The 

hypertrophic chondrocyte-based constructs promoted better regeneration, bridging the critical-

sized defect and depositing a more complete bone. Hypertrophic chondrocyte-based grafts 

provide an exciting possibility to deliver on the promise of bone tissue engineering.   

7.3 INTRODUCTION 

Bone repair after fracture occurs through two distinct ossification processes, 

intramembranous and endochondral (152). In intramembranous ossification, repair occurs 

through the direct differentiation of mesenchymal sources into osteoblasts that mend the break 

and fabricate new bone (152).  In contrast, endochondral ossification heals by the initial 

deposition of a cartilage anlage before new bone formation is orchestrated by the matured 

hypertrophic chondrocytes (19, 28). Though these repair processes successfully reconstruct a 
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high percentage of fractures, estimates suggest >100,000 fractures fail in their repair efforts, 

clinically diagnosed as nonunions (171). Though a number of factors contribute (172), many 

nonunions occur due to complex fractures of the long bones (e.g. femur, humerus, tibia). Once 

the bone has failed to regenerate, external intervention is required to return functionality (171). 

Though numerous fabricated prosthetics exist, the gold standard for bone regeneration remains 

autologous grafts (57).   

Despite their clinical success, autografts present a number of disadvantages, principally 

the scarcity of suitable bone and donor site morbidity (173). An attractive alternative, tissue 

engineering promises to provide the benefits of autologous bone without these troublesome 

disadvantages by utilizing autologous cells, prepared scaffolds, and external stimuli to create 

curative grafts (174). Due to their multipotent nature and ease of harvest, mesenchymal stem 

cells are a clinically-ideal cell source for tissue engineered grafts (175). Advances within the 

mesenchymal stem cell field have demonstrated the ability to derive osteoblasts (59) and, 

recently, hypertrophic chondrocytes (61, 62), the key cells in intramembranous and endochondral 

ossification. Utilizing these derived cells, a developmental engineering approach can be taken to 

mimic the native bone repair processes (4, 59, 62, 176). Therefore, creating large grafts with the 

differentiated, key cells already incorporated should accelerate the native repair processes and 

facilitate enhanced bone regeneration. As both processes are integral in the repair of certain bone 

fractures, our aim was to create viable tissue engineered grafts and investigate the regenerative 

capability of each key cell type for long bone repair.  

The present study created intramembranous- (117) and novel endochondral-like grafts by 

deriving osteoblasts and hypertrophic chondrocytes from adipose derived stem cells within 

decellularized bone cores. Following nature’s template for long bone repair, we hypothesized 
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that the hypertrophic chondrocyte-based grafts would facilitate enhanced regeneration of the 

orthotopic, femoral critical-sized defect. Our results demonstrate that the engineered 

hypertrophic chondrocyte grafts mediated fast integration and thorough remodeling continuous 

with the native bone, whereas the osteoblast constructs produced minimal bone and failed to 

bridge the defect. This study demonstrates the ability of hypertrophic chondrocyte tissue 

engineered grafts to facilitate bone regeneration in critical-sized orthotopic defects, and 

advocates for the further investigation and utilization of hypertrophic chondrocytes to alleviate 

nonunions.   

7.4 METHODS 

Human adipose tissue collection and rat experimentation were performed following all 

relevant guidelines and procedural approval from the appropriate Austrian authorities. Adipose 

derived stem cells (ADSCs) were expanded to p4 and seeded in decellularized juvenile bovine 

wrist bone cores. Based on our previous studies that optimized the creation of osteoblast-based 

tissue engineered bone grafts (177), osteoblast-based grafts were cultured in a perfusion 

bioreactor in osteogenic medium for 5 weeks at a perfusion rate of 400 µm/s. Novel hypertrophic 

chondrocyte-based grafts were cultured based on literature-defined conditions and our yet 

unpublished optimization work (61, 62), with the constructs cultured statically first in in 

chondrogenic medium for 2 weeks, followed by hypertrophic medium for 3 weeks. Upon culture 

completion, grafts were analyzed biochemically, histologically, immunohistochemically, and by 

real time RT-PCR (Primers Table S1). Critical-sized defects were created by extracting a 5 mm 

portion of the right femur in male RNU nude rats. Osteoblast-based constructs, hypertrophic 

chondrocyte-based constructs, and empty decellularized bone cores were implanted into the 

defects. The femur, not the graft directly, was stabilized by a four-pin, POM-based internal 
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fixator. In vivo micro-computed tomography (µCT) scans were performed the day after 

implantation and at 3, 6, and 9 weeks post implantation. Grafts were harvested at 12 weeks and 

bone formation and graft regeneration were analyzed by high resolution µCT, hard bone 

histology, histology, and immunohistochemistry. A complete and detailed account of the 

methods is included in the SI Text. 

7.5 RESULTS 

In vitro cultivation and characterization 

Endochondral and intramembranous-like tissue engineered constructs were created 

utilizing decellularized bone (DCB) scaffolds seeded with clinically-relevant adipose derived 

stem cells. The constructs were cultured in conditions to optimize their differentiation of the key 

cell types (hypertrophic chondrocytes and osteoblasts) in the mimicked ossification pathways 

(Figure 7S.1). Hypertrophic chondrocyte-based constructs (SH) were differentiated in static 

conditions by first prompting chondrogenesis and cartilage tissue formation for two weeks and 

then inducing chondrocyte hypertrophy over the subsequent three weeks (Figure 7S.1). After five 

weeks of total culture, the hypertrophic chondrocyte-based constructs demonstrated 

endochondral-like characteristics, with upregulated gene expression of chondrocyte and 

hypertrophic chondrocyte markers and collagen X and glycosaminoglycan deposition 

surrounding enlarged chondrocyte lacunae (Figure 7S.2). Osteoblast-based constructs (PO) were 

formed through osteogenic differentiation in a perfusion flow bioreactor for the entire five week 

culture period (Figure 7S.1). Osteoblast-based constructs had increased cellularity and had 

deposited bone matrix during cultivation.  
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Figure 7.1: State of ossification mimicking bone constructs pre-implantation: Histology and 
immunohistochemistry revealed the differences in morphometry and bone template deposition 
between the construct groups. The static hypertrophic chondrocyte-based (SH) constructs 
contained hypertrophic chondrocytes with an increased lacunae size surrounded by a 
cartilaginous matrix defined by the greenish staining of glycosaminoglycans (GAG) (7.1A). Bone 
sialoprotein (BSP) (7.1C) was present on the exterior co-localized with heavy GAG deposition, 
whereas nuclear RUNX2 staining (7.1E), a key protein to prompt skeletal formation, was present 
in cells throughout the entirety of the construct. The osteoblast-based (PO) constructs contained 
high cellularity throughout the graft, accompanied by widespread fibrous deposition, most 
strongly present on the outer parts of the construct (7.1B). BSP (7.1D) was present on this 
fibrous tissue throughout the construct, with nuclear RUNX2 staining in osteoblasts (7.1F) 
confined to the exterior of the construct. After five weeks of cultivation, SH constructs had a 
significantly enhanced expression of important bone production genes compared to PO 
constructs (7.1G). [n=5, Student’s T-test with* = p<0.05 (7.1A), Scale Bar = 50 µm, with inset 
Scale Bar = 500 µm (7.1B-G)].   
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The different state of the two constructs at the culmination of culture was clearly evident 

through histology and immunohistochemistry. Movat’s pentachrome (Figure 7.1A,B) staining 

revealed that SH constructs had high cellularity and heavy cartilage-like deposition around the 

periphery of the construct, but minimal of either within the interior (Figure 7.1A). In contrast, 

PO constructs had high cellularity throughout the construct, significantly higher than the SH 

constructs (Figure 7S.2), with widespread dense collagenous matrix deposits (Figure 7.1B). With 

regards to bone production, deposition of bone sialoprotein (BSP), a key nucleating protein for 

bone mineral formation, correlated with the general matrix characteristics. SH BSP was located 

near hypertrophic chondrocytes within the dense cartilage matrix on the periphery of the 

construct (Figure 7.1C). PO BSP was present on fibers throughout the construct but concentrated 

at the locations of the most dense tissue (Figure 7.1D). In addition, new osteoid formation was 

more prevalent in the PO constructs (Figure 7S.3). Interestingly, despite the enhanced matrix 

production of the PO constructs, gene expression of key bone-related genes was significantly 

greater for the SH constructs (Figure 7.1G). A master regulator for bone formation (RUNX2), 

matrix deposition (COL1A1 and MMP13) and mineral formation (ALPL and IBSP) were all 

enhanced in the SH group. Nuclear staining of RUNX2 showed widespread presence throughout 

the SH construct but was only minimally present in PO, localized to the exterior segments of the 

construct (Figure 7.1E,F). Pre-implantation, PO constructs had an enhanced matrix composition 

for bone deposition but the SH constructs had superior gene expression.  
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In vivo graft integration, deposition, and bridging 

To evaluate the constructs capabilities to facilitate bone regeneration, SH, PO and DCB 

control constructs were implanted into a critically-sized, 5mm defect in the right femur of nude 

Figure 7.2:  Temporal progression of the femoral, critical-sized defect regeneration: 
Representative in vivo three-dimensional µCT reconstructions of the rat femur are presented at 0 
(day 1) [7.2A-C], 3 [7.2D-F], 6 [7.2G-I], and 9 weeks [7.2J-L] post-implantation from the 
ventral view. Week 0 reconstructions depict the defect size and shape, and the initial state of the 
implanted constructs [7.2A-C]. At 3 weeks post-implantation, control [7.2D] and SH [7.2E] 
demonstrated some construct integration and initial mineral deposition along the medial side of 
the graft. At 6 weeks, the control [7.2G] showed external deposition, the SH [7.2H] 
demonstrates substantial reconstruction and graft remodeling, and the PO [7.2I] construct has 
integrated with the native skeleton and undergone some remodeling. At 9 weeks, the control 
[7.2J] had almost formed a bridge and experienced extensive mineral deposition external to the 
graft, SH [7.2K] had bridged the union with broad construct remodeling, and the PO [7.2L] 
developed a fissure diagonally through the graft, between the integration sites.  [Scale bar: 1 
cm] 
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rats, an orthotopic model for long bone fracture repair (Figure 7S.1). Live µCT scans were taken 

routinely to monitor construct integration and turnover, presented as representative 3D 

reconstructions (Figure 7.2). At 3 weeks post-implantation, SH constructs had already begun 

integration into the native skeleton, and had large mineral deposition along the medial exterior of 

the graft (Figure 7.2E). The PO group had very little noticeable change, with minimal integration 

and no apparent mineral deposition (Figure 7.2F). The DCB scaffold control resembled the SH 

group, with external mineral deposition apparent (Figure 7.2D). At 6 weeks, a difference in 

regeneration was noticeable between the groups, as the SH construct had extensive integration 

along both ends, and a bridge had almost occurred along the medial side (Figure 7.2H). The PO 

constructs had partial integration along both ends and very little new mineral deposition (Figure 

7.2I). The DCB control had extensive new deposition along the medial side of the scaffold, but 

very little remodeling of the actual scaffold. At 9 weeks, both the SH and control groups had 

bridged the defect, but the PO construct had failed, developing a large fissure through the 

construct. The SH construct had extensive remodeling, with new deposition occurring 

throughout the construct and the formation of a solid bridge along the medial side of the 

construct (Figure 7.2K). The PO construct advanced the integration into the defect space; 

however, the construct, still very similar in appearance to the Day 0 status, had broken apart 

(Figure 7.2L). The DCB control appeared very similar to 6 weeks, but with a more refined 

medial-side bridge and a slight progression in integration (Figure 7.2J).  
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At 12 weeks, the femurs were harvested and scanned with a high-resolution µCT. The 

exterior of the SH construct had undergone extensive remodeling, with seamless integration into 

the femur and large portions of the graft resembling native bone (Figure 7.3B). Interior 

reconstructions demonstrated a thick, cortical-like bridge had formed along the medial interior of 

the construct (Figure 7.3E). The PO construct lacked remodeling and showcased the severe lack 

of bone present within the fissure (Figure 7.3C). Interior reconstructions showed that minimal 

integration had occurred and that the construct failed to facilitate bridging or regeneration 

(Figure 7.3F). Demonstrating the negative impact the PO constructs had on healing, the DCB 

scaffold experienced bridging of the defect, and partial integration of the scaffold (Figure 

7.3A,D). Based on µCT reconstruction, 3/8 DCB, 7/8 SH, and only 1/8 PO constructs 

successfully bridged the defect (Figure 7.3J). The SH constructs’ increased incidence of bridging 

Figure 7.3: Bone deposition and critical-sized defect bridging (previous page): Representative 
high resolution, three dimensional reconstructions of the critical-sized femoral defects after 
harvest at 12 weeks (external: 7.3A-C, internal: 7.3D-F). The control group shows integration 
into the native skeleton, but only minimal mineral deposition at the integration sites (7.3A-D). 
The SH group demonstrated bridging and extensive deposition along the medial side, with 
trabeculae of the implanted scaffold still present on the lateral side (7.3B,E). The PO group had 
progression of the native skeleton into the defect space with a degradation of the implanted 
construct resulting in a noticeable fissure (7.3C,F). Hard bone histology using the Levai-Laczko 
stain demonstrated the overall morphology of the defect region and denoted the difference 
between implanted construct (DCB) and newly deposited bone (NB) (7.3G-I). In the control, new 
bone deposition was largely constrained to the medial side at the integration sites (7.3G). New 
bone deposition was widespread throughout the SH defect, with some implanted scaffold present 
on the lateral side (7.3H). In the PO, new bone was located at the leading edge of the native 
skeleton, with minimal amounts of implanted scaffold scattered throughout the defect (7.3I). 
Successful bridging of the defects as determined by µCT analysis demonstrated 3/8 control, 7/8 
SH, and 1/8 PO bridged (7.3J). Quantitation of the µCT scans within the defect site showed 
significantly more bone volume in the SH group compared to the other two groups (7.3K). Semi-
quantitative analysis of the histological stains showed a similar pattern, with significantly more 
bone (both DCB and NB) in the SH group compared to the other two (7.3L). [Scale bars: 1 cm 
(73A-F), 2 cm (7.3G-I), Statistics: One-way ANOVA with Tukey post-test, significant *=p<0.05 
(7.3K, L), n=8 (7.3K), n=4 (7.3L)] 
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correlated with enhanced mineral deposition within the defect space, as the SH constructs had 

significantly greater bone volume than the other two groups (Figure 7.3K). Hard bone histology 

of the defects, stained with Levai-Laczko, visualized the difference between newly deposited 

bone (fuchsia) and the implanted DCB scaffold (light pink). The new bone deposition matched 

the mineral depositions visualized in the µCT, with SH constructs containing substantial new 

bone deposition (Figure 7.3H). In the PO constructs, new bone was localized to the integration 

sites and the advancement into the defect space. Much of the DCB scaffold was intact in the 

control group, with new bone deposition localized to the integration sites and the medial side of 

the construct. Semi-quantitation demonstrated significantly more bone in the SH compared to the 

DCB control and PO groups, confirming the enhanced bone production seen within the SH 

histology (Figure 7.3L).  

Bone formation:  

Magnified views of the Levai-Laczko highlighted the formation of bone within the 

defect. Large sections of the DCB scaffold were present in all three groups, with new bone 

forming around the DCB (Figure 7.4A,D,G). In the SH group, numerous sections of calcified 

cartilage were present, a precursor to bone formation through endochondral ossification (Figure 

7.4D). Movat’s pentachrome revealed that all groups underwent endochondral ossification to 

form new bone, as shown by the transition of hypertrophic chondrocytes in a cartilage matrix 

(black arrows) transitioning into newly formed bone (black stars) (Figure 7.4B,E,H). This 

endochondral ossification was located at the edge of new bone formation within the control and 

PO groups, and found in areas throughout the SH constructs. This widespread endochondral 

ossification correlated with the amount of new bone formed, as SH had a significantly higher 

amount than the control and PO groups (Figure 7S.4A). An increase in new bone production 
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resulted in a significant reduction in the amount of fibrous tissue within the SH defects compared 

to the other two groups (Figure 7S.4D). Besides producing bone, endochondral ossification has 

been shown to be essential for the formation of hematopoietic stem cells in bone marrow (178). 

Though all constructs prompted bone marrow formation within areas of newly formed bone, the 

SH constructs had significantly greater bone marrow area than the control and PO constructs 

(Figure 7S.4B). Previous work has shown that implanted hypertrophic chondrocytes serve as the 

driving force for, and remain within, new bone deposition by endochondral ossification (95). 

However, in the current experiment, all constructs, not just the implanted hypertrophic 

chondrocytes, underwent endochondral ossification. Therefore, human anti-mitochondria 

antibody staining was used to determine the source of new bone formation, and to determine if it 

was related to the implanted cell type. All cells present within the defect space, of all samples, 

were rat in origin (Figure 7.4C,F,I). However, the new bone did demonstrate abundant bone 

formation seams, indicating bone and cell turnover had already occurred in this newly deposited 

bone. 
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Graft Regeneration:   

As a more direct measurement of the degree of bone turnover, osteoclasts, identified by 

their multinucleation and Howship’s lacunae, were counted within the defect space of each 

construct (Figure 7.5A-C). The number of osteoclasts present within the SH constructs was 

Figure 7.4: Bone formation: Representative images of the bone formation process within the 
defect space utilizing Levai-Laczko (7.4A,D,G), Movat’s pentachrome (7.4B,E,H) and human 
mitochondrial antibody (7.4C,F,I). Magnified views of the Levai-Laczko staining demonstrate 
the formation of new bone (NB) enveloping the implanted decellularized scaffold (DCB) in all 
three groups (7.4A,D,G). Calcified cartilage (CC) was seen most evidently in the SH group, 
which also contained extensive bone marrow (BM) formations. At the location of new bone 
formation, a cartilage anlage characteristic of endochondral ossification was present for all 
three groups, as shown by the green staining in Movat’s pentachrome sections (7.4B,E,H). The 
included images demonstrate the turnover of this cartilage (black arrow) into newly deposited 
bone (black star). Human mitochondrial antibody (113-1), utilized to determine if any implanted 
human cells remained to aid bone regeneration, stained negative for the presence of human cells  
(7.4C,E,I). Semi-quantitation and statistical evaluation of the histological staining are included 
in the supplementary information. [Scale Bars: 200 µm (7.4A,D,G), 50 µm (7.4B,E,H), 50 µm 
(7.4C,F,I)] 
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significantly lower than the number of osteoclasts present in the other two groups (Figure 7S.5). 

As can be seen in Figure 5A-C, there was a tendency for osteoclasts to appear on DCB scaffolds 

located within the fibrous tissue portions of the defect. The number of osteoclasts digesting 

DCB, normalized to the DCB area, was calculated, and overall osteoclast number trends held, as 

SH constructs had significantly less osteoclasts digesting DCB scaffolds (Figure 7S.5). In 

addition, the proportion of DCB osteoclasts to overall osteoclasts was significantly lower for the 

SH constructs (Figure 7S.5), thereby containing a higher portion of osteoclasts localized to areas 

undergoing remodeling. M2-macrophages have been shown to be integral in long bone 

regeneration, providing key molecules and generating a pro-repair environment (104). 

Immunohistochemistry staining of CD206, a key M2 marker, demonstrated increased presence 

within the SH construct defect space, with minimal presence in the PO constructs (Figure 7.5D-

F). Staining of CD163, another M2 marker, matched the CD206 staining patterns (Figure 7S.6).  

 

Figure 7.5: Implant Turnover and Regeneration: Representative images of the degradative and 
regenerative environment of the critical-sized defect through the histological evaluation of 
osteoclasts (7.5A-C) and M2-polarized macrophages (7.5D-F). Osteoclasts, identified by the 
presence of multinucleated cells within a Howship’s lacunae, demonstrated increased bone 
turnover, of both the implanted DCB and newly formed bone, within the control and PO 
constructs (7.5A-C). M2-polarized macrophages were identified by CD206 staining and were 
most present within the SH defect space (7.5D-F). [Scale Bars: 50 µm (7.5A-F)] 
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7.6 DISCUSSION 

Autologous bone tissue engineering has promised to provide customized, superior repair 

options for bone defects, but has had difficulty fulfilling this promise due to incomplete 

integration, stunted regeneration, and poor mechanical maintenance (3, 157). In this study, we 

evaluated the ability of current bone tissue engineering options, our novel hypertrophic 

chondrocyte-based and osteoblast-based constructs, to facilitate bone regeneration within an 

orthotopic bone defect model. We demonstrated the superiority of hypertrophic chondrocyte-

based constructs to promote regeneration by (i) integrating faster with the native skeleton, (ii) 

depositing more bone, (iii) bridging the critical-sized defect, and (iv) promoting a more 

regenerative environment within the defect space.  

The long bone critical sized-defect model creates a unique bone regeneration situation 

that occurs in a mechanically complex, bone marrow rich environment (109). Despite direct 

cultivation of osteoblasts for PO constructs, all experimental groups demonstrated instances of 

endochondral ossification. Naturally, long bone fracture repair undergoes endochondral 

ossification, and the relatively large pore size of the DCB scaffolds and the supply of a large 

number of stem cells from the bone marrow and surrounding tissues contributed to conditions 

that would support endochondral ossification (27). In the differentiation of the SH constructs pre-

implantation, the seeded stem cells replicated condensation and cartilage formation within the 

DCB pore space, and the pentachrome staining of the PO and DCB constructs suggests a similar 

effect happened in vivo. Therefore, it was apparent that the conditions for bone regeneration 

within the defect favored endochondral ossification (179), and SH constructs thrived, showing 

integration and new bone deposition as early as 3 weeks, well before any noticeable regeneration 

had occurred in the osteoblast-derived constructs. Hypertrophic chondrocytes are the key 
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orchestrator of endochondral ossification, and previous studies have showcased their importance 

at facilitating new bone formation and defect regeneration (69, 95). The in vitro cultivation 

successfully resulted in hypertrophic chondrocytes within a cartilage matrix, accelerating the 

natural endochondral ossification process in vivo and producing fast integration and remodeling. 

Consistent with the results seen in literature (62), differentiating hypertrophic chondrocytes pre-

implantation boosted bone regeneration, as highlighted by the more complete and advanced 

defect repair seen in the SH group compared to the DCB scaffold (natural endochondral 

ossification) and the PO constructs (primed intramembranous ossification).  

The specific role of hypertrophic chondrocytes in bone formation is a popular topic, as 

recent publications have shown the ability of hypertrophic chondrocytes to transdifferentiate into 

osteoblasts and remain within the newly formed bone space (22, 164, 165). In the current study, 

only host rat cells were present in the SH constructs at the 12 week harvest. Though 

contradictory in appearance, there are a number of suitable possibilities as to why no implanted 

human cells remained in the defect space. In the published studies ((22, 95), the 

transdifferentiated hypertrophic chondrocytes were localized to the spongy bone layers; 

however, in the present study, much of the new bone more closely resembled the bony collar 

formed by invading cells (180). In addition, the newly deposited bone had already undergone 

turnover, as seen by the intersection of bone seams. Therefore, it is not clear if implanted 

hypertrophic chondrocytes underwent transdifferentiation, but they did orchestrate enhanced 

bone production by invading host cells.  

In contrast, the role of differentiated osteoblasts appears to act in an adverse way to 

hypertrophic chondrocytes. The PO constructs had methodical integration with localized bone 

deposition during the 12 weeks in vivo. This behavior matched recent results in our laboratory  
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that suggest that osteoblasts controlled turnover within the defect space by localizing bone 

deposition and moderating the implant resorption. Unfortunately, the mechanical environment of 

the long bone defect resulted in its eventual failure, as the osteoblast-controlled regeneration 

slowed new bone deposition, opposite to the hypertrophic chondrocytes, which prevented 

successfully bridging of the defect and adequate construct mechanical stiffness. 

The enhanced bone regeneration of the hypertrophic chondrocytes correlated with an 

increased presence of M2 polarized macrophages, which have shown to be integral in successful 

bone fracture healing (104). The increased presence of M2 macrophages, known as the tissue 

repair macrophages, has been shown to accelerate endochondral ossification and improve bone 

regeneration (103). In the current study, staining for M2 macrophages showed a greater number 

present within the SH constructs. Coupled with the reduced number of osteoclasts present within 

the defect, the implanted hypertrophic chondrocytes promoted a more conducive environment for 

tissue repair, possibly promoting the increased prevalence of deposited bone and defect bridging.  

In total, this study demonstrates the superiority of hypertrophic chondrocyte-based 

constructs to stimulate enhanced bone production and successful defect bridging. Though 

osteoblast-based constructs have been successful in other situations of bone regeneration, they 

failed in this long bone critical-sized defect study. The results suggest an importance in matching 

the mimicked ossification pathway with the native ossification repair pathway. The results also 

prompt for further investigation into hypertrophic chondrocyte-based grafts to finally provide a 

tissue engineered solution for nonunion bone fractures. 
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7.7 SUPPLEMENTAL INFORMATION 

Materials and Methods:   

All materials were obtained from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise 

noted.  
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Figure 7S.1: Graphical illustration of the project methodology and femoral defect creation 
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Bone Core Harvest and Decellularization:   

Bone cores were harvested from bovine juvenile wrists as previously denoted, (117). 

Cores were cut and measured to a height of 6 mm, diameter of 4 mm, and a density between 0.35 

– 0.50 g/mL. Cores were decellularized following published protocols. Briefly, cores were 

washed in a series of detergent and enzymatic solutions: 1) 0.1% EDTA in PBS for 1 hour, 2) 

hypotonic buffer consisting of 10mM Tris and 0.1%EDTA in PBS for 12 hours at 4 degrees 

Celsius, 3) detergent consisting of 10mM Tris and 0.5% SDS in PBS for 24 hours at room 

temperature on an orbital shaker at 300 revolutions per minute, 4) enzymatic solution of 100 

units/ mL DNase and 1 unit/ mL of RNase with 10 mM Tris in PBS at 37 degrees Celsius for 6 

hours.  After multiple washes in PBS to remove all solutions, cores were frozen and lyophilized.  

Stem Cell Isolation, Expansion, and Graft Seeding:   

Adipose tissue was obtained with the informed consent of the patient at the Rotes Kreuz 

facility in Linz, Austria, with adipose derived stem cells were extracted. The stem nature of the 

cells was verified by tri-differentiation testing. Cells were expanded until passage 4 in expansion 

medium consisting of high glucose medium with L-glutamine, 10% fetal bovine serum, and 1% 

penicillin/ streptomycin. In preparation for seeding, bone cores were disinfected in sterile-filtered 

70% ethanol for 2 days, and then incubated in culture medium for 1 day. P4 adipose derived 

stem cells were trypsinized, resuspended in culture medium, and then applied to dried scaffolds 

in a drip method to seed the cores at 30M cells/ mL. The seeded cores were incubated in 

expansion medium for 2 days to promote cell attachment and expansion. 
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Graft Seeding and Cultivation:   

After 2 days of expansion medium incubation, the culture conditions were modified to 

produce optimized grafts for each experimental group. Extensive work in our laboratory has 

shown that perfusion culture at a flow rate between 400-800 µm/s is optimal for osteoblast 

differentiation and bone graft culture (177). Therefore, osteoblast-based constructs were placed 

into a previously designed perfusion bioreactor (177) and cultured in osteogenic medium (low 

glucose DMEM (ThermoFisher, Waltham, MA), 100 nM dexamethasone, 50 ug/mL ascorbic 

acid, 10 mM HEPES buffer, 10% fetal bovine serum, 1% P/S, and 5mM β-glycerophosphate) at 

a perfusion rate of 400 µm/s for 5 weeks. With reference to published articles detailing the 

differentiation of hypertrophic chondrocytes (61, 62) and our own unpublished works, 

hypertrophic chondrocyte-based constructs were incubated statically first in chondrogenic 

medium (high glucose DMEM (ThermoFisher, Waltham, MA) supplemented with 100 nM 

dexamethasone, 50 µg/mL ascorbic acid, 50 µg/ mL proline, 100 µg/mL sodium pyruvate, 1% 

ITS+, 1% P/S, 10 ng/mL BMP6 and 10 ng/mL TGF-β3) for 2 weeks, followed by 3 weeks of 

hypertrophic medium (the same as chondrogenic medium, but without BMP6 and TGF-β3, a 

dexamethasone concentration of 1 nM, 50 ng/mL of L-thyroxine, and 5mM of β-

glycerophosphate). At the culmination of cultivation, grafts were either implanted into 

orthotopic, critical-sized defects, or harvested for pre-implantation analysis.  For pre-

implantation analysis, grafts were cut in half and the corresponding wet weight was recorded.   

Quantitative biochemical analysis: 

Graft halves were digested with papain (40 Units/ mg) in digest buffer (0.1M sodium 

acetate, 10 mM cysteine HCl and 50 mM EDTA, pH 6.0) at 60 oC overnight. DNA content per 
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wet weight was measured from the digest solution using Quant-iT PicoGreen assay kit and the 

supplied lambda DNA standard (ThermoFisher, Waltham, MA). Sulfated glycosaminoglycan 

(GAG) content was measured using the dimethylmethylene blue assay with chondroitin 6 sulfate 

as a control. Each sample was run in duplicate, with n=4 for each experimental group.   

Real time RT-PCR quantitation:   

Total RNA was extracted from graft halves using the TRIzol-based method 

(ThermoFisher, Waltham, MA). DNase I treatment was utilized for ten minutes at 37 oC to 

remove any contaminating DNA. cDNA was transcribed using the High Capacity cDNA Reverse 

Transcription kit (ThermoFisher, Waltham, MA) according to the manufacturer’s instructions.  

Quantitative RT-PCR was performed using Fast Sybr Green mix (ThermoFisher, Waltham, MA).  

Expression levels were quantified applying the ΔCt method, with the Ct of GAPDH subtracted 

from the Ct of the gene of interest.  Forward and reverse primers for each gene of interest are 

presented [Table 7S.1]. Samples were run in duplicate, with n=5 for each experimental group 

and time point. 

Histology and Immunohistochemistry:   

Grafts from each experimental group were fixed in 10% formalin, rinsed to PBS, and 

decalcified using a formic acid based solution (Immunocal Decalcifier, StatLab, McKinney, TX).  

After decalcifying, grafts were washed multiple times with PBS, dehydrated, embedded in 

paraffin, and sectioned at 6 µm. Grafts were stained with alcian blue for GAG content following 

publicly available protocols and Movat’s Pentachrome for construct morphology following the 

manufacturer’s instructions. Antigen retrieval was required for immunohistochemistry. Slides 

were placed in a container filled with citrate buffer (1.8 mM citric acid, 8.2 mM sodium citrate, 
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pH 6.0), and the container was submerged in boiling water for 20 min.  Slides were blocked with 

0.3% hydrogen peroxide in absolute methanol for 30 minutes before following the Vectastain 

Elite Universal staining kit (Vector Laboratories, Burlingame, CA). The primary antibodies for 

BSP (EMD Millipore, 1/500 dilution, AB1854, Bilerica, MA) and RUNX2 (Abcam, 1/1000 

dilution, AB192256, San Francisco, CA) were incubated on the samples overnight at 4 oC.  The 

slides were counterstained with Hematoxylin QS (Vector Laboratories, Burlingame, CA). Slides 

for collagen type X immunohistochemistry followed the previously described protocol (118).  

The primary antibody was obtained from Abcam (1/1000 dilution, AB49945, San Francisco, 

CA), and Hematoxylin QS was used as a counterstain.   

Critical-sized Defect Creation and Graft Implantation:   

An animal experiment permit was issued by the municipal government of Vienna, 

Austria and all experiments were consistent with the Guide for the Care and Use of Laboratory 

Animals of the National Institute of Health (revised 2011). Twenty-eight male, RNU nude rats 

were used in this study.  Animals were kept in conventional housing in cages with filter tops and 

in groups of at least two, separate from all other animals. 

At the time of operation, the rats weighed between 260 and 392 g. Animals were treated 

preoperatively with subcutaneously applied 0.05 mg/kg buprenorphine (Bupaq, Richterpharma 

AG, Austria) and 4 mg/kg carprofen (Rimadyl, Zoetis Osterreich Gesm.b.H, Austria). Anesthesia 

was induced in an inhalation box with isoflurane (Forane, AbbVie Gesm.b.H, Austria) and 

anesthesia was maintained with 1.5-2.5% isoflurane/ oxygen by way of mask inhalation.  

Once under stable anesthesia, a lateral approach was used to expose the right femur.  

After fixation with a four-pin, POM fixator (modified from the method described in Betz et al 
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(181) and Kunkel et al (182)), a defect of 5 mm was created with a Gigli wire saw. Constructs 

were placed into the defect and the muscle and skin were sutured surrounding the construct and 

the fixator, respectively. For each experimental group (SH and PO) and control (decellularized 

DCB), eights rats underwent implantation, with four rats operated on to confirm the critical-size 

defect. Analgesia was continued over four days post-implantation with 0.05 mg/kg 

buprenorphine and 4 mg/kg carprofen.   

Animals were subjected to in vivo µCT scans at day 1, and at 3, 6, and 9 weeks post-

implantation (see µCT section). Twelve weeks post-implantation, the rats were euthanized by an 

overdose injection of intracardially delivered thiopental sodium while under deep isoflurane 

anesthesia.  The right femur of each animal was harvested for further investigation and study.   

Micro-computed Tomography (µCT):   

For in vivo µCT scans, a vivaCT 75 (Scanco Medical, Bruttisellen, Switzerland) 

preclinical scanner was utilized.  Studied rats were anesthetized with 2% isoflurane throughout 

the duration of the scan.  The right femur of each rat was scanned at an isotropic resolution of 50 

µm at day one, 3 weeks, 6 weeks, and 9 weeks post implantation. Scans were reconstructed to 

provide 3D representations of the defect and graft.   

After femur harvest at 12 weeks, µCT scans were performed on a µCT 50 (Scanco, 

Bruttisellen, Switzerland) at an isotropic resolution of 10 µm. Scans were reconstructed to 

provide 3D representations of the defects, as well as quantitative data for the bone volume and 

bone surface area to bone volume present within the defect.   
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Hard Bone Histology:   

Femurs with attached fixation were immersed in 4% neutral-buffered formaldehyde 

solution, then dehydrated in ascending grades of ethanol and imbedded in light curing resin 

(Technovit 7200 VLC; Kulzer & Co., Wehrheim, Germany). Undecalcified thin ground sections 

along the longitudinal axis of the shaft oriented in a frontal plane were produced according to 

Donath (158) and stained with Levai-Laczko (159) dye. Histological specimens were digitized 

with the Olympus dotSlide 2.4, digital virtual microscopy system (Olympus, Japan, Tokyo) at a 

resolution of 0.32 µm per pixel. Semi-quantitative values for the amount of new bone deposited, 

the existing area of old bone, the area of fibrous tissue, the area of bone marrow, and the quantity 

and location of osteoclasts was determined on the stained samples within the defect area by two 

independent, blinded researchers on n=4 femurs per staining. 

Immunohistochemistry:   

Femurs not utilized for hard bone histology were submerged in 4% neutral-buffered 

formaldehyde solution for 24 hours, followed by extensive washing in PBS. Femurs were 

decalcified using Immunocal (StatLab, McKinney, TX), followed by extensive washing in PBS 

and graded ethanol dehydrations of the femurs. Sections of the femur were made 6 µm thick, and 

immunohistochemistry was performed following the published citrate buffer antigen retrieval 

methods. Vectastain rabbit antibody kit (PK-4001, Vector Laboratories, Burlingame, CA), and 

AbCam’s mouse on mouse kit (ab127055 ,abcam, San Francisco, CA) were utilized to stain for 

CD206 (abcam, 0.1 µg/mL, ab64693), and CD163 (abcam, 1/500, ab182422).  
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Statistics:   

Statistical significance of pre-implantation measurements was determined by using a 

Student’s T-Test, α = 0.05, with significance determined by p<0.05 (Prism Software, GraphPad, 

La Jolla, CA, USA). After harvest of implanted constructs, statistical significant was determined 

by using a one-way analysis of variance (ANOVA) followed by Tukey’s post-test, α=0.05, with 

significance determined by p<0.05.   

Table 7S.1: Primers used in RT-PCR 
Gene Forward Reverse 
GAPDH AAGGTGAAGGTCGGAGTCAAC GGGGTCATTGATGGCAACAATA 
RUNX2 CCGTCTTCACAAATCCTCCCC CCCGAGGTCCATCTACTGTAAC 
COL1A1 GATCTGCGTCTGCGACAAC GGCAGTTCTTGGTCTCGTCA 
MMP13 CCAGACTTCACGATGGCATTG  GGCATCTCCTCCATAATTTGGC  
ALPL GGGACTGGTACTCAGACAACG GTAGGCGATGTCCTTACAGCC 
IBSP GAACCTCGTGGGGACAATTAC  CATCATAGCCATCGTAGCCTTG 
COL10A1 CATAAAAGGCCCACTACCCAAC ACCTTGCTCTCCTCTTACTGC 
SOX9 AGCGAACGCACATCAAGAC CTGTAGGCGATCTGTTGGGG 
COL2A1 AGACTTGCGTCTACCCCAATC GCAGGCGTAGGAAGGTCATC 
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Figure 7S.2: Verification of the hypertrophic chondrocyte differentiation within the tissue 
engineered construct. (7S.2A) Gene expression of key chondrogenic and hypertrophic genes 
were significantly increased at the culmination of differentiation, demonstrating a chondrocyte 
differentiation and then a hypertrophic maturation. (7S.2B) Histological sections of cultured SH 
constructs demonstrated glycosaminoglycan (GAG) deposition, indicating chondrocyte 
differentiation. (7S.2C) Immunohistochemistry demonstrated collagen type X deposition, 
strongly present surrounding the enlarged lacunae of the hypertrophic chondrocytes, indicating 
hypertrophic maturation. [n=3, Student’s T-test with* = p<0.05 (7S.2A), Scale Bar = 100 
µm(7S.2B-C)] 
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Figure 7S.3: Construct DNA content and osteoid formation. Constructs were harvested after 
cultivation and before implantation. (7S.3A) DNA content was significantly higher in the PO 
constructs compared to the SH constructs. (7S.3B-C) Movat’s Pentachrome was used to stain 
histological sections of the constructs and PO constructs had increased osteoid production 
(deposited red stain within the DCB scaffold, black arrows). [n=4, Student’s T-test with* = 
p<0.05 (7S.3A), Scale Bar = 500 µm (7S.3B-C)] 

Figure 7S.4: Semi-quantitation of construct morphometry. After harvest, hard bone histology 
was performed and constructs were stained with Levai-Laczko stain. (7S.4A) Quantitation of the 
different aspects of the regeneration demonstrated that SH produced significantly more new 
bone. (7S.4B) The amount of implanted DCB scaffold was not significantly different between the 
different constructs. (7S.4C) SH constructs had significantly more bone marrow within the 
constructs. (7S.4D) SH constructs had significantly less fibrous tissue within the defect area. 
[n=4, One-way ANOVA with Tukey post-test, with* = p<0.05, all quantitation was blindly 
conducted] 
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Figure 7S.5: Osteoclast presence and localization. Osteoclasts were determined by their 
multinucleation and Howship’s lacunae within the Levai-Laczko stains. (7S.5A) SH constructs 
had significantly less osteoclasts, normalized to the amount of bone present within the defect 
space. (7S.5B) Determining the number of osteoclasts that were digesting the implanted DCB 
scaffold, the SH constructs had significantly less osteoclasts than the other two constructs. 
(7S.5C) The ratio of osteoclasts digesting the implanted DCB versus the number of osteoclasts 
digesting newly produced bone was significantly less for the SH constructs. [n=4, One-way 
ANOVA with Tukey post-test, with* = p<0.05, all quantitation was blindly conducted] 

Figure 7S.6: CD163+ M2-polarized macrophages. Serial sections of the immunohistochemistry 
samples allowed CD163+ to be closely correlated with CD206+ cells. Similar to the CD206 
staining, CD163+ cells were more abundant in the SH constructs. [Scale Bars = 50 µm(S6A-C)] 
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PART V 

CONCLUSION 
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8 Conclusion 

 

Bone tissue engineering has had difficulty in designing effective, clinically relevant grafts for 

long bone fracture repair. This dissertation attempted to enhance bone regeneration following a 

developmental paradigm, replicating native long bone repair processes by engineering 

endochondral ossification-mimicking grafts utilizing hypertrophic chondrocytes. The first aim 

examined the effects of oxygen tension on hypertrophic chondrocyte differentiation, 

demonstrating that a hypoxic environment similar to native, stable cartilage prevents 

hypertrophy, even when applied transiently. This aim suggests hypertrophic chondrocyte 

differentiation occurs in elevated oxygen tensions and that the increase in oxygen tension during 

endochondral ossification is not enough for hypertrophic maturation. The second aim measured 

the effect of advanced chondrogenic states in promoting enhanced hypertrophic differentiation. 

Whereas all samples studied contained hypertrophic chondrocytes and produced bone, advanced 

chondrogenic states resulted in improved hypertrophic maturation and a more widespread bone 

production, suggesting the importance of mirroring the native endochondral ossification for 

widespread bone production. The final aim evaluated the bone produced by hypertrophic 

chondrocytes and their ability to facilitate long bone repair. The hypertrophic chondrocytes 

rapidly produced voluminous, immature bone in vitro, and promoted extensive regeneration in 

vivo with mature bone bridging the defect. The results of this dissertation clearly demonstrate the 

feasibility and promise of hypertrophic chondrocyte-based tissue engineering strategies, and 

prompt its further investigation for clinical relevancy.   
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A Hypertrophic Chondrocyte Differentiation of Adipose Derived Stem Cells 

 

A.1 HYPOTHESIS 

Hypertrophic chondrocytes derived from adipose derived stem cells behave similarly to bone 

marrow stem cells. 

A.2 RATIONALE 

Over the course of this dissertation, the source of adult stem cells switched from bone marrow to 

adipose tissue. Though bone marrow stem cells (BMSCs) have been exclusively used in 

hypertrophic chondrocyte differentiation, adipose derived stem cells (ADSCs) exhibit similar 

morphology and multi-lineage potential and are more abundant and easier to access than BMSCs 

(183). To justify this switch from BMSCs to ADSCs, the differentiation and matrix production 

capabilities were compared between hypertrophic chondrocytes derived from these sources. The 

goal of the project was to demonstrate that hypertrophic chondrocytes could be successfully 

derived from ADSCs, and that they behaved similarly to BMSC-derived hypertrophic 

chondrocytes. 

A.3 METHODS 

Bone marrow stem cells were obtained from Lonza (Basel, CH ) from two different donors and 

adipose derived stem cells were obtained from two different donors at the Austrian Red Cross 

(Linz, AT). Cells were passaged to p4 in expansion medium containing high-glucose Dulbecco’s 

Modified Eagle Medium (DMEM, ThermoFisher, Waltham, MA) supplemented with 10% FBS 

(Atlanta Biologicals, Flowery Branch, GA), 1% penicillin streptomycin (ThermoFisher, 
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Waltham, MA), and 1 ng/mL basic fibroblast growth factor (ThermoFisher, Waltham, MA). 

Cells were pelleted by placing 250,000 cells into 96 U-bottom well plates (ThermoFisher, 

Waltham, MA) and centrifuging at 300g for 5 minutes. During the first two weeks, pellets were 

cultured in chondrogenic medium consisting of high glucose DMEM, 1% penicillin 

streptomycin, 1% ITS+ (Corning, Corning, NY), 100 nM dexamethasone, 50 µg/mL L-proline, 

100 µg/mL sodium pyruvate, 10 mM HEPES buffer (Corning, Corning, NY) 50 µg/mL ascorbic 

acid 2-phosphate, 10 ng/mL TGF-β3 (Peprotech, Rocky Hill, NJ). BMP6 was added to ADSC 

chondrogenic medium at a concentration of 10 ng/mL to improve pellet chondrogenesis (184, 

185). After two weeks of chondrogenic differentiation, pellets were cultured in hypertrophic 

medium for three additional weeks. Hypertrophic medium had a similar recipe as chondrogenic 

medium, except for the reduction in dexamethasone concentration to 1 nM, removal of TGF-β3, 

addition of L-thyroxine at 50 ng/mL, and the addition of 5 mM sodium β-glycerophosphate. 

Pellets were harvested at weeks two and five of culture and analyzed for matrix composition, 

gene expression, and mineral deposition by µCT.  

A.4 RESULTS AND DISCUSSION 

The behavior across all studied donors and time points was relatively similar. As has been 

previously noted, there is high donor variability for stem cells and that was evident within the 

samples studied in this experiment. Induced maturation to hypertrophic chondrocytes resulted in 

a decrease in cell number, a trend that was matched in all studies (Figure A.1).  
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The amount of GAG deposition varied based on the donor, but in general, the ADSCs contained 

higher GAG content. The ADSCs also were generally larger in diameter than the BMSCs. 

Mineral deposition was something that also fluctuated more based on the donor than on the 

specific cell type, as was demonstrated by the three-dimensional micro computed tomography 

reconstructions (Figure A.2). Quantifying the amount of mineral within the pellet showed similar 

amounts and densities of mineral deposited.  

Figure A.1: Biochemical quantitation of the different cell sources and donors. The DNA/ pellet 
seemed relatively similar, with the same dramatic decrease in DNA content upon the completion 
of hypertrophic maturation. Donor variability appeared to affect GAG content per pellet, with 
unusual behavior occurring in each cell source. In general, the ADSCs appeared to generate 
larger cell pellets per 250,000 cells. n=4. 



 133 

 

Analyzing the gene expression at post-chondrogenic and post-hypertrophic medium showed no 

apparent differences in the expression of key chondrocyte and hypertrophic markers (Figure 

A.3). Expression of key genes for cartilage formation (SOX9 and COL2A1) was relatively the 

same with all groups. The genes utilized to gauge hypertrophic differentiation consisted of the 

unique hypertrophic chondrocyte collagen, collagen type X (COL10A1), a master regulator of 

bone production (RUNX2), and a degradative enzyme, alkaline phosphatase, that prepares 

Figure A.2: Hypertrophic chondrocyte deposition of mineral. The amount of mineral deposited 
appeared to be highly dependent upon the donor, but the volume and pattern of deposition 
appeared similar between the cell sources. Through quantitation, it appeared that the BMSCs 
deposit a slightly denser mineral than the ADSCs. n=4. 
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phosphates for mineral formation (ALPL). Compared to the analysis of chondrogenesis, there 

was more variability in hypertrophic chondrocyte expression. However, this variability appeared 

to be based more on donor differences than the actual stem cell source.  

 

Figure A.3: Expression of chondrocyte and hypertrophic genes. At the culmination of 
chondrogenic culture, the expression of key genes (SOX9 and COL2A1) was relatively similar 
between the cell sources and donors, without extensive variability. At the culmination of 
hypertrophic culture, there was much larger variability within the cell sources and amongst the 
donors. However, there appeared to be no consistent trends with regards to key hypertrophic 
chondrocyte genes (COL10A1, RUNX2, ALPL). n=4. 
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A.5 CONCLUSION 

Hypertrophic chondrocytes were differentiated form ADSCs, behaving in a similar manner to 

BMSCs. Like BMSCs, there was noticeable donor variability in the differentiation ability and 

matrix production, but overall trends seemed to match between the BMSCs and ADSCs. 

Therefore, this study demonstrates the suitability of this clinically-relevant, widely available 

stem cell source (ADSCs) for hypertrophic chondrocyte differentiation and bone graft formation. 

 


	List of Tables
	List of Figures
	Acknowledgments
	Part I
	Introduction
	1 Background
	1.1 Bone Biology:
	Figure 1.1: Cortical and cancellous bone in the adult, human femur. The dense cortical bone forms a shell around the inner, porous cancellous bone. Within the pore space of the cancellous bone resides the
	bone marrow (11).

	1.2 Bone Development
	Figure 1.2: Bone development through intramembranous ossification. Intramembranous ossification is initiated with mesenchymal stem cell condensation amid a fibrous environment. Within this cluster, osteoblasts differentiate to form an ossification cen...
	Figure 1.3: Bone development through endochondral ossification. Endochondral ossification is initiated with the condensation of mesenchymal stem cells. These cells differentiate into chondrocytes, and create a cartilage anlage (1). The chondrocytes ma...

	1.3 Hypertrophic Chondrocytes
	Figure 1.4: Chondrocyte maturation to hypertrophic chondrocytes. This figure represents the various states of chondrocyte maturation, demonstrating the associated cytokines and interactions with the perichondrium necessary for progression. Chondrocyte...

	1.4 Bone Fracture Repair
	Figure 1.5: Differentiation of each key cell type in the ossification pathways. Endochondral ossification (top) progresses from mesenchymal stem cell to chondrocyte, proliferating chondrocyte, and mature into hypertrophic chondrocytes. The figure demo...
	Figure 1.6: Long bone fracture repair. After fracture, inflammation occurs and a hematoma is formed. From this hematoma, differentiated chondrocytes form a soft callus through the deposition of a cartilage anlage. With the maturation of the chondrocyt...

	1.5 Bone remodeling
	1.6 Clinical Problem and Treatments
	Figure 1.7: Long bone nonunion. Improper healing of a long bone fracture results in the formation of a nonunion, as demonstrated by the disconnect in the humerus. This space is filled with fibrous tissue, instead of bone, compromising the support func...

	1.7 Bone Tissue Engineering

	2 Objective
	2.1 Hypothesis
	2.2 Specific Aims
	Aim 1: Elucidate the impact of oxygen concentration on the hypertrophic maturation of derived chondrocytes
	Aim 2: Measure the effect of advanced chondrogenic states on hypertrophic maturation and bone production
	Aim 3: Evaluate the ability of hypertrophic chondrocytes to mediate fast, vascularized bone deposition that integrates with host bone.


	3 Motivation and Approach
	Aim 1: Elucidate the impact of oxygen concentration on the hypertrophic maturation of derived chondrocytes
	3.1 Motivation for Aim 1
	3.2 Approach and Rationale for Aim 1
	Aim 2: Measure the effect of advanced chondrogenic states on hypertrophic maturation and bone production

	3.3 Motivation for Aim 2
	3.4 Approach and Rationale for Aim 2
	Aim 3: Evaluate the ability of hypertrophic chondrocytes to mediate fast, vascularized bone deposition that integrates with host bone

	3.5 Motivation for Aim 3
	3.6 Approach and Rationale for Aim 3.1
	3.7 Approach and Rationale for Aim 3.2


	Part II
	Elucidate the impact of oxygen concentration on the hypertrophic maturation of derived chondrocytes
	4 Transitory application of hypoxia during chondrocyte differentiation stunts induced hypertrophic maturation
	4.1 Abstract
	4.2 Introduction
	4.3 Method
	Figure 4.1: Pellet culture regime to determine the role of temporal hypoxia on induced hypertrophic maturation. Hypertrophy was induced by first deriving chondrocytes from bone marrow stem cells (BMSC) during two weeks in chondrogenic medium, then swi...
	Cell expansion and pellet formation
	Culture regime
	Quantitative biochemical analysis
	RNA isolation and real time polymerase chain reaction (RT-PCR)
	Histology and Immunohistochemistry
	Micro-computed tomography
	Statistical Analysis
	Table 4.1: List of RT-PCR primers.

	4.4 Results
	Influence of Oxygen Environment on Chondrogenic Differentiation
	Figure 4.2: Enhanced chondrogenic state of pellets cultured in normoxia based on increased expression of key chondrogenic genes and superior cartilage matrix deposition. (A) Gene expression of important chondrogenic genes relative to the GAPDH houseke...
	Induced Hypertrophic Maturation of Pellet Cultures
	Figure 4.3: The Switch group suppressed key genes of hypertrophic maturation across all time points, which was similar to Hypoxia expression and significantly less than Normoxia.  Progressive expression of collagen type X (unique hypertrophic chondroc...
	Figure 4.4: Delayed deposition of collagen type X by the Switch and Hypoxia groups.  Immunohistochemistry of collagen type X to demonstrate hypertrophic maturation within cell culture pellets, scale bars = 100 µm.
	Figure 4.5: Prolonged GAG presence and delayed cartilage matrix turnover in the Switch and Hypoxia groups. Alcian blue staining to portray GAG content, and its progressive change, within the cell culture pellets, scale bars = 100 µm.
	Bone Template Matrix Production and Mineralization
	Figure 4.6: The Switch group prevented bone template production and mineralization analogous to the Hypoxia group and in stark contrast to the template produced by the Normoxia group. (A) Expression of genes involved in bone production relative to the...

	4.5 Discussion


	Part III
	Measure the effect of advanced chondrogenic states on hypertrophic maturation and bone production
	5 Increased Duration of Chondrogenic Differentiation Enhances Hypertrophic Maturation and Bone Production
	5.1 Abstract
	5.2 Introduction
	5.3 Materials and Methods
	Figure 5.1: Scaffold creation and cell culture regime to produce various chondrocyte states. Silk scaffolds were prepared following the published protocol (68). 16% w/v bombyx mori silk fibroin in HFIP solution was poured over NaCl salt porogens 400-6...
	Scaffold fabrication:
	Mesenchymal stem cell expansion, seeding, and cultivation:
	Construct matrix biochemical quantitation:
	RNA isolation and RT-PCR:
	Table 5.1: Primers used in RT-PCR
	Histology and Immunohistochemistry:
	Micro-computed tomography (µCT):
	Mechanical testing:
	Statistics:
	5.4 Results
	Figure 5.2: Chondrocyte state determined by the duration of chondrogenic culture. Prolonged chondrogenic culture corresponded to an increase in cartilage matrix production and a more advanced chondrocyte state. Prolonged culture resulted in increased ...
	Figure 5.3: Enhanced hypertrophic maturation of constructs with increasing chondrogenic culture duration. At the culmination of the three week hypertrophic induction, the constructs with a prolonged chondrogenic culture demonstrated enhanced hypertrop...
	Figure 5.4: Advanced chondrocyte states corresponded to increased hypertrophic chondrocyte deposition of bone template matrix. Hypertrophic chondrocytes induced after prolonged chondrogenic culture deposited an enhanced bone template. After hypertroph...
	Figure 5.5: Hypertrophic chondrocyte mineral deposition varies based on chondrocyte state. Prolonged chondrogenic culture resulted in a significantly different pattern of mineral deposition. Von Kossa staining demonstrated widespread mineral depositio...
	Figure 5.6: Elastic modulus of constructs at various stages of differentiation. The elastic modulus is presented of constructs harvested at the culmination of both chondrogenic and hypertrophic cultivation. Prolonged chondrogenic culture resulted in e...

	5.5 Discussion
	5.6 Conclusion


	Part IV
	Evaluate the ability of hypertrophic chondrocytes to mediate fast, vascularized bone deposition that integrates with host bone
	6 Mimicked Ossification Pathway influences Differentiated Stem Cell Bone Matrix Deposition and Remodeling
	6.1 Abstract
	6.2 Significance
	6.3 Introduction
	6.4 Materials and Methods
	Scaffold Fabrication:
	Cell Expansion, Seeding, Differentiation and Cultivation:
	Real time PCR:
	Table 6.1: Primers used in RT-PCR
	DNA and Matrix Quantitation:
	Histology and Immunohistochemistry (Pre-implantation):
	Micro-Computed Tomography (µCT) and Quantitation (Pre-Implantation)
	Fourier Transform Infrared Spectroscopy (FTIR):
	Mechanical Compression Testing:
	Construct Subcutaneous Implantation
	Micro-Computed Tomography (µCT) and Quantitation (Post-Implantation)
	Hard Bone Histology:
	Immunohistochemistry (Post-implantation)
	Statistics:
	Figure 6.1: Methodology of mimicked ossification pathways. Silk fibroin scaffolds were created by pouring 16% w/v silk dissolved in HFIP over NaCl particles 400-600 microns in size. Methanol was used to induce ß-sheet formation within the silk and the...

	6.5 Results
	Cell behavior and matrix deposition:
	Figure 6.2: Gene expression and matrix deposition for the differentiated key cells. Expression of key genes related to the deposition of bone was significantly upregulated in the Hyper constructs (Figure 6.2A). The cellularity of each construct at the...
	Mineralization:
	Figure 6.3: Mineralization of tissue engineered constructs (previous page). Representative three-dimensional µCT reconstructions are presented demonstrating the differences in deposition between the constructs (Figure 6.3A). The associated scans were ...
	Figure 6.4: Mechanical properties of the differentiated constructs. Constructs were compressed at a strain of 1% per second for 10 seconds, with the strain than held for the next 1800 s. From this compression, elastic and equilibrium moduli were calcu...
	Subcutaneous Implantation Bone Turnover and Regeneration:
	Figure 6.5: Bone regeneration upon subcutaneous implantation. Scaffolds were evaluated 3, 6, and 12 weeks after subcutaneous implantation. Representative three-dimensional µCT reconstruction are presented to demonstrate the progression in bone regener...
	Subcutaneous Implantation Vascularization:
	Figure 6.6: Vascularization of subcutaneously implanted constructs. Immunohistochemistry staining for CD31+ vessels of constructs that were implanted for six weeks (Figure 6.6A). From images of each construct, the construct area, vessel area, distance...

	6.6 Discussion
	6.7 Conclusion

	7 Derived hypertrophic chondrocyte grafts boost critical-sized long bone defect regeneration
	7.1 Abstract
	7.2 Significance
	7.3 Introduction
	7.4 Methods
	7.5 Results
	In vitro cultivation and characterization
	Figure 7.1: State of ossification mimicking bone constructs pre-implantation: Histology and immunohistochemistry revealed the differences in morphometry and bone template deposition between the construct groups. The static hypertrophic chondrocyte-bas...
	Figure 7.2:  Temporal progression of the femoral, critical-sized defect regeneration: Representative in vivo three-dimensional µCT reconstructions of the rat femur are presented at 0 (day 1) [7.2A-C], 3 [7.2D-F], 6 [7.2G-I], and 9 weeks [7.2J-L] post-...
	In vivo graft integration, deposition, and bridging
	Figure 7.3: Bone deposition and critical-sized defect bridging (previous page): Representative high resolution, three dimensional reconstructions of the critical-sized femoral defects after harvest at 12 weeks (external: 7.3A-C, internal: 7.3D-F). The...
	Bone formation:
	Figure 7.4: Bone formation: Representative images of the bone formation process within the defect space utilizing Levai-Laczko (7.4A,D,G), Movat’s pentachrome (7.4B,E,H) and human mitochondrial antibody (7.4C,F,I). Magnified views of the Levai-Laczko ...
	Graft Regeneration:
	Figure 7.5: Implant Turnover and Regeneration: Representative images of the degradative and regenerative environment of the critical-sized defect through the histological evaluation of osteoclasts (7.5A-C) and M2-polarized macrophages (7.5D-F). Osteoc...

	7.6 Discussion
	7.7 Supplemental Information
	Materials and Methods:
	Figure 7S.1: Graphical illustration of the project methodology and femoral defect creation
	Bone Core Harvest and Decellularization:
	Stem Cell Isolation, Expansion, and Graft Seeding:
	Graft Seeding and Cultivation:
	Quantitative biochemical analysis:
	Real time RT-PCR quantitation:
	Histology and Immunohistochemistry:
	Critical-sized Defect Creation and Graft Implantation:
	Micro-computed Tomography (µCT):
	Hard Bone Histology:
	Immunohistochemistry:
	Statistics:
	Table 7S.1: Primers used in RT-PCR
	Figure 7S.2: Verification of the hypertrophic chondrocyte differentiation within the tissue engineered construct. (7S.2A) Gene expression of key chondrogenic and hypertrophic genes were significantly increased at the culmination of differentiation, de...
	Figure 7S.3: Construct DNA content and osteoid formation. Constructs were harvested after cultivation and before implantation. (7S.3A) DNA content was significantly higher in the PO constructs compared to the SH constructs. (7S.3B-C) Movat’s Pentachro...
	Figure 7S.4: Semi-quantitation of construct morphometry. After harvest, hard bone histology was performed and constructs were stained with Levai-Laczko stain. (7S.4A) Quantitation of the different aspects of the regeneration demonstrated that SH produ...
	Figure 7S.5: Osteoclast presence and localization. Osteoclasts were determined by their multinucleation and Howship’s lacunae within the Levai-Laczko stains. (7S.5A) SH constructs had significantly less osteoclasts, normalized to the amount of bone pr...
	Figure 7S.6: CD163+ M2-polarized macrophages. Serial sections of the immunohistochemistry samples allowed CD163+ to be closely correlated with CD206+ cells. Similar to the CD206 staining, CD163+ cells were more abundant in the SH constructs. [Scale Ba...



	Part V
	Conclusion
	8 Conclusion

	References
	Part VI
	Appendix
	A Hypertrophic Chondrocyte Differentiation of Adipose Derived Stem Cells
	A.1 Hypothesis
	A.2 Rationale
	A.3 Methods
	A.4 Results and Discussion
	Figure A.1: Biochemical quantitation of the different cell sources and donors. The DNA/ pellet seemed relatively similar, with the same dramatic decrease in DNA content upon the completion of hypertrophic maturation. Donor variability appeared to affe...
	Figure A.2: Hypertrophic chondrocyte deposition of mineral. The amount of mineral deposited appeared to be highly dependent upon the donor, but the volume and pattern of deposition appeared similar between the cell sources. Through quantitation, it ap...
	Figure A.3: Expression of chondrocyte and hypertrophic genes. At the culmination of chondrogenic culture, the expression of key genes (SOX9 and COL2A1) was relatively similar between the cell sources and donors, without extensive variability. At the c...

	A.5 Conclusion



