Terminological Constraint Network Reasoning

and its Application to Plan Recognition
(Thesis Proposal)

Columbia University
Department of Computer Science

Technical Report CUCS-027-93

Robert Weida

September 2, 1993

Contents

1 Introduction 1
2 Overview 1
3 Foundations 4
3.1 Terminological Knowledge Representation 4
3.1.1 Concept Languages and their Semantics 4

3.1.2 Subsumption and Classification 5

3.1.3 Computational Complexity. 6

3.2 Temporal Constraints 7

4 Results to Date 9
4.1 Plan Representation oL 10
4.1.1 Basic Temporal Networks 10

4.1.2 Plan Instances oo 12

4.1.3 Metric Temporal Constraints 12

4.1.4 Coreference Constraints 13

415 EndPlanso 15

4.2 Terminological Reasoning with Constraint Networks 16
4.2.1 Structural Subsumptiono 16

4.2.2 Computational Complexity of Subsumption 18

4.2.3 Practical Subsumption Performance 18

4.2.4 Plan Instantiation. 000 20

4.2.5 Classification o oo 20

4.3 Terminological Plan Recognition 21

4.3.1 Perfect Observations 22

4.3.2 Monotonic Observations 27
4.3.3 Augmenting the Plan Library 30
4.3.4 Unrestricted Observations 31
4.3.5 Simultaneous Plans o000 31
4.4 Inferences with Metric and Coreference Constraints 32
4.4.1 Plan Subsumption and Instantiation 33
4.4.2 Plan Recognition oL 34
Other Related Work 35
5.1 Terminological Reasoning, 35
51.1 Plans oo 35
5.1.2 Temporal Concepts 38
5.1.3 Production Rules 38
5.2 Plan Recognition L 38
521 Kautzo 38
5.2.2 Song and Cohen L Lo 39
5.2.3 Intention-based Plan Recognition 40
Future Directions 40
6.1 Semantics L e 41
6.2 Algorithmics L e 41
6.2.1 Subsumption Algorithmso 42
6.2.2 Classification Algorithms 43
6.2.3 Incremental Plan Recognition Algorithms. 43
6.2.4 Simultaneous Plans 0oL 44

i

6.2.5 Restricted Plan Languages
6.3 Plan Language Extensions
6.3.1 Integration of CLASP Operators
6.3.2 Extended Coreference Constraints
6.3.3 Preconditions, Goals and States
6.34 Plan Roles o
6.4 Additional Inferences oL
6.4.1 Forward Chaining
6.4.2 Consistency with Domain Theory
6.4.3 Feedback between Plan Library and Observed Constraints
6.4.4 Inheritance Lo
6.4.5 Conditional Substep Sharing
6.4.6 Intentional Plan Recognition
6.5 Continuous Plan Recognition
6.6 SystemsIssues.

6.7 Orthogonal Constraint Networks.

Potential Applications

Evaluation

Conclusion
9.1 Contributions e

9.2 Agenda e

11

51

51

52

52

33

33

54

55

56

9.2.3 Low Priority

A Sample Plan Library

B Plan Synthesis

C Proofs of Theorems

v

64

65

List of Figures

10
11

12

The T-REX System o 3
Allen’s Primitive Temporal Relations 8
A Definitional Action Taxonomy 11
A Simple Plan Networko 12
Node and Arc Subsumption between Plans 17
Plan Subsumption Mapping 18
A Definitional Plan Taxonomy 20
A Sample Observation Network 21
Modalities in a Definitional Plan Taxonomy 22
Indirect Optionality oo 25
Structural Subsumptiono oo 42
Disjoint MSN and MGO oo 44

Abstract

Terminological systems in the tradition of KL-ONE are widely used in Al to represent
and reason with concept descriptions. They compute subsumption relations between
concepts and automatically classify concepts into a taxonomy having well-founded
semantics. Fach concept in the taxonomy describes a set of possible instances which
are a superset of those described by its descendants. One limitation of current sys-
tems is their inability to handle complex compositions of concepts, such as constraint
networks where each node is described by an associated concept. For example, plans
are often represented (in part) as collections of actions related by a rich variety of tem-
poral and other constraints. The T-REX system integrates terminological reasoning
with constraint network reasoning to classify such plans, producing a “terminological”
plan library. T-REX also introduces a new theory of plan recognition as a deductive
process which dynamically partitions the plan library by modalities, e.g., necessary,
possible and impossible, while observations are made. Plan recognition is guided by
the plan library’s terminological nature. Varying assumptions about the accuracy
and monotonicity of the observations are addressed. Although this work focuses on
temporal constraint networks used to represent plans, terminological systems can be
extended to encompass constraint networks in other domains as well.

1 Introduction

Terminological systems in the tradition of KL-ONE and NIKL [Brachman and Schmolze,
1985, Woods and Schmolze, 1992] are widely used to represent and reason with con-
ceptual knowledge required by “intelligent” software applications. Examples include
database querying [Beck and Gala, 1989], financial marketing [Apte et al., 1992], soft-
ware information systems [Devanbu et al., 1991], and multimedia explanation of repair
and maintenance procedures [Feiner and McKeown, 1990]. However, contemporary
terminological systems are limited by their inability to handle complex compositions
of concepts. Therefore, we propose to extend their scope and utility via terminological
constraint networks, whose nodes are described by associated concepts. Noting that
much artificial intelligence research has involved reasoning with plans, we will focus
on plans which are described in terms of constraints on their constituent actions and
temporal constraints between their actions. We will employ a methodology that sup-
ports creation, management and utilization of terminological plan libraries. A major
thrust of plan-based reasoning is plan recognition, which seeks to infer underlying
plans from observed actions. We believe that development of practical plan recogni-
tion technology can foster more responsive user interfaces. Therefore, this proposal
also introduces a new, terminological approach to plan recognition.

The following section provides an overview of core issues in our proposed research.
Section 3 provides background information on terminological knowledge representa-
tion and on temporal constraint reasoning. Section 4 presents our results to date.
Section 5 reviews related work in extending terminological knowledge representation
and in plan recognition. In Section 6, open research issues are described along with
possible ways to address them. Section 7 sketches one potential application and points
out several others. Evaluation of our ultimate results is considered in Section 8. Fi-
nally, Section 9 concludes by recapping our proposal, summarizing our contributions,
and establishing ongoing research priorities. Appendix A defines a sample plan li-
brary used for many of our examples, Appendix B speculates on the relevance of our
work to the problem of plan synthesis, and Appendix C contains proofs of theorems.

2 Overview

Terminological knowledge representation (TKR) systems support automatic classi-
fication of definitional taxonomies based on subsumption inferences [Brachman and
Schmolze, 1985, MacGregor, 1991, Weida, 1991, Woods and Schmolze, 1992]. In a
definitional taxonomy, each class describes a set of possible instances which are a
superset of those described by its descendant classes. Many systems compute sub-
sumption (subset relationships) between classes according to the structure of their

definitions, i.e., structural subsumption. Thus, classification via structural subsump-
tion endows a taxonomy with formal meaning. Classification ensures that the proper
location of any class within the taxonomy is uniquely determined from its definition.
This in turn supports automatic detection of redundant, inconsistent and vacuous
definitions. Classification also facilitates incremental construction of taxonomies, en-
forcement of semantics, type-checking and pattern matching. For elaboration on
these benefits, see [Brachman and Schmolze, 1985, MacGregor, 1991, Weida, 1991,
Woods, 1986].

While terminological systems are widely used in many application areas, to date
they have focused on representing structured conceptual descriptions, or concepts.
A critique of contemporary TKR which argues for greater expressiveness is [Doyle
and Patil, 1991]. One limitation of current terminological systems, e.g., BACK [von
Luck et al., 1987], CLASSIC [Borgida et al., 1989], K-Rep [Mays et al., 1991b],
KRIS [Baader and Hollunder, 1991] and LOOM [MacGregor and Bates, 1987], is
their inability to represent and reason with complex compositions of concepts such
as constraint networks where each node is described by a concept.

Plans are central to many areas of Al. We propose a knowledge representation
system that computes subsumption among plans represented as collections of tem-
porally related actions. In particular, we employ a plan representation which builds
on temporal constraint networks in the style of [Allen, 1983]. We show how to ex-
tend the ideas of structural subsumption and classification found in TKR systems
to automatically organize these plans into a definitional taxonomy which constitutes
a “terminological” plan library. The advantages obtained from representing knowl-
edge in standard terminological systems are achieved here as well. Our approach is
similar in spirit to previous work on plan subsumption [Devanbu and Litman, 1991,
Wellman, 1990], but provides a much richer temporal representation language. We
also use our notion of constraint network subsumption to develop a new, termino-
logical approach to plan recognition. While terminological plan systems have been
applied in the areas of plan synthesis [Wellman, 1990] and plan retrieval [Devanbu
and Litman, 1991], the application of terminological reasoning to the area of plan
recognition has previously been unexplored.

The definitional plan taxonomy provides a natural basis to guide plan recognition.
Many plan recognition systems infer agents’ plans from their actions by searching li-
braries of possible plans for suitable (perhaps nondeductively inferred) matches. We
introduce a new view of plan recognition as a process which dynamically partitions
the plan library into modalities, e.g., necessary, possible and impossible, according
to observations of the environment. We will also leverage the taxonomy’s enforced
semantics to minimize the number of plans that must be examined. Our approach
unifies representation and reasoning work in plan recognition and terminological sys-
tems.

A prototype plan recognition system, called T-REX!, serves as a testbed for our
ideas. T-REX integrates and builds upon existing systems for TKR and temporal
reasoning. It represents and reasons about actions and their constituents using K-
Rep [Mays et al., 1991a) and temporal relationships using MATS [Kautz and Ladkin,
1991]. A system diagram appears in Figure 1. When a plan is defined, T-REX checks
its syntactic correctness, normalizes the definition by deriving implicit information,
and classifies it in the plan library by means of subsumption tests against previously
defined plans. When observations are presented, T-REX recognizes several sets of
candidate plans corresponding to modalities like necessary, possible and impossible.

Observations Plan Definitions

P Normalization Actions
)I& < > K-REP e =)]- - =-=-=-=-=-- Entities
N States

Subsumption Plan Library
R
E L LR EE - &
A
S Classification Observation Net
(6] Allen Constraints
N —> MATS Jef----a----
E . Metric Constraints
R Recognition

T-REX

Recognized Plans
Input / Output D i

Subsystem Interface D‘_>D
Internal Data Flow D* - >O

Figure 1: The T-REX System

Although we focus on temporal constraint networks used to represent plans, our
methods apply to any kind of constraint network where we can define subsumption
operations on the nodes and arcs, and hence on the networks themselves. We call such

!The name derives as follows: Terminological RECognition System — T-RECS — T-REX.

networks terminological constraint networks. In Section 6.7, we outline an approach to
terminological reasoning with, and recognition of, N-dimensional spatial descriptions.

3 Foundations

Our work draws upon a terminological knowledge representation system to represent
states and events such as actions, along with their constituents. We also employ
a temporal reasoning system to manage information about qualitative and metric
temporal relations. Therefore, we briefly introduce each of these technologies in turn.

3.1 Terminological Knowledge Representation

There is ample evidence that systems of the KI-ONE family are well-suited for rep-
resenting the classes of actions which make up plans and, in turn, the objects that are
acted upon, e.g., [Apte et al., 1992, Devanbu et al., 1991, Feiner and McKeown, 1990,
Heinsohn et al., 1992, Wellman, 1990]. The system we propose will build upon such a
knowledge representation system and extend its capabilities to reason with structured
plan descriptions.

3.1.1 Concept Languages and their Semantics

Terminological knowledge representation, which originated with KL-ONE [Brachman
and Schmolze, 1985], is an object-centered approach in the tradition of semantic
networks and frames. Contemporary systems include BACK [von Luck et al., 1987],
CLASSIC [Borgida et al., 1989], K-Rep [Mays et al., 1991b], KRIS [Baader and
Hollunder, 1991], and LOOM [MacGregor and Bates, 1987]. Terminological systems

share several distinguishing characteristics relevant to our discussion:

1. They are intended to support the definition of conceptual terms comprising a
“terminology” and to facilitate reasoning about those terms. As such, they
are distinct from assertional systems which make statements of fact based on a
terminology.

2. Concept definitions generally specify both necessary and sufficient conditions
for membership in the class denoted by the concept.

3. The concepts are arranged in a taxonomy based on strict subsumption, so that
the features of each concept are inherited by its descendants without exception.

Thus, the proper location of any concept within the taxonomy can be uniquely
determined from its definition by an automatic process known as classification.

4. Terminological systems restrict the expressiveness of their language to achieve
relatively good performance.

Terminological languages support a taxonomy composed of generic concepts. As-
sertional languages record information about associated individual concepts, or in-
stances. Generic concepts specify classes of entities whereas individual concepts spec-
ify unique entities that hold membership in at least one generic class. Generic concepts
are defined if their specification provides both necessary and sufficient conditions for
class membership; otherwise they are primitive. Primitive concepts are understood
to entail certain sufficient conditions for class membership which are not or can not
be expressed in the language. Concepts are defined principally in terms of roles which
express potential binary relationships with another concept. Single-valued roles are
called attributes. Role relations may be composed as role chains; they are expressed
as sequences of role names. For notational convenience, a concept may be also be
defined in terms of other concepts, called superconcepts, from which it inherits part
of its definition. Terminological languages also support role constraints (or role value
maps) which consist of an operator, such as =, C or D, and a pair of role chains
which designate its operands. For example, an ACADEMIC-DEPARTMENT concept
might require the fillers of its SOFTWARE-FACULTY role to be a subset of the fillers
of its FACULTY role.

3.1.2 Subsumption and Classification

Subsumption can be computed by a special purpose algorithm. One concept struc-
turally subsumes another if and only if each feature of the first (recursively) subsumes
some feature of the second. Thus, every role of the first concept must subsume a role
of the second. This criterion assumes that concept definitions specify both necessary
and sufficient conditions. Since a primitive concept lacks certain sufficient conditions,
there is no basis for inferring that it subsumes another concept. Nonetheless, one
can explicitly define a concept to be subsumed by a certain primitive or primitives.
It need not be primitive itself. For example, even though the concepts for PERSON
and FEMALE may be primitive, the concept for WOMAN may be fully defined as their
logical conjunction.

Classification is a process which places concepts into a taxonomy according to
subsumption relationships, i.e., it establishes the correct taxonomic links among con-
cepts. Where should a concept be installed in a taxonomy? It belongs in exactly one
place: underneath its most specific subsumers and above its most general subsumees.

The classifier employs an algorithm which adds concepts to the taxonomy one at a
time, taking advantage of the already existing taxonomy’s hierarchical organization.
The process of classifying an individual concept, i.e., determining the most specific
set of generic concepts which describe it, has sometimes been referred to distinctly
as realization [Mark, 1981]. The classification process can be automated with reason-
able efficiency. Schmolze and Lipkis formally specify the classification algorithm in
KL-ONE [Schmolze and Lipkis, 1983]. NIKL’s classifier is described in [Robins, 1986]
and LOOM’s is presented in [MacGregor, 1988]. Automatic classification is useful
for incremental construction of a taxonomy, enforcing semantics, type checking, and
pattern matching.

3.1.3 Computational Complexity

A seemingly insignificant extension to the expressiveness of a representation language
may drastically compromise its worst case tractability. Brachman and Levesque fo-
cus their analysis on one such “crossover point” in the computation of subsumption
relationships [Brachman and Levesque, 1984] 2. They examine a typical language
for which subsumption can be computed in O(n2) time. Next, they show that an
apparently simple variant of that language is co-NP-complete. This leads to the con-
clusion that one must make careful choices in trading expressiveness for tractability.
Moreover, there is no single best choice. Instead, different choices may complement
one another nicely.

The result of Brachman and Levesque has practical significance because their co-
NP-complete language is a subset of the terminological languages employed by such
systems as KL-ONE. Nebel later showed that for another subset of the languages
used in such systems as KL-ONE and BACK, subsumption is NP-hard [Nebel, 1988].
Patel-Schneider demonstrated that subsumption in NIKL and similar systems is un-
decidable as well [Patel-Schneider, 1989]. By showing that no complete algorithm for
such languages is possible, his result underscored the trend towards sound but con-
sciously incomplete subsumption and classification algorithms that was instigated by
the intractability of subsumption in these languages. Schmidt-Schauss proved that a
very simple concept language limited to conjunction of concepts, restrictions on val-
ues of roles, and role value maps with an equality operator is undecidable [Schmidt-
Schauss, 1989] (however there is no problem when the chains are restricted to at-
tributes). Recently, Nebel showed that subsumption in terminologies, which permit
definitions to reference previously defined concepts, is inherently intractable (co-NP-
complete) [Nebel, 1990]. Since our terminological reasoning with plans is founded on
subsumption relations among their constituent concepts, these results have impact
on our work. However, this impact is attenuated by the fact that in our work, we can

2Much of which is included in [Levesque and Brachman, 1985].

generally classify the underlying concepts in advance.

While intractability results for the concept subsumption problem are sobering, it
must be emphasized that they are worst-case analyses. Under a set of reasonable
assumptions, e.g., that concepts are composed from previously classified concepts, it
can be argued that the cost of classifying a new concept is typically logarithmic in
the size of the concept taxonomy [Woods, 1991]. We are hopeful that similar analysis
may yield similar results for classification in our plan language. In particular, our
optimism is reinforced by the normal case results of [Yen, 1990] as mentioned in
Section 5.1.3.

3.2 Temporal Constraints

Allen, in his influential work on maintaining knowledge about temporal intervals,
enumerated a total of seven primitive relationships, plus their inverses, that might
hold between any ordered pair of intervals [Allen, 1983]. These primitives are illus-
trated in Figure 2. A temporal constraint records the possible relationships between
a particular pair of intervals as a disjunctive subset of these primitive relationships.
For example, the constraint {before, after} mandates temporal disjointness. As more
information becomes available to the system, a temporal constraint may be refined by
eliminating disjuncts. A temporal network consists of nodes that represent intervals
and arcs that represent constraints between pairs of intervals.

Allen proposed a simple polynomial-time constraint propagation algorithm to
close (or normalize) a temporal network by computing the implicit consequences
of explicitly stated temporal constraints, i.e., a transitive closure. Allen’s algorithm
is an instantiation of the path consistency algorithm for constraint satisfaction [Mon-
tanari, 1974, Mackworth, 1977]. The practical performance of Allen-style constraint
propagation can be enhanced by introducing a hierarchy of reference intervals to par-
tition the space of temporal intervals, thereby limiting the scope of propagation. In
fact, effective algorithms exist for automatic construction of reference interval hierar-

chies [Koomen, 1989].

Allen’s constraint propagation algorithm is sound, but unfortunately not com-
plete [Vilain et al., 1989]. This is important because in practice, we cannot expect
that all temporal relations will be made explicit in plan definitions. Our ability to
compare different plans in light of their temporal constraints depends on the extent to
which the temporal constraints are made explicit. The incompleteness of Allen’s al-
gorithm stems from the expressive power of the temporal constraints. Specifically, his
algorithm is only guaranteed to produce correct results with respect to subgraphs of
three vertices or less [van Beek, 1989]. Sound and complete closure is NP-hard [Vilain
and Kautz, 1986]. As a result, we are faced with several standard alternatives:

Temporal Inverse

Relationship Iustration Relationship
X before Y Y after X
X meets Y Y met-by X
X equals Y Y equals X
X during Y Y contains X

X overlaps Y Y overlapped-by X

X starts Y Y started-by X

X finishes Y Y finished-by X

< x H
<
< < <| [x <[[
< <
) H

Figure 2: Allen’s Primitive Temporal Relations

1. Adopt an approximation algorithm such as Allen’s, and live with the possible
consequence that some plan subsumption relationships will remain undetected.
Allen contends that his algorithm’s inferences correspond to those which humans
find natural [Allen, 1983]. There is a family of variations on Allen’s algorithm
which produce successively better approximations, but only at increasingly ex-
orbitant cost [van Beek, 1989].

2. Use an exact, presumably exponential, algorithm and simply accept the amount
of time it takes to finish. One such algorithm is proposed in [Valdes-Perez, 1986].
This may be a reasonable option for relatively small problems.

3. Restrict the expressiveness of the temporal constraints so that exact solutions
can be obtained tractably. For example, Vilain, Kautz and van Beek [Vilain et
al., 1989] identified a subset of Allen’s interval calculus derived from a point-
based representation which admits complete polynomial-time constraint prop-

agation.

T-REX currently exercises the first option. We expect that practical experience will
educate us as to the best choice.

A separate body of work has dealt with systems of linear inequalities to capture
metric relations involving time points [Dechter et al., 1991, Malik and Binford, 1983,
Valdes-Perez, 1986]. Linear inequalities can express absolute times as constraints on
a single time point, e.g.:

e TIME-POINT1 < 2000
e 2001 <= TIME-POINT2

o 1999 <= TIME-POINT3 < 2001

For notational convenience, the last of these examples combines two linear inequalities
on the same time point. Linear inequalities can also express durations as the difference
between two time points, e.g.:

e TIME-POINTS - TIME-POINT4 < 2001

e 2010 <= TIME-POINTY - TIME-POINT6 <= 2010

Sets of metric constraints form metric constraint networks. Determining the con-
sistency of a metric constraint network is NP-hard [Dechter et al., 1991].

Kautz and Ladkin designed a constraint reasoner which integrates reasoning over
an Allen-style constraint network for intervals and a metric constraint network for
the starting and ending points of those intervals [Kautz and Ladkin, 1991]. Thus,
metric constraints convey durations of intervals, gaps between intervals, and so on.
These ideas were implemented by Kautz in the MATS system which we are using in
our research. We will have more to say about MATS in Section 4.1.3.

4 Results to Date

This section summarizes the present state of our work, some of which was reported
in [Weida and Litman, 1992]. First, we introduce our plan representation language
based on constraint networks. Next, we discuss our results in terminological reasoning
with constraint networks, e.g., our plans. Then we present our new, terminological
approach to plan recognition. Finally, we cover recent results on reasoning with metric
temporal constraints and coreference constraints.

4.1 Plan Representation

Since we apply our ideas to plan-based reasoning, we must detail our plan represen-
tation. We do not claim our representation itself as a substantial research result, but
we do point out that it offers a unique combination of features. Only a few plan-
based systems take advantage of the formal semantics and taxonomic inferences of
TKR systems [Devanbu and Litman, 1991, Heinsohn et al., 1992, Wellman, 1990].
T-REX is the only plan recognition system to do so. We use K-Rep to handle actions
and their constituents; we will also use it for preconditions and effects of actions and
plans. Our interest in handling a rich variety of temporal information led us to in-
tegrate the full temporal expressiveness of MATS [Kautz and Ladkin, 1991] into our
plan language. To our knowledge, no other plan reasoning system can handle such
expressive temporal constraints.

4.1.1 Basic Temporal Networks

Plan descriptions typically include preconditions, effects, a body composed of steps to
carry out the plan, and some constraints. Following [Kautz, 1991], we will concentrate
on plan recognition via plan bodies and their relationship via abstraction. We define a
plan body as a collection of steps along with some temporal constraints between pairs
of steps. Each step has a label and a type of action associated with it. Action types
are represented by generic concepts in K-Rep [Mays et al., 1991a), which we shall
call action concepts. Together, these concepts constitute an action taxonomy. Action
types can be thought of as atomic plans. We assume that the taxonomy includes
every type of action which appears in a plan or is observed during plan recognition.
Hence, action types are considered disjoint if there is no action type that they both
subsume (note that subsumption is reflexive). K-Rep also represents instantiated
action concepts, or action instances. When there is no ambiguity, we may simply refer
to action concepts and action instances as actions. Each temporal constraint is an
arbitrary disjunction of Allen’s exhaustive set of 13 primitive temporal relationships
between intervals [Allen, 1983] (see Figure 2). A plan network is a temporal constraint
network [Allen, 1983] whose nodes correspond to time intervals when the steps of the
plan’s body occur. Hence, an action concept is associated with each node. Plans
may be embedded as macro actions within other plans (but not within themselves).
Any temporal constraint on a step with a macro action can be propagated to each
substep within that macro by appropriate use of a constraint propagation algorithm
such as in [Allen, 1983]. Song and Cohen have show how to do this [Song, 1991,
Song and Cohen, 1991].

Following precedent, e.g., [Kautz, 1991, Song, 1991, Song and Cohen, 1991, van
Beek and Cohen, 1991], we draw examples from the cooking domain. By convention,

10

generic concept names are prefixed by ¢-. Names of instances are formed by concate-
nating a concept name with a unique number and stripping off the leading c-. All
example plan descriptions in this proposal will be constructed from action concepts
in the taxonomy shown in Figure 3. Observe that although we just use descriptive
names, concepts and their instances are really represented in greater detail in K-Rep.
For example, action concepts have roles such as agent and object. When a concept
definition specifies necessary and sufficient conditions for class membership, K-Rep
determines the concept’s proper location within the taxonomy using classification.
Such concepts are shown without an asterisk in Figure 3.

C-PUT-TOGETHER-SM *
C-PUT-TOGETHER-CM * C—PUT—TOGETHER—SCM)

C-MAKE-MEAT)}—(C-MAKE-CHICKEN)

C-MAKE-MARINARA)

CVAREEGoD A\ C-MAKE-SAUCEK —(C-MAKE-PESTO)

C-MAKE-ALFREDO)

C-MAKE-ZITI

C-MAKE-FETTUCIND

C-MAKE-NOODLES

C-MAKE-SPAGHETTI)

Figure 3: A Definitional Action Taxonomy

Our plan language is introduced in Appendix A. Below is a Lisp-style definition
of a simple plan to assemble chicken marinara, taken from Appendix A, which is
diagrammed in Figure 4. The labels of the steps are strictly for identification purposes;
they do not convey temporal ordering. Also, note that there are alternate ways to
state the same temporal information content. For example, instead of saying that
STEP3 was after STEP2, we could have said that STEP2 was before STEP3.

11

(defplan ASSEMBLE-CHICKEN-MARINARA
((stepl c-make-chicken)
(step2 c-make-marinara)
(step3 c-put-together-cm))
:allen-constraints
((stepl (before after) step2)
(stepl (before) step3)
(step3 (after) step2)))

To simplify our diagrams, we omit trivial constraints and some other constraints
which can be inferred via transitivity, and we label nodes with the names of associated
action concepts.

()

(C-MAKE-CHICKEN

{before}

{before, after} C-PUT-TOGETHER-CM)

v

(C-MAKE-MARINARA
L ASSEMBLE-CHICKEN-MARINARA

{after}

Figure 4: A Simple Plan Network

4.1.2 Plan Instances

Plans denote a set of possible plan instances, which have bodies composed of action
instances and nondisjunctive temporal constraints chosen in accordance with the plan.
When possible, we write networks as a sequence of nodes separated by constraints.
The following might be an instance of the plan in Figure 4, since it satisfies its
terminological and temporal constraints (after closure).

® MAKE-CHICKEN12 {before} MAKE-MARINARADB4 {before} PUT-TOGETHER-CM27

4.1.3 Metric Temporal Constraints

MATS [Kautz and Ladkin, 1991] allows us to specify both Allen-style qualitative
constraints on intervals and metric constraints on their starting and ending points.

12

Metric information accounts for durations of intervals and gaps between intervals,
along with absolute times (which can be useful in the case of observations processed
during plan recognition). For example, the following plan description incorporates
metric constraints which restrict the gap between the two steps to exactly 5 time
units and the duration of STEP2 to between 6 and 9 time units:

(defplan DEMO-METRIC-CONSTRAINTS
((stepl c-make-noodles)
(step2 c-heat))
:metric-constraints
((5 <= left step2 - right stepl <= 5)
(6 <= right step2 - left step2 <= 9)))

The notation uses left and right to refer to starting and ending points of intervals,
respectively.

Notice that metric constraints can imply Allen constraints and wvice versa. For
example, the first metric constraint in the preceding plan implies that STEP1 is before
STEP2. MATS alternates between Allen and Metric constraint propagation phases,
passing results back and forth until nothing further can be concluded. Kautz and
Ladkin prove that information loss is minimized in their metric-to-Allen and Allen-
to-metric translation schemes [Kautz and Ladkin, 1991]. T-REX stores the final
metric and Allen temporal constraints in the plan’s internal representation.

4.1.4 Coreference Constraints

A T-REX plan description may include coreference constraints on roles of its con-
stituent action concepts. A coreference constraint consists of an operator and any
number of operand specifiers which designate the roles that provide its operands.
Coreference constraints in plans resemble role value mapsin standard TKR (see Sec-
tion 3), but here they apply across concept definitions. This discussion is confined to
coreference constraints with an equality operator, called equality constraints.® FEach
operand specifier consists of a label which identifies a step within the plan, and a
role-name which identifies a role of the action concept associated with that step. We
do not allow role composition in our operand specifiers, thus avoiding a potential
source of undecidability when computing subsumption [Schmidt-Schauss, 1989]. The
two coreference constraints in the following definition state that for any instantiation
of the SOLO-BOIL-SPAGHETTI plan, the agents of the two steps must be the same,

3 Alternatives include inequality, subset and proper subset operators.

13

as must their objects. More precisely, the filler of the AGENT role of the MAKE-
SPAGHETTI instance associated with step s1 must be equal to the filler of the AGENT
role of the BOIL instance associated with step $2 (and similarly for their object roles).

(defplan SOLO-BOIL-SPAGHETTI
((s1 c-make-spaghetti)
(82 c-boil))
:allen-constraints ((s1 (before meets) s2))
:coref-constraints ((equal (agent s1) (agent s2))
(equal (object s1) (object s2))))

When a plan is defined, its equality constraints are normalized, i.e., (1) any equal-
ity constraints sharing a common operand specifier are merged, and (2) redundant
operand specifiers within a constraint are removed. Whereas T-REX relies on K-Rep
and MATS to normalize concept definitions and temporal constraints respectively,
it must normalize coreference constraints itself. For instance, normalization would
merge the following definition’s first two coreference constraints into a single corefer-
ence constraint with three operand specifiers.

(defpl an SOLO-MAKE-SPAGHETTI-MARINARA

((s1 c-make-spaghetti)

(82 c-boil)

(83 c-make-marinara))

:allen-constraints ((s1 (before meets) s2))

:coref-constraints ((equal (agent s1) (agent s2))
(equal (agent s2) (agent s3))
(equal (object s2) (object s1))))

In addition, all value restrictions designated by the operand specifiers are verified
to be mutually compatible?.

Where applicable, T-REX effectively replaces all role value restrictions specified
by the operand specifiers of an equality constraint with their conjunction. Hence, T-
REX may need to define new action concepts which are specializations of the action
concepts referred to in a plan description. Internally, the plan will be defined in
terms of these new concepts. For example, suppose the actions of the SOLO-BOIL-
SPAGHETTI plan are defined thusly:

*Compatibility is intransitive. Here we rely on the reader’s intuitive notion of compatibility. A
technical definition is forthcoming in Section 4.3.2.

14

(defprimconcept c-make-spaghetti
(and c-action
(all agent c-human)
(all object c-spaghetti)))

(defprimconcept c-boil
(and c-action
(all agent c-italian)
(all object c-pasta)))

Based on the coreference constraints, T-REX would replace these concepts within
the MAKE-SPAGHETTI plan by, respectively:

(defprimconcept c-make-spaghetti-prime
(and c-action
(all agent c-italian)
(all object c-spaghetti)))

(defprimconcept c-boil-prime
(and c-action
(all agent c-italian)
(all object c-spaghetti)))

4.1.5 End Plans

Plan library entries often describe a course of action that an agent can deliberately
carry out to achieve a goal. Following [Kautz, 1991], we call this subset of our plan
library entries end plans ®. However, the plan library administrator may also wish
to introduce descriptions which should not be recognized as plans per se, perhaps for
purposes of indexing or inheritance, or to trigger some functionality upon recognition.
We can compute the possibility and necessity of arbitrary patterns of events (other
than end plans, but presumably still meaningful) by classifying them in the plan
taxonomy and marking them distinctly. Defined plans are taken to be end plans by
default, including all the plans defined in Appendix A.

>Whereas Kautz represents END as a plan in his plan abstraction hierarchy which other plans may
explicitly specialize [Kautz, 1991], we feel it is more appropriately modeled as a boolean attribute
associated with each plan.

15

4.2 Terminological Reasoning with Constraint Networks

This section and Section 4.3 present terminological reasoning with constraint net-
works and terminological plan recognition, respectively, in a fairly formal manner.
We will confine our attention to networks composed of action concepts and Allen’s
temporal constraints. Then Section 4.4 informally (yet carefully) describes our re-
cent extensions to T-REX for metric and coreference constraints. We are now in the
process of formalizing this work.

4.2.1 Structural Subsumption

Set theoretically, one plan subsumes another just in case every possible instance of
the second is also an instance of the first. In this proposal, we restrict our attention to
inferences via plan bodies. Then structural plan subsumption can be characterized in
terms of graph matching. Plan subsumption is based on subsumption between nodes
and subsumption between arcs. We define node subsumption and temporal constraint
subsumption as follows:

Definition 1 Node N1 subsumes node N2 iff the concept associated with N1 subsumes
the concept of N2.

Definition 2 Allen temporal constraint C1 subsumes temporal constraint C2 iff C1’s
disjuncts are a superset of C2’s disjuncts.

For example, before or after subsumes (1) before, and (2) after, as well as (3) be-
fore or after. For plan networks, arc subsumption follows immediately from temporal
constraint subsumption. In other applications, we might use K-Rep concepts to repre-
sent the semantics of arcs. Structural subsumption between terminological constraint
networks such as plan networks entails an appropriate mapping:

Definition 3 A subsumption mapping from terminological constraint network T1 to
terminological constraint network T2 maps every node N1 of T1 to a distinct node
N2 of T2 such that N1 subsumes N2, and every arc between a pair of nodes in T1
subsumes the arc between the corresponding nodes in T2.

In the case of plan networks, Definition 3 assumes that all nodes correspond to
atomic actions, i.e., any macro actions have already been fully expanded and con-
straints on nodes with macro actions have been propagated to the constituents. It

16

also assumes that constraint propagation on T2 is complete. We require distinct im-
ages in T2 for the nodes of T1 because, by definition, distinct nodes within a termi-
nological constraint network denote distinct entities, e.g., action. Then we can prove
the following theorem, which formally justifies the subsumption algorithm presented
in Section 4.2.1:

Theorem 1 Terminological constraint network T1 subsumes terminological constraint
network T2 iff there exists a subsumption mapping from T1 to T2.

The proof appears in Appendix C.

Appendix A defines a plan library from which many of this proposal’s examples are
drawn. Figure 5 illustrates the key subsumption relations which demonstrate that the
HEAT-NOODLES plan network subsumes the ASSEMBLE-SPAGHETTI-MARINARA plan
network (after expansion of the latter’s BOIL-SPAGHETTI macro action). In Figure 6,
dashed arrows indicate the subsumption mapping from the subsumer to the subsumee.
From now on, we will simply show mappings between corresponding nodes, with the
understanding that the intervening arcs are mapped accordingly.

Notice that the two plans differ in the number and specificity of their actions,
as well as the specificity of the relevant constraint. This is analogous to structural
subsumption in TKR, where a concept may specialize its parent(s) by further con-
straining their roles (constraints) and/or adding additional roles (constraints).

@-MAKE-NOODLES)

{before, meets}

HEAT-NOODLES

()

{before, meets}
C-PUT-TOGETHER-SM)

{before}

(C-MAK E-SPAGHETTI

{before, meets}
(C-MAKE—MARINARA

_ ASSEMBLE-SPAGHETTI-MARINARA

Figure 5: Node and Arc Subsumption between Plans

17

@-MAKE-NOODLES)
|]

] {before, meets} n
. M . HEAT-NOODLES
1 | 1
4 ; - . N
{before} {before, meets}
@-MAKE-SPAGH ETTI C-PUT-TOGETHER-SM)
{before, meets}
(C-MAKE—MARINARA
_ ASSEMBLE-SPAGHETTI-MARINARA

Figure 6: Plan Subsumption Mapping

4.2.2 Computational Complexity of Subsumption

Computing subsumption between the concepts associated with nodes amounts to
querying K-Rep. In our case, the concept taxonomy will be constructed in advance,
so the results can be retrieved in constant time (we can precompute the transitive
closure of the subsumption relations for each concept). Temporal constraints can

be represented as bitstrings of length 13, so subsumption between them can also be
determined in constant time.

The crux of the plan subsumption problem is to establish a suitable mapping from
one plan network to another. This problem is clearly in NP, and there is a polynomial
time transformation from directed subgraph isomorphism, which is NP-complete, to
subsumption mapping between terminological constraint networks. Thus we have:

Theorem 2 Subsumption mapping between terminological constraint networks is NP-
complete.

The full proof appears in Appendix C.

4.2.3 Practical Subsumption Performance

We share the view of Doyle and Patil, who argue against the restricted language
thesis that KR systems should limit their expressiveness to achieve polynomial worst-
case response times [Doyle and Patil, 1991]. It is important to observe that in our

18

instantiation of the subgraph isomorphism problem, both the nodes and the arcs are
“labeled,” so powerful heuristics can be brought to bear. As Sowa noted, albeit in
a different context: “The labels help to guide the pattern match when it is going
to be successful, and a mismatch of labels can cause it to fail quickly when there is
no chance of success. Therefore, the labels speed up the pattern matching in many
cases.”

Terminological network subsumption exemplifies the well-known constraint sat-
isfaction problem (CSP). In CSP, we are given a set of variables (corresponding to
nodes in the putative subsuming network), and our task is to instantiate each vari-
able with values from a specified domain (nodes in the putative subsumee), subject
to certain constraints (for plan networks, the action types of the nodes plus the set
of temporal relationships described by the arcs).

We now summarize an algorithm to decide whether some terminological constraint
network T'1 subsumes another one T'2:

1. Macro Expansion: Expand each macro node by replacing it with its con-
stituent nodes (recursively). Propagate constraints on a macro node to each of
its constituents using a procedure such as Allen’s.

2. Closure: Close both networks via constraint propagation.

3. Preliminary Analysis: For each node NI in T1, determine which nodes in
T2 are subsumed by N1 according to the concept taxonomy. Call those nodes
the potential images of N1. If the number of potential images for any node in
T1 is zero, return false. Otherwise, sort the nodes of T in increasing order of
potential image count to help guide the subsequent graph matching process.

4. Matching by Backtracking: Using the preliminary analysis for heuristic
guidance, extend the mapping from T to T2 one step at a time. Each exten-
sion consists of selecting an additional node N7 from 71 and associating with
it an additional node N2 from among its potential images, such that the con-
straints on all nodes selected from 72 continue to respect the constraints on the
corresponding nodes from 7T7. When each node from 77 has been mapped to
a distinct node from T2, return the mapping. At any point, if there is a node
from T'7 which cannot be so mapped, backtrack. If the backtracking process is
exhausted without finding a suitable mapping, return false.

T-REX currently implements this algorithm, which is sound, and complete to
the extent that constraint propagation on T2 is complete. Similar to an existing
algorithm for production rule subsumption [Yen et al., 1991], it employs well-known
CSP techniques. CSP has been widely studied, and improvements are possible. The

19

preliminary analysis that restricts a node’s image to be one of its potential subsumees
is an example of the node consistency technique. Many other powerful CSP methods
such as those based on arc consistency are available [Mackworth, 1977]. Choosing the
optimal mix is domain-dependent and largely still a black art [Kumar, 1992].

4.2.4 Plan Instantiation

We are also concerned with discovering when a plan instance instantiates a particular
plan, sometimes referred to in the literature as plan realization. The computation for
actions and temporal relations is essentially the same as for subsumption, so we will
not elaborate here (but see Section 4.4).

4.2.5 Classification

Structural plan subsumption allows T-REX to automatically classify plan taxonomies
strictly according to the semantics of the plans. Our initial implementation of classifi-
cation is entirely unremarkable, but see Section 6.2.2 for future work. Figure 7 shows
a plan taxonomy constructed by T-REX using the set of plan definitions presented
in Appendix A. The root of the plan taxonomy is the trivial plan, PLAN, which has
no actions.

MAKE-MEAT-DISH—(MAKE-MEAT-MARINARA}—(ASSEMBLE-CHICKEN-MARINARA)

HEAT-NOODLES

HEAT-SPAGHETTI

BOIL-NOODLES

BOIL-SPAGHETTI

MAKE-SPAGHETTI-MARIN (ASSEMBLE-SPAGHETTI-MARINARAF=—(ASSEMBLE-S&C-M)

MAKE-PASTA-DISH MAKE-FETTUCINI-ALFREDO)

MAKE-SPAGHETTI-PESTO

Figure 7: A Definitional Plan Taxonomy

Taxonomies formed by classifying plan networks, like terminological constraint
networks in general, enjoy all the benefits of classification cited in Section 2. Further-
more, as plan libraries grow in size and scope, their organization and maintenance
becomes increasingly critical. Search procedures can utilize the definitional placement
of plans within a taxonomy for fast and accurate results. Also, since most present
day plan libraries are organized by hand, the clerical demands placed on the plan li-
brarian may become burdensome. Our experience with knowledge engineering shows
that when confronted with large quantities of information, the enforced semantics of
the terminological approach offers significant advantages [Mays et al., 1991b].

20

4.3 Terminological Plan Recognition

We now exploit the plan library’s terminological nature to guide plan recognition. By
searching for suitable mappings between the observations and the plans, we can assign
the plans modalities, e.g., necessary, possible and impossible, that indicate their status
with respect to the observations. This process, which partitions the plan library by
modality, is unique to our work. We shall examine plan recognition under varying
assumptions about the accuracy and monotonicity of the observations.

An observation represents a determination that actions(s) have occurred and/or
that temporal constraint(s) hold between actions. The system records its observations
in a network similar to plan networks which we call the observation network. Action
instances are associated with the nodes of an observation network. In general, the
observation network may be an inexact or incomplete model of the events. A sample
observation network is shown in Figure 8.

{before, meets}

A
(MAKE-SPAGHETTIS) —~(HEAT9)

OBSERVATIONS

Figure 8: A Sample Observation Network

As events unfold and observations are made, the observation network is updated,
yielding successive versions. An update may entail extension and/or refinement.
Extensions add new actions and/or temporal constraints, while refinements further
constrain (specialize) existing actions and/or temporal constraints. More generally,
observations can be retracted or generalized.

We make a complete library assumption that each observed action is directed
towards fulfilling a plan or plans in the plan library. This is a closed-world assumption
[Reiter, 1978]. Consequently, at least one plan is possible at all times and at least one
plan will eventually prove necessary. As mentioned in Section 4.1.1, we assume that
the taxonomy includes every type of action which appears in a plan, or is observed
during plan recognition.

Until Section 4.3.5, we further make the single plan assumption that the observa-
tions will ultimately be fully accounted for by a single plan (they may also be partially
accounted for by more general plans). Both assumptions are common in the field of
plan recognition. The latter is the most restricted version of Kautz’s minimum cardi-
nality assumption, which always prefers to account for observations with the smallest
number of plans [Kautz, 1991]. It is often reasonable to suppose that observed actions

21

are related.

Terminological plan recognition is based on potential subsumption relationships
between the observations and plans in the plan library. We will say that a plan is pos-
stble with respect to the observations if it subsumes or might eventually subsume the
observations, i.e., perhaps pending suitable further observations. When a plan cannot
subsume the observations under the prevailing assumptions, the plan is impossible.
A possible plan which actually subsumes the observations is also necessary. Stronger
plan recognition results may follow from cardinality assumptions, e.g., due to the
complete library assumption, we know that when only one plan remains possible, it
is effectively necessary. For convenience, we refer to plans which are possible but not
necessary as optional. Before any observations are made, all plans are optional except
for PLAN, which is trivially necessary. Afterwards, both the plan definitions and the
prevailing assumptions interact with the observations to determine the modality of
each plan.

The recognition process relies on the terminological nature of the plan taxonomy to
partition the taxonomy into three connected regions. Figure 9 illustrates the division
of the plan taxonomy into necessary (N), optional (O), and impossible (I) regions (the
rendering of the border between optional and impossible plans emphasizes the point
that an optional plan may subsume an impossible plan under a minimum cardinality
assumption). Since the taxonomy is definitional, we need not compare every plan
with the observations to accomplish the partitioning, e.g., except for PLAN, a plan is
not possible unless one of its parents is possible.

Figure 9: Modalities in a Definitional Plan Taxonomy

4.3.1 Perfect Observations

Let us begin with the stringent assumption that the observation network is perfect.
In our framework, this implies that the types of observed actions are leaves in the

22

action taxonomy and that observed temporal relationships are nondisjunctive. The
observation network may be extended with additional actions, as well as with tempo-
ral constraints between the additional actions or between an additional action and a
previously observed action. Existing actions and temporal relationships may not be
modified or retracted.

The perfect observation assumption is sometimes quite justified. For instance,
we can flawlessly capture a user’s interactions with software systems such as operat-
ing systems or graphical user interfaces. Indeed, we view user interfaces as a likely
application for our ideas.

Suppose we have the following plan network with two actions (also shown in
Figures 5 and 6 and in Appendix A):

® HEAT-NOODLES: C-MAKE-NOODLES {before, meets} C-HEAT

It subsumes the following (unrelated) observation networks, among others:

® OBS-1: MAKE-SPAGHETTIL {before} BOIL2

e OBS-2: MAKE-ZITI3 {meets} BAKE4

Thus, both of the preceding observation networks license the conclusion that the
HEAT-NOODLES plan is necessary.

Intuitively, a plan is possible with respect to the observations if it subsumes or
might eventually subsume them, i.e., it is necessary or optional. We introduce in-
verse subsumption to characterize optional plans which directly reflect the present
observations:

Definition 4 An inverse subsumption mapping from terminological constraint net-
work T2 to terminological constraint network T1 maps every node N2 of T2 to a
distinct node N1 of T1 such that N2 is subsumed by N1, and every arc between a pair
of nodes in T2 is subsumed by the arc between the corresponding nodes in T1.

An optional plan network P which enjoys an inverse subsumption mapping from
the observations will actually subsume them if we subsequently observe nodes and
arcs subsumed by the as yet unobserved portion of P. Since an inverse subsumption
mapping constitutes direct evidence that a plan may be in progress, we will call
such plans directly optional. The next observation network, which consists of a single
action, is potentially subsumed by HEAT-NOODLES in this way:

23

® 0OBS-3: MAKE-SPAGHETTIH

For example, 0BS-3 would become subsumed by HEAT-NOODLES if a C-BOIL action
were observed to occur after the MAKE-SPAGHETTI5. Hence, the status of HEAT-
NOODLES would change from directly optional to necessary. On the other hand, an
observation of MAKE-CHICKEN would render HEAT-NOODLES not directly optional,
given that a MAKE-CHICKEN action is not subsumed by any action in HEAT-NOODLES.

Now, we can formally define potential subsumption of an observation network by
a plan in isolation:

Definition 5 Plan network P potentially subsumes observation network O under
perfect observation iff (1) P subsumes O, or (2) there exists an inverse subsumption
mapping from O to P.

When we consider plan recognition with respect to a plan library, there is another
class of optional plans, not covered by Definition 4, which may eventually subsume
the observations. To see this, consider again OBS-3, now in the context of the portion
of Figure 7 detailed in Figure 10 (which shows the pertinent subsumption mapping).
The MAKE-SPAGHETTI5 has no counterpart in the ASSEMBLE-CHICKEN-MARINARA
plan, nor have we observed any other action in that plan. A notion of possibility
based on inverse subsumption alone would lead to the conclusion that ASSEMBLE-
CHICKEN-MARINARA is “impossible.” However, it admits the possibility that the
agent is following the ASSEMBLE-S&C-M plan. This seems somewhat paradoxical
since ASSEMBLE-CHICKEN-MARINARA subsumes ASSEMBLE-S&C-M. Based on our
evidence that the latter is optional, we want to sanction the indirect conclusion
that ASSEMBLE-CHICKEN-MARINARA is also optional. T-REX therefore recognizes
a supplemental class of optional plans. Any plan which does not enjoy an inverse
subsumption mapping from the observations, but does subsume an optional plan, is
itself indirectly optional.

There is one remaining case where a plan is indirectly optional. Consider a plan
library with two plans; neither subsumes the other:

® PLAN-X: C-MAKE-SPAGHETTI {before} C-BOIL
® PLAN-Y: C-MAKE-MARINARA {before} c-MAKE-NOODLES {before, meets} C-BOIL

Now consider this perfect observation:

® OBS-4: MAKE-MARINARA34

24

p
ASSEMBLE-CHICKEN-MARINARA
(C-MAKE-CHICKEN
* {before}
{before, after} . C-PUT-TOGETHER-CM)
.
L |
.
(C-MAKE-MARINARA % .
¥ .)
o x % J
. ¥ .
" - :’. ‘:
.. A’ “
" (C-MAKE-CHICKEN .
u .
“‘ {before} ‘
ol {after, before} C-PUT-TOGETHER-SCM)
’#
e ‘
(* {before}
C-MAKE-MARINARA
{before}
(C-MAKE-SPAGHETTI
L ASSEMBLE-S&C-M
Figure 10: Indirect Optionality

There is an inverse subsumption mapping from OBS-4 to PLAN-Y, so PLAN-Y is

directly possible. Although it cannot be mapped to PLAN-X, OBS-4 can be extended
to instantiate PLAN-Y in such a way that it also instantiates PLAN-X, e.g.:

tiate PLAN-X:

® OBS-5: MAKE-MARINARA34 {before} MAKE-SPAGHETTI35 {before} BOIL36

On the other hand, 0BS-6 can be extended to instantiate PLAN-Y but not to instan-

® OBS-6: MAKE-MARINARA34 {before} MAKE-FETTUCINI3T

The relationship between PLAN-X and PLAN-Y illustrates a general situation where

plan P1 does not subsume plan P2, yet certain instantiations of P2 will also be

subsumed by PI. In these situations we sometimes want to infer that P71 is indirectly
optional via P2. One solution is for T-REX to ensure that there exist plan(s), e.g.,
P3, subsumed by both P! and P2 such that P is indirectly optional via P2 just

25

in case P3is directly optional. T-REX can always create such plan(s) as required.
Therefore, we will assume throughout that the library has been so augmented, i.e., the
augmented complete library assumption. After introducing the required machinery in
Section 4.3.2, we will specify how this is accomplished in Section 4.3.3.

Now, we can formally define potential subsumption with respect to a plan library:

Definition 6 Plan network P potentially subsumes observation network O under
perfect observation iff (1) there exists an inverse subsumption mapping from O to P,
or (2) there exists a plan P’ such that P subsumes P’ and P’ potentially subsumes O.

Under the complete library assumption, whenever P actually subsumes O, one of
the two clauses of this definition must be true. Potential subsumption expands the
notion of actual subsumption, i.e., subsumption entails potential subsumption but
the converse is not true. That potential subsumption precisely captures our idea of
possibility is stated in the following theorem (proved in Appendix C):

Theorem 3 Under the complete library, single plan and perfect observation assump-
tions, a plan is possible iff it potentially subsumes the observations.

Given OBS-3, we can now see that our recognition methodology will partition the
plan taxonomy in Figure 7 into the following modalities:

Directly Optional: HEAT-NOODLES
HEAT-SPAGHETTI
BOIL-NOODLES
MAKE-PASTA-DISH
MAKE-SPAGHETTI-PESTO
MAKE-SPAGHETTI-MARINARA
BOIL-SPAGHETTI
ASSEMBLE-SPAGHETTI-MARINARA
ASSEMBLE-S&C-M

Indirectly Optional: MAKE-MEAT-DISH
MAKE-MEAT-MARINARA
ASSEMBLE-CHICKEN-MARINARA

Impossible: MAKE-FETTUCINI-ALFREDO

Note that the recognition of MAKE-FETTUCINI-ALFREDO as impossible depends
crucially on the complete library and single plan assumptions. Of course, given a
wide range of cooking plans, OBS-3 alone would render many of them impossible.

If observation network OBS-3 is extended to include an instance of C-BOIL occur-
ring after MAKE-SPAGHETTI), the following plans change from directly optional to

26

necessary. HEAT-NOODLES, HEAT-SPAGHETTI, BOIL-NOODLES and BOIL-SPAGHETTI.
By contrast, if OBS-3 is instead extended to include an instance of MAKE-CHICKEN
(temporally unconstrained), then HEAT-NOODLES, HEAT-SPAGHETTI, BOIL-NOODLES,
MAKE-PASTA-DISH, MAKE-SPAGHETTI-MARINARA, BOIL-SPAGHETTI, and ASSEMBLE-
SPAGHETTI-MARINARA change from directly optional to indirectly optional, while
MAKE-SPAGHETTI-PESTO changes from directly optional to impossible.

Our recognition methodology is not limited to plans. Definitions 5 and 6 sim-
ply specify that terminological constraint network T2 satisfies a subnetwork of T7.
Likewise, Definitions 5 and 6 apply generally to any pair of terminological constraint
networks, P and O. It is interesting to note that our methodology could also partition
a regular K-Rep concept taxonomy into modalities vis @ vis a K-Rep instance as its
definition is extended.

4.3.2 Monotonic Observations

Now we permit imprecise observations, including action instances of arbitrarily ab-
stract type and/or disjunctive temporal constraints, along with refinement of prior
observations. The type of an action instance in the observation network may be re-
fined to a more specific type . Similarly, an observed temporal constraint may be

refined to a subset of its disjuncts.

This framework poses more of a challenge. An action instance in the observation
network which is not subsumed by a certain action in a plan network may later
be refined to the point that it becomes subsumed by that action, and similarly for
temporal constraints. For motivation, consider the following pair of plan networks,
neither of which subsumes the other (as defined in Appendix A and illustrated in
Figure 7):

® BOIL-NOODLES: C-MAKE-NOODLES {before, meets} C-BOIL

® HEAT-SPAGHETTI: C-MAKE-SPAGHETTI {before} C-HEAT

Also consider the following pair of observation networks:

® OBS-T: MAKE-NOODLES6 {before, meets} BOILT

e OBS-8: MAKE-SPAGHETTIS {before} HEATY

Notice that 0BS-7, which is subsumed by BOIL-NOODLES, would become subsumed by
HEAT-SPAGHETTI if MAKE-NOODLESG was refined to be of type C-MAKE-SPAGHETTI

5The type of an instance is the conjunction of the concepts which subsume it.

27

and the temporal constraint was refined to {before}. Conversely, 0BS-8, which is
subsumed by HEAT-SPAGHETTI, would become subsumed by BOIL-NOODLES if HEAT9
was refined to be of type C-BOIL.

The possibility of refinement forces us to expand the conditions under which a plan
is deemed possible. A plan is possible if the observations are consistent with it or may
become so. Potential subsumption of the observation network by a plan network under
monotonic observation depends on compatibility of actions and temporal constraints.
We formalize this notion with respect to structural subsumption and our completeness
assumptions by the following series of definitions.

Definition 7 A pair of concepts (constraints) are compatible iff there exists a concept
(constraint) which they both subsume.

Thus C-HEAT is compatible with ¢-BOIL and wice versa. Recall that subsumption is
reflexive.

Definition 8 An instance | and a generic concept G are compatible iff the type of 1
is compatible with G.

Thus HEAT27 is compatible with ¢-BOIL and conversely.

Definition 9 Temporal constraints are compatible iff the intersection of their dis-
Juncts is non-empty.

The constraint {before, during} is bidirectionally compatible with {during, after}.

Of course, when an observed action or constraint is incompatible with a certain
action or constraint in the plan library, their incompatibility is impervious to future
refinement of the observation (recall our assumption that the action taxonomy is
complete).

Compatibility for a pair of terminological constraint networks, such as a plan
network and an observation network, can be decided as follows:

Definition 10 A pair of nodes (arcs) are compatible iff the associated concepts (con-
straints) are compatible.

28

Definition 11 There is a compatibility mapping from terminological constraint net-
work T1 to terminological constraint network T2 iff every node of T1 is compatible
with a distinct node of T2, such that every arc between a pair of nodes in T1 is
compatible with the arc between the corresponding nodes in T2.

Finally, we can give a more general definition for potential subsumption of an
observation network by a plan in isolation:

Definition 12 Plan network P potentially subsumes observation network O under
monotonic observation iff (1) there exists a compatibility mapping from P to O, or
(2) there exists a compatibility mapping from O to P.

As before, potential subsumption with respect to a complete plan library entails
a level of indirection:

Definition 13 Plan network P potentially subsumes observation network O under
monotonic observation iff (1) there exists a compatibility mapping from O to P, or
(2) there exists a plan P’ such that P subsumes P’ and P’ potentially subsumes O.

Intuitively, a plan network is possible if the observation network can be extended
and/or refined so that it is subsumed by the plan network. Definition 13 is formally
justified by the following (proved in Appendix C):

Theorem 4 Under the complete library, single plan and monotonic observation as-
sumptions, a plan is possible iff it potentially subsumes the observations.

Returning to our motivating example, Definition 13 shows that BOIL-NOODLES
and HEAT-SPAGHETTI potentially subsume observation networks OBS-7 and OBS-8.
In particular, the full partitioning of the plan taxonomy in Figure 7 given OBS-7 is:

Necessary: HEAT-NOODLES
BOIL-NOODLES

Directly Optional: HEAT-SPAGHETTI
MAKE-PASTA-DISH
MAKE-FETTUCINI-ALFREDO
MAKE-SPAGHETTI-PESTO
MAKE-SPAGHETTI-MARINARA
BOIL-SPAGHETTI
ASSEMBLE-SPAGHETTI-MARINARA
ASSEMBLE-S&C-M

Indirectly Optional: MAKE-MEAT-DISH
MAKE-MEAT-MARINARA
ASSEMBLE-CHICKEN-MARINARA

29

In contrast, the partitioning resulting from OBS-8 is:

Necessary: HEAT-NOODLES
HEAT-SPAGHETTI
Directly Optional: BOIL-NOODLES

MAKE-PASTA-DISH
MAKE-SPAGHETTI-PESTO
MAKE-SPAGHETTI-MARINARA
BOIL-SPAGHETTI
ASSEMBLE-SPAGHETTI-MARINARA
ASSEMBLE-S&C-M

Indirectly Optional: MAKE-MEAT-DISH
MAKE-MEAT-MARINARA
ASSEMBLE-CHICKEN-MARINARA

Impossible: MAKE-FETTUCINI-ALFREDO

Under the single plan assumption and monotonic observation, the set of plans that
are optional (directly or indirectly) decreases monotonically as observations occur. In
that case, the effect of each new observation is to change the status of zero or more
plans to necessary or impossible. For example, if MAKE-NOODLESG in OBS-7 is refined
to be of type C-MAKE-SPAGHETTI and the temporal constraint refined to {before},
the plans HEAT-SPAGHETTI and BOIL-SPAGHETTI change from directly optional to
necessary, while MAKE-FETTUCINI-ALFREDO changes from directly optional to im-
possible. If HEAT9 in OBS-8 is refined to be of type C-BOIL, the plans BOIL-NOODLES
and BOIL-SPAGHETTI change from directly optional to necessary.

As before, our recognition methodology for monotonic observations applies to any
type of terminological constraint network, not just plans. Moreover, our methodology
could also partition a regular K-Rep concept taxonomy into modalities vis a vis a K-
Rep instance as its definition is monotonically updated.

4.3.3 Augmenting the Plan Library

As noted in Section 4.3.1, we must account for cases where plan P is indirectly
optional via plan P2, but PI does not subsume P2. Motivated by our desire to curtail
inferencing during plan recognition, the solution we have implemented augments the
plan library by creating additional plans for the internal use of T-REX, so that a plan
is indirectly optional just in case it subsumes a directly optional plan.

Observe that we can compute a compatibility mapping from one plan to another,
just as we do between a plan and the observations. Such a mapping establishes
structural compatibility. In general, we augment the library as needed to ensure
that there exists a plan P3 for every compatibility mapping from some plan P17 to

30

another plan P2, where P1 does not subsume P2, yet an instantiation of P2 may also
be subsumed by PI1. P3 is created by specializing P2 according to a compatibility
mapping from P1 so every constituent (action, temporal or equality constraint) C2
of P2 mapped from constituent C1 of P1 is replaced by the conjunction of C7 and
C2. In the example from Section 4.3.1, C-MAKE-SPAGHETTI and C-BOIL of PLAN-X
are mapped to C-MAKE-NOODLES and C-BOIL of PLAN-Y, respectively, along with the
corresponding intervening temporal constraints, to derive:

® PLAN-7Z: C-MAKE-MARINARA {before} C-MAKE-SPAGHETTI { before} C-BOIL

In PLAN-Z, the second action and second temporal constraint of PLAN-Y have been
specialized. Note that P2 always has at least as many nodes as PI. In case Pl and
P2 have the same number of nodes, all compatibility mappings between them are
symmetric, so we need not consider mappings from P2to P1 separately. Throughout
this paper, we assume that the plan library has been augmented in the way we have
described. It need only be done once, after the plan library is defined and before plan
recognition commences. We are studying how to minimize the number of plans that
must be added overall.

4.3.4 Unrestricted Observations

T-REX actually provides for arbitrary modification and retraction of observations. To
reach any useful conclusions, it is necessary to assume in advance that generalization
and retraction will not happen. Thus our existing definition of potential subsump-
tion under monotonic observation still applies. When allowing nonmonotonic obser-
vations, however, plans considered “necessary” given some observation network may
revert to optional status later on. Indeed, seemingly “impossible” plans may later
become possible. If an observed action instance is modified, it is automatically re-
classified by K-Rep. Nonmonotonic observation could have unfortunate performance
consequences. We must effectively be able to undo any constraint propagation in
the observation network, since the justification may cease to exist. Retraction in the
observation network is currently done by recomputation. Presumably it could also
be supported via truth maintenance, but the cost of tracking dependencies may not
be worthwhile.

4.3.5 Simultaneous Plans

When the single plan assumption is violated, T-REX accounts for the eventuality
that more than one plan is underway. First, it must be able to relate the observations
to a group of plans. T-REX (conceptually) places the nodes from several plans into

31

one plan network, preserving the original constraints on those nodes. Relationships
between nodes taken from different plans are unconstrained. Thus, a multiple plan
network allows its constituent plans to be interleaved in any way. As in [Kautz, 1991],
observed actions can be shared among plans.

A set of plans accounts for all observed actions iff there is a compatibility mapping
from the observation network to their multiple plan network. T-REX also needs a
way to explore the set of possible plan combinations. Cardinality assumptions seem
essential to constrain the combinations for reasonable performance. Also, in their
absence, we would be forced to concede that all plans are always possible, since any
given plan might commence in the future. Kautz’s minimum cardinality assumption
addresses this problem. His implementation simply considers plans pairwise when a
single plan does not suffice to explain the observations, and failing that, three at a
time and so on, ad infinitum [Kautz, 1991]. As a first cut at improvement, T-REX
only considers those multiple plan networks that have a compatible action for every
observed action.

As an example, consider observation network OBS-9:

® OBS-9: MAKE-FETTUCINI1O {before} MAKE-NOODLES11 {before} MAKE-ALFREDO12
{before} MAKE-ALFREDO13

Since no single plan can account for the observations, T-REX infers that three possible
sets of two (interleaved) plans can account for OBS-9:

1. {MAKE-FETTUCINI-ALFREDO, MAKE-FETTUCINI-ALFREDO }

2. {MAKE-FETTUCINI-ALFREDO, MAKE-PASTA-DISH }

3. {MAKE-PASTA-DISH, MAKE-PASTA-DISH }

T-REX searches for combinations of end plans only; if T-REX were told that the
MAKE-PASTA-DISH plan is not an end in itself, only the first of these combinations
would be inferred.

4.4 Inferences with Metric and Coreference Constraints

This section describes recent T-REX extensions to handle metric temporal constraints
and coreference constraints. Our presentation here is somewhat less formal than
in preceding portions of Section 4. As noted above, we are now in the process of
formalizing this work.

32

4.4.1 Plan Subsumption and Instantiation

We have recently extended our algorithm on page 19 to compute plan subsumption
in light of metric constraints. First, the potential images of a node must now re-
spect constraints on its duration as well as its associated action. Metric constraint
subsumption follows from containment on the real number line, so STEP2 of the first
plan below (repeated from Section 4.1.3) subsumes s2 of the second plan:

(defplan DEMO-METRIC-CONSTRAINTS
((stepl c-make-noodles)
(step2 c-heat))
:metric-constraints
((5 <= left step2 - right stepl <= 5)
(6 <= right step2 - left step2 <= 9)))

(defplan DEMO-METRIC-CONSTRAINTS-SUBSUMEE
((s1 c-make-spaghetti)
(82 c-boil))
:metric-constraints
((5 <= left s2 - right sl <= 5)
(6 < right s2 - left s2 <= 8)))

Second, when a subsumption mapping is extended by associating node N2 from T2
with node N1 from T'1, the metric constraints between the starting and ending points
of N2 and those of all previously selected nodes from 7'2 must continue to respect the
corresponding metric constraints from T'7. That is, temporal constraint subsumption
between a pair of nodes entails subsumption between a pair of Allen constraints and
four pairs of metric constraints. Suppose that given the two preceding plans, our
subsumption algorithm has already mapped STEP1 of DEMO-METRIC-CONSTRAINTS
to S1 of DEMO-METRIC-CONSTRAINTS-SUBSUMEE. Subsequently mapping STEP2 to
S2 entails verifying these four metric constraint subsumption relations:

e LEFT STEP2 - LEFT STEP1 subsumes LEFT S$2 - LEFT S1

e LEFT STEP2 - RIGHT STEP1 subsumes LEFT $2 - RIGHT S1

® RIGHT STEP2 - LEFT STEP1 subsumes RIGHT S2 - LEFT S1

e RIGHT STEP2 - RIGHT STEP1 subsumes RIGHT S2 - RIGHT S1

Observation assumptions aside, metric constraints in plan instances are just like

those in plans, so determining plan instantiation with respect to metric constraints
is identical to plan subsumption with respect to them.

33

We have also recently extended our algorithm to compute plan subsumption in
light of coreference constraints. At present, T-REX computes a subsumption mapping
from plan T'1 to plan T2 with respect to their actions and temporal constraints, then
checks to see if this mapping respects their equality constraints. If not, it seeks
another subsumption mapping. Plan T7 subsumes plan T2 with respect to their
equality constraints (after normalization) just in case every equality constraint FE1
in T'1 subsumes some equality constraint £2 in T'2. That is the case when for each
operand specifier in F there is a corresponding operand specifier in F2 such that
their role-names are the same (there is no role hierarchy) and their labels are bound
together under the current mapping. The latter property ensures that every operand
specifier in F1 is mapped to a distinct operand specifier in E2 (as always, steps in a
plan are assumed to be disjoint). Also, note that the ordering of operand specifiers
within an equality constraint is immaterial since equality is commutative. As an
example, it can be seen that the SOLO-BOIL-SPAGHETTI plan on page 14 subsumes
the SOLO-MAKE-SPAGHETTI-MARINARA plan which follows it.

T-REX must also be able to determine whether some plan instance satisfies every
coreference constraint specified by a given plan description. For each operand specifier
in a given coreference constraint, T-REX collects the corresponding role filler from
an action instance in the plan instance (with respect to the putative subsumption
mapping), and applies the operator — currently only equality — to those operands.
For example, the following plan instance would instantiate the SOLO-BOIL-SPAGHETTI
plan on page 14 just in case its two action instances had identical fillers for their
AGENT roles and for their OBJECT roles.

® MAKE-SPAGHETTIO8 {meets} BOILIY

4.4.2 Plan Recognition

We have recently extended our plan recognition algorithm to account for metric con-
straints. We will consider the case of monotonic observation, since it includes perfect
observation as a special case. First, nodes are compatible if both their actions and
their durations are compatible. Durations, like all metric constraints, are compatible
if their intersection is non-empty, e.g., the durations of INTERVAL1 and INTERVAL?2
defined as follows:

® 4 <= RIGHT INTERVALl - LEFT INTERVAL]l <= 8§

e 7 <= RIGHT INTERVALZ - LEFT INTERVAL2 <= 9

Second, temporal constraints between nodes are compatible if the Allen constraints
between the associated intervals are compatible, and the metric constraints among

34

the corresponding starting and ending points are compatible. That is, temporal
constraint compatibility between a pair of nodes entails compatibility between a pair
of Allen constraints and four pairs of metric constraints.

When equality constraints are applied to plan instances under monotonic obser-
vation, the K-Rep instances identified by the operand specifiers must be of compatible
types. When only part of a plan has been observed, T-REX may find a compatibility
mapping from the plan instance to the plan description. Then, some operands of an
equality constraint may not be present in the instance (they might still be observed
in the future). We need only check the compatibility of those operands which are
present in the observation network. For example, the following observations would be
compatible with the SOLO-MAKE-SPAGHETTI-MARINARA plan on page 14 when the
agent of MAKE-SPAGHETTI998 is a particular human, say JOE997, and the agent of
BOIL999 is only known to be an individual of type C-HUMAN. This is because, under
monotonic observation, we may later discover that the agent of BOIL999 is in fact

JOE99T.

® MAKE-SPAGHETTI998 {BEFORE} BOIL999

5 Other Related Work

In the previous section we saw how our research to date builds upon the work in ter-
minological knowledge representation and temporal reasoning described in Section 3.
We now highlight the recent research by others most strongly related to our own, first
in extending terminological reasoning, then in plan recognition.

5.1 Terminological Reasoning

Terminological reasoning with compositions of concepts has been investigated by oth-
ers in three specialized domains: plans, temporal concepts, and production rules. We
now summarize each of them.

5.1.1 Plans

Previous work on plan subsumption allowed plans that were either atemporal and
used for plan synthesis [Wellman, 1990] or restricted to the relationship of temporal
sequence and used for information retrieval [Devanbu and Litman, 1991]. There is
also contemporaneous work on state-based reasoning with plans limited to simple

35

sequences [Heinsohn et al., 1992]. After considering each of these systems in turn, we
summarize their comparability in Table 1. Proposed but unimplemented features of

T-REX are parenthesized.

SUDO-PLANNER Wellman studied the formulation of tradeoffs in the context
of medical therapy [Wellman, 1990]. He proposed an architecture for a constraint-
posting planner which classifies a terminology of partial plan descriptions representing
the explored portion of the search space. His proposal integrates a dominance prover
which can prove that one class of plans characterized by a partial description domi-
nates another in the sense that some realization of the first class is at least as good as
every realization of the second. Then his system is justified in pruning the dominated
plan class from the search space. Wellman’s plans are composed of actions repre-
sented in a terminological hierarchy, but his plans are entirely atemporal. We outline
some ideas for integrating Wellman’s work with temporal planning in Appendix B.

CLASP T-REX’s plan subsumption is similar in spirit to CLASP [Devanbu and
Litman, 1991], which described plans as action sequences by means of regular ex-
pressions. However, by using Allen’s temporal logic, T-REX supports simultaneous
actions. T-REX also captures finer sequential relations than CLASP, which, for ex-
ample, makes no distinction between before and meets. In [Devanbu and Litman,
1991], a plan instance with n steps can only be subsumed by plans with exactly n
steps. Our system has no such restriction. CLASP has no coreference constraints
between actions. Finally, T-REX plan networks can be composed nicely from bi-
nary constraints, making for a compact and facile notation. Regular expressions are
comparatively unwieldy monolithic structures. On the other hand, CLASP models
preconditions and effects of actions and plans, and it fully supports disjunction and
looping. Recently, PROTODL [Borgida, 1992] introduced a framework for extending
terminological systems with customized language constructs. This methodology was

demonstrated by reconstructing CLASP in PROTODL.

RAT The RAT system [Heinsohn et al., 1992] is used in the WIP project at the
German Research Center for Artificial Intelligence (DFKI) to represent plans for as-
sembling, using, maintaining or repairing a physical device, namely an espresso ma-
chine. Plans in RAT are restricted to simple sequences of atomic actions. However,
RAT focuses on the representation of complex state descriptions which hold before
and after each action in the sequence. RAT simulates the execution of a plan with a
temporal projection algorithm that propagates the preconditions and postconditions
of actions forwards and backwards along the action sequence. Thus, RAT can en-
sure a plan’s consistency and also refine the intervening state descriptions insofar as
possible. For the plan itself, RAT determines the weakest precondition and strongest

36

postcondition. These could be uses to classify plans by their executability or goals,
respectively.

In RAT, actions are defined by triples consisting of (1) a conjunctive set of at-
tribute restrictions which constitute formal parameters, as well as (2) preconditions
and (3) postconditions, both of which are conjunctions of attribute restrictions, agree-
ments and disagreements (role value maps with equality and inequality operators).
Plans in RAT are defined by a set of parameters, an action sequence, and equality
constraints among the plan’s parameters and constituent actions.

In sum, RAT offers a detailed treatment of state information with respect to
actions and plans, but only in the context of simple action sequences. T-REX by
contrast, does not consider state information but offers a very rich temporal language
for composing actions. Prospects for incorporating state information in T-REX are
addressed in Section 6.3.3.

SUDO- RAT CLASP T-REX
PLANNER
Application plan multimedia information plan
synthesis explanation retrieval recognition
Temporal none simple regular constraint
Language sequences expressions networks
Concurrent n/a no no yes
Actions
Disjunction no no yes (restricted to
single action)
Repetition no no loop (arbitrary,
single action)
Subplans no no yes yes
Coreference no equality, no equality
Constraints inequality (inequality)
Plan no no number of actions | unrestricted
Instances must agree w/ plan
States no yes yes no

Table 1: Comparison of Terminological Plan Systems

37

5.1.2 Temporal Concepts

Schmiedel [Schmiedel, 1990] has described an ambitious attempt to extend termino-
logical logic with temporal semantics by integrating both Allen’s temporal logic and
Shoham’s [Shoham, 1987]. Unlike T-REX, his representation supports concepts such
as “former car owner”. His temporal concept definitions include a set of temporal
variables, along with temporal constraints among the variables. Although he offers no
algorithm, Schmiedel does suggest a few “preliminary hints” (his words), including
a definition of subsumption which corresponds to ours. His work did not consider
temporal constraint networks as first class entities to be reasoned with in their own
right, nor did he address either recognition or the notion of potential subsumption.

5.1.3 Production Rules

The CLASP system of [Yen et al., 1991]7 is concerned in part with computing sub-
sumption relationships among the antecedents of a set of production rules and clas-
sifying the rules accordingly. Besides being valuable from a knowledge engineering
perspective, the rule taxonomy provides a principled basis for selecting rules to fire
under the commonly used specificity criterion. This compares favorably with ad-
hoc specificity measures used in production systems such as OPS5 [Brownston et al.,
1985]. We observe that the subsumption task we face is rather like the one described
in [Yen et al., 1991]. The antecedents of CLASP rules are composed of unary pred-
icates (corresponding to concepts) and binary predicates (corresponding to roles).
Thus they can be viewed as constraint networks. We are encouraged by Yen’s analy-
sis which found their algorithm’s complexity to be polynomial in “normal” cases [Yen,

1990].

5.2 Plan Recognition
5.2.1 Kautz

Our plan recognition work is most closely related to that of Kautz [Kautz, 1991]. Our
plan recognition technique, like Kautz’s, is deductive, and incorporates the use of a
plan abstraction taxonomy (as well as the traditional hierarchy decomposing plans
into constituent actions). Both approaches are also restricted compared to other
techniques in that they do not chain on state information (e.g. preconditions and
effects), and have strong assumptions such as plan library correctness and complete-
ness. Kautz’s landmark work produced a formal theory of plan recognition based on

"Not to be confused with the homonymous CLASP system of [Devanbu and Litman, 1991].

38

circumscription, along with more practical algorithms that approximate his theory. A
major contribution was his logical characterization of the completeness assumptions.
In contrast, we have not focused on formalizing our own view of plan recognition.

There are several reasons to prefer T-REX to Kautz’s implementation. Unlike
Kautz’s approach, we extend work in TKR to formalize and automate the organi-
zation of the plan taxonomy. Moreover, we directly exploit the library’s definitional
nature to guide plan recognition. Kautz’s system uses a temporal language for relat-
ing actions that is more restricted than the one we use via MATS. We also use an
underlying TKR system, K-Rep, to represent and reason with the actions and objects
that are the building blocks of plans, whereas atomic actions and objects in [Kautz,
1991] and many other approaches lack defined semantics. Thus our approach allows
the plan recognition system to share the advantages of existing terminological on-
tologies. We permit observation of actions at an abstract level, as well as revision
of prior observations. Kautz’s implementation performs certain expensive computa-
tions at run time. It computes the possible consequences of each observed action
independently and records them in separate graph structures which are combined by
repeated graph-merging operations. We prefer to precompute possible relationships
among actions as reflected in the plans by constructing a definitional plan taxonomy
in advance. We then determine possible consequences from the observation network
as a whole, on a context-dependent basis.

5.2.2 Song and Cohen

Song and Cohen have considered how to extract the intended temporal relations
among situations described in natural language discourse [Song, 1991, Song and Co-
hen, 1991]. They called this the temporal analysis problem. Song and Cohen were
motivated by the idea of a natural language interface to a plan recognition system.
Their system, like ours, employs Allen-style temporal reasoning and can eliminate
plans in the plan library which are inconsistent with the extracted temporal rela-
tions. Also, the extracted relations can be used to make prestored relations in the
plan library more specific. Furthermore, based on a complete library assumption, the
recognized plans may yield necessary constraints which further refine the extracted
relations. However, it is not clear how or if they perform this refinement based on the
intersection of more than one candidate plan, nor have they discussed the possibility
that observations may match a single plan in more than one way (i.e., multiple inverse
subsumption mappings in our framework).

Song and Cohen proposed an algorithm to infer strong temporal constraints be-
tween a plan and its substeps. Suppose that a plan consists of two unconstrained
substeps. Then, we can conclude that the relation of each substep to the plan itself
is confined to {starts, during, finishes, equals}. However, we can often do better if

39

we have information about the temporal relations among the substeps. The idea is
to view the plan as a hierarchical structure as well as a temporal network. For exam-
ple, if a plan has two substeps and one is {before} another, then the first necessarily
{starts} the plan and the second necessarily {finishes} it. In this vein, Song and
Cohen give an algorithm to strengthen the temporal constraints for plans with two
substeps. They go on to show how it can be iterated to strengthen a decomposition
with any number of substeps. This process is carried out repeatedly, in alternation
with Allen’s constraint propagation procedure, until reaching a fixpoint. We are now
implementing this procedure in T-REX.

The plan recognition part of Song and Cohen’s system lacks many capabilities
found in T-REX. While we shall now mention some of these limitations for the sake
of contrast, we hasten to add that their work was largely concerned with the tem-
poral analysis problem, where they made valuable contributions unrelated to plan
reasoning. That said, their plan representation employs undefined, atomic actions
and it does not support metric temporal constraints. Their system cannot compare
plans with respect to generality or classify them; indeed, their plans are not organized
into an abstraction taxonomy. Thus, from the standpoint of practical performance,
they are unable to guide their search accordingly. From the standpoint of knowledge
engineering, the relationship among their plans is obscured, especially with large plan
libraries. Their observations may not include abstract actions, hence refinement of
observed actions is precluded, as is retraction of observations. Song and Cohen’s plan
recognition process only identifies possible plans, not necessary ones. Finally, they
have not considered the prospect of simultaneous plans.

5.2.3 Intention-based Plan Recognition

There have been many approaches to plan recognition that reason about the intentions
of agents via precondition and effects (or goals) of actions and plans, e.g., [Allen and
Perrault, 1980, Carberry, 1990, Cohen and Levesque, 1990, Litman and Allen, 1987,
Pollack, 1990, Sidner, 1985]. This body of work emphasizes plan inference using state
information as well as action decomposition. It is more comprehensive, but less formal
than our work or that of [Kautz, 1991] and [Song, 1991]. For reference, discussions
of intention-based plan recognition are contained in [Kautz, 1991] and [Song, 1991].

6 Future Directions

This section presents some important avenues for continuing our work. We group
them (somewhat arbitrarily) into four classes: semantics, algorithmics, plan language

40

extensions, and additional inferences.

6.1 Semantics

Two superficially obvious alternatives for organizing plan hierarchies are by part-
of relations and by is-a relations. It can be important to establish these relations
because they may license useful inferences. For example, the is-a relation is key
because it sanctions inheritance of information. Unfortunately, it is not yet clear
how to handle inheritance with respect to our structural plan subsumption. Various
part-of relations also license particular inheritance inferences, e.g., location can be
inherited along physical part-of relations. Our structural plan subsumption seems to
combine aspects of is-a and part-of, and we are eager to study their interaction in an
integrated plan subsumption framework.

Let us consider how is-a and part-of relate to our structural plan subsump-
tion. Figure 11 shows how two plans, MAKE-PASTA-DISH and ASSEMBLE-CHICKEN-
MARINARA, both subsume plan ASSEMBLE-S&C-M, which describes a way to prepare
a spaghetti and chicken marinara dish. Dashed lines indicate the subsumption map-
pings from nodes in the subsuming plans to nodes in the subsumed plan. This is
indeed an interesting structural relationship, similar to those found in concept lan-
guages, in that each subsumer describes a different portion of the subsumee. More-
over, these portions partially overlap. Whether we choose to say that the subsumee
is-a MAKE-PASTA-DISH, or is-a ASSEMBLE-CHICKEN-MARINARA, or both, or neither,
may be a matter of taste as much as anything else. At any rate, in our framework
a subsumer describes part but not necessarily all of a subsumee, and perhaps in a
generalized way by means of more general action types and/or temporal constraints.
As we have seen, this analytical relationship is a powertul tool for organizing a plan
library in service of plan recognition. However, we still seek a better characterization
of its meaning. We will revisit the semantics of our structural plan subsumption
inference when we consider inheritance in Section 6.4.4.

Knowledge representation researchers commonly assign meaning to a formalism by
specifying its model theoretic semantics, i.e., by stating the set theoretic denotations
of its syntax. Doing this for T-REX would be an interesting and perhaps useful
exercise.

6.2 Algorithmics

This section is concerned with speeding the computation of subsumption, classifi-
cation and recognition inferences defined earlier. This goal might be achieved by

41

MAKE-PASTA-DISH

C-MAKE-NOODLES J—— — >(C-BOIL
(CUTETEE pvrenpmern
*

ASSEMBLE-CHICKEN-MARINARA

C-MAKE-CHICKEN
{before}

* *. {before, after} C-PUT-TOGETHER-CM
o . T
Q . .
Q . N :
o C-MAKE-SAUCE * R .
& w t‘ . . :
Q . R T .
* * *]
g . . * g o
Q . . R . K
' 5 ° * g *
& . LR . K
: . “‘ .0 "
y 5 ot . . .
» . . . Q R4
‘ * . 0 -
. . . . R4 . o*
. (J . ry ~

[. A . . o* A
. . A .

. . .

. . .

\d L
* 3
*e ¢, {after, before}
¢ -
‘e
‘e
-

{before}

L ASSEMBLE-S&C-M

Figure 11: Structural Subsumption

designing improved algorithms and/or by restricting the problem to simpler cases.

6.2.1 Subsumption Algorithms

The search for a subsumption mapping has a combinatorial nature because nodes are
matched according to the semantics of their associated concepts. As noted earlier,
constraint network subsumption exemplifies the constraint satisfaction problem. CSP
has been carefully studied, and a wide variety of techniques have been proposed. Their
relative merits should be studied in the context of our application. For example, we
will experiment with the tradeoffs involved in interleaving search to achieve (partial)
arc consistency with the backtracking, in using intelligent (e.g., dependency-directed)
backtracking, and in exploiting domain-specific techniques.

Here, we will point out just a few of the heuristic opportunities. A node N1 rep-
resenting an action A7 in plan network 77 can only subsume those nodes in network
T2 having actions subsumed by A1. Often this will be a small subset of the nodes in
T2. Similarly, an arc in T with an associated constraint '/ can only subsume those
arcs in T'2 whose constraints are subsumed by (1. Moreover, the constraints relat-
ing node N1 to other nodes in temporal network 77 may further restrict the nodes
in T2 which might be subsumed by NI. Many of the arcs in 77 may carry trivial
constraints; these can be safely ignored. Designing a superior algorithm to take best

advantage of such heuristic information in most cases is a central goal of our future
work.

42

There is considerable overlap in the expressive power of Allen and metric temporal
constraints, hence the Allen and metric constraint networks underlying T-REX plans
may contain substantial redundancy. For example, if the ending point of INTERVAL1
is 5 time units less than the starting point of INTERVAL2, this implies that INTERVAL1
is before INTERVALZ2. Therefore, a plan subsumption algorithm which verified the first
constraint need not also verify the second. Minimizing redundant tests is a desirable
goal. However, we must balance the cost of duplicated effort against the cost of
identifying the duplication. For example, the current T-REX subsumption algorithm
verifies Allen constraints before metric constraints. Thus it could ignore all linear
inequalities whose numeric operand is zero or infinity. Comparing metric constraints,
however, is quite inexpensive so it is unclear that this strategy would be worthwhile.

6.2.2 Classification Algorithms

Classification can be accomplished by plugging our subsumption algorithm into a
“plain vanilla” classification procedure. Of course, when we are classifying, macro
expansion and network closure only need to be performed once per plan network. The
plain vanilla approach has the merit of conceptual clarity, however it precludes the
possibility of reducing or eliminating redundant computations across multiple plan
subsumption tests. Performance considerations may dictate a more sophisticated
approach. For example, when K-Rep installs a new concept in the concept taxonomy,
it restricts testing to the local differences between existing concepts and their parents.
Doing this with T-REX plans may be tricky, however, in cases where there is more
than one subsumption mapping from a parent plan to a child plan. One might also
cache the results of various computations. We intend to explore this idea as an avenue
to speedier plan classification. We have implemented an initial plan classification
algorithm and are gaining experience with it in practice.

6.2.3 Incremental Plan Recognition Algorithms

We expect to develop a strategy for efficient incremental plan recognition that takes
maximum advantage of the plan library’s terminological nature. Our thoughts are
inspired by traditional concept classifiers which compute a set of most specific sub-
sumers and a set of most general subsumees of the concept being classified. It must
be emphasized that the analogy is not direct, because (1) we must consider the as-
sumptions along with the structural relationship between the observations and the
plans, (2) the structural relationship in question is potential, not just actual sub-
sumption, and (3) plan recognition is an incremental process. Hence, we are not
simply classifying the observation network within the plan taxonomy. Instead, to ef-
ficiently recognize plans on an incremental basis, we track the most specific necessary

43

(MSN) plans and the most general optional (MGO) plans with respect to the current
observations.

Definition 14 A plan is a MSN if it is necessary and none of its children are nec-
essary.

Definition 15 A plan is a MGO if it is optional and none of its parents are optional.

Recall Figure 9. The MSN and MGO sets jointly delineate the border between the
necessary and optional plans. Neither set alone is sufficient to pinpoint the border
since the children of MSNs may not be MGOs and the parents of MGOs may not be
MSNs. Figure 12 illustrates this situation.

Necessary

Figure 12: Disjoint MSN and MGO

The initial MSN set is {PLAN} and the initial MGO set contains the immediate
descendants of PLAN. Similarly, we track a second (lower) frontier between the Most
Specific Optional (MSO) and Most General Impossible (MGI) plans. The set of

optional plans is thus sandwiched between the two frontiers.

It would be simple to explicitly associate a modality with each plan in the library.
These modalities would be initialized as previously indicated. After updating the
MSNs and MGOs to reflect new observations, and similarly for the second border,
we can efficiently update the modalities of other affected plans through marker prop-
agation. This approach seems likely to be cost effective for large taxonomies, but it
must be acknowledged that maintaining the frontiers is not entirely trivial.

6.2.4 Simultaneous Plans

We should look for a better way to search for sets of plans that account for the
observations when the single plan assumption proves unjustified. It might be possible

44

to make use of information about the modalities of the single plans. An issue related
to simultaneous plans is when and how substeps can be shared among several plans.
This is discussed in Section 6.4.5.

In general, we may wish to find a minimum cost set of plans that potentially
subsumes the observations, where cost need not be set cardinality. If we permit
sharing of observed actions between plans, it is the set covering problem. Otherwise
it is set partitioning. Integer programming techniques are applicable and should be
considered in this context.

6.2.5 Restricted Plan Languages

For years, workers in the field of terminological knowledge representation endeavored
to identify a terminological language that was both useful and tractable, e.g., [Brach-
man et al., 1983, Patel-Schneider, 1984]. This effort now appears to have been a noble
failure [Nebel, 1990]. Nonetheless, it seems worthwhile to consider restrictions on our
plan representation language to see when and if performance advantages might ac-
crue. The intractability of constraint network subsumption mapping follows from the
combinatorics of the matching process, characterized by its reducibility from directed
subgraph isomorphism (see Section 4.2.2). That is, the number of putative subsump-
tion mappings that must be explored can be exponential in the size of the constraint
network. However, some special cases of subgraph isomorphism are tractable, e.g.,
subtree isomorphism and problems with graphs satistying a fixed degree bound. Might
there be useful analogues to such special cases in plan subsumption? We also note
that Vilain and Kautz derived a subset of Allen’s interval calculus from a point-based
representation which limits the disjunction within temporal constraints. In their re-
stricted framework, complete closure of temporal networks is achieved in polynomial
time. Might this restriction engender easier subsumption testing as well?

Due to the restricted nature of plan instances under assumptions such as perfect
observation, we hope that subsumption-related processes carried out on plan instances
during plan recognition will prove to be computationally easier. This remains an
unexplored idea at present.

6.3 Plan Language Extensions

6.3.1 Integration of CLASP Operators

As pointed out in Section 5.1.1, T-REX’s ability to express temporal relations among
actions compares favorably with CLASP in some ways, but unfavorably in others. To

45

our knowledge, CLASP [Devanbu and Litman, 1991] is the only plan subsumption
system whose plan language can express temporal information that T-REX cannot.
We now consider the prospects for bridging this gap.

CLASP composes actions via regular expressions, so it supports arbitrary disjunc-
tion and looping (recursively). Disjunction tends to be troublesome for matching in
general, and indeed matching in CLASP is intractable. In practice, though, CLASP
achieves considerable leverage from the compact representation afforded by finite state
machines corresponding to the regular expressions.

Disjunction First, we note that when several concepts representing action types
form a cover of a concept representing a more general action type, we may use the more
general concept to indicate that any of the more specific action types is acceptable.
For instance, given our sample action taxonomy and a closed-world assumption, a C-
HEAT action type effectively sanctions either C-BOIL or C-BAKE. Moreover, it appears
straightforward to support explicit disjunction of atomic actions in T-REX, e.g., a
single action within a plan might be expressed as (OR MAKE-FETTUCINI MAKE-
SPAGHETTI MAKE-ZITT). A subsumption mapping could map this to any action
which expresses a subset of its disjuncts. An inverse subsumption mapping can map
to this action just in case it could map to any of its disjuncts. Soon, we hope to
take advantage of extensions to K-Rep that provide a full closed-world treatment of
disjunction and negation [Dionne, et. al., in progress].

It would be nice to express plans via disjunction over compositions of actions,
but it does not seem possible to normalize such a language. In principle, one could
iteratively generate the possible expansions and consider them individually, but this
takes us far from our constraint network paradigm. Moreover, this prospect seems
combinatorially daunting.

Looping Semantically, it appears possible for T-REX to support a repetition oper-
ator on atomic actions, denoted by an asterisk, e.g.:

(defplan MAKE-NOODLES*
((s1 (* c-make-noodles))))

Let us consider the effect on computing potential subsumption, by comparing the
previous plan network with the following:

(defpl an MAKE-SPAGHETTI-AND-MAKE-FETTUCINI=*
((s1 c-make-spaghetti)
(s2 (x c-make-fettucini))))

46

Note that that there is no temporal constraint between its two steps. We can see
that MAKE-NOODLES* subsumes MAKE-SPAGHETTI-AND-FETTUCINI*. The potential
images of (* C-MAKE-NOODLES) include all actions subsumed by C-MAKE-NOODLES
and all repetitions of those actions. Moreover, potential subsumption mappings can
now be one-many, as long as the images respect the constraints on the domain ele-
ment. In keeping with the temporal constraint network paradigm, we simply require
that each of the mapped-to nodes respect any temporal constraints on the node they
are mapped from. Our * operator allows overlapped actions, so in that sense it is
more general than CLASP’s loop operator. While it would not be difficult to aug-
ment our plan subsumption algorithm for one-to-many mappings, the combinatorial
impact on performance could be drastic.

In the case of plan recognition, we would have to support many-one mappings from
the observation network to a plan network. For instance, the following observation
network instantiates the above MAKE-NOODLES™ plan:

® 0BsS-10: MAKE-FETTUCINI14 {before} MAKE-SPAGHETTILH {meets} MAKE-ZITI16

Sequencing, Repetition, and Conditional Action There are several constructs
in CLASP [Devanbu and Litman, 1991] which can easily be added to the T-REX plan
language as syntactic sugar via macros, e.g., sequence and repeat. Their system also
supports conditional actions e.g.:

(case (c-statel c-actionl)
(c-state2 c-action?))

For atomic actions, we may be able to handle this construct as in CLASP. Condi-
tionalizing subplans appears troublesome in a manner similar to disjunctive subplans
(see Section 6.3.1).

6.3.2 Extended Coreference Constraints

For some applications it may be useful to support additional coreference constraint
operators such as #, C or D. We might also extend the role portion of coreference
operand specifiers to permit role chains (compositions of role relations). In general,
this would render the subsumption problem undecidable, for reasons similar to those
in [Schmidt-Schauss, 1989], but attribute chains would be fine.

47

6.3.3 Preconditions, Goals and States

Plan networks serve to describe the “bodies” of plans. As proposed in [Devanbu and
Litman, 1991], we might separately classify plans according to concepts describing
their circumstances and/or purpose. These plan classifications and the plan classifi-
cation via plan bodies we have discussed heretofore are orthogonal to one another.
One interesting direction would be to explore their interaction in the context of plan
recognition (see Section 6.4.6). At any time, one can consider executing the set of
plans whose initial conditions subsume the current state. Similarly, to achieve cer-
tain conditions, one can seek to execute some plan whose goal is subsumed by those
conditions.

To this point, we have said that the nodes of plan networks correspond to ac-
tions. We can easily extend plan networks by introducing nodes corresponding to
properties which hold over particular time intervals. Like actions, these properties
are represented by concepts. Our definitions of subsumption and potential subsump-
tion continue to apply; due to the concept taxonomy, our procedures will only map
actions to actions and properties to properties. Notice that property nodes can rep-
resent arbitrary conditions which generalize the notion of preconditions and effects,
since they need not occur properly before and after all of the plan’s actions, respec-
tively. Instead, conditions can overlap and interleave with actions in arbitrary ways.

The problem becomes far more complicated if we similarly associate conditions
with actions. Asin [Allen, 1991], each action might have a set of associated conditions
related to it by some temporal structure. In the terminological framework, these
actions could be represented by temporal concepts similar to those of [Schmiedel,
1990]. Like RAT [Heinsohn et al., 1992], we should reconcile the sets of conditions
associated with all the actions comprising a plan with one another, and with the
conditions of the plan itself. RAT addressed plans which are simple sequences of
actions having preconditions and postconditions. We would be faced with plans that
are arbitrary temporal networks of actions and conditions, and each action could have
its own temporal network of associated conditions. Checking such plans for internal
consistency and normalizing constraints on their conditions will be a difficult problem
to solve in principle. Even then, one must anticipate severe performance problems.
Assuming that these problems could be addressed, we would want to study the use
of state information in terminological plan recognition.

6.3.4 Plan Roles

Plans might be given roles, just like the roles of standard concepts, which must be
factored into subsumption. Plan roles could be used to represent parameters of a

48

plan such as agent. A plan’s agent need not be the agent of any step within the plan.
For example, a manager may order a plan whose steps are carried out by his/her
underlings. Naturally, coreference constraints on a plan might correlate parameters
of the plan with parameters of its actions. Here is an example, with a list of roles
shown between the plan’s name and its steps. In this case there is only an agent role.
Note that the coreference constraints employ role chains and the special label :self
refers to the plan itself.

(defplan EXECUTIVE-BOIL-SPAGHETTI

((agent executive-chef))

((s1 c-make-spaghetti)

(82 c-boil))

:allen-constraints ((s1 (before meets) s2))

:coref-constraints ((equal (agent :self)
(supervisor agent s1))
(supervisor agent s2)))

Ideally, one would simply extend the K-Rep concept language to encompass plan
concepts. Then the body of the plan would simply be another role with a distinguished
name.

6.4 Additional Inferences

As we have discussed, the plan language extensions contemplated in Section 6.3 would
require corresponding extensions to our plan subsumption and recognition inferences.
This section goes on to examine further inferences.

6.4.1 Forward Chaining

T-REX could support forward-chaining inference rules similar to those of CLAS-
SIC [Borgida et al., 1989]. For instance, it is perhaps reasonable to declare that
spaghetti is always boiled. Then, recognition of a trivial plan description consisting
solely of a C-MAKE-SPAGHETTI action could trigger a rule that immediately adds a
subsequent instance of C-BOIL to the observation network. The early presence of a
C-BOIL “observation” may permit earlier recognition of more complex plans contain-
ing a C-BOIL action. ® Of course, preemptive recognition of this sort would have to
be reconciled with actual observations later on.

8Indeed, a program that analyzes the plan library might notice that every plan which contains a
C-MAKE-SPAGHETTI action also contains a subsequent C-BOIL action. It might generate the afore-
mentioned rule automatically, justified by the complete plan library assumption.

49

6.4.2 Consistency with Domain Theory

T-REX checks the consistency of plan definitions by verifying that the stated temporal
constraints are satisfiable (within the competence of the propagation algorithm) and
that the coreference constraints are satisfiable. It cannot further verify the plausibility
of plans without some knowledge of the domain. Since the T-REX architecture is
domain-independent, we will build an inference rule facility for users to represent
domain-specific integrity constraints on plans. When a new plan is defined, it would
be verified against the set of inference rules. These rules operate at the terminological
level on plan descriptions, whereas the rules of Section 6.4.1 operate at the assertional
level on instances. Suppose that in our cooking domain, we wish to limit use of the
oven to one action at a time. Concepts describing actions which use the oven are
subsumed by the following K-Rep concept:

(defconcept c-use-oven
(and c-action
(all instrument c-oven)))

The following rule states the constraint we have in mind:

IF ((actl c-use-oven) (act2 c-use-oven))
THEN ((actl (before after) act2))

The antecedent of this rule matches all pairs of USE-OVEN actions (using our
existing plan subsumption code) while the consequent asserts an additional temporal
constraint between those actions. Consequently, domain rules may further refine
plan definitions. If an inconsistency results, the plan is ill-formed with respect to the
domain theory.

6.4.3 Feedback between Plan Library and Observed Constraints

Under the complete library, single plan and monotonic observation assumptions, the
candidate plans will have temporal constraints and constraints on their actions which
are the intersection of the constraints in the observations with constraints in the plan
library. For example, consider the plan library in Appendix A and the following
observations:

® MAKE-CHICKEN17 {before, overlaps} MAKE-SAUCELS

30

One can deduce that the actual events which transpired must be:
® MAKE-CHICKEN1T {before} MAKE-MARINARALS

It is not yet clear how to identify these new constraints precisely, however we should
ideally enhance T-REX to propagate them through the observation network, improve
the plan library partitioning if it can, and repeat the cycle until arriving at a fixpoint.
This may require T-REX to coordinate inferences in K-Rep and MATS.

6.4.4 Inheritance

Today, there is no inheritance of information in the T-REX plan taxonomy. Although
inheritance is an intuitively appealing benefit of is-a hierarchies, it is far from obvi-
ous when and how information can be inherited in our framework. This somewhat
surprising state of affairs stems from the fact that our structural plan subsumption re-
lationship, while clearly useful for characterizing plans at varying levels of abstraction,
is different from an is-a relationship (as discussed in Section 6.1). For example, we
cannot automatically inherit preconditions or effects along structural plan subsump-
tion links. Consider that while the MAKE-SPAGHETTI-MARINARA plan may require
certain ingredients beforehand, they need not be preconditions of a GO-SHOPPING-
THEN-MAKE-SPAGHETTI-MARINARA plan, even though the latter is subsumed by the
former. More thought must be devoted to understanding the interaction of structural
plan subsumption and inheritance inferences.

6.4.5 Conditional Substep Sharing

In many applications, when more than one plan is required to account for the ob-
servations, we may need to decide on a case-by-case basis whether it is appropriate
to share a particular observed action instance among the plans, i.e., by mapping it
to actions from different plans within a multiple plan network. For example, two
sequential cooking plans may require a freshly cleaned frying pan. The pan need
only be removed from the cabinet once, but it will still need to be cleaned twice.
This is a very difficult problem in general, since it entails solution of the notorious
frame problem [McCarthy and Hayes, 1968]. Hence this problem will not be an early
emphasis, but we imagine a domain-specific inference rule facility to provide limited
guidance.

51

6.4.6 Intentional Plan Recognition

When several alternative plans are possible with respect to the observations, our de-
ductive plan recognition methodology provides no basis for favoring one over another.
It we incorporate state information in plan networks, along with preconditions and
effects of actions and plans, then it should be feasible to integrate our deductive plan
recognition with intention-based approaches such as those mentioned in Section 5.2.3.
This would entail chaining on preconditions and goals of actions and plans. For ex-
ample, we might use intention-based reasoning to select preferences among a set of
optional plans identified by our methods. ® As an example, suppose we have recog-
nized MAKE-SPAGHETTI-PESTO and MAKE-FETTUCINI-ALFREDO as the possibilities.
If there is a goal to avoid garlic, then the latter plan should be preferred.

6.5 Continuous Plan Recognition

In some applications, e.g., intelligent user interfaces to operating systems, users may
carry out many plans over an extended period of time. These applications create a
need for continuous plan recognition. In this setting, we would need to move beyond
the minimal cardinality assumption which quickly becomes inadequate to control
searching. Acceptable performance might require stronger assumptions, e.g., with
software interfaces we might make a temporal progression assumption that having
observed some action instance ACT86, all subsequently observed action instances in
fact occur after ACT86. Significant challenges also arise from the potential for very
large observation networks. We would want to eliminate obsolete observations when-
ever possible. For example, once an action instance has been recognized as part of
a certain plan, if that action instance cannot be shared with other plans, it should
be pruned from the observation network. More drastically, once a single plan has
been recognized, we might remove that entire portion of the observations. We might
also want to define plans with a maximum overall duration so that we can discard
potential subsumption mappings if they do not materialize within the specified period
of time. This could result in failure to recognize some plan occurrences, i.e., the plan
recognition would be incomplete but it would remain sound.

9Probabilistic reasoning would be another way to choose among alternatives. Although we do
not propose to integrate probabilistic reasoning, there is nothing about our approach which would
rule it out. This would require probabilities associated with actions and/or plans to indicate the
likelihood of their occurrence. For this to be effective, however, we need complete and accurate
information about the probabilities. Such information is usually difficult to come by.

52

6.6 Systems Issues

So far, our discussion has dealt with a passive form of plan recognition, namely the
ability to answer queries regarding the possibility or necessity of a plan. In the
capacity of user interface tool, T-REX should move towards active plan recognition
which takes the initiative to report or act when the modality of a plan changes. This
should be a straight-forward implementation matter. We should provide an escape to
the host language (currently Common Lisp) which is triggered by designated modality
changes on particular plans. Such demons might perform a service for the user of a
software system, e.g., to prefetch a large file over the network when it is recognized
that the user will act on it.

6.7 Orthogonal Constraint Networks

The constraint satisfaction problem characterizes many important problems in Al and
computer science at large [Kumar, 1992]. Often it is formulated in terms of constraint
networks. Our methods apply whenever it is useful to reason about structural sub-
sumption between constraint networks or to recognize partial instances of constraint
networks via potential subsumption. We now sketch an application to descriptions of
spatial configurations.

Disjunctions of Allen’s 13 primitives capture all possible relationships between in-
tervals along a single dimension. While Allen’s scheme was designed for the temporal
domain, it is equally appropriate for one-dimensional space. Moreover, as pointed out
in [Mukerjee and Joe, 1990], arbitrary relationships in N-dimensional space can be
modeled by n-tuples of Allen’s constraints. As a first approximation to spatial rela-
tionships, we associate objects and locations with rectilinear bounding boxes aligned
to the axes, i.e., we consider the projections onto the axes as intervals, and then use
Allen’s relations on them.

The alignment can in fact be varied [Mukerjee and Joe, 1990]. The following
constraint network specifies a C-SQUARE whose bounding box is disjoint from that of
a C-RECTANGLE in 2-dimensional space:

® C-SQUARE ({before, after}, {before, after}) c-RECTANGLE

Orthogonal constraint networks maintain relationships along each axis. Constraint
propagation can be applied independently in each dimension to discover, for example,
that if there is an object which is properly contained in the C-SQUARE then it is
spatially disjoint from the C-RECTANGLE.

33

Our idea of constraint network subsumption extends to multiple dimensions: con-
straint C'7 subsumes constraint C2iff each component of C'I subsumes the correspond-
ing component of C'2 as defined previously. Thus, the preceding description subsumes
the following one, which says that a C-SQUARE is left of and above a C-RECTANGLE
(assuming normal interpretation of the x and y axes, respectively):

® C-SQUARE ({before}, {after}) C-RECTANGLE

Based on subsumption, we can automatically classify a library of such spatial descrip-
tions.

There is a direct analogy from temporal duration to spatial extent, so the metric
capability of MATS would allow us to represent and reason with extent in each
dimension. Thus we obtain volume for the bounding boxes. The shapes of the
objects within the bounding boxes can be better modeled by K-Rep concepts, which
can capture ideas such as the fact that C-RECTANGLE subsumes C-SQUARE, etc.

Our formulation of potential subsumption also extends directly to multiple dimen-
sions. Spatial subsumption and potential subsumption may be useful for computer
vision and graphics tasks. Potential subsumption can recognize spatial configurations
of objects described by library entries from partial observations recorded in orthogonal
observation networks.

7 Potential Applications

As one concrete application for our work, we have been considering use of T-REX
to enhance the capabilities of the FAME expert system [Apte et al., 1992]. FAME
supports financial marketing of IBM mainframe computer systems. Its principle prob-
lem solvers are a mainframe equipment planner (MEP) and a financial analyzer. The
MEP searches for suitable strategies to acquire, deacquire and upgrade products (from
IBM or a competitor) to meet a user’s computing needs over an extended time period.
The financial analyzer helps a marketing representative to evaluate different proposals
for financing the purchase of computer equipment. FAME’s problem solving compo-
nents and user interface are all constructed on top of, and integrated through K-Rep.
FAME is particularly hospitable to T-REX since all of FAMFE’s input and output is
already done via presentation and acceptance of K-Rep concepts. However, FAME’s
present user interface strongly directs the interaction in a top-down manner, mini-
mizing the opportunity for useful plan recognition. Less restrictive paradigms have
been considered. For example, the interaction might be geared towards bottom-up
construction of an argument graph showing that (1) the customer will need additional

o4

computing resources and (2) the IBM proposal is more attractive than its competi-
tion. A bottom-up, user-directed problem solving control strategy would allow the
user greater flexibility in working on a problem, and would provide a rich setting for
plan recognition. Unfortunately, while redesign of FAME’s interaction paradigm is
interesting in its own right, it could well be beyond the scope of this work.

Alternative applications to be considered include (1) clinical information systems,
(2) travel consultation, (3) interactive, adaptive computer help systems [Selker, 1989],
and (3) equipment maintenance and repair. We are also aware that corporations are
increasingly interested in rigorous analysis of business processes. T-REX can model
processes just as it models plans. One application in this area might be completion,
submission and approval of business forms °.

& Evaluation

Our work must be evaluated in terms of both utility and performance.

An excellent way to demonstrate the utility of T-REX would be to create a suc-
cessful plan-based interface to a system which is already useful in its own right, as
envisioned in Section 7. This would be a landmark achievement, since to our knowl-
edge, no deployment of a generic plan recognition system in a practical application
has ever been reported.

While we are optimistic that our ideas can be deployed, extraneous factors may
stand in the way. That is, we may lack both access to a suitable existing applica-
tion and the time and resources required to build a fully deployed application for the
purpose of demonstrating our research. In that case, we would propose to build a sub-
stantial demonstration application, in a domain other than cooking, that is sufficient
in size and scope to fully exercise T-REX and convincingly suggest its potential. Be-
sides classifying a library of plans and illustrating the recognition of candidate plans
from observations, we would demonstrate that the system can provide helpful services
to the user, e.g.., by taking preemptive actions and making recommendations.

In a different direction, it would also be possible to evaluate T-REX as a theoretical
system by formally specitying a syntax and semantics for plans, then characterizing
the plan recognition problem in terms of a model theory and a proof theory. This
could be compared with the work of Kautz [Kautz, 1991].

In terms of performance, we conjecture that our terminological plan inferences can
be computed with acceptable speed. Obviously, a successful application would go a

0Thanks to Eric Siegel for mentioning this application.

)

long way towards justifying this claim. However, we wish to study the performance of
our algorithms more methodically. To this end, we anticipate conducting an empirical
analysis of plan classification and recognition techniques similar to our current study
of terminological concept classification (with Eric Mays, in preparation). We now
briefly outline that work to suggest its relevance here.

The recent wave of discouraging tractability results, combined with feedback from
users [Doyle and Patil, 1991], suggests renewed focus on terminological algorithms
which perform well in practice. Eric Mays and I are working on an empirical study of
classification methods. Mays has designed a new classifier architecture which supports
compile-time selection and combination of techniques for computing subsumption and
classification. We are studying the effectiveness of the techniques, alone and in combi-
nation, with respect to the varying characteristics of knowledge bases. Unfortunately,
we do not have many large knowledge bases available, nor is it practical to construct
them by hand for our study. Instead, I have implemented a “workbench” consisting
of a knowledge base synthesizer, a knowledge base analyzer, and an experiment man-
ager. The synthesizer generates artificial knowledge bases according to settings of its
“knobs”. However, these knobs do not correspond exactly to the set of attributes we
use to characterize knowledge bases. Thus, a separate analyzer statistically measures
KB properties. By examining numerous points in the space of possible KBs, we can
determine how particular techniques effect performance, and which combinations of
methods are appropriate in given circumstances.

9 Conclusion

We extend the scope of TKR by showing how to compute structural subsumption
relationships among constraint networks such as temporal networks used in plan
representation. In the case of plans, we use K-Rep to compute subsumption on
structured action concepts and we also compute subsumption on temporal constraints
and coreference constraints. This allows us to automatically organize a plan library
into a definitional taxonomy, thereby easing search and maintenance tasks. We further
exploit the plan library’s terminological nature in a new and promising approach
to plan recognition that partitions the plan library by modality. Our framework
supports arbitrary revision of prior observations. We have explored our ideas in
T-REX, a system whose modular architecture utilizes state of the art components:
K-Rep for standard TKR and MATS for temporal reasoning. Our ideas apply to
constraint networks in general, and we have proposed a representation, subsumption
and recognition facility for configurations of objects in N-dimensional space. There
are many interesting and challenging directions along which to further develop this
work.

56

9.1 Contributions

For handy reference, we now list what we see as the principal contributions of our
research (Section 6 suggests possible future contributions):

e Synthesis of terminological knowledge representation with constraint network
reasoning

o Treatment of temporally rich plans in a terminological framework

— Plan representation (metric, Allen and coreference constraints)
— Integrity constraints

— Plan subsumption algorithm

Plan library classification
e Terminological approach to plan recognition

— Partitioning of plan taxonomy by modality

— Potential subsumption inferences under varying assumptions regarding the
observations

* Inverse subsumption mapping

+ Compatibility mapping

Efficient and incremental algorithms

Revision of prior observations

Simultaneous plans

o Integration of state of the art systems

— K-Rep (Mays, Dionne and Weida)
— MATS (Kautz and Ladkin)

e Subsumption, classification and recognition of orthogonal constraint networks

9.2 Agenda

To complete my dissertation research, I propose to accomplish at least the following
things, in the following order. Time estimates are given for each task.

57

1. Formally extend definitions and theorems concerning plan subsumption and
plan recognition to encompass metric temporal constraints and equality con-
straints. [2 additional weeks]

2. Design and implement an incremental plan recognition algorithm which reduces
the number of comparisons between plans and the observation network in two
ways. First, whenever the observation network is updated, exploit the previous
partitioning of the plan library to compute the new one. Second, propagate the
consequences of comparing one plan with the observations to other plans. [l
additional week]

3. Provide a facility for ensuring domain-specific integrity constraints on plan def-
initions via inference rules, as suggested in Section 6.4.2. The antecedant of
an inference rule has the same form as a plan, so a rule matches a plan just
in case its antecedant subsumes the plan. This is determined by T-REX’s ex-
isting plan subsumption algorithm, which returns the appropriate bindings for
matches. The rule’s consequent simply refines the plan, i.e., by adding action,
temporal and/or coreference constraints, quite similar to when the plan was first
defined. Whenever a new plan is defined, the rules will be applied (repeatedly)
to monotonically refine constraints in the plan. This process continues until
either no more rules are applicable or an inconsistency arises. Note that I am
not promising more than a trivial algorithm for selecting rules to fire. [2 weeks]

4. Implement a demon facility which executes specified Lisp code when the status
of a particular plan changes from a given modality and/or to a given modality.
This facility will permit triggering of demons to be conditioned on the results
of queries to K-Rep. The incremental plan recognition algorithm which I have
implemented already changes the explicit modality associated with a particular
plan when and if appropriate. [2 weeks]

5. Construct a demonstration library of approximately fifty plans which fully il-
lustrates the T-REX plan language. This entails construction of an underlying
K-Rep concept taxonomy. The plan library will be subjected to domain-specific
integrity constraints and several of the plans will be refined accordingly. [3
weeks]

6. Specify a representative set of demons in conjunction with the demonstration
library. When triggered, these demons will display messages to indicate useful
and appropriate actions which could be taken if T-REX were employed by the
user interface of an application system in the chosen domain. [1 week]

7. Show the potential utility of terminological plan recognition through automatic
invocation of these demons during the course of approximately twenty obser-
vation network sequences. The sequences will include examples conforming to
both the perfect observation and monotonic observation assumptions. [1 week|

38

8. Empirically compare the performance of T-REX’s incremental and non-incremental
(naive) plan recognition algorithms under the complete library and single plan
assumptions for each of these sequences. [2 weeks]

9. Build a metering facility which can time plan library classification and/or count
basic inferences carried out during classification (e.g., concept subsumption
queries to K-Rep). [1 week]

10. Hlustrate the basic capabilities of the metering facility by applying it to the
demonstration library. [1 week]

11. Design and implement a plan library synthesizer which can use action concepts
in the demonstration concept taxonomy to randomly generate sets of plan li-
braries for the purpose of performance analysis. Input parameters will control
several plan library characteristics, including the number of plans in the library
and the average number of actions per plan. In this effort, I will benefit from
similar work I have already done to synthesize K-Rep concept taxonomies. The
goal of this task and the next one is confined to empirically measuring the
performance of T-REX. I do not propose to advance the state of the art in
performance analysis methodology. [3 weeks]

12. Apply the metering facility to a suite of plan libraries generated by the synthe-
sizer, so as to evaluate the impact of varying different plan library characteris-
tics. These characteristics will include the number of plans in the library and
the average number of actions per plan. This step will help to evaluate how
well the T-REX plan subsumption algorithm scales up. [2 weeks]

The work described above totals 21 weeks in my conservative estimation, to which
I add 2 weeks for unforeseen contingencies. In addition, I estimate the writing com-
ponent as follows: 8 weeks for the first draft of the thesis, 3 to initially revise it
with respect to my advisor’s comments, and 3 to address further comments from my
entire committee. Of course, I will have been seeking the advice and counsel of my
committee on an ongoing basis throughout the remainder of my thesis work. This
allows 23 weeks for research and 14 weeks for writing, yvielding a grand total of 37
weeks.

We now more fully categorize future research directions by priority to guide our
future work. We have endeavored to strike a balance between matters of theoretical
interest and matters of practical import, with the expectation that our priorities will
probably evolve according to the availability of a suitable application system (and
also in consultation with our dissertation committee). References are made to the
pertinent portions of Section 6.

39

9.2.1

High Priority

Formally extend definitions and theorems concerning plan subsumption and
plan recognition to encompass metric temporal constraints and coreference con-
straints.

Build a substantial application or demonstration system (Section 7).

Fully design and implement an incremental plan recognition algorithm (Sec-

tion 6.2.3).

Performance analysis of implemented plan subsumption and plan recognition
algorithms (Section 8).

Provide a facility for ensuring integrity constraints via inference rules (Sec-
tion 6.4.2).

Study the applicability of our ideas in settings which call for continuous recog-
nition (Section 6.5).

Endow plans with roles (Section 6.3.4).

9.2.2 Medium Priority

Investigate alternative plan subsumption algorithms (Section 6.2.1).

Seek better ways to explore plan combinations when no single plan suffices to
account for the observations (Section 6.2.4).

Integrate disjunction and looping to the extent feasible (Section 6.3.1).

Refine recognition of plans via feedback between constraints in the plan library
and observed constraints (Section 6.4.3).

Formal semantics of plan subsumption and recognition (Section 6.1).

Discern the interrelationship among our structural plan subsumption, is-a and
part-of (Section 6.1).

Investigate the place of inheritance in structural plan subsumption (Sections 6.1

and 6.4.4).

60

9.2.3 Low Priority

e Explore alternative plan classification algorithms (Section 6.2.2).

e Analyze the complexity of subsumption and/or recognition with restricted plan
languages (Section 6.2.5).

e Integrate additional CLASP operators (Section 6.3.1).
e Extend expressiveness of coreference constraints (Section 6.3.2).

o Integrate state information into the plan representation, including precondi-
tions and effects of actions and plans; augment subsumption and recognition
algorithms accordingly (Section 6.3.3).

o Integrate our plan recognition methodology with intentional plan recognition
techniques (Section 6.4.6).

e Implement forward chaining from recognized patterns (Section 6.4.1).
e Conditionalize substep sharing in plan recognition (Section 6.4.5).

e Further develop the use orthogonal constraint networks in spatial reasoning

(Section 6.7).

A Sample Plan Library

The following definitions were used by T-REX to construct the plan taxonomy in
Figure 7. As used in this appendix, the function “defplan” takes three arguments.
Informally, the first argument names the plan type being defined. The second argu-
ment is a list of plan steps. Each step specifies a label for the step and a constraint on
its action type. Any action instance satisfying the constraint must be subsumed by the
action type. The third (keyword) argument is a list of Allen’s temporal constraints.
Each constraint specifies a disjunction of Allen’s 13 temporal relationships between
the temporal intervals associated with the two designated plan steps. For example,
the first definition states that any instantiation of the plan HEAT-NOODLES satisfies
the following constraints: it contains an action instance of type C-MAKE-NOODLES;
it contains an action instance of type C-HEAT; the temporal interval associated with
the first action instance is before or meets the temporal interval associated with the
second. Also note the use of the plan BOIL-SPAGHETTI as a macro action in the
definition of ASSEMBLE-SPAGHETTI-MARINARA.

61

(defplan HEAT-NOODLES
((s1 c-make-noodles)
(82 c-heat))
:allen-constraints ((s1 (before meets) s2)))

(defplan BOIL-NOODLES
((s1 c-make-noodles)
(82 c-boil))
:allen-constraints ((s1 (before meets) s2)))

(defplan HEAT-SPAGHETTI
((s1 c-make-spaghetti)
(82 c-heat))
:allen-constraints ((s1 before s2)))

(defplan BOIL-SPAGHETTI
((s1 c-make-spaghetti)
(82 c-boil))
:allen-constraints ((s1 before s2)))

(defplan MAKE-PASTA-DISH
((s1 c-make-noodles)
(82 c-boil)
(83 c-make-sauce))
:allen-constraints ((s1 (before meets) s2)))

(defplan MAKE-SPAGHETTI-MARINARA
((s1 c-make-spaghetti)
(82 c-boil)
(83 c-make-marinara))
:allen-constraints ((s1 (before meets) s2)))

(defplan ASSEMBLE-SPAGHETTI-MARINARA
((bs boil-spaghetti)
(83 c-make-marinara)
(s4 c-put-together-sm))
:allen-constraints (((s2 bs) (before meets) s4)
(s3 (before meets) s4)))

(defplan MAKE-SPAGHETTI-PESTO

((s1 c-make-spaghetti)
(s2 c-make-pesto)

62

(83 c-boil))
:allen-constraints ((s1 (before meets) s3)))

(defplan MAKE-FETTUCINI-ALFREDO
((s1 c-make-fettucini)
(s2 c-make-alfredo)
(83 c-boil))
:allen-constraints ((s1 (before meets) s3)))

(defplan MAKE-MEAT-DISH
((s1 c-make-meat)
(s2 c-make-sauce)))

(defplan MAKE-MEAT-MARINARA
((s1 c-make-meat)
(s5 c-make-marinara)))

(defplan ASSEMBLE-CHICKEN-MARINARA
((stepl c-make-chicken)
(step2 c-make-marinara)
(step3 c-put-together-cm))
:allen-constraints
((stepl (before after) step2)
(stepl (before) step3)
(step3 (after) step2)))

(defplan ASSEMBLE-S&C-M

((ms c-make-spaghetti)

(b c-boil)

(mc c-make-chicken)

(mm c-make-marinara)

(pt c-put-together-scm))

:allen-constraints ((ms before b)
(b before pt)
(mc before pt)
(mm before pt)
(mc (after before) mm)))

63

B Plan Synthesis

Although beyond the scope of the proposed research, it is natural to wonder how
temporal plan subsumption might be used in plan generation. For a temporal planner
such as Allen’s [Allen, 1991], it would seem obviously useful to classify a library of
plans which serve as macro operators.

Can we accomplish something more ambitious? Following is an extremely spec-
ulative abstract for hypothetical future work. It suggests a combination of Allen’s
temporal planner [Allen, 1991] and Wellman’s dominance-proving planner [Wellman,
1990] which uses subsumption to organize a search space of atemporal plans. We call
this vaporware system T-SYN, for Terminological Plan Synthesizer.

T-SYN is a dominance-proving temporal planner which integrates and extends
ideas of Allen and Wellman in a new planning methodology based on terminological
reasoning with temporally rich plans. T-SYN is a companion to T-REX, a termino-
logical plan recognition system. Like Allen’s temporal planner, T-SYN reasons about
actions and persistence assumptions using an explicit temporal logic. Like Wellman’s
SUDO-PLANNER, it derives multiple plan classes (partial plans) by posting con-
straints at varying levels of abstraction. Thus it can accommodate partially satisfiable
goals. In T-SYN, constraints of the following types may be posted:

e Introduce an action in a plan.
e Constrain the type of an action.
e Constrain the temporal relationship between a pair of actions.

o Assert a coreference constraint among roles of one or more concepts.

T-SYN, like the atemporal SUDO-PLANNER, organizes partial plans into a taxon-
omy representing the explored portion of the search space, thereby preventing redun-
dant search. However, T-SYN exploits temporal plan subsumption and classification
technology introduced in T-REX. Wellman defines a plan class P1 to “dominate”
another, P2, if for every plan in P2, there is a plan in P1 which is preferred or indif-
ferent according to some preference relation. He then shows how dominance can be
propagated in a plan taxonomy. T-SYN adopts Wellman’s dominance-proving control
strategy to focus search. Similarly, T-SYN can explore the search space with respect
to Allen-style temporal persistence assumptions by adapting his notion of conditional
dominance relations. In short, T-SYN combines the advantages of Allen’s planner
and Wellman’s planner in a single system. It should be possible to share concep-
tual ontologies between T-SYN and T-REX. Indeed, they might serve together in
applications that call for both planning and plan recognition. However, there is a

64

not-exactly-trivial catch to applying these ideas. As Wellman notes, “The interesting
task for the dominance prover is to come up with meaningful conditions that imply
useful dominance relations.”

C Proofs of Theorems

Theorem 1 Terminological constraint network T1 subsumes terminological constraint
network T2 iff there exists a subsumption mapping from T1 to T2.

If: Clearly, the subsumption mapping demonstrates that any instance in the
extension of T2 is also in the extension of T1. O

Only If: We assume that closure of T21s complete. When there is no subsumption
mapping from T1 to T2, we will see that T2’s extension is not a subset of T1’s
extension, so the notion that T'7 subsumes 72 is contradictory. There are two cases
to consider. First, the nodes of T2 may not permit a mapping from T7 with a
distinct subsumee for each node in T1. Then T contains at least one node without
a counterpart T'2. Second, the nodes of T2 may permit such a mapping, but not
so that every arc between a pair of nodes in 77 subsumes the corresponding arc in
T2. Then T1 contains at least one arc which forbids a relationship sanctioned by its
counterpart in T'2. In either case, there clearly exists an instantiation of 7'2 which is
not an instantiation of T'1, hence the contradiction. O

Theorem 2 Subsumption mapping between terminological constraint networks is NP-
complete.

Proof: The problem is in NP because a nondeterministic algorithm can guess a
subsumption mapping and check it in polynomial time. Clearly, if the subsumer has
n nodes, this entails n node subsumption tests and no more than n? arc subsumption
tests. It is also trivial to check that no two nodes in the subsumer are mapped to the
same node in the subsumee.

There is a polynomial time transformation from directed subgraph isomorphism,
which is NP-complete [Garey and Johnson, 1979], to subsumption mapping between
terminological constraint networks. Digraphs G1 = (VI, E1) and G2 = (V2, E2)
are transformed into terminological constraint networks 77 and T2, respectively, as
follows:

o Associate the primitive concept C-VERTEX with each element of VI and each
element of V2.

65

o Associate the primitive concept C-EDGE with each element of F1 and each
element of F2.

Then, it is evident that (G1 contains a subgraph isomorphic to G2 just in case there
is a subsumption mapping from 72 to T1. O

A directed graph is complete if there exists an edge from every vertex to every other
vertex. For example, Allen-style temporal networks are complete following constraint
propagation. Although subgraph isomorphism is trivial when both G1 and G2 are
complete digraphs, subsumption mapping between a pair of complete terminological
constraint networks can nonetheless be reduced from the general directed subgraph
isomorphism problem:

Corollary 1 Subsumption mapping between complete terminological constraint net-
works is NP-complete.

Proof: The proof is similar. The transformation from G7 to T1 also adds an
element <ul, vi> to FI for every pair of elements ul! and v! in VI such that <
ul,vl > is not in F1, and associates with it the primitive concept C-NON-EDGE.
The transformation from G2 to T2 is analogous. Concepts C-EDGE and C-NON-
EDGE are defined to be disjoint. Again, it can be seen that (/1 contains a subgraph
isomorphic to (G2 just in case there is a subsumption mapping from 72 to T1. O

Theorem 3 Under the complete library, single plan and perfect observation assump-
tions, a plan is possible iff it potentially subsumes the observations.

We refer here to potential subsumption as in Definition 6 on page 26.

If: There are two cases of potential subsumption. In the first case, there is
an inverse subsumption mapping from observation network O to plan network P. If
there is also a subsumption mapping from P to O, then by Theorem 1, P subsumes
O, making P necessary and hence possible. Otherwise, it is clear that O could be
extended to instantiate P, i.e., with nodes instantiating the remaining nodes of P as
well as corresponding arcs instantiating the remaining arcs of P. Since P can thus
become necessary, P is possible. In the second case, some plan P’ is possible by the
criterion just discussed, and P’is subsumed by P. By definition of subsumption, the
extension of P’ is a subset of the extension of P. Therefore, whenever O comes to
instantiate P’ it must also instantiate P, and P will become necessary whenever P’
becomes necessary. It follows that P is possible whenever P’ is possible. O

Only If: According to the complete library and single plan assumptions, there
is one particular plan in the plan library that is, in fact, being instantiated. Let us
define this as the actual plan:

66

Definition 16 Under the complete library and single plan assumptions, the actual
plan is the single most specific plan in the plan library which is, in fact, being instan-
tiated.

Under perfect observation, it is easy to see that there must always be an inverse sub-
sumption mapping from the observation network to the actual plan. Thus, only those
plans which enjoy an inverse subsumption mapping from the observation network can
be the actual plan. Hence, assuming that the plan library has been augmented as in
Section 4.3.3, only those plans and their subsumers are possible, i.e., exactly the set
of plans which potentially subsume the observations according to Definition 6. O

Theorem 4 Under the complete library, single plan and monotonic observation as-
sumptions, a plan is possible iff it potentially subsumes the observations.

We refer here to potential subsumption as in Definition 13 on page 29. We gener-
alize the proof of Theorem 3 to accommodate compatibility.

If: There are two cases of potential subsumption. In the first case, there is a
compatibility mapping from observation network O to plan network P. Given the
compatibility mapping, it is clear from the definitions of node and arc compatibility
that O can be refined so there is also an inverse subsumption mapping from O to P.
Then, as in the proof of Theorem 3, either P will subsume O or O will be extensible
such that P can later subsume O. Since P is either necessary or can become so, P is
possible. In the second case, some plan P’is possible by the preceding criterion, and
P’ is subsumed by P. By definition of subsumption, the extension of P’ is a subset
of the extension of P. Therefore, whenever O comes to instantiate P’, it must also
instantiate P, and P will become necessary whenever P’ becomes necessary. It follows
that P is possible whenever P’is possible. O

Only If: Again, according to the complete library and single plan assumptions,
there is an actual plan that is, in fact, being instantiated. Under monotonic obser-
vation, it is easy to see that there must always be a compatibility mapping from
the observation network to the actual plan. Thus, only those plans which enjoy a
compatibility mapping from the observation network can be the actual plan. Hence,
assuming that the plan library has been augmented as in Section 4.3.3, only those
plans and their subsumers are possible, i.e., exactly the set of plans which potentially
subsume the observations according to Definition 13. O

67

References

[Allen and Perrault, 1980] J. F. Allen and C. R. Perrault. Analyzing intention in
utterances. Artificial Intelligence, 15(3):143-178, 1980.

[Allen, 1983] J. F. Allen. Maintaining knowledge about temporal intervals. Commu-
nications of the ACM, 26(11):832-843, November 1983.

[Allen, 1991] J. F. Allen. Planning as temporal reasoning. In Second International
Conference on Principles of Knowledge Representation and Reasoning (KR’91),
pages 3—14, Cambridge, MA, 1991.

[Apte et al., 1992] C. Apte, R. Dionne, J. Griesmer, M. Karnaugh, J. Kastner,
M. Laker, and E. Mays. An experiment in constructing an open expert system
using a knowledge substrate. IBM Journal of Research and Development, 1992
1992.

[Baader and Hollunder, 1991] F. Baader and B. Hollunder. Kris: Knowledge repre-
sentation and inference system. SIGART Bulletin, 2(3):8-14, June 1991. Special
Issue on Implemented Knowledge Representation and Reasoning Systems.

[Beck and Gala, 1989] H. W. Beck and S. B. Gala, S. K.and Navathe. Classification
as a query processing technique in the candide semantic data model. In Proc. Fifth

International Conference on Data Engineering, pages 572-581, Los Angeles, CA,
1989.

[Borgida et al., 1989] A. Borgida, R. J. Brachman, D. L. McGuinness, and L. A.
Resnick. Classic: A structural data model for objects. In Proc. 1989 ACM SIGMOD
International Conference on the Management of Data, pages 5867, Portland, OR,
1989.

[Borgida, 1992] A. Borgida. Towards the systematic development of terminological
reasoners: Clasp reconstructed. In Third International Conference on Principles

of Knowledge Representation and Reasoning (KR’92), Cambridge, MA, 1992.

[Brachman and Levesque, 1984] R.J. Brachman and H. J. Levesque. The tractability
of subsumption in frame-based description languages. In Proceedings of AAAI-8/,
pages 34-37, Austin, Texas, 1984. American Association of Artificial Intelligence.

[Brachman and Schmolze, 1985] R. J. Brachman and J. G. Schmolze. An overview
of the kl-one knowledge representation system. Cognitive Science, 9(2):171-216,
1985.

[Brachman et al., 1983] R. J. Brachman, R. E. Fikes, and H. J. Levesque. Krypton:
Integrating terminology and assertion. In Proceedings of AAAI-83, pages 31-35,
Washington, D.C.; 1983. American Association of Artificial Intelligence.

63

[Brownston et al., 1985] L. Brownston, R. Farrell, E. Kant, and N. Martin. Program-
ming Fzxpert Systems in OPS5. Addison Wesley, Reading, MA, 1985.

[Carberry, 1990] S. Carberry. Plan Recognition in Natural Language Dialogue. MIT
Press, Cambridge, MA, 1990.

[Cohen and Levesque, 1990] P. R. Cohen and H. J. Levesque. Rational interaction
as the basis for communication. In P. R. Cohen, J. Morgan, and M. E. Pollack,
editors, Intentions in Communication, pages 221-255. MIT Press, Cambridge, MA,

1990.

[Dechter et al., 1991] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint net-
works. Artificial Intelligence, 49:61-95, 1991.

[Devanbu and Litman, 1991] P. T. Devanbu and D. J. Litman. Plan-based termino-
logical reasoning. In Second International Conference on Principles of Knowledge

Representation and Reasoning (KR’91), pages 128138, Cambridge, MA, 1991.
[Devanbu et al., 1991] P. Devanbu, R. J. Brachman, B. W. Ballard, and P. E. Self-

ridge. Lassie: A knowledge-based software information system. Communications

of the ACM, 34(5), May 1991.

[Doyle and Patil, 1991] J. Doyle and R. Patil. Two theses of knowledge representa-
tion: Language restrictions, taxonomic classification, and the utility of representa-
tion services. Artificial Intelligence, 48(3):261-297, April 1991.

[Feiner and McKeown, 1990] S. Feiner and K.R. McKeown. Coordinating text and

graphics in explanation generation. In Proceedings of AAAI-90, pages 442-449,
Boston, MA, 1990.

[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of Incompleteness. W. H. Freeman, San Fran-
cisco, CA, 1979.

[Heinsohn et al., 1992] J. Heinsohn, D. Kudenko, B. Nebel, and H. J. Profitlich. Rat:

Representation of actions using terminological logics. DFKI, 1992.

[Kautz and Ladkin, 1991] H. A. Kautz and P. B. Ladkin. Integrating metric and
qualitative temporal reasoning. In Proceedings of AAAI-91, pages 241-246, Ana-
heim, CA, 1991.

[Kautz, 1991] H. A. Kautz. A formal theory of plan recognition and its implemen-
tation. In J. Allen, H. Kautz, R. Pelavin, and J. Tenenberg, editors, Reasoning
About Plans, pages 69-125. Morgan Kaufmann, San Mateo, CA, 1991.

69

[Koomen, 1989] J. Koomen. Localizing temporal constraint propagation. In First In-
ternational Conference on Principles of Knowledge Representation and Reasoning

(KR’89), pages 198-202, Toronto, Ontario, Canada, 1989.

[Kumar, 1992] V. Kumar. Algorithms for constraint-satisfaction problems: A survey.

Al Magazine, 13(1):32-41, 1992.

[Levesque and Brachman, 1985] H. J. Levesque and R. J. Brachman. A fundamental
tradeoff in knowledge representation and reasoning. In Readings in Knowledge
Representation, pages 42-70. Morgan Kaufmann, Los Altos, CA, 1985.

[Litman and Allen, 1987] D. J. Litman and J. F. Allen. A plan recognition model for
subdialogues in conversation. Cognitive Science, 11:163-200, 1987.

[MacGregor and Bates, 1987] R. MacGregor and R. Bates. The loom knowledge rep-
resentation language. Technical Report ISI/RS-87-188, USC/Information Sciences
Institute, Marina del Ray, CA, 1987.

[MacGregor, 1988] R. MacGregor. A deductive pattern matcher. In Proceedings of
AAAI-88, pages 403-408, Saint Paul, MN, 1988. American Association of Artificial

Intelligence.

[MacGregor, 1991] R. MacGregor. The evolving technology of classification-based
knowledge representation systems. In J. Sowa, editor, Principles of Semantic Net-

works, pages 385-400. Morgan Kaufmann, Los Altos, CA, 1991.

[Mackworth, 1977] A. K. Mackworth. Consistency in networks of relations. Artificial
Intelligence, 8(1):99-118, 1977.

[Malik and Binford, 1983] J. Malik and T. O. Binford. Reasoning in time and space.
In Proceedings of AAAI-83, pages 343-345, Washington, D.C., 1983. American

Association of Artificial Intelligence.

[Mark, 1981] W. Mark. Representation and inference in the consul system. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence, pages 375—
381, Vancouver, BC, 1981.

[Mays et al., 1991a] E. Mays, R. Dionne, and R. Weida. K-rep system overview.
SIGART Bulletin, 2(3):93-97, June 1991. Special Issue on Implemented Knowledge

Representation and Reasoning Systems.

[Mays et al., 1991b] E. Mays, S. Lanka, B. Dionne, and R. Weida. A persistent store
for large shared knowledge bases. [EFEE Transactions on Knowledge and Data
Engineering, 3(1):33-41, March 1991.

70

[McCarthy and Hayes, 1968] J. McCarthy and P. J. Hayes. Some Philosophical Prob-
lems from the Standpoint of Artificial Intelligence, pages 463-502. Edinburgh Uni-
versity Press, Edinburgh, England, 1968.

[Montanari, 1974] U. Montanari. Networks of constraints: Fundamental properties
and applications to picture processing. Information Science, 7:95-132, 1974.

[Mukerjee and Joe, 1990] A. Mukerjee and G. Joe. A qualitative model for space. In
Proceedings of AAAI-90, pages 721-727, Boston, MA, 1990.

[Nebel, 1988] B. Nebel. Computational complexity of terminological reasoning in
back. Artificial Intelligence, 34(3):371-383, 1988.

[Nebel, 1990] B. Nebel. Terminological reasoning is inherently intractable. Artificial
Intelligence, 43:235-249, 1990.

[Patel-Schneider, 1984] P. F. Patel-Schneider. Small can be beautiful in knowledge
representation. In Proceedings of the IEEE Workshop on Principles of Knowledge-
Based Systems, pages 11-16, Denver, CO, 1984.

[Patel-Schneider, 1989] P. F. Patel-Schneider. Undecidability of subsumption in nikl.
Artificial Intelligence, 39(2):263-272, 1989.

[Pollack, 1990] M. E. Pollack. Plans as complex mental attitudes. In P. R. Cohen,
J. Morgan, and M. E. Pollack, editors, Intentions in Communication, pages 77-104.
MIT Press, Cambridge, 1990.

[Reiter, 1978] R. Reiter. On reasoning by default. In Proceedings of Theoretical
Issues in Natural Language Processing-2, pages 210-218. University of Illinois at
Urbana-Champaign, 1978. reprinted in Readings in Knowledge Representation.

[Robins, 1986] G. Robins. The nikl manual. Technical report, USC/Information
Sciences Institute, Marina del Ray, CA, 1986.

[Schmidt-Schauss, 1989] M. Schmidt-Schauss. Subsumption in kl-one is undecidable.
In First International Conference on Principles of Knowledge Representation and
Reasoning (KR’89), pages 421-431, Toronto, Ontario, Canada, 1989.

[Schmiedel, 1990] A. Schmiedel. A temporal terminological logic. In Proceedings of
AAAI-90, pages 640-645, Boston, MA, 1990.

[Schmolze and Lipkis, 1983] J. G. Schmolze and T. A. Lipkis. Classification in the
kl-one knowledge representation system. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 330-332, Karlsruhe, West Germany,
1983.

71

[Selker, 1989] T. Selker. Cognitive adaptive computer help (coach). In Proceedings
of the International Conference on Artificial Intelligence, pages 25-34. 10S, 1989.

[Shoham, 1987] Y. Shoham. Temporal logics in ai: Semantical and ontological con-

siderations. Artificial Intelligence, 33(1):89-104, 1987.

[Sidner, 1985] C. L. Sidner. Plan parsing for intended response recognition in dis-
course. Computational Intelligence, 1(1):1-10, Feb 1985.

[Song and Cohen, 1991] F. Song and R. Cohen. Temporal reasoning during plan
recognition. In Proceedings of AAAI-91, pages 247-252, Anaheim, CA, 1991.

[Song, 1991] F. Song. A processing model for temporal analysis and its application
to plan recognition. Technical Report CS-91-15, Department of Computer Science,
University of Waterloo, Waterloo, Ontario, 1991. Ph.D. Thesis.

[Valdes-Perez, 1986] R. E. Valdes-Perez. Spatio-temporal reasoning and linear in-
equalities. Technical Report AT Memo No. 875, MIT /Artificial Intelligence Labo-
ratory, Cambridge, MA, 1986.

[van Beek and Cohen, 1991] P. van Beek and R. Cohen. Resolving plan ambiguity for
cooperative response generation. In IJCAT 91, pages 938-944, Sydney, Australia,
1991.

[van Beek, 1989] P. van Beek. Approximation algorithms for temporal reasoning. In
Proceedings of the International Joint Conference on Artificial Intelligence, pages
1291-1296, Detroit, 1989.

[Vilain and Kautz, 1986] M. Vilain and H. Kautz. Constraint-propagation algorithms
for temporal reasoning. In Proceedings of AAAI-86, pages 377-382, Philadelphia,
PA, 1986. American Association of Artificial Intelligence.

[Vilain et al., 1989] M. Vilain, H. Kautz, and P. van Beek. Constraint propagation
algorithms for temporal reasoning: a revised report. In J. deKleer and D. Weld,

editors, Readings in Qualitative Reasoning About Physical Systems. Morgan Kauf-
mann, Los Altos, CA, 1989.

[von Luck et al., 1987] K. von Luck, B. Nebel, C. Pelatson, and A. Schmiedel. The
anatomy of the back system. Technical Report KIT- Report 41, Technische Uni-
versitat Berlin, Berlin, 1987.

[Weida and Litman, 1992] R. Weida and D. J. Litman. Terminological reasoning
with constraint networks and an application to plan recognition. In Principles of
Knowledge Representation and Reasoning: Proceedings of the Third International

Conference (KR’92), pages 282-293, Cambridge, MA, 1992.

72

[Weida, 1991] R. A. Weida. Object-centered knowledge representation and reasoning
with definitional taxonomies. Technical Report CUCS-047-91, Columbia University
Department of Computer Science, 1991.

[Wellman, 1990] M. P. Wellman. Formulation of Tradeoffs in Planning Under Un-
certainty. Morgan Kaufmann, San Mateo, CA, 1990.

[Woods and Schmolze, 1992] W. A. Woods and J. G. Schmolze. The kl-one family.
Computers and Mathematics with Applications, T4(2-5), 1992.

[Woods, 1986] W. A. Woods. Important issues in knowledge representation. Proceed-
ings of the IEEFE, 74(10):1322-1334, 1986.

[Woods, 1991] W. A. Woods. Understanding subsumption and taxonomy: A frame-
work for progress. In J. Sowa, editor, Principles of Semantic Networks: FEzxplo-
rations in the Representation of Knowledge, pages 45-94. Morgan Kaufmann, Los
Altos, CA, 1991. First appeared as: Harvard University/Center for Research in
Computing Technology, Technical Report no. TR-19-90.

[Yen et al., 1991] J. Yen, R. Neches, and R. MacGregor. Clasp: Integrating term
subsumption systems and production systems. [EEE Transactions on Knowledge

and Data Engineering, 3(1):25-31, March 1991.

[Yen, 1990] J. Yen. A principled approach to reasoning about the specificity of rules.
In Proceedings of AAAI-90, pages 701-707, Boston, MA, 1990. American Associa-
tion of Artificial Intelligence.

73

