2014 Articles
The Downward Influence of Stratospheric Sudden Warmings
The coupling between the stratosphere and the troposphere following two major stratospheric sudden warmings is studied in the Canadian Middle Atmosphere Model using a nudging technique by which the zonal-mean evolution of the reference sudden warmings are artificially induced in an ~100-member ensemble spun off from a control simulation. Both reference warmings are taken from a freely running integration of the model. One event is a displacement, the other is a split, and both are followed by extended recoveries in the lower stratosphere. The methodology permits a statistically robust study of their influence on the troposphere below.
The nudged ensembles exhibit a tropospheric annular mode response closely analogous to that seen in observations, confirming the downward influence of sudden warmings on the troposphere in a comprehensive model. This tropospheric response coincides more closely with the lower-stratospheric annular mode anomalies than with the midstratospheric wind reversal. In addition to the expected synoptic-scale eddy feedback, the planetary-scale eddies also reinforce the tropospheric wind changes, apparently responding directly to the stratospheric anomalies.
Furthermore, despite the zonal symmetry of the stratospheric perturbation, a highly zonally asymmetric near-surface response is produced, corresponding to a strongly negative phase of the North Atlantic Oscillation with a much weaker response over the Pacific basin that matches composites of sudden warmings from the Interim ECMWF Re-Analysis (ERA-Interim). Phase 5 of the Coupled Model Intercomparison Project models exhibit a similar response, though in most models the response’s magnitude is underrepresented.
Subjects
Files
- HitchcockandSimpson2014_1_.pdf application/pdf 4.86 MB Download File
Also Published In
- Title
- Journal of the Atmospheric Sciences
- DOI
- https://doi.org/10.1175/JAS-D-14-0012.1
More About This Work
- Academic Units
- Lamont-Doherty Earth Observatory
- Ocean and Climate Physics
- Published Here
- September 28, 2015