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ABSTRACT

Some Problems in Graph Theory and Scheduling

Mingxian Zhong

In this dissertation, we present three results related to combinatorial algorithms in graph theory and

scheduling, both of which are important subjects in the area of discrete mathematics and theoretical

computer science. In graph theory, a graph is a set of vertices and edges, where each edge is a pair

of vertices. A coloring of a graph is a function that assigns each vertex a color such that no two

adjacent vertices share the same color. The �rst two results are related to coloring graphs belonging

to speci�c classes. In scheduling problems, we are interested in how to e�ciently schedule a set of

jobs on machines. The last result is related to a scheduling problem in an environment where there

is uncertainty on the number of machines.

The �rst result of this thesis is a polynomial time algorithm that determines if an input graph

containing no induced seven-vertex path is 3-colorable. This a�rmatively answers a question posed

by Randerath, Schiermeyer and Tewes in 2002. Our algorithm also solves the list-coloring version of

the 3-coloring problem, where every vertex is assigned a list of colors that is a subset of {1, 2, 3}, and

gives an explicit coloring if one exists. This is joint work with Flavia Bonomo, Maria Chundnovsky,

Peter Maceli, Oliver Schaudt, and Maya Stein.

A graph is H-free if it has no induced subgraph isomorphic to H. In the second part of this

thesis, we characterize all graphs H for which there are only �nitely many minimal non-three-

colorable H-free graphs. This solves a problem posed by Golovach et al. We also characterize all

graphs H for which there are only �nitely many H-free minimal obstructions for list 3-colorability.

This is joint work with Maria Chudnovsky, Jan Goedgebeur and Oliver Schaudt.

The last result of this thesis deals with a scheduling problem addressing the uncertainty regarding

the machines. We study a scheduling environment in which jobs �rst need to be grouped into some

sets before the number of machines is known, and then the sets need to be scheduled on machines

without being separated. In order to evaluate algorithms in such an environment, we introduce the



idea of an α-robust algorithm, one which is guaranteed to return a schedule on any number m of

machines that is within an α factor of the optimal schedule on m machines, where the optimum is

not subject to the restriction that the sets cannot be separated. Under such environment, we give

a (53 + ε)-robust algorithm for scheduling on parallel machines to minimize makespan, and show

a lower bound of 4
3 . For the special case when the jobs are in�nitesimal, we give a 1.233-robust

algorithm with an asymptotic lower bound of 1.207. This is joint work with Cli�ord Stein.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

In this dissertation, we present three results related to combinatorial algorithms in graph theory and

scheduling, both of which are important subjects in the area of discrete mathematics and theoretical

computer science. The �rst two results are related to coloring graphs belonging to speci�c classes

and the last result is related to a scheduling problem addressing the environment where there is

uncertainty on the number of machines. We will explain those results, and discuss some of the

motivations and background in this section.

1.1 Coloring Graphs with Forbidden Induced Subgraphs

In graph theory, a graph G is a set of vertices and edges, where each edge is a pair of vertices. Graphs

can be used to model many types of real-world systems, such as transportations, social networks

and software design. However, many fundamental graph theory problems, such as the maximum

independent set problem, the Hamiltonian path problem and the graph coloring problem, on a

general graph are NP-complete, which means that in general it is hard to �nd e�cient algorithms to

solve those problems. So people are interested in solving those problems e�ciently for graphs with

some structural properties. The problem here we are speci�cally interested in is coloring graphs

with forbidden induced subgraphs.

A k-coloring of a graph G = (V,E) is a function f : V → {1, . . . , k} such that f(v) 6= f(w)

whenever vw ∈ E. The coloring problem, whose input is a graph G and a natural number k, consists

of deciding whether G is k-colorable or not. This well-known problem is one of Karp's 21 NP-

1



CHAPTER 1. INTRODUCTION

complete problems [36] (unless k = 2; then the problem is solvable in linear time). Stockmeyer [57]

proved that the problem remains NP-complete even if k ≥ 3 is �xed, and Ma�ray and Preissmann

proved that it remains NP-complete for triangle-free graphs [41].

List variations of the vertex coloring problem can be found in the literature. For a survey on this

kind of related problems, see [58]. In the list-coloring problem, every vertex v comes equipped with

a list of permitted colors L(v), and we require the coloring to respect these lists, i.e., f(v) ∈ L(v)

for every v in V . For a positive integer k, the k-list-coloring problem is a particular case in which

|L(v)| ≤ k for each v in V , but the union of the lists can be an arbitrary set. If the size of the list

assigned to each vertex is at most two (i.e., 2-list-coloring), the instance can be solved in O(|V |+|E|)

time [16; 19; 59], by reducing the problem to a 2-SAT instance, which Aspvall, Plass and Tarjan [5]

showed can be solved in linear time (in the number of variables and clauses). The list k-coloring

problem is a particular case of k-list-coloring, in which the lists associated to each vertex are a

subset of {1, . . . , k}. Since list k-coloring generalizes k-coloring, it is NP-complete as well.

Let H and G be graphs. We say that H is an induced subgraph of G if V (H) ⊆ V (G), and

u, v ∈ V (H) are adjacent in H if and only if u, v are adjacent in G. we say that G contains H if

some induced subgraph of G is isomorphic to H. If G does not contain H, we say that G is H-free.

Because of the notorious hardness of k-coloring, e�orts were made to understand the problem on

restricted graph classes. Some of the most prominent such classes are the classes of H-free graphs.

Kami«ski and Lozin [35] and independently Král, Kratochvíl, Tuza, and Woeginger [37] proved that

for any �xed k, g ≥ 3, the k-coloring problem is NP-complete for the class of graphs containing no

cycle of length less than g. As a consequence, if the graph H contains a cycle, then k-coloring is

NP-complete for k ≥ 3 for the class of H-free graphs.

The claw is the complete bipartite graph K1,3. A theorem of Holyer [30] together with an

extension due to Leven and Galil [39] imply that if a graph H contains a claw, then for every �xed

k ≥ 3, the k-coloring problem is NP-complete for the class of H-free graphs.

Combined, these two results only leave open the complexity of the k-coloring problem for the

class of H-free graphs where H is a �xed acyclic claw-free graph, i.e., a disjoint union of paths.

There is a nice recent survey by Hell and Huang on the complexity of coloring graphs without paths

and cycles of certain lengths [27] and another nice survey by Golovach et al. [22]. We denote a path

and a cycle on t vertices by Pt and Ct, respectively.

2



CHAPTER 1. INTRODUCTION

k\t 4 5 6 7 8 . . .

3 O(m) [14] O(nα) [44] O(mnα) [49] P [6] ? . . .

4 O(m) [14] P [28] P[12; 13] NPC [31] NPC . . .

5 O(m) [14] P [28] NPC [31] NPC NPC . . .

6 O(m) [14] P [28] NPC NPC NPC . . .

...
...

...
...

...
...

. . .

Table 1.1: Table of known complexities of the k-coloring problem in Pt-free graphs.

The strongest known results related to our work are due to Huang [31], who proved that 4-

coloring is NP-complete for P7-free graphs, and that 5-coloring is NP-complete for P6-free graphs.

On the positive side, Hoàng, Kami«ski, Lozin, Sawada, and Shu [28] have shown that k-coloring

can be solved in polynomial time on P5-free graphs for any �xed k. Recently, in a joint work with

Chudnovsky and Spirkl [12; 13], we proved that 4-coloring is polynomial-time solvable for P6-free

graphs, which settles the last remaining open case of the complexity of k-coloring Pt-free graphs for

any �xed k ≥ 4. On the other hand, for k = 3 it is not known whether there exists a t such that 3-

coloring is NP-complete for Pt-free graphs. Randerath and Schiermeyer [49] gave a polynomial time

algorithm for 3-coloring P6-free graphs. Later, Golovach et al. [23] showed that the list 3-coloring

problem can be solved e�ciently for P6-free graphs. Some of these results are summarized in Table

1.1. Here `?' stands for open problems.

In Chapter 3 of this thesis, we show that the 3-coloring problem for P7-free graphs is polynomial-

time solvable, answering positively a question �rst posed in 2002 by Randerath et al. [49; 50]. This

is joint work with Flavia Bonomo, Maria Chundnovsky, Peter Maceli, Oliver Schaudt, and Maya

Stein, and �rst appeared in [6]. Our algorithm even works for the list 3-coloring problem. This is

not trivial: there are cases where k-coloring and list k-coloring have di�erent complexities (unless

P = NP). For instance, in the class of P6-free graphs, 4-coloring can be solved in polynomial time [12;

13] while list 4-coloring is NP-complete [32].
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CHAPTER 1. INTRODUCTION

1.2 Obstruction to Coloring and List-Coloring

We say that a graph is k-chromatic if it is k-colorable but not (k − 1)-colorable. A graph is called

k-critical if it is k-chromatic, but every proper subgraph is (k−1)-colorable. The characterization of

critical graphs is a notorious problem in the theory of graph coloring. Since it is NP-hard to decide

whether a given graph admits a k-coloring for k ≥ 3, there is little hope of giving a characterization

of the (k + 1)-critical graphs that is useful for algorithmic purposes. The picture changes if one

restricts the structure of the graphs under consideration. Bruce et al. [7] proved that there are

exactly six 4-critical P5-free graphs. By using the characterization of 4-critical P5-free graphs,

Ma�ray and Morel [40] gave a linear time certifying algorithm of the problem of 3-coloring P5-free

graphs. On the other hand, Hoàng et al. [29] constructed an in�nite family of k-critical P5-free

graphs for k ≥ 5.

In a joint work with Chudnovsky, Goedgebeur and Schaudt [10], we proved that there are exactly

24 4-critical P6-free graphs [10]. Moreover, together with counterexamples constructed, we were able

to give a dichotomy theorem of the problem: for a connected H, there are �nitely many 4-critical

H-free graphs if and only if H is a subgraph of P6. This solves a problem posed by Golovach et

al. [24] and answers a question asked by Seymour [53]. Also, it implies the existence of a certifying

algorithm of this problem.

In Chapter 4 of this thesis, we extend the above dichotomy theorem by removing the requirement

thatH is connected. Speci�cally, we proved that there are only �nitely manyH-free 4-vertex-critical

graphs if and only if H is an induced subgraph of P6, 2P3, or P4+kP1 for some k ∈ N. The tools we

used in [10] were tailored speci�cally for the P6-free case and do not generalize well, while our new

approach is signi�cantly more powerful. The idea is to transfer the problem to the more general

list setting and solve it there. However, this generality comes at a certain cost: we can only give a

very rough upper bound on the maximum number of vertices an H-free 4-vertex-critical graph can

have, while in [10] we were able to give a picture of all critical graphs.

The second main result in this chapter is the analog of the above theorem in the list setting.

To state it, we need the following concepts. Let L be a mapping that maps each vertex of G to a

subset of {1, . . . , k}. We say that the pair (G,L) is colorable if there is a k-coloring c of G with

c(v) ∈ L(v) for each v ∈ V (G). As we are considering the obstructions to list 3-coloring, we call

a pair (G,L) with L(v) ⊆ {1, 2, 3}, v ∈ V (G), a minimal list-obstruction if (G,L) is not colorable

4



CHAPTER 1. INTRODUCTION

but for all induced proper subgraphs A of G the pair
(
A,L|V (A)

)
is colorable. We proved that there

are only �nitely many H-free minimal list-obstructions if and only if H is an induced subgraph of

P6 or P4 + kP1 for some k ∈ N. This is joint work with Maria Chudnovsky, Jan Goedgebeur and

Oliver Schaudt, and it �rst appeared in [11].

1.3 Scheduling with Uncertainty

For many problems, one does not know the entire input accurately and completely in advance.

There are di�erent ways of addressing such uncertainty, e.g. via online algorithms (assuming the

input arrives over time), dynamic algorithms (assuming the input changes over time), stochastic

optimization (assuming the input includes random variables) or robust optimization (assuming that

there is bounded uncertainty in the data). Another way of addressing uncertainty is to require

one solution that is good against all possible values of the uncertain parameters. Examples of

work in this direction include the universal traveling salesman problem (one tour that is good no

matter which subset of points arrive) [46], robust matchings (one matching is chosen and then

evaluated by its top k edges, where k is unknown) [26; 42], a knapsack of unknown capacity(one

policy of packing that is good irrespective of the actual capacity) [15] and 2-stage scheduling (some

decisions must be made before the actual scenario is known) [9; 54]. In scheduling problems, there

are many ways to model uncertainty in the jobs, including online algorithms [1; 2], in which the

set of jobs is not known in advance, stochastic scheduling [45], in which the jobs are modeled as

random variables, and work on schedules that are good against multiple objective functions [4; 43;

51]. But there is much less work studying the possibility of uncertainty in the machines, and the

work we are aware of studies uncertainty in speed or reliability (breakdowns) [3; 17].

Motivated by the need to understand how to make scheduling decisions without knowing how

many machines we will have, we consider a di�erent notion of uncertainty � a scenario in which you

don't know how many machines you are going to have, but you still have to commit (partially) to

a schedule by making signi�cant decisions about partitioning the jobs before knowing the number

of machines.

This type of decision arises in a variety of settings. For example, many scheduling problems

are fundamentally about packing items onto machines and there are many examples of problems

5



CHAPTER 1. INTRODUCTION

that concern packing items where there are multiple levels of commitment to be made with partial

information. For example, in a warehouse, a large order may need to be placed into multiple boxes,

without knowing exactly how many trucks there will be to ship the items. You therefore want

to be able to pack the items well, given the various possible number of trucks. Another example

involves problems in modern data centers. In data centers, there are some systems which require

you to group work together into �bundles� without knowing exactly how many machines will be

available. For example, in a map-reduce type computation, the mapping function naturally breaks

the data into some number of groups g. However, there are some unknown numbers of available

machines m, and you typically have to design your mapping function, choosing a g and associated

grouping, without knowing m. You may know a range of possible values for m, or it may vary

widely depending on the availability of machines at the time you run the map-reduce computation

(and the availability is typically not under your control). As more and more computing moves to

the �cloud�, that is, moves to large shared data centers, we anticipate that this problem of grouping

work without knowing the number of machines will become more widespread.

In Chapter 5 of this thesis, we consider one of the simplest scheduling problems � minimizing

makespan on identical parallel machines. We choose this problem partly as a proof of concept for

our two-stage model. We consider the following speci�c model. We are given a set of n jobs, J ,

with a known processing times p(j) for each job j, and a number M , which is an upper bound on

the number of machines we might have. An algorithm must commit, before knowing how many

machines there are, to grouping the jobs into M bags, where each job is assigned to exactly one

of the bags. We call this step the packing step. Only after completing the packing step do we

learn the number of machines m. We now need to compute a schedule, with the restriction that

we must keep the bags together, that is, we will assign one or more bags to each machine. We

call this step the scheduling step. As in other robust problems, we want to do well against all

possible numbers of machines. We therefore evaluate our schedule by the ratio of the makespan of

our schedule, ALG(m,M), to the makespan of a schedule that knew m in advance, optm, taking

the worst case over all possible values of m. If an algorithm always provides a ratio of at most α,

where α = max
1≤m≤M

ALG(m,M)
optm

, we call it α-robust. (We may also consider scenarios in which there

are di�erent upper and lower bounds on the range of m; the de�nition of robustness extends in the

obvious way.)

6
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The main result of Chapter 5 is an algorithm for minimizing makespan on parallel machines.

which is (53 + ε)-robust; and we show a lower bound of 4/3 on the robustness of any algorithm

for minimizing makespan on parallel machines. This is joint work with Cli�ord Stein, and �rst

appeared in the proceedings of SODA [56].

1.4 Outline

In this section, we give a brief outline of this thesis.

• In Chapter 2, we give some graph theory de�nitions that will appear later in this thesis.

• In Chapter 3, we give a polynomial time algorithm that determines if an input graph con-

taining no induced seven-vertex path is 3-colorable. This is joint work with Flavia Bonomo,

Maria Chundnovsky, Peter Maceli, Oliver Schaudt, and Maya Stein, and �rst appeared in

Combinatorica [6].

• In Chapter 4, we characterize all graphs H for which there are only �nitely many minimal

non-three-colorable H-free graphs and all graphs H for which there are only �nitely many

H-free minimal obstructions for list 3-colorability. This is joint work with Maria Chudnovsky,

Jan Goedgebeur and Oliver Schaudt, and it �rst appeared in [11].

• In Chapter 5, we give a (53+ε)-robust algorithm for scheduling with uncertainty on the number

of machines. This is joint work with Cli�ord Stein, and �rst appeared in the proceedings of

SODA [56].

7
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Chapter 2

De�nitions

In this chapter, we present several de�nitions in graph theory which will appear throughout this

thesis. All graphs in this thesis are �nite and simple.

2.1 Basic Graph De�nitions

For a graphG, we use V (G) to denote its vertex set and E(G) to denote its edge set. For u, v ∈ V (G),

we say that u and v are adjacent if {u, v} ∈ E(G), and non-adjacent otherwise. A clique in a graph

is a set of vertices such that every pair of the vertices are adjacent, and a stable set is a set of vertices

all pairwise non-adjacent. The neighborhood of a vertex v ∈ V (G) is the set of all vertices adjacent

to v, and is denoted by NG(v), or simply N(v) when there is no danger of confusion. Let X be a

subset of V (G). We denote by G[X], or G|X the subgraph of G induced by X, that is, the subgraph

of G with vertex set X such that u, v ∈ X are adjacent in G[X] if and only if {u, v} ∈ E(G). We

denote by G \X the graph G[V (G) \X]. If X = {v} for some v ∈ V (G), we write G \ v instead of

G \ {v}. Let H be a graph. If G|X is isomorphic to H, then we say that X is an H in G. If G has

no induced subgraph isomorphic to H, then we say that G is H-free. For a family F of graphs, we

say that G is F-free if G is F -free for every F ∈ F . We write G1 + . . .+Gk for the disjoint union

of graphs G1, . . . , Gk. For a vertex set S, we use N(S) to denote (
⋃
v∈S

N(v)) \ S.

For all t, let Pt denote the path on t vertices, which is the graph with vertex set {p1, . . . , pt}

such that pi is adjacent to pj if and only if |i− j| = 1. Let Ct denote the cycle on t vertices, which

is the graph with vertex set {p1, . . . , pt} such that pi is adjacent to pj if and only if |i − j| = 1 or
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t − 1. By convention, when explicitly describing a path or a cycle, we always list the vertices in

order. Let G be a graph. When G|{p1, . . . , pn} is the path Pn, we say that p1-. . .-pn is a Pn in G.

Similarly, when G|{c1, c2, . . . , cn} is the cycle Cn, we say that c1-c2-. . .-cn-c1 is a Cn in G.

Let A and B be disjoint subsets of V (G). For a vertex b ∈ V (G)\A, we say that b is complete to

A if b is adjacent to every vertex of A, and that b is anticomplete to A if b is non-adjacent to every

vertex of A. If every vertex of A is complete to B, we say A is complete to B, and if every vertex of

A is anticomplete to B, we say that A is anticomplete to B. If b ∈ V (G)\A is neither complete nor

anticomplete to A, we say that b is mixed on A. The complement G of G is the graph with vertex

set V (G) such that two vertices are adjacent in G if and only if they are non-adjacent in G. If G

is connected we say that G is anticonnected. For X ⊆ V (G), we say that X is connected if G|X

is connected, and that X is anticonnected if G|X is anticonnected. A component of X ⊆ V (G) is

a maximal connected subset of X, and an anticomponent of X is a maximal anticonnected subset

of X. We write component of G to mean a component of V (G). A subset D of V (G) is called a

dominating set if every vertex in V (G) \D is adjacent to at least one vertex in D; in this case we

also say that G|D is a dominating subgraph of G.

A k-coloring of a graph G is a mapping c : V (G) → {1, . . . , k} such that if x, y ∈ V (G) are

adjacent, then c(x) 6= c(y). If a k-coloring exists for a graph G, we say that G is k-colorable. We

say that a graph is k-chromatic if it is k-colorable but not (k − 1)-colorable. A graph is called

k-critical if it is k-chromatic, but every proper subgraph is (k − 1)-colorable. A graph is called

k-vertex-critical if it is k-chromatic, but every proper induced subgraph is (k − 1)-colorable. A

graph is called H-free, k-vertex-critical if it is H-free, k-chromatic, but every proper H-free induced

subgraph is (k− 1)-colorable. A list system L of a graph G is a mapping which assigns each vertex

v ∈ V (G) a �nite subset of N, denoted by L(v). A subsystem of a list system L of G is a list system

L′ of G such that L′(v) ⊆ L(v) for all v ∈ V (G). We say a list system L of the graph G has order

k if L(v) ⊆ {1, . . . , k} for all v ∈ V (G). In this article, we will only consider list systems of order

3. Notationally, we write (G,L) to represent a graph G and a list system L of G. We say that c, a

coloring of G, is an L-coloring of G, or a coloring of (G,L) provided c(v) ∈ L(v) for all v ∈ V (G).

We say that (G,L) is colorable, if there exists a coloring of (G,L). A partial coloring of (G,L) is a

mapping c : U → N such that c(u) ∈ L(u) for all u ∈ U , where U is a subset of V (G). Note that

here we allow for edges uv of G|U with c(u) = c(v). If there is no such edge, we call c proper.

9
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Let G be a graph and let L be a list system of order 3 for G. We say that (G,L) is a list-

obstruction if (G,L) is not colorable. As stated earlier, we call (G,L) a minimal list-obstruction if,

in addition, (G \ x, L) is colorable for every vertex x ∈ G.

Let (G,L) be a list-obstruction. We say a vertex v ∈ V (G) is critical if G \ v is L-colorable and

non-critical otherwise. If we repeatedly delete non-critical vertices of G to obtain a new graph, G′

say, such that (G′, L) is a minimal list obstruction, we say that (G′, L) is a minimal list obstruction

induced by (G,L).

Let u, v be two vertices of a list-obstruction (G,L). We say that u dominates v if L(u) ⊆ L(v)

and N(v) ⊆ N(u). It is easy to see that if there are such vertices u and v in G, then (G,L) is not

a minimal list-obstruction. We frequently use this observation without further reference.

2.2 Updating Lists

Let G be a graph and let L be a list system for G. Let v, w ∈ V (G) be adjacent, and assume that

|L(w)| = 1. To update the list of v from w means to delete from L(v) the unique element of L(w).

If the size of the list of v is reduced to one, we sometimes say that v is colored, and refer to the

unique element in the list of v as the color of v. Throughout the thesis, we make use of distinct

updating procedures to reduce the sizes of the lists, and we de�ne them below.

If P = v1-. . . -vk is a path and |L(v1)| = 1, then to update from v1 along P means to update

v2 from v1 if possible, then to update v3 from v2 if possible, and so on. When vk is updated from

vk−1, we stop the updating.

Let X ⊆ V (G) such that |L(x)| ≤ 1 for all x ∈ X. For a subset A ⊆ V (G) \X, we say that we

update the lists of the vertices in A with respect to X if we update each a ∈ A from each x ∈ X. We

say that we update the lists with respect to X if A = V (G) \X. Let X0 = X and L0 = L. For i ≥ 1

de�ne Xi and Li as follows. Li is the list system obtained from Li−1 by updating with respect to

Xi−1. Moreover, Xi = Xi−1 ∪ {v ∈ V (G) \Xi−1 : |Li(v)| ≤ 1 and |Li−1(v)| > 1}. We say that Li

is obtained from L by updating with respect to X i times. If X = {w} we say that Li is obtained

by updating with respect to w i times. If for some i, Wi = Wi−1 and Li = Li−1, we say that Li

was obtained from L by updating exhaustively with respect to X (or w). For simplicity, if X is an

induced subgraph of G, by updating with respect to X we mean updating with respect to V (X).

10
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We also adopt the following convention. If for some i, if two vertices of Xi−1 with the same list

are adjacent, or Li(v) = ∅ for some v, we set Li(v) = ∅ for every v ∈ V (G) \Xi. Observe that in

this case (G|Xi, Li) is not colorable, and so we have preserved at least one minimal list obstruction

induced by (G,L).
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CHAPTER 3. THREE-COLORING GRAPHS WITHOUT INDUCED PATHS ON SEVEN

VERTICES

Chapter 3

Three-coloring graphs without induced

paths on seven vertices

3.1 Introduction and Preliminaries

Graph coloring is one of the fundamental problems in graph theory and also one of the most famous

NP-complete problems. So we are interested in the complexity of coloring graph without certain

induced subgraphs. It is known that k-coloring H-free graphs is NP-complete unless H is a disjoint

union of paths [30; 35; 37; 39]. In this chapter, we prove the following main theorem, showing that

3-coloring and list 3-coloring problem for P7-free graphs are polynomial-time solvable, which is one

of the remaining cases of k-coloring Pt-free graphs (see Chapter 2 for formal de�nitions).

3.1.1. One can decide whether a given P7-free graph G has a list 3-coloring, and �nd such a coloring

(if it exists) in polynomial time. The running time of the proposed algorithm is O(|V (G)|21(|V (G)|+

|E(G)|)).

The algorithm given by Theorem 3.1.1 is based on the following ideas. First we apply some

preprocessing techniques and compute a small 2-dominating set (i.e., a set such that every vertex

has distance at most two to some vertex of the set). Then we use a controlled enumeration based

on a structural analysis of the considered graphs, in order to reduce the problem to a polynomial

number of instances of list 3-coloring in which the size of the list of each vertex is at most two.

These instances, in turn, can be reduced to an instance of 2-SAT, which can be solved in linear

12



CHAPTER 3. THREE-COLORING GRAPHS WITHOUT INDUCED PATHS ON SEVEN

VERTICES

time in the number of variables and clauses [5], several authors [16; 19; 59] independently proved

the following.

3.1.2. If a list system L of a graph G is such that |L(v)| ≤ 2 for all v ∈ V (G), then a coloring of

(G,L), or a determination that none exists, can be obtained in O(|V (G)|+ |E(G)|) time.

Let G be a graph. A subset S of V (G) is called monochromatic with respect to a given coloring

c of G if c(u) = c(v) for all u, v ∈ S. Let L be a list system of G, and Z a set of subsets of V (G).

We say that (G,L,Z) is colorable if there is a coloring c of (G,L) such that S is monochromatic

with respect to c for all S ∈ Z.

A triple (G′, L′, Z ′) is a restriction of (G,L,Z) if

(a) G′ is an induced subgraph of G,

(b) the list system L′ is a subsystem of L restricted to the set V (G′), and

(c) Z ′ is a set of subsets of V (G′) such that if S ∈ Z then S ∩ V (G′) ⊆ S′ for some S′ ∈ Z ′.

Let R be a set of restrictions of (G,L,Z). We say that R is colorable if at least one element of

R is colorable. If L is a set of list systems of G, we write (G,L, Z) to mean the set of restrictions

(G,L′, Z) where L′ ∈ L.

Note that if two sets S and S′ are monochromatic and have a non-empty intersection, then

S ∪S′ is monochromatic, too. Thus, for each triple (G,L,Z) there is an equivalent triple (G,L,Z ′)

such that Z ′ contains only mutually disjoint sets. During our algorithm, we compute the set family

Z such that the sets are mutually disjoint. Under this assumption, the proof of Lemma 3.1.2 can

be easily modi�ed to obtain the following generalization [55].

3.1.3. If a list system L of a graph G is such that |L(v)| ≤ 2 for all v ∈ V (G), and Z is a set of

mutually disjoint subsets of V (G), then a coloring of (G,L,Z), or a determination that none exists,

can be obtained in O(|V (G)|+ |E(G)|) time.

Proof. By traversing once each set in Z, create a vector r that maps each vertex v with a represen-

tative r(v) on its set (the same representative for all the vertices in one set). De�ne r(v) = v if v

does not belong to a set in Z. Traversing the vector r once, iteratively for each v ∈ V (G), update
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L(r(v)) = L(r(v))∩L(v). If at some point L(r(v)) = ∅, return that no coloring exists. These steps

can be performed in O(|V (G)|) time.

If none of the lists L(r(v)) is empty, compute the 2-SAT formula that expresses the coloring

problem of (G,L,Z), similarly as for (G,L) in Lemma 3.1.2. Namely, de�ne for each vertex v ∈ V (G)

and each color j ∈ L(r(v)) the variable xr(v)j to model that vertex v gets color j. Notice that if

v and w are in the same set of Z, then r(v) = r(w), thus the sets of Z will be monochromatic in

every coloring derived from a solution of the formula.

If L(r(v)) = {j}, add (xr(v)j) as a clause, and if L(r(v)) = {j, k}, add (xr(v)j ∨ xr(v)k) as a

clause. This ensures every vertex gets a color. Finally, for each edge vw ∈ E(G) and each color

j ∈ L(r(v)) ∩ L(r(w)), add the clause (¬xr(v)j ∨ ¬xr(w)j). This ensures two adjacent vertices get

di�erent colors. Notice also that two adjacent vertices in the same set of Z will produce an unfeasible

formula, as desired.

The formula can be constructed in O(|V (G)|+|E(G)|) time and has O(|V (G)|+|E(G)|) variables

and clauses. Since the algorithm that solves 2-SAT is linear in the number of variables and clauses [5],

we are done.

We write N(S) for the set of vertices of V (G) \ S with a neighbor in S. For disjoint sets of

vertices S, T of V (G), let NT (S) = N(S)∩T . If S = {s} we just write NT (s). For a vertex set S, let

S = S ∪N(S). If S = V (G), we say that S is dominating G, or is a dominating set. Moreover, if S

is dominating and the subgraph induced by S is connected, then we call S a connected dominating

set. If S dominates G, we call S 2-dominating.

For a graph G with a list system L, call a (nonempty) 2-dominating set S ⊆ V (G) which induces

a connected subgraph a seed of (G,L), if |L(v)| = 1 for each v ∈ S and |L(v)| = 2 for each v ∈ N(S).

Note that we do not require the list system L to be updated.

Observe that for any seed S, and for any two non-adjacent vertices v, w ∈ N(S) the following

holds.

There is an induced v�w path of at least 3 vertices whose inner vertices all lie in S. (3.1)

The next result is essential to our proof.

3.1.4 (Camby and Schaudt [8]). For all t ≥ 3, any connected Pt-free graph has a connected domi-

nating set whose induced subgraph is either Pt−2-free, or isomorphic to Pt−2.
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We use the following easy corollary of Theorem 3.1.4 in order to prove the existence of a small

seed in P7-free graphs that may be 3-colorable.

3.1.5. Every connected P7-free graph G has either a connected 2-dominating set of size at most 3 or

a complete subgraph of 4 vertices. The set or the subgraph can be found in O(|V (G)|3|E(G)|) time.

Proof. We prove the �rst statement by applying Theorem 3.1.4 to the graph in question, say G. Let

S be the connected dominating set of G whose induced subgraph, say H, is either a P5 or P5-free.

If H is a P5, the three non-leaf vertices of H form a connected 2-dominating set of G, as desired.

Otherwise, another application of Theorem 3.1.4 shows that H has a connected dominating set S′

whose induced subgraph is either a P3 or P3-free. If |S′| ≤ 3, S′ is a connected 2-dominating set of

G of at most three vertices. Otherwise, as a connected P3-free graph is complete, |S′| ≥ 4 implies

that G contains a complete subgraph on 4 vertices.

Now we turn to the second statement. It su�ces to run through all triples T of vertices

(O(|V (G)|3) triples), and check if there is a common neighbor v of T such that T ∪ {v} induces a

complete subgraph (O(|E(G)|) possible vertices v). If not, we check whether T induces a connected

subgraph and all vertices of the graph are within distance 2 from T . We can test the second property

by using two steps of a breadth-�rst-search (that has time complexity O(|E(G)|)).

This corollary will help us to reduce in the next section the original instance to a polynomial

number of simpler instances. In each of these, the vertices having lists of size 1 or 2 satisfy some

structural properties and the vertices having lists of size 3 form a stable set. We will in turn solve

these special instances in Section 3.2.1 by reducing them to a polynomial number of instances to

which we can apply Lemma 3.1.3.

3.2 Proof of the Main Theorem

Let G be a graph and v be a vertex of G. Observe �rst that if G[N(v)] is not bipartite, then G is

not 3-colorable. Observe also that if G[N(v)] is a connected bipartite graph with bipartition U,W ,

then in every 3-coloring of G each of the sets U and W is monochromatic.

Let (G,L) be a list 3-coloring instance, such that for every v ∈ V (G), G[N(v)] is bipartite. We

now describe a procedure that we call the neighborhood reduction.
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If there is a vertex v with |L(v)| = 3 such that G[N(v)] is connected, proceed as follows. Let

U,W be a bipartition of G[N(v)]. We construct the graph G′ we obtain from G by deleting v and

replacing the neighborhood of v with an edge uw, where NG′(u) ∩ V (G) = NG(U) ∩ V (G′), and

NG′(w)∩ V (G) = NG(W )∩ V (G′). In the case that W is empty, say, we can assume U = {u}, and

we just de�ne G′ = G − {v}. The list of u is the intersection of all lists of vertices from U , and

similar for w and W . Clearly, G admits a coloring for L if and only if G′ admits a coloring for the

new list system.

We iterate the above procedure until G[N(v)] is disconnected for each vertex v with |L(v)| = 3.

The term neighborhood reduction refers to the whole process until it stops.

The following claim says that this reduction preserves the property of being Pt-free, for t ≥ 3.

(1) If G is a Pt-free graph (t ≥ 3), then the graph obtained from the neighborhood reduction is

Pt-free.

Proof. It su�ces to consider one reduction step. Let us say we contracted the neighborhood of the

vertex v in G, and obtained the graph G′. It remains to show that G′ is still Pt-free.

To see this, suppose Q is an induced Pt in G′. Since G is Pt-free, it follows that V (Q) ∩ {u,w}

is non-empty. Note that if Q contains both u and w, then u,w are consecutive on Q. So (in any

case) we can write Q as Q1 − Q2 − Q3, where V (Q2) ⊆ {u,w} and Q1, Q3 avoid {u,w}. We can

assume that Q1, Q3 are not empty, as otherwise it is easy to substitute Q2 with one or two vertices

in U ∪W , and thus �nd an induced Pt in G, a contradiction.

Observe that Q1, Q3 each have exactly one vertex q1, q3 in N(V (Q2)). If |V (Q2)| = 1, we may

assume both these vertices lie in N(U), and we can substitute Q2 = u with either a common

neighbor of q1, q3, or with a path u1 − v − u2 with u1 ∈ U ∩N(q1) and u2 ∈ U ∩N(q3). This gives

an induced Pt in G, a contradiction.

So assume |V (Q2)| = 2, and without loss of generality Q2 = u−w, q1 is adjacent to u and q3 to

w. Then q1 is anticomplete to W and has a neighbor u1 in U , and q3 is anticomplete to U and has a

neighbor w1 in W . We can thus replace Q2 with the path u1 −w1 if they are adjacent, or with the

path u1−v−w1 if they are not. This gives an induced Pt in G, yielding the �nal contradiction.

Let G∗ be a connected P7-free graph with a list system L∗. We preprocess �rst the instance by

applying the neighborhood reduction according to the input list system L∗, but, in order to simplify
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the following presentation and discussion of our algorithm, after that preprocessing, we do not take

the input list system L∗ into account. Instead, we consider the list system L1 with L1(v) = {1, 2, 3}

for each vertex v. We intersect the current lists with L∗ at the very end of the �rst phase of the

algorithm only.

Here is an overview over the steps taken in the algorithm.

(a) Assert that for every vertex v of G∗, G∗[N(v)] is bipartite. Otherwise, we can report that G∗

is not 3-colorable.

(b) Reduce the instance so that the neighborhood of every vertex v with |L∗(v)| = 3 is disconnected.

Let G be the graph obtained. By Claim 1, G is P7-free.

(c) Apply Corollary 3.1.5 to G and obtain a connected 2-dominating set S1 of size at most 3. (Notice

that as we have asserted that every vertex has a bipartite neighborhood, G cannot contain a

complete subgraph of size 4).

(d) For each feasible coloring of S1 do the following to (G,L1).

(1) Update the lists of all remaining vertices to get a list system L2 and a larger seed S2. The

set S2 is the largest connected superset of S1 containing only vertices with lists of size 1.

(2) By guessing a partial coloring of the graph, obtain an equivalent set of list systems L3.

(3) After another iteration, obtain a re�ned equivalent set of list systems L4.

(4) For each list system L ∈ L4, intersect L with the input list system L∗ and obtain a list

system L′.

(5) Update, and apply Lemma 3.2.1 to check for colorability.

We now describe the individual steps in more detail. The �rst step as well as the neighborhood

reduction can be performed in O(|V (G∗)|(|V (G∗)|+ |E(G∗)|)) time. The complexity associated to

Corollary 3.1.5 is O(|V (G)|3|E(G)|) time. As we report that the graph is not 3-colorable otherwise,

we may assume that G[N(v)] is bipartite for every vertex v of G, and that we have obtained a

2-dominating connected set S1 of G of size at most 3. For technical reasons, if S1 is a singleton, we

add one of its neighbors to S1. Thus, we can assume that |S1| ≥ 2. We will go through all possible
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3-colorings of S1, and check for each whether it extends to a coloring of G which respects the list

system L∗. This is clearly enough for deciding whether (G,L∗) is colorable.

So from now on, assume the coloring on S1 is �xed and that for every other vertex v of G we

have L1(v) = {1, 2, 3}. We update the lists of all vertices in G. Note that updating can be done in

O(|V (G)|+ |E(G)|) time, because each edge vw needs to be checked at most once (either updating

v from w or updating w from v). After updating to list system L2, consider the largest connected

set S2 of vertices with lists of size 1 that contains S1. We claim that S2 is a seed for (G,L2). Indeed,

since S1 dominates G, so does S2. Also, all vertices in N(S2) must have lists of size 2, since they

are adjacent, but do not belong to S2. So S2 is a seed.

In the case that two adjacent vertices of S2 have the same entry on their list, we abort the

algorithm for that sub-instance and report that the current 3-coloring of S1 does not lead to a valid

3-coloring of G.

(2) For every vertex v in N(S2) there is an induced path on at least 3 vertices contained in S2 ∪{v}

having v as an endpoint.

Proof. This holds since S2 is connected, |S2| ≥ |S1| ≥ 2, and v is not adjacent to two vertices of S2

that have di�erent entries on their lists (because |L2(v)| = 2 after updating).

Now, in two steps j = 3, 4, we will re�ne the set of subsystems of L1 we are looking at, starting

with L2 = {L2}. At each step we replace the set Lj−1 of list systems from the previous step with a

set Lj . More precisely, each element L of Lj is a subsystem of some element Pred(L) of Lj−1. We

will argue below why it is su�cient to check colorability for the new set of list systems.

For each of the list systems L in Lj , we will de�ne a seed SL and a set TL ⊆ N(SL). We start

with SL2 = S2 and TL2 being the set of vertices x ∈ N(SL2) for which there does not exist an

induced path x − y − z with |L2(y)| = 3 and z /∈ SL2 . We will ensure for each list system L that

SL ⊇ SPred(L) and TL ⊇ TPred(L). Furthermore, the seeds SL and the sets TL will have the following

properties:

(A) for all x ∈ N(SL) \ TL, there is an induced path x− y − z with |L(y)| = 3 and z /∈ SL, and for

no x ∈ TL is there such a path; and

(B) for each vertex v ∈ V (G) \ SL either |L(v)| = 1 or |L(v)| = 3.
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Let us now get into the details of the procedure. Successively, for j = 3, 4, we consider for each

L ∈ Lj−1 a set of subsystems of L obtained by partitioning the possible colorings of induced paths

x− y − z with x ∈ N(SL) \ TL, |L(y)| = 3 and z /∈ SL into a polynomial number of cases. The set

Lj will be the union of all the sets of subsystems corresponding to lists L in Lj−1. The idea is to

make the seed grow, and after these two steps, obtain a set of list systems we can deal with, and

such that the graph admits a coloring for the original list system if and only if it admits a coloring

for one of the list systems in the set.

For each i ∈ {1, 2, 3}, let Pi be the set of paths x− y − z with x ∈ N(SL) \ TL, |L(y)| = 3 and

z /∈ SL, and such that i /∈ L(x). We will order the paths of Pi non-increasingly by |N(x) \ (N(y) ∪

N(z) ∪ SL)|, i.e., the number of vertices w (if any) such that w − x− y − z is an induced path and

w 6∈ SL.

We can compute and sort the paths of Pi in O(|V (G)|4) time. Moreover, this order of the paths

induces an order on the set Yi of vertices y that are midpoints of paths x− y− z in Pi. The vertices

in Yi are ordered by their �rst appearance as midpoints of the ordered paths in Pi. Let ni = |Yi|,

and Yi = {yi,1, . . . , yi,ni}.

For each i ∈ {1, 2, 3}, we consider the following cases.

(a) All vertices in Yi are colored i.

(b) There is a k, 1 ≤ k ≤ ni, such that the �rst k − 1 vertices of Yi are colored i, and the �rst

path x− yi,k − z in Pi is colored such that the color of yi,k is di�erent from i, the color of every

vertex in W = N(x) \ (N(yi,k) ∪N(z) ∪ SL) is i, and the color of z is i if W is empty.

(c) There is a k, 1 ≤ k ≤ ni, such that the �rst k − 1 vertices of Yi are colored i, and the �rst

path x− yi,k − z in Pi is colored such that the color of yi,k is di�erent from i, the color of z is

di�erent from i if W = N(x) \ (N(yi,k) ∪N(z) ∪ SL) is empty, and if W is nonempty, there is

a vertex w of W that gets a color di�erent from i.

In order to do that, we consider all choices of functions f : {1, 2, 3} → {a, b, c}. For each of

these choices, we generate a set Lf of subsystems of L, and Lj will be the union of all sets Lf . For

�xed f the �rst step to obtain Lf consists of de�ning Li,f for i = 1, 2, 3 in the following way.

If Pi is empty, then set Li,f = {L}. Otherwise, the set is as follows.
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If f(i) = a, set L̂(y) = {i} for every y ∈ Yi and L̂(v) = L(v) for every v ∈ V (G) \ Yi. Set

Li,f = {L̂}.

If f(i) 6= a, for each k ∈ {1, . . . , ni}, let x and z be such that x− yi,k − z is the �rst path in Pi

having yi,k as midpoint, and let W = N(x) \ (N(yi,k) ∪N(z) ∪ SL).

If f(i) = b, consider all subsystems L̂ of L which only di�er from L on W ∪ {yi,1, . . . , yi,k, z},

and satisfy L̂(yi,k) = {i′} for some i′ 6= i, L̂(v) = {i} for all v ∈ W ∪ {yi,1, . . . , yi,k−1}, |L̂(z)| = 1,

and L̂(z) = {i} if W is empty. Update these list systems L̂ from yi,k except on TL and let Li,f be

the set of all list systems found in this way, for every choice of k. Note that, in each list system, the

updated list of x has size 1, and that the number of list systems generated this way is O(|V (G)|).

If f(i) = c, if W is nonempty, for each w ∈ W consider all subsystems L̂ of L which only

di�er from L on {yi,1, . . . , yi,k, z, w}, and satisfy L̂(v) = {i} for all v ∈ {yi,1, . . . , yi,k−1}, |L̂(yi,k)| =

|L̂(z)| = |L̂(w)| = 1, L̂(yi,k) 6= {i}, and L̂(w) 6= {i}. If W is empty, consider all subsystems L̂ of

L which only di�er from L on {yi,1, . . . , yi,k, z}, and satisfy L̂(v) = {i} for v ∈ {yi,1, . . . , yi,k−1},

|L̂(yi,k)| = |L̂(z)| = 1, L̂(yi,k) 6= {i}, and L̂(z) 6= {i}. Update these list systems L̂ from yi,k except

on TL and let Li,f be the set of all list systems found in this way, for every choice of k and of w (if

such a w exists). Note that again, in each list system, the updated list of x has size 1, and that the

number of list systems generated this way is O(|V (G)|2).

Finally, for each triple (L1, L2, L3) ∈ L1,f ×L2,f ×L3,f consider the list system L̃ obtained from

intersecting the lists of L1, L2, L3, taking intersections at each vertex. Update the list system L̃

from any vertex in SL, except on TL. Let Lf be the set of all list systems L̃ thus generated.

Observe that |Lf | = O(|V (G)|6), since |Li,f | = O(|V (G)|2) for i = 1, 2, 3.

For each L′ ∈ Lf , let SL′ be a maximal connected set of vertices with list size 1 that contains SL.

Then SL′ is a seed.

Note that for each L′ ∈ Lf , all vertices v in TL satisfy |L′(v)| = 2, since they were never

updated. Let TL′ be the union of TL with all vertices x ∈ N(SL′) which are not the starting point

of an induced path x− y − z with |L′(y)| = 3 and z /∈ SL′ .

Clearly, TL′ ⊆ N(SL′). Property (A) holds because of the way we de�ned TL′ , and because there

are no new paths of the type described in (A) that start at vertices in TL, as seeds grow and lists

shrink. Property (B) holds because SL was a seed satisfying Properties (A) and (B), and when

de�ning list systems in Lf by the cases (a), (b), and (c), we have reduced the size of some vertex
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lists from 3 to 1, never to 2; then we only updated from vertices in SL except on TL, thus every

vertex that got a list of size 1 by updating is connected to SL by a path all whose vertices have

current lists of size one, and is now in SL′ and, consequently, every vertex that got a list of size 2

by updating is in N(SL′).

(3) There is a coloring of G for the list system L2 if and only if G has a coloring for at least one of

the list systems in L4.

Proof. Indeed, observe that when obtaining Lj from Lj−1, we consider for each L ∈ Lj−1 and for

each i ∈ {1, 2, 3} the possibility that all induced 3-vertex-paths that start in N(SL) and then leave

SL have their second vertex colored i (when f(i) = a). We also consider the possibility that there

is such a path whose second vertex is colored with a di�erent color (when f(i) = b or f(i) = c). In

that case, we consider separately the possible colorings of a fourth vertex w, if such a w exists.

Note that |Lj+1| = O(|Lj | · |V (G)|6) for each j = 2, 3. Since |L2| = 1, the number of list systems

in L4 is O(|V (G)|12).

Next we prove that during the above described process, the union of our seed with the set TL

actually grows.

(4) For each L ∈ Lj, we have N(SPred(L)) ⊂ SL ∪ TL.

Proof. Let L′ = Pred(L) and let f be the function used to produce L from L′. In order to see

Claim 4, suppose there is a vertex x′ ∈ N(SL′) \ (SL ∪ TL). As x′ /∈ SL and SL ⊇ SL′ , we know

that x′ ∈ N(SL). Furthermore, since x′ /∈ TL, there is an induced path x′ − y′ − z′ with |L(y′)| = 3

and z′ /∈ SL. In particular, z′ /∈ SL′ and since lists only shrink, |L′(y′)| = 3. So f(i) 6= a, where i

is such that i /∈ L(x′) = L′(x′). Thus f(i) ∈ {b, c}, and so there is an induced path x− y − z with

x ∈ N(SL′), y, z /∈ N(SL′), L(x) 6= {i}, L(y) 6= {i}, and |L(x)| = |L(y)| = |L(z)| = 1, and thus

x, y, z ∈ SL. Since y′, z′ 6∈ SL, it follows that there are no edges between {y′, z′} and {x, y, z}. Also,

since x′ ∈ N(SL), there are no edges from x′ to vertices v ∈ {x, y, z} with L(v) ( L(x′). In other

words, the only possible edge between {x, y, z} and {x′, y′, z′} is x′z, and if this edge is present,

we have that L(z) = {i}. On the other hand, by (3.1), there is a path Q of at least 3 vertices

connecting x and x′ whose interior lies in SL′ (in particular, the interior of Q is anticomplete to

{y′, z′, y, z}). So, since G is P7-free, the edge x′z has to be present and thus we have L(z) = {i}.
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Now, assume there is an extension of x− y − z to an induced path w− x− y − z with w 6∈ SL′ .

Then, as the sequence w − x − y − z − x′ − y′ − z′ is not an induced P7, there is an edge from w

to one of x′, y′, z′. Observe if |L(w)| = 1, then w ∈ SL and neither wy′ nor wz′ is an edge. Hence

either |L(w)| ≥ 2, or L(w) = {i}, and in the latter case the only edge from w to {x′, y′, z′} is wx′.

As this happens for all possible choices of w, we see that f(i) 6= c, and thus f(i) = b. This means

that for all possible w, w is adjacent to x′. But now, observe that

N(x) \ (N(y) ∪N(z) ∪ SL′) ( N(x′) \ (N(y′) ∪N(z′) ∪ SL′),

since z is in the right hand side set, but not in the left hand side set. This is a contradiction to the

choice of the path x− y − z for the de�nition of L from L′ and f .

We conclude that there is no extension of x− y− z to an induced path w−x− y− z. But then,

the fact that L(z) = {i} implies that again, f(i) 6= c, and thus, f(i) = b. The existence of the edge

x′z gives a contradiction to the choice of the path x− y − z for the de�nition of L from L′ and f .

This proves Claim 4.

Next, we prove that two steps of performing the above procedure su�ce to take care of all paths

on three vertices that start in the boundary of the current seed, and then leave the seed.

(5) For each L ∈ L4, we have N(SL) ⊂ TL.

Proof. Suppose there are L ∈ L4 and x ∈ N(SL) such that x /∈ TL. Then by (A) there is a path

x− y − z with |L(y)| = 3 and z /∈ SL. Clearly y and z are anticomplete to SL. Let L′ = Pred(L)

and L′′ = Pred(L′). Choose an induced path P from x to N(SL′′) with all vertices but x in SL,

say it ends in x′′ ∈ N(SL′′). By Claim 4, N(SL′′) ⊆ SL′ ∪ TL′ . On the other hand, as TL′ ∩ SL = ∅,

x′′ ∈ SL′ . In particular, x 6= x′′.

Let x1 be the neighbor of x in P . Since x 6∈ SL ∪TL, by Claim 4, x1 ∈ SL \SL′ . As the subpath

of P from x1 to x′′ goes from SL \ SL′ to SL′ , it contains a vertex x′ in N(SL′). The vertex x′ may

be x1, but x′ is di�erent from x′′ because x′′ ∈ SL′ . As x′ is in the subpath from x1 to x′′, x′ 6= x.

Summing up, x, x′ and x′′ are three distinct vertices, and so P together with the path x − y − z

and the path provided by Claim 2 for x′′ gives a path on at least 7 vertices, a contradiction.

By Claim 3, (G,L2) is colorable if and only if (G,L) is colorable for some L ∈ L4. For each

L ∈ L4 our aim is to check whether there is a coloring of (G,L). This we will do, after some more
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discussion, with the help of Lemma 3.2.1 below. So from now on, let L ∈ L4 be �xed. Let X be the

set of all vertices in V (G) \ SL with lists of size 1, and set Y = V (G) \ (SL ∪X). By construction,

|L(y)| = 3 for each y ∈ Y .

By Claim 5, no vertex of N(SL) is the starting point of an induced path x− y − z with y ∈ Y

and z ∈ X ∪ Y . In other words, for each y ∈ Y , all edges between N(y) ∩ SL and N(y) \ SL are

present.

Now we intersect L with the given input list system L∗, and then update. Let L′ be the resulting

list system. We may assume that |L′(v)| ≥ 1 for all v ∈ V (G), otherwise we may safely report that

(G,L′) is not colorable, and thus L does not lead to a feasible coloring of (G,L∗). Let Y ′ be the

set of vertices y of Y such that |L′(y)| = 3. We noticed that for each y ∈ Y , all the edges between

N(y) ∩ SL and N(y) \ SL are present. Since Y ′ is a subset of the vertices v such that |L∗(v)| = 3

and we have applied the neighborhood reduction at the beginning of the algorithm and the graph

did not change, for y ∈ Y ′ one of the sets N(y) ∩ SL or N(y) \ SL must be empty. Since SL ⊇ S2

is a dominating set, we conclude that N(y) \ SL = ∅, and thus

N(y) ⊆ SL for each y ∈ Y ′. (3.2)

Consider the set S′ of all vertices that are connected to SL by a (possibly trivial) path containing

only vertices with lists L′ of size 1. Note that S′ is a seed. In particular, SL ⊆ S′ and by (3.2), we

have N(y) ⊆ S′ for every y ∈ Y ′. That is, Y ′ is a stable set anticomplete to V (G) \ (S′ ∪ Y ′).

We are now in a situation where the following lemma applies, solving the remaining problem.

3.2.1. Let G be a connected P7-free graph with a list system L. Let S be a seed of G such that if

v ∈ S and w ∈ N(S) are adjacent, then they do not share list entries. Assume that the set X of

vertices having lists of size 3 is stable and anticomplete to V (G) \ (S ∪ X). Assume also that no

vertex in X has a connected neighborhood. Then we can decide whether G has a coloring for L in

O(|V (G)|9(|V (G)|+ |E(G)|)) time.

The next subsection is devoted to the proof of Lemma 3.2.1. Since we have |L4| = O(|V (G)|12)

many lists to consider, and need to apply Lemma 3.2.1 to each of these, the total running time of

the whole algorithm amounts to O(|V (G)|21(|V (G)|+ |E(G)|)).
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3.2.1 Proof of Lemma 3.2.1

Let G, L, S and X be as in the statement of Lemma 3.2.1.

In this proof we make extensive use of the concept of monochromatic set constraints as de�ned

in Section 3.1. Note that (G,L) is colorable if and only if the triple (G,L, ∅) is colorable. Our aim

is to de�ne a set R of restrictions of (G,L, ∅) with the property that in any element of R there are

no vertices with list of size 3, and (G,L, ∅) is colorable if and only if R is colorable. Moreover, R

has polynomial size and is computable in polynomial time.

If X = ∅, we simply let R = {(G,L, ∅)}. Otherwise, for all i = 1, 2, 3, let Di be the set of

vertices v ∈ N(S) with L(v) = {1, 2, 3} \ {i}, and for x ∈ X, let Ni(x) = N(x) ∩Di, for i = 1, 2, 3.

Observe that, under the hypothesis of Lemma 3.2.1, for every d ∈ Di and for every s ∈ S ∩N(d),

we have L(s) = {i}. By the same hypothesis, no vertex of X has neighbors in S.

If N(x) ⊆ Di for some x ∈ X and some i ∈ {1, 2, 3}, then setting L(x) = {i} does not change

the colorability of (G,L, ∅), so we may assume that for every x ∈ X at least two of the sets

N1(x), N2(x), N3(x) are non-empty. Let X1 be the set of vertices x ∈ X for which N2(x) is not

complete to N3(x); for every x ∈ X1 �x two vertices n2(x) ∈ N2(x) and n3(x) ∈ N3(x) such that

n2(x) is non-adjacent to n3(x). De�ne similarly X2 and n1(x), n3(x) for every x ∈ X2, and X3 and

n1(x), n2(x) for every x ∈ X3. Since no vertex of X has a connected neighborhood and X is a stable

set and anticomplete to V (G) \ (S ∪X), it follows that X = X1 ∪X2 ∪X3.

Before we state the coloring algorithm, we need some auxiliary statements. For a path P with

ends u, v let P ∗ = V (P ) \ {u, v} denote the interior vertices of P .

(1) Let i, j ∈ {1, 2, 3}, i 6= j, and let ui, vi ∈ Di and uj , vj ∈ Dj, such that {ui, vi, uj , vj} is a stable

set. Then there exists an induced path P with ends a, b ∈ {ui, vi, uj , vj} such that

(a) {a, b} 6= {ui, uj} and {a, b} 6= {vi, vj},

(b) P ∗ is contained in S and, in particular, |L(v)| = 1 for every v ∈ P ∗, and

(c) P ∗ is anticomplete to {ui, vi, uj , vj} \ {a, b}.

Proof. Note that each of ui, uj , vi, vj has a neighbor in S, and G[S] is connected. Let P be an

induced path with P ∗ ⊆ S that connects ui with vi. If P is not as desired, at least one of uj , vj

has a neighbor on P . Let p be the neighbor of uj or vj on P that is closest to vi; by symmetry we

may assume p is a neighbor of uj . Note that p is not adjacent to ui, vi ∈ Di, because p is already
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adjacent to uj ∈ Dj . Hence, if uj − p − P − vi is not as desired, then vj must have a neighbor on

p − P − vi. Among all such neighbors, let p′ be the one that is closest to p (possibly p′ = p). As

before, p′ is not adjacent to any of ui, vi ∈ Di, and thus, uj −p−P −p′− vj is the desired path.

(2) Let {i, j, k} = {1, 2, 3}. Let x, y ∈ Xi, let nj ∈ Nj(x) and nk ∈ Nk(x) such that nj is non-

adjacent to nk. Then there is an edge between {x, nj , nk} and {y, nj(y), nk(y)}.

Proof. Assume there is no such edge. Then in particular, vertices nj , nj(y), nk, nk(y) are distinct,

and we can apply Claim 1 to obtain a path P with P ∗ ⊆ S that connects two vertices from

{nj , nj(y), nk, nk(y)} in way that P ∗, together with nj − x − nk and nj(y) − y − nk(y), forms an

induced path of length at least 7, a contradiction.

Next we distinguish between several types of colorings of G, and show how to reduce the list

sizes assuming that a coloring of a certain type exists. For this, let {i, j, k} = {1, 2, 3}. We call a

coloring c of a restriction (G′, L′, Z ′) of (G,L,Z)

(A) a type A coloring with respect to i if there exists an induced path nj − x − nk − z −mj with

x, z ∈ Xi, nj ∈ Nj(x), mj ∈ Nj(z), and nk ∈ Nk(x) ∩Nk(z) such that c(nj) = i, c(x) = j and

c(z) = k (this implies c(nk) = c(mj) = i), or the same with the roles of j and k reversed;

(B) a type B coloring with respect to i if it is not a type A coloring with respect to i, and there

exists an induced path x−nk−z−mj with x, z ∈ Xi∩V (G′), mj ∈ Nj(z), nk ∈ Nk(x)∩Nk(z)

such that c(x) = j and c(z) = k (this implies c(nk) = c(mj) = i), or the same with the roles of

j and k reversed;

(C) a type C coloring with respect to i if it is not a type A or type B coloring, and there exist

z ∈ Xi ∩ V (G′), mj ∈ Nj(z) and nk ∈ Nk(z) such that c(mj) = c(nk) = i.

We will show in Claim 3 how to re�ne the instances to test if a graph admits a type A coloring

with respect to a color i; in Claim 4 how to re�ne the instances to test if a graph admits a type

B coloring with respect to i under the assumption that it does not admit a type A coloring with

respect to i; in Claim 5 how to re�ne the instances to test if a graph admits a type C coloring with

respect to i under the assumption that it does not admit a type A or type B coloring with respect to

i; �nally, in Claim 6 we show how to re�ne the instances to test if a graph admits a coloring under
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the assumption that it does not admit a type A, or type B, or type C coloring with respect to i.

After the claims, we describe how to combine them in order to obtain the desired list of restrictions

of the original instance.

(3) Let (G′, L′, Z ′) be a restriction of (G,L,Z). There exists a set Li of O(|V (G)|3) subsystems of

L′ such that

(a) |L′′(v)| ≤ 2 for every L′′ ∈ Li and v ∈ Xi ∩ V (G′), and

(b) (G′, L′, Z ′) admits a type A coloring with respect to i if and only if (G′,Li, Z ′) is colorable.

Moreover, Li can be constructed in O(|V (G)|4) time.

Proof. For every x, z ∈ Xi ∩ V (G′) and nj ∈ Nj(x) for which there are nk ∈ Nk(x) ∩ Nk(z) and

mj ∈ Nj(z) such that nj−x−nk−z−mj is an induced path, we construct a list system L′′ = Lx,z,nj

depending on x, z, nj ; for the same case with triples x, z ∈ Xi ∩V (G′), nk ∈ Nk(x), and the roles of

j and k reversed, we construct in an analogous way a list system L′′ = L′x,z,nk depending on x, z, nk.

The set Li will be the set of all list systems L′′ obtained in this way. So the number of list systems

in Li is O(|V (G)|3).

For x, z, nj as above (we will assume the �rst case in the de�nition, the other case is analogous),

we de�ne L′′ by setting L′′(x) = {j}, L′′(z) = {k}, L′′(nj) = {i}, and leaving L′′(v) = L′(v)

for all v ∈ V (G′) \ {x, z, nj}. Update Nj(z) from z, and Nk(x) from x. Let nk and mj be such

that nk ∈ Nk(x) ∩ Nk(z), mj ∈ Nj(z), and nj − x − nk − z −mj is an induced path. Note that

after updating, L′′(nk) = L′′(mj) = {i}. Now, for each vertex v ∈ Dj ∪ Dk that has a neighbor

v′ ∈ {x, z, nj , nk,mj}, update v from each such neighbor v′. Next, for every vertex y ∈ Xi ∩ V (G′),

if nj(y) or nk(y) now has list size 1, then update y from both nj(y) and nk(y), and also update y

from mj , nj and nk in the case that y is adjacent to any of them. Call the obtained list system L′′

(slightly abusing notation). By the way we updated, it only takes O(|V (G)|) time to compute this

list system. The total time for constructing all list systems for Li thus amounts to O(|V (G)|4).

In order to see Claim 3 (a), we need to show that |L′′(y)| ≤ 2 for all y ∈ Xi ∩ V (G′). For

contradiction, suppose |L′′(y)| = 3 for some y ∈ Xi ∩ V (G′). By Claim 2, there must be edges

between {x, nj , nk} and {y, nj(y), nk(y)}, and also between {z,mj , nk} and {y, nj(y), nk(y)}. By

the way we updated L′′, the only possibly edges between these sets are those connecting nj(y) with

x, and nk(y) with z. Consequently, nj(y)x and nk(y)z are both edges, and so mj − z−nk(y)− y−

nj(y)− x− nj is a P7, a contradiction.
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For Claim 3 (b), �rst note that by construction, if (G′,Li, Z ′) is colorable then (G′, L′, Z ′) has

a type A coloring with respect to i. On the other hand, if c is a type A coloring of (G′, L′, Z ′) with

respect to i, then there is an induced path nj − x − nk − z −mj with x, z ∈ Xi, nj ,mj ∈ Nj(x),

and nk ∈ Nk(x) such that c(nj) = c(mj) = c(nk) = i, c(x) = j, and c(z) = k (or the same with

the roles of j and k reversed). Since updating does not change the set of possible colorings for a

list, c is a coloring for the list L′′ = Lx,z,nj (respectively, L′′ = Lx,z,nk). So Li is as required for

Claim 3 (b).

(4) Let (G′, L′, Z ′) be a restriction of (G,L,Z) that does not admit a type A coloring. There exists

a set Li of O(|V (G)|2) subsystems of L′ such that

(a) |L′′(v)| ≤ 2 for every L′′ ∈ Li and v ∈ Xi ∩ V (G′), and

(b) (G′, L′, Z ′) admits a type B coloring with respect to i if and only if (G′,Li, Z ′) is colorable.

Moreover, Li can be constructed in O(|V (G)|3) time.

Proof. For every x, z ∈ Xi ∩ V (G′) for which there exist nk ∈ Nk(x) ∩Nk(z) and mj ∈ Nj(z) such

that x− nk − z−mj is an induced path, we construct a list system L′′ = Lx,z, depending on x and

z. For the case with the roles of j and k reversed, we construct analogously a list system L′′ = L′x,z.

The set Li will be the set of all list systems L′′ obtained in this way. So the number of list systems

in Li is O(|V (G)|2).

Given a pair of vertices x, z in Xi ∩ V (G′) satisfying the hypothesis, let nk and mj such that

nk ∈ Nk(x) ∩Nk(z), mj ∈ Nj(z), and x− nk − z −mj is an induced path. Let M be the set of all

n ∈ Nj(x) for which n− x− nk − z −mj is an induced path.

De�ne L′′ by setting L′′(x) = {j}, L′′(z) = {k}, L′′(nk) = L′′(mj) = {i}, and L′′(n) = {k} for

all n ∈M , and leaving L′′(v) = L′(v) for all v ∈ V (G′) \ ({x, z, nk,mj} ∪M). Now, for each vertex

v ∈ Dj ∪Dk that has a neighbor v′ in {x, z,mj , nk}, update v from each such neighbor v′. Next, for

every vertex y ∈ Xi ∩ V (G′), if nj(y) or nk(y) now has list size 1, then update y from both nj(y)

and nk(y), and also update y from mj and nk in the case that y is adjacent to either of them. Call

the obtained list system L′′. Note that by the way we updated, it takes O(|V (G)|) time to compute

this list system. The total time for constructing all list systems for Li thus amounts to O(|V (G)|3).

In order to see Claim 4 (a), we need to show that |L′′(y)| ≤ 2 for all y ∈ Xi ∩ V (G′). For

contradiction, suppose |L′′(y)| = 3 for some y ∈ Xi ∩ V (G′). Then nj(y) 6∈ M ∪ {mj} and
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nk(y) 6= nk. By Claim 2, it follows that nk(y) is adjacent to z, and by the way we updated L′′, the

only other possible edge between {x, nk, z,mj} and {y, nj(y), nk(y)} would be xnj(y). However,

since nj(y) 6∈M , we deduce that nj(y) is non-adjacent to x. Let s be a neighbor of nj(y) in S with

L(s) = {j}. Then s is anticomplete to {nk, x, y, z, nk(y)}. So x− nk − z − nk(y)− y − nj(y)− s is

a P7, a contradiction.

For Claim 4 (b), note that by construction, if (G′,Li, Z ′) is colorable then (G′, L′, Z ′) has a

type B coloring with respect to i. On the other hand, if c is a type B coloring of (G′, L′, Z ′) with

respect to i, then there is an induced path x − nk − z − mj with x, z ∈ Xi, mj ∈ Nj(x), and

nk ∈ Nk(x) ∩ Nk(z) such that c(mj) = c(nk) = i, c(x) = j, and c(z) = k (or the same with the

roles of j and k reversed). Since c is not a type A coloring, it follows that c(v) = k for all v in M .

Since updating does not change the set of possible colorings for a list, c is a coloring for L′′ = Lx,z.

So Li is as required for Claim 4 (b).

(5) Let (G′, L′, Z ′) be a restriction of (G,L,Z) that does not admit a type A or type B coloring.

There exists a set Li of O(|V (G)|2) subsystems of L′ such that

(a) |L′′(v)| ≤ 2 for every L′′ ∈ Li and v ∈ Xi ∩ V (G′), and

(b) (G′, L′, Z ′) admits a type C coloring with respect to i if and only if (G′,Li, Z ′) is colorable.

Moreover, Li can be constructed in O(|V (G)|4) time.

Proof. For every z ∈ Xi ∩ V (G′) having non-adjacent neighbors mj ∈ Nj(z) and nk ∈ Nk(z), we

construct two families of list systems, one for each of the possible colors j, k of z in a type C coloring,

z, mj , nk are as in the de�nition of a type C coloring. We only describe how to obtain the family of

list systems L′′ with L′′(z) = {k}; the de�nition of the family of list systems L′′ with L′′(z) = {j}

is analogous, with the roles of j and k reversed.

Let Nz be the set of vertices nk in Nk(z) having a non-neighbor in Nj(z). For each such

vertex nk, let W = Wz,nk be the set of all w ∈ Xi ∩ V (G′) such that there exists an induced path

w − nk − z −mj with mj ∈ Nj(z). We will order the vertices of Nz non-increasingly by |W |. We

can compute and sort the vertices of Nz in O(|V (G)|3) time.

For each nk ∈ Nz, de�ne L′′ = Lz,nk by setting L′′(z) = L′′(w) = {k} for all w ∈ W , L′′(nk) =

{i}, L′′(n′k) = {j} for every n′k ∈ Nz having an index lower than the index of nk in Nz, and leaving

L′′(v) = L′(v) for all the remaining vertices. Update each vertex of Nj(z) from z. Now, for each
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vertex v that has a neighbor in {z}∪Nk(z)∪Nj(z)∪W , update v from each such neighbor v′. Next,

for every vertex y ∈ Xi∩V (G′), if nj(y) or nk(y) now has list size 1, then update y from both nj(y)

and nk(y). Call the obtained list system L′′. Note that by the way we updated, it takes O(|V (G)|2)

time to compute this list system. The number of list systems Lz,nk is O(|V (G)|2), and the same

for the case with the roles of j and k reversed. Then Li, the set of all list systems obtained in this

way, has cardinality O(|V (G)|2), and can be constructed in O(|V (G)|4) time. We may assume that

|L′′(v)| ≥ 1 for all v ∈ V (G′), otherwise we detect that the list system L′′ does not lead to a feasible

solution to L′.

In order to see Claim 5 (a), we need to show that |L′′(y)| ≤ 2 for all y ∈ Xi ∩ V (G′). For

contradiction, suppose |L′′(y)| = 3 for some y ∈ Xi ∩ V (G′). Let mj be a non-neighbor of nk in

Nj(z). Note that by the way we updated, L′′(mj) = {i}. Claim 2 guarantees an edge between

{z,mj , nk} and {y, nj(y), nk(y)}. By the way we updated L′′, nj(y) 6= mj , nk(y) 6= nk, z is not

adjacent to nj(y), and there is no edge between {mj , nk} and {y, nj(y), nk(y)}. So z is adjacent

to nk(y). Since nk(y) is not adjacent to mj , nk(y) belongs to Nz, and as it has two colors in its

list L′′, its index is greater than the index of nk in Nz. As y is adjacent to nk(y) and not to

{mj , nk}, y ∈Wz,nk(y) \Wz,nk . Since |Wz,nk | ≥ |Wz,nk(y)|, there is a vertex x ∈Wz,nk \Wz,nk(y). By

de�nition, L′′(x) = {k}, thus x is not adjacent to {y, nj(y)}. Let s be a neighbor of nj(y) in S with

L(s) = {j}. Then s is anticomplete to {nk, x, y, z, nk(y)}. So x− nk − z − nk(y)− y − nj(y)− s is

a P7, a contradiction.

For Claim 5 (b), note that by construction, if (G′,Li, Z ′) is colorable then (G′, L′, Z ′) has a

type C coloring with respect to i. On the other hand, if c is a type C coloring of (G′, L′, Z ′) with

respect to i, then there is a path nk − z − mj with z ∈ Xi ∩ V (G′), mj ∈ Nj(z), nk ∈ Nk(z),

and c(mj) = c(nk) = i. Assume c(z) = k (the case c(z) = j is analogous), and consider the path

nk − z−mj that minimizes the index of nk in Nz. Since c(m′j) = i for every m′j in Nj(z), it follows

that c(n′k) = j for every n′k ∈ Nz having a lower index than the index of nk in Nz.

Since c is not a type A or B coloring, for every vertex w ∈ Wz,nk we have c(w) = c(z) = k.

Since updating does not change the set of possible colorings for a list, c satis�es the list system

L′′ = Lz,nk . So Li is as required for Claim 5 (b).

(6) Let (G′, L′, Z ′) be a restriction of (G,L,Z). Assume that (G′, L′, Z ′) does not admit a type A,

type B, or type C coloring with respect to i (i.e., no coloring with a vertex x of Xi ∩ V (G′) having
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neighbors colored i both in Nj(x) and Nk(x)). Let Yi be the set of vertices x ∈ Xi ∩ V (G′) such

that Ni(x) = ∅, and let Zi =
⋃
y∈Yi{Nj(y), Nk(y)}. Then (G′, L′, Z ′) is colorable if and only if

(G′ \ Yi, L′, Z ′ ∪ Zi) is colorable, and any 3-coloring of (G′ \ Yi, L′, Z ′ ∪ Zi) can be extended to a

3-coloring of (G′, L′, Z ′) in O(|V (G)|) time.

Proof. It is enough to prove that for every coloring c of (G′, L′, Z ′) and every x ∈ Xi ∩ V (G′) such

that Ni(x) = ∅, the sets Nj(x) and Nk(x) are monochromatic with respect to c. Supposing this

is false, we may assume that for some coloring c there are vertices u, v ∈ Nj(x) with c(u) = i and

c(v) = k. Since there are no type A or type B colorings and c is not of type C, it follows that

c(w) = j for every w ∈ Nk(x). But then x has neighbors of all three colors, contrary to the fact

that c is a coloring.

Let Z = ∅. Recall that our aim was to de�ne a setR of restrictions of (G,L,Z) with the property

that in any element of R there are no vertices with list of size 3, and such that (G,L,Z) is colorable

if and only if R is colorable. We now construct R as follows. Apply Claims 3, 4, 5 and 6 with i = 1

to (G,L,Z) to create sets R2, . . . ,R5, each consisting of O(|V (G)|3) restrictions of (G,L,Z). For

every x ∈ X1 and every (G′, L′, Z ′) ∈ R2∪R3∪R4, we have that |L′(x)| ≤ 2. For (G′, L′, Z ′) ∈ R5,

if x ∈ X1 and |L′(x)| = 3, then Nj(x) 6= ∅ for every j ∈ {1, 2, 3}. Repeat this with i = 2 for every

restriction in R2∪R3∪R4∪R5, and then again with i = 3 for every restriction obtained with i = 2.

This creates a set R′ of O(|V (G)|9) restrictions. Finally, we construct R from R′ by removing all

restrictions that still contain lists which have size three for some vertex. Following Claims 3, 4, 5

and 6, the whole computation can be done in O(|V (G)|9 · |V (G)|) = O(|V (G)|10) time.

Let us say that x ∈ X is wide if N1(x) 6= ∅, N2(x) 6= ∅ and N3(x) 6= ∅. Due to the construction

of R′ it holds that if |L′(x)| = 3 for some (G′, L′, Z ′) ∈ R′, then x is wide.

It remains to show that (G,L,Z) is colorable if and only if R is colorable. By Claims 3, 4, 5

and 6, we know that if R is colorable then (G,L,Z) is colorable. Now assume that (G,L,Z) is

colorable, and let c be a coloring of (G,L,Z). Consider any wide vertex x. Since the neighborhood

of x can only have two distinct colors in total, there are two vertices nj ∈ Nj(x) and nk ∈ Nk(x)

such that c(nj) = c(nk) = i, for some distinct j, k ∈ {1, 2, 3}. Then c is a type A, type B, or type

C coloring with respect to i. Consequently, by Claims 3, 4, 5, there is a restriction (G′, L′, Z ′) ∈ R′

that is colorable, and where for every wide vertex y ∈ X∩V (G′) it holds that |L′(y)| ≤ 2. Therefore
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(G′, L′, Z ′) ∈ R.

We now come to the running time analysis. Using Lemma 3.1.3, we can check in O(|V (G)| +

|E(G)|) time whether a given restriction (G′, L′, Z ′) of (G,L,Z) is colorable. Since we have

O(|V (G)|9) many restrictions to consider, and these can be computed in O(|V (G)|10) time, the

total running time amounts to O(|V (G)|9(|V (G)|+ |E(G)|)). This completes the proof.
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Chapter 4

Obstructions for three-coloring and list

three-coloring H-free graphs

4.1 Introduction

A graph is 4-vertex-critical H-free if it has no induced subgraph isomorphic to H, not 3-colorable,

but all its proper induced subgraphs are 3-colorable. In [10], we proved the following theorem,

solving a problem posed by Golovach et al. [24] and answering a question of Seymour [53] (see

Chapter 2 for formal de�nitions).

4.1.1 (Chudnovsky et al. [10]). Let H be a connected graph. There are only �nitely many 4-vertex-

critical H-free graphs if and only if H is an induced subgraph of P6.

In view of our result, Golovach et al. [24] posed the problem of extending the above theorem to

a complete dichotomy for arbitrary graphs H. While this seems to be an incremental question at

�rst sight, it requires entirely di�erent machinery to be settled.

A second natural generalization of Theorem 4.1.1 is to go from 4-vertex critical graphs to minimal

obstructions to list 3-colorability. This more technical generalization is motivated, among other

things, by a theorem of Jansen and Kratsch [33], that says that if there is a �nite list of H-free

minimal obstructions to list-3-colorability, then a polynomial kernelization of the 3-coloring problem

exists when parameterized by the number of vertices needed to hit all induced copies of H. This

application is outside of the scope of this thesis, and so we skip the precise de�nitions.
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In this chapter, We answer both questions mentioned above. We obtain the following dichotomy

theorem which now fully settles the problem of characterizing all graphs H for which there are only

�nitely many 4-vertex-critical H-free graphs.

4.1.2. Let H be a graph. There are only �nitely many H-free 4-vertex-critical graphs if and only if

H is an induced subgraph of P6, 2P3, or P4 + kP1 for some k ∈ N.

The tools used in [10] to prove Theorem 4.1.1 were tailored speci�cally for the P6-free case and

do not generalize well, while our new approach is signi�cantly more powerful. The idea is to transfer

the problem to the more general list setting and solve it there, showing that there is a constant C

such that minimal obstructions have bounded size at most C. This generality comes at a certain

cost: the upper bound we get is far from sharp.

Our second main result is the analogue of Theorem 4.1.2 in the list setting. Recall that we say

a pair (G,L) with L(v) ⊆ {1, 2, 3}, v ∈ V (G), a minimal list-obstruction if (G,L) is not colorable

but for all proper induced subgraphs A of G the pair (A,L) is colorable. Here and throughout

the thesis, if H is an induced subgraph of G, then by (H,L) we mean H with the list system L

restricted to V (H). We prove the following theorem.

4.1.3. Let H be a graph. There are only �nitely many H-free minimal list-obstructions if and only

if H is an induced subgraph of P6, or of P4 + kP1 for some k ∈ N.

Note that there are in�nitely many 2P3-free minimal list-obstructions while there are only �nitely

many 4-vertex-critical 2P3-free graphs. Thus, Theorem 4.1.2 is not a special case of Theorem 4.1.3.

Moreover, the fact that there are only �nitely many P6-free minimal list-obstructions does not follow

from Theorem 4.1.1.

4.1.1 Structure of this Chapter

In Section 4.2 we develop the concept of the so-called propagation path, which is the main tool in

showing that there are only �nitely many H-free minimal list-obstructions (for the right choices of

H) with lists of size at most 2. In particular, we show that for every minimal list-obstruction with

lists of size at most 2, we can delete at most four vertices so that what remains is the union of four

propagation paths.
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In Section 4.3 we prove that there are only �nitely many P6-free minimal list-obstructions. We

split the proof into two parts. In the �rst part we show that there are only �nitely many P6-free

minimal list-obstructions where every list is of size at most 2, which amounts to studying P6-free

propagation paths. This step has a computer-aided proof. We also have a computer-free proof of

this fact, but it is tedious, and we decided to only include a sketch of it. In the second part of the

proof we reduce the general problem to the case solved in the �rst part. Here we rely on a structural

analysis, making use of a structure theorem for Pt-free graphs.

Using a similar approach, in Section 4.4 we prove that there are only �nitely many 2P3-free

4-vertex-critical graphs (of course, certain modi�cations are needed, because the list version is false

in this case). In Section 4.5 we show that there are only �nitely many P4 + kP1-free minimal

list-obstructions.

In Section 4.6 we prove the necessity in the statement of Theorem 4.1.2 and Theorem 4.1.3,

providing in�nite families of H-free 4-vertex-critical graphs and minimal list-obstructions.

Our main results are proven in Section 4.7 where we put together the results mentioned above.

4.2 Obstructions with lists of size at most two

The aim of this section is to provide an upper bound on the order of the H-free minimal list-

obstructions in which every list has at most two entries. Let us stress the fact that we restrict our

attention to lists which are (proper) subsets of {1, 2, 3}. Before we state our lemma, we need to

introduce the following technical de�nition.

Let (G,L) be a minimal list-obstruction such that |L(v)| ≤ 2 for all v ∈ V (G). Let P = v1-

v2-. . . -vk be a path in G, not necessarily induced. Assume that |L(v1)| ≥ 1 and |L(vi)| = 2 for all

i ∈ {2, . . . , k}. Moreover, assume that there is a color α ∈ L(v1) such that if we give color α to v1

and update along P , we obtain a coloring c of P . Please note that c may not be a coloring of the

graph G|V (P ). For i ∈ {2, . . . , k} with L(vi) = {β, γ} and c(vi) = β we de�ne the shape of vi to be

βγ, and denote it by S(vi). If every edge vivj (of G) with 3 ≤ i < j ≤ k and i ≤ j − 2 is such that

S(vi) = αβ and S(vj) = βγ, (4.1)

where {1, 2, 3} = {α, β, γ}, then we call P a propagation path of G and say that P starts with color

α. As we prove later, (4.1) implies that the updating process from v1 along P to vk cannot be
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shortcut via any edge vivj with 3 ≤ i < j ≤ k and i ≤ j − 2.

The next lemma shows that, when bounding the order of our list-obstructions, we may concen-

trate on upper bounds on the size of propagation paths.

4.2.1. Let (G,L) be a minimal list-obstruction, where |L(v)| ≤ 2 and L(v) ∈ {1, 2, 3} for every

v ∈ V (G). Assume that all propagation paths in G have at most λ vertices for some λ ≥ 20. Then

|V (G)| ≤ 4λ+ 4.

In the next section we prove the above lemma. First we show that if G is a minimal list-

obstruction in which every list contains at most two colors, then V (G) = V1∪V2, where |V1∩V2| ≥ 1,

and for some v ∈ V1 ∩ V2, each G|Vi has a Hamiltonian path Pi starting at v. Moreover, if

L(v) = {c1, c2}, then for every i ∈ {1, 2} giving v the color ci and updating along Pi, results in a

pair of adjacent vertices of G receiving the same list of size one. Then we prove that the edges of

G that are not the edges of P1, P2 are signi�cantly restricted, and consequently each Pi is (almost)

the union of two propagation paths, thus proving the lemma.

4.2.1 Proof of Lemma 4.2.1

Let (G = (V,E), L) be a minimal list-obstruction such that |L(v)| ≤ 2 and L(v) ⊆ {1, 2, 3} for all

v ∈ V . If there is a vertex with an empty list, then this is the only vertex of G and we are done.

So, we may assume that every vertex of G has a non-empty list. Let V1 = {v ∈ V : |L(v)| = 1} and

V2 = {v ∈ V : |L(v)| = 2}.

(1) Let x ∈ V and α ∈ L(x) be arbitrary. Assume we give color α to x and update exhaustively

in the graph (G|(V2 ∪ {x}), L). Let c be partial coloring thus obtained. For each y ∈ V1 that did

not receive a color so far, let c(y) be the unique color in L(y). Then there is an edge uv such that

c(u) = c(v).

Proof. Let us give color α to x and update exhaustively, but only considering vertices and edges in

the graph (G|(V2 ∪ {x}), L). We denote this partial coloring by c. For each y ∈ V1 that did not

receive a color so far, let c(y) be the unique color in L(y). For a contradiction, suppose that this

partial coloring c is proper.

Since G is an obstruction, c is not a coloring of G, meaning there are still vertices with two

colors left on their list. We denote the set of these vertices by U . By minimality of G, we know
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that both graphs (G′, L′) := (G \ U,L) and (G′′, L′′) := (G|(U ∪ V1) \ x, L) are colorable and have

at least one vertex.

Let c′ be the coloring of G′ such that c′(u) = c(u) for all u ∈ V (G′), and let c′′ be a coloring

of G′′. It is clear that c′ and c′′ agree on the vertices in V (G′) ∩ V (G′′) = V1 \ {x}. Moreover, if

v ∈ (V2 \ U) ∪ {x} and u ∈ U such that uv ∈ E(G), then c(v) 6∈ L(u). Since c′(v) = c(v) for every

v ∈ V (G′), we deduce that c′(v) 6= c′′(u) for every uv ∈ E(G) with u ∈ U and v ∈ (V2 \ U) ∪ {x}.

Consequently, we found a coloring of (G,L), a contradiction.

(2) It holds that |V1| ≤ 2.

Proof. Suppose that |V1| ≥ 3, and let x ∈ V1 and α ∈ L(x). Let us give color α to x and update

exhaustively, but only considering vertices and edges in the graph (G|(V2∪{x}), L). We denote this

partial coloring by c.

Since G is minimal, there is no edge uv with u, v ∈ V2 ∪ {x} and c(u) = c(v). Since (G|(V1 \

{x}), L) is colorable by the minimality of G, and since |L(v)| = 1 for every v ∈ V1 \ {x}, it follows

that there is an edge uv with u ∈ V2 ∪ {x} and v 6∈ V2 ∪ {x} such that L(v) = {c(u)}. It follows

that (G|(V2 ∪ {x, v}), L) is not colorable, and so by the minimality of G, V1 = {x, v}, as required.

This proves the �rst claim.

Next we prove that, loosely speaking, G is the union of at most two paths, starting at a com-

mon vertex, updating along each of which yields an improper partial coloring. Depending on the

cardinality of V1, we arrive at three di�erent situations which are described by the following three

claims.

(3) Assume that |V1| = 0, and pick x ∈ V arbitrarily. Let us say that L(x) = {1, 2}. For α = 1, 2

there is a path Pα = vα1 -. . . -v
α
kα
, not necessarily induced, with the following properties.

(a) If we give color α to x and update along Pα, then all vertices of Pα will be colored.

(b) Assume that vαi gets colored in color γi, i = 1, . . . , kα. Then there is an edge of the form vαi v
α
j

with γi = γj.

(c) V = V (P 1) ∪ V (P 2).
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Proof. We give color α to x and update exhaustively from x. According to Claim 1, after some round

of updating an edge appears whose end vertices receive the same color. We then stop the updating

procedure. During the whole updating procedure we record an auxiliary digraph D = (W,A) as

follows. Initially, W = {x} and A = ∅. Whenever we update a vertex u from a vertex v, we add

the vertex u to W and the edge (v, u) to A. This gives a directed tree whose root is x.

We can �nd directed paths R and S in T both starting in x and ending in vertices y and z, say,

such that y and z are adjacent in G and they receive the same color during the updating procedure.

We may assume that R = u1-. . . -uk-v1-. . . -vr and S = u1-. . . -uk-w1-. . . -ws, where R and S share

only the vertices u1, . . . , uk. For each vertex v ∈ V (R) ∪ V (S), let c(v) be the color received by v

in the updating procedure. Moreover, let c′(v) be the unique color in L(v) \ {c(v)}. Observe that,

setting w0 = v0 = uk, we have that c′(wi) = c(wi−1) for every i ∈ {1, . . . , s}, and c′(vi) = c(vi−1)

for every i ∈ {1, . . . , k}.

Consider the following, di�erent updating with respect to x. We again give color α to x, and

then update along R. Now we update ws from vr, thus giving it color c′(ws). This, in turn, means

we can update ws−1 from ws, giving it color c′(ws−1), and so on. Finally, when we update w1 and

it receives color c′(w1), an edge appears whose end vertices are colored in the same color. Indeed,

ukw1 is such an edge since c(uk) = c′(w1). Summing up, the path

Pα = u1-. . . -uk-v1-. . . -vr-ws-ws−1-. . . -w1

starts in x and, when we give x the color α and update along Pα, we obtain an improper partial

coloring. As α ∈ {1, 2} was arbitrary, the assertions (a) and (b) follow.

To see (c), just note that the graph G|(V (P1) ∪ V (P2)) is an obstruction: giving either color

of L(x) to x and updating exhaustively yields a monochromatic edge. By the minimality of G,

G = G|(V (P1) ∪ V (P2)) and so (c) holds.

(4) Assume that |V1| = 1, say V1 = {x} with L(x) = {α}. Then the following holds:

(a) there is a Hamiltonian path P = v1-. . . -vk of G with x = v1;

(b) updating from x = v1 along P assigns a color γi to vi, i = 1, . . . , k; and

(c) there is an edge of the form vivj with γi = γj.
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Proof. We assign color α to x and update exhaustively from x. Let c be the obtained partial

coloring. According to Claim 1, there is an edge uv of G with c(u) = c(v). Since (G,L) is a minimal

obstruction, every vertex of G received a color in the updating process: otherwise, we could simply

remove such a vertex and still have an obstruction.

Repeating the argument from the proof of Claim 3, we obtain a path P that starts in x and,

when we give x color α and update along P , we obtain an improper partial coloring. This proves

(b) and (c). Due to the minimality of (G,L), P is a Hamiltonian path, which proves (a).

(5) Assume |V1| = 2, say V1 = {x, y} with L(x) = {α} and L(y) = {β}. Then the following holds:

(a) there is a Hamiltonian path P = v1-. . . -vk of G with x = v1 and y = vk; and

(b) updating from v1 along P assigns the color β to vk−1.

Proof. We color x with color α and update exhaustively from x, but only considering vertices and

edges of the graph G \ y. Let c be the obtained partial coloring. By minimality, c is proper.

According to Claim 1, there is a neighbor u of y in G with c(u) = β.

Like in the proof of Claim 3 and Claim 4, we see that there is a path P from x to y whose last

edge is uy such that giving color α to x and then updating along P implies that u is colored with

color β, which implies (b). Due to the minimality of (G,L), P is a Hamiltonian path , and thus (a)

holds.

We can now prove our main lemma.

Proof of Lemma 4.2.1. Recall from Claim 2 that |V1| ≤ 2.

Case |V1| = 0. For this case Claim 3 applies and we obtain x, P 1 and P 2 as in the state-

ment of the claim. We may assume that, among all possible choices of x, P 1 and P 2, the value

max{|V (P 1)|, |V (P 2)|} is minimum and, subject to this, min{|V (P 1)|, |V (P 2)|} is minimum.

Let us say that P 1 = v1-v2-. . .-vs, where v1 = x. Consider v1 to be colored in color 1, and

update along P 1, but only up to vs−1. Due to the choice of P 1 and P 2 being of minimum length,

the coloring so far is proper. Now when we update from vs−1 to vs, two adjacent vertices receive

the same color. Let the partial coloring obtained so far be denoted c. Let X be the set of neighbors

w of vs in V (P 1) with c(w) = c(vs), and let r be minimum such that vr ∈ X.
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We claim that s − r ≤ λ. To see this, let c′(vj) be the unique color in L(vj) \ {c(vj)}, for all

j = 1, . . . , s. We claim that the following assertions hold.

(a) c(vj) = c′(vj+1) for all j = r, . . . , s− 1.

(b) For every edge vivj with r ≤ i, j ≤ s− 1 it holds that c(vi) 6= c(vj).

(c) For every edge vivj with r ≤ i, j ≤ s and j − i ≥ 2 it holds that c(vi) 6= c′(vj).

(d) For every edge vivj with r + 2 ≤ i, j ≤ s it holds that c′(vi) 6= c′(vj).

Assertion (a) follows from the fact that P obeys the assertions of Claim 3. For (b), note that the

choice of P1 to be of minimum length implies that until we updated vs, the partial coloring is proper.

To see (c), suppose there is an edge vivj with r ≤ i, j ≤ s and j− i ≥ 2 such that c(vi) = c′(vj).

Then the path P 1 can be shortened to the path v1-. . . -vi-vj-. . . -vs, which is a contradiction.

Now we turn to (d), and consider the following coloring. We color P 1 as before up to vr. Now

we update from vr to vs, giving color c′(vs) to vs. Then we color vs−1 with color c′(vs−1), then vs−2

with color c′(vs−2), and so on, until we reach vr+1. But c′(vr+1) = c(vr) due to (a), which means

that the path Q1 = v1-v2-. . .-vr-vs-vs−1-vs−2-. . .-vr+1 is a choice equivalent to P 1. In particular,

due to the choice of P 1 and P 2, the constructed coloring of Q1 is proper if we leave out vr+1. Hence,

there is no edge vivj with r + 2 ≤ i, j ≤ s such that c′(vi) = c′(vj). This yields (d).

From (a)-(d) it follows that every edge vivj with r + 2 ≤ i < j ≤ s and i ≤ j − 2 is such that

S(vi) = αβ and S(vj) = βγ, (4.2)

where {1, 2, 3} = {α, β, γ}. Consequently, the path vr-. . . -vs−1 is a propagation path. By assump-

tion, |{vr, . . . , vs−1}| ≤ λ and so s− r ≤ λ.

A symmetric consideration holds for P 2. Let us now assume that |V (P 1)| ≥ |V (P 2)|. It remains

to show that r is bounded by some constant. To this end, recall that λ ≥ 20.

Suppose that there is an edge vivj with 3 ≤ i ≤ j ≤ r such that c′(vi) = c′(vj). We then put

x′ = vj , Q1 = vj-. . . -vs, and Q2 = vj-. . . -vi. But this is a contradiction to the choice of x, P 1,

and P 2, as max{|V (Q1)|, |V (Q2)|} < max{|V (P 1)|, |V (P 2)|}. In addition to the assertion we just

proved, which corresponds to assertion (d) above, the assumptions (a)-(c) from above also hold

here, where we replace r by 1 and s by r. Hence, using the same argumentation as above, we see

that r ≤ λ+ 1. Summing up, we have |V | ≤ |V (P 1) ∪ V (P 2)| ≤ 2|V (P 1)| ≤ 4λ+ 2, as desired.
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Case |V1| = 1. Now Claim 4 applies and we obtain the promised path, say P = v1-. . . -vs, with

|L(v1)| = 1. Let us say L(v1) = {1}. Consider v1 to be colored in color 1, and update along P , but

only up to vs−1. Due to the choice of P , the coloring so far is proper. Now when we update from

vs−1 to vs, two adjacent vertices receive the same color. Let the partial coloring obtained so far be

denoted c. Let X be the set of neighbors w of vs on P with c(w) = c(vs), and let r be minimum

such that vr ∈ X. Moreover, let c′(vj) be the unique color in L(vj) \ {c(vj)}, for all j = 2, . . . , s.

Just like in the case |V1| = 0, we obtain the assertions (a)-(d) from above and this implies s−r ≤ λ.

It remains to show that r ≤ λ + 1. To see this, suppose that there is an edge vivj with

2 ≤ i ≤ j ≤ r such that c′(vi) = c′(vj). We then put P 1 = vj-. . . -vs and P 2 = vj-. . . -vi. Now, if

we give color c(vj) to vj and update along P 1 we obtain an improper coloring. Moreover, if we give

color c′(vj) to vj and update along P 2 we also obtain an improper coloring. This means that the

pair (G|(V (P 1) ∪ V (P 2)), L) is not colorable, in contradiction to the minimality of (G,L).

The assertion we just proved corresponds to assertion (d) above, and the assumptions (a)-(c)

also hold here, where we replace r by 1 and s by r. Hence, we know r ≤ λ + 1 and obtain

|V | = |V (P )| ≤ 2λ+ 1.

Case |V1| = 2. Claim 5 applies and we obtain the promised path, say P = v1-. . . -vs, with

|L(v1)| = |L(vs)| = 1. Let us say L(v1) = {α} and L(vs) = {β}. Consider v1 to be colored in color

α, and update along P , but only up to vs−1. Due to the choice of P , the partial coloring so far

is proper. Let the partial coloring obtained so far be denoted c, and put c(vs) = β. We now have

c(vs−1) = c(vs), and this is the unique pair of adjacent vertices of G that receive the same color.

For each j = 2, . . . , s− 1, we denote by c′(vj) the unique color in L(vj) \ {c(vj)}. We will show

that s ≤ λ+ 1. Just like in the cases above the following assertions apply.

(a) c(vj) = c′(vj+1) for all j = 1, . . . , s− 2.

(b) For every edge vivj with 1 ≤ i, j ≤ s− 1 it holds that c(vi) 6= c(vj).

(c) For every edge vivj with 1 ≤ i, j ≤ s− 1 and j − i ≥ 2 it holds that c(vi) 6= c′(vj).

(d) For every edge vivj with 3 ≤ i, j ≤ s− 1 it holds that c′(vi) 6= c′(vj).

Let r′ = 1 and s′ = s−1. As above we see that s′−r′ ≤ λ−1. Hence, s ≤ λ+1. From the fact that
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P is a Hamiltonian path in G we obtain the desired bound |V | = |V (P )| ≤ λ + 1. This completes

the proof.

4.3 P6-free minimal list-obstructions

The aim of this section is to prove that there are only �nitely many P6-free minimal list-obstructions.

In Section 4.3.1 we prove the following lemma which says that there are only �nitely many P6-free

minimal list-obstructions with lists of size at most two.

4.3.1. Let (G,L) be a P6-free minimal list-obstruction for which |L(v)| ≤ 2 and L(v) ⊆ {1, 2, 3}

holds for all v ∈ V (G). Then |V (G)| ≤ 100.

Our proof of this lemma is computer-aided. We also have a computer-free proof, but it is tedious

and complicated, and gives a signi�cantly worse bound on the size of the obstructions, so we will

only sketch the idea of the computer-free proof.

In Section 4.3.3 we solve the general case, where each list may have up to three entries, making

extensive use of Lemma 4.3.1. We prove the following lemma.

4.3.2. There exists an integer C such that the following holds. Let G be a P6-free graph, and let L

be a list system such that L(v) ⊆ {1, 2, 3} for every v ∈ V (G). Suppose that (G,L) is a minimal

list obstruction. Then |V (G)| ≤ C. Consequently, there are only �nitely many P6-free minimal

list-obstructions.

The main technique used in the proof of Lemma 4.3.2 is to guess the coloring on a small set S of

vertices of the minimal list-obstruction at hand, (G,L) say. After several transformations, we arrive

at a list-obstruction (G,L′) where each list has size at most two, and so we may apply Lemma 4.3.1

to show that there is a minimal list-obstruction (H,L′) with a bounded number of vertices induced

by (G,L′). We can prove that G is essentially the union of these graphs H (one for each coloring of

S), and so the number of vertices of G is bounded by a function of the number of guesses we took

in the beginning. Since we precolor only a (carefully chosen) small part of the graph, we can derive

that the number of vertices of G is bounded by a constant.

To �nd the right vertex set to guess colors for, we use a structure theorem for Pt-free graphs [8]

that implies the existence of a well-structured connected dominating subgraph of a minimal list-

obstruction.
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4.3.1 Proof of Lemma 4.3.1

Let (G,L) be a P6-free minimal list-obstruction such that every list contains at most two colors.

Suppose that P = v1-. . . -vk is a propagation path in (G,L). We show that if G is P6-free, then

k ≤ 24. In view of Lemma 4.2.1, this proves that G has at most 100 vertices.

Our proof is computer-aided, but conceptually very simple. The program generates the paths

v1, v1-v2, v1-v2-v3, and so on, lists for each vi, as in the de�nition of a propagation path, and edges

among the vertices in the path. Whenever a P6 or an edge violating condition (4.1) of the de�nition

of a propagation path is found, the respective branch of the search tree is closed. Since the program

does not �nd such a path on 25 vertices (cf. Table 1), our claim is proved.

Vertices 1 2 3 4 5 6 7 8

Propagation paths 1 2 6 22 86 350 1 220 2 656

Vertices 9 10 11 12 13 14 15 16

Propagation paths 4 208 5 360 5 864 5 604 5 686 5 004 4 120 3 400

Vertices 17 18 19 20 21 22 23 24 25

Propagation paths 2 454 1 688 1 064 516 202 72 18 2 0

Table 4.1: Counts of all P6-free propagation paths with lists of size 2 meeting condition (4.1)

generated by Algorithm 1.

The pseudocode of the algorithm is shown in Algorithm 1 and 2. Our implementation of this

algorithm can be downloaded from [21]. Table 4.1 lists the number of con�gurations generated by

our program.

Algorithm 1 Generate propagation paths and lists
1: H = ({v2}, ∅)

2: c(v1) = 1

3: L(v1) = {1}

4: Construct(H, c, L)

// We may assume c(v1) = 1 and L(v1) = {1}.

Next we sketch the idea of the computer-free proof. Let (G,L) be a minimal list obstruction with
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Algorithm 2 Construct(Graph H, coloring c, list system L)
1: j = |V (H)|

2: V (H) = V (H) ∪ {vj+1}

3: E(H) = E(H) ∪ {vjvj+1}

// This extends the path by the next vertex vj+1.

4: for all α ∈ {1, 2, 3} \ {c(vj)} and all I ⊆ {1, 2, . . . , j − 1} do

5: H ′ = H

6: E(H ′) = E(H ′) ∪ {vivj+1 : i ∈ I}

// This adds edges from vj+1 to earlier vertices in all possible ways.

7: c(vj+1) = α

8: L(vj+1) = {α, c(vj)}

9: if (H ′, c, L) is P6-free and satis�es condition (4.1) then

10: Construct(H ′, c, L)

// If the propagation path is not pruned, we extend it further.

11: end if

12: end for

all lists of size at most two, and suppose for a contradiction that there is a (very) long propagation

path P in G. We may assume that G does not contain a clique with four vertices. It follows from

the main result of [20] that G|V (P ) contains a large induced subgraph H, which is a complete

bipartite graph; let (A,B) be a bipartition of H. Using Ramsey's Theorem [48] we may assume

that all vertices of A have the same shape, and all vertices of B have the same shape (by �coloring�

the edges of H by the shapes of their ends). We can now choose a large subset A′ of A all of whose

members are pairwise far apart in P , and such that A′ is far in P from some subset B′ of B. We

analyze the structure of short subpaths of P containing each a ∈ A, and the edges between such

subpaths, and to B′. We can again use Ramsey's Theorem to assume that the structure is the

same for every member of A′ and every member of B′. Finally, we accumulate enough structural

knowledge to �nd a P6 in G, thus reaching a contradiction. If instead of P6 we wanted to use the

same method to produce P5, the argument becomes much shorter, and it was carried out in [60].
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4.3.2 Reducing obstructions

In this section we prove three lemmas which help us reduce the size of the obstructions. These

lemmas will be used in the proofs of Sections 4.3.3 and 4.4.2.

Let (G,L) be a list-obstruction and let R be an induced subgraph of G. Let L be a set of

subsystems of L satisfying the following assertions.

1. For every L′ ∈ L there exists an induced subgraph R(L′) of R such that |L′(v)| = 1 for every

v ∈ V (R(L′)).

2. For each L′ ∈ L, L′(v) = L(v) for v ∈ V (G) \R(L′) and L′(v) ⊆ L(v) for v ∈ R(L′).

3. For every L-coloring c of R there exists a list system L′ ∈ L such that c(v) ∈ L′(v) for every

v ∈ R(L′).

We call L a re�nement of L with respect to R. Observe that {L} with R(L) being the empty graph

is a re�nement of L with respect to G, though this is not a useful re�nement. For each list system

L′ ∈ L it is clear that (G,L′) is again a list-obstruction, though not necessarily a minimal one, even

if (G,L) is minimal.

4.3.3. Assume that (G,L) is a minimal list-obstruction. Let R be an induced subgraph of G, and

let L = {L1, L2, . . . , Lm} be a re�nement of L with respect to R. For every Li ∈ L, let (GLi , Li) be

a minimal obstruction induced by (G,Li).

Then V (G) = R∪
⋃
Li∈L V (GLi). Moreover, if each GLi can be chosen such that |V (GLi\R| ≤ k,

then G has at most |V (R)|+ km vertices.

Proof. Let (Gi, Li|Gi) be a minimal list-obstruction induced by (G,Li) such that |V (Gi)\V (R)| ≤ k,

i = 1, . . . ,m. Suppose for a contradiction that there exists a vertex v in V (G) \ R such that v is

contained in none of the Gi, i = 1, . . . ,m. By the minimality of (G,L), G\{v} is L-colorable. Let c

be an L-coloring of G\{v}. We may assume that c(r) ∈ L1(r) for every r ∈ V (R(L1))∩V (G1). Then

c is a coloring of (G1, L1), which is a contradiction. This proves the �rst assertion of Lemma 4.3.3.

Consequently,

|V (G)| ≤ |
m⋃
i=1

V (Gi)| ≤ |V (R)|+ |
m⋃
i=1

V (Gi \R)|

and the second assertion follows.
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Next we prove a lemma which allows us to update three times with respect to a set of vertices

with lists of size 1.

4.3.4. Let (G,L) be a list-obstruction, and let X ⊆ V (G) be a vertex subset such that |L(x)| = 1 for

every x ∈ X. Let L′ be the list obtained by updating with respect to X three times. Let (G′, L′) be

a minimal list-obstruction induced by (G,L′). Then there exists a minimal list-obstruction induced

by (G,L), say (G′′, L), with |V (G′′)| ≤ 36|V (G′)|.

Proof. Let Y = X1 and Z = X2, as in the de�nition of updating i times. We choose sets R, S, and

T as follows.

• For every v ∈ V (G′)\ (X ∪Y ∪Z), de�ne R(v) to be a minimum subset of (X ∪Y ∪Z)∩N(v)

such that
⋃
s∈R(v) L

′(s) = L(v) \ L′(v), and let R =
⋃
v∈V (G′)\(X∪Y ∪Z)R(v).

• For every v ∈ (V (G′) ∪R) ∩ Z, de�ne S(v) to be a minimum subset of (X ∪ Y ) ∩N(v) such

that
⋃
s∈S(v) L

′(s) = L(v) \ L′(v), and let S =
⋃
v∈(V (G′)∪R)∩Z S(v).

• For every v ∈ (V (G′) ∪ R ∪ S) ∩ Y , de�ne T (v) to be a minimum subset of X ∩ N(v) such

that
⋃
s∈T (v) L

′(s) = L(v) \ L′(v), and let T =
⋃
v∈(V (G′)∪R∪S)∩Y T (v).

Clearly, |R(v)| ≤ 3 for every v ∈ V (G′) \ (X ∪ Y ∪ Z), |S(v)| ≤ 2 for every v ∈ (V (G′) ∪ R) ∩ Z,

and |T (v)| ≤ 2 for every v ∈ (V (G′) ∪ R ∪ S) ∩ Y . Let P = R ∪ S ∪ T ∪ V (G′), and observe that

|P | ≤ (1+3+8+24)|V (G′)| = 36|V (G′)|. It remains to prove that (G|P,L) is not colorable. Suppose

there exists a coloring c of (G|P,L). Then c is not a coloring of (G′, L′), and since V (G′) ⊆ P , it

follows that there exists w ∈ V (G′) such that c(w) 6∈ L′(w). Therefore c(w) ∈ L(w) \ L′(w).

We discuss the case when v ∈ V (G′) \ (X ∪ Y ∪ Z), as the cases of v ∈ (V (G′) ∪ R) ∩ Z and

v ∈ (V (G′) ∪R ∪ S) ∩ Y are similar. We can choose m ∈ R(w) such that L′(m) = {c(w)} and one

of the following holds.

• m ∈ X, and thus L(m) = L′(m) = {c(w)}.

• m ∈ Y , and thus for any i ∈ L(m) \ L′(m) there exists ni ∈ T (m) such that L(ni) = {i}.

• m ∈ Z, and thus for any i ∈ L(m)\L′(m) there exists ni ∈ S(m) such that either L(ni) = {i}

or, for any j ∈ L(ni) \ {i}, there exists lj ∈ T (ni) with L(lj) = {j}.
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In all cases it follows that c(m) = c(w), in contradiction to the fact that m and w are adjacent.

This completes the proof.

Let A be a subset of V (G) and L be a list system; let c be an L-coloring of G|A, and let Lc

be the list system obtained by setting Lc(v) = {c(v)} for every v ∈ A and updating with respect

to A three times; we say that Lc is obtained from L by precoloring A (with c) and updating three

times. If for every c, |Lc(v)| ≤ 2 for every v ∈ V (G), we call A a semi-dominating set of (G,L).

If L(v) = {1, 2, 3} for every v ∈ G and A is a semi-dominating set of (G,L), we say that A is a

semi-dominating set of G. Note that a dominating set is always a semi-dominating set. Last we

prove a lemma for the case when G has a bounded size semi-dominating set.

4.3.5. Let (G,L) be a minimal list-obstruction, and assume that G has a semi-dominating set

A with |A| ≤ t. Assume also that if (G′, L′) is a minimal obstruction where G′ is an induced

subgraph of G, and L′ is a subsystem of L with |L′(v)| ≤ 2 for every v, then |V (G′)| ≤ m. Then

|V (G)| ≤ 36 · 3t ·m+ t.

Proof. Consider all possible L-colorings c1, . . . , cs of A; then s ≤ 3t. For each i, let Li be the list

system obtained by updating with respect to A three times. Then |Li(v)| ≤ 2 for every v ∈ V (G)

and for every i ∈ {1, . . . , s}. Now Lemma 4.3.3 together with Lemma 4.3.4 imply that |V (G)| ≤

36 · 3t ·m+ t. This completes the proof.

4.3.3 Proof of Lemma 4.3.2

We start with several claims that deal with vertices that have a special structure in their neighbor-

hood.

(1) Let G be a graph, and let X ⊆ V (G) be connected. If v ∈ V (G) \X is mixed on X, then there

exist adjacent x1, x2 ∈ X such that v is adjacent to x1 and non-adjacent to x2.

Proof. Since v is mixed on X, both the sets N(v) ∩X and X \N(v) are non-empty, and since X

is connected, there exist x1 ∈ N(v) ∩ X and x2 ∈ X \ N(v) such that x1 is adjacent to x2. This

proves Claim 1.

(2) Let G be a P6-free graph and let v ∈ V (G). Suppose that G|N(v) is a connected bipartite graph

with bipartition (A,B). Let G′ be obtained from G \ (A ∪ B) by adding two new vertices a, b with
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NG′(a) = {b} ∪
⋃
u∈A(NG(u) ∩ V (G′)) and NG′(b) = {a} ∪

⋃
u∈B(NG(u) ∩ V (G′)). Then G′ is

P6-free.

Proof. Suppose Q is a P6 in G. Then V (Q)∩ {a, b} 6= ∅. Observe that if both a and b are in V (Q),

then v 6∈ V (Q). If only one vertex of Q, say q, has a neighbor in {a, b}, say a, then we get a P6

in G by replacing a with a neighbor of q in A, and, if b ∈ V (Q), replacing b with v. Thus we may

assume that two vertices q, q′ of Q have a neighbor in {a, b}. If q and q′ have a common neighbor

u ∈ A ∪ B, then G|((V (Q) \ {a, b} ∪ {u})) is a P6 in G, a contradiction. So no such u exists, and

in particular v 6∈ V (Q). Let Q′ be an induced path from q to q′ with V (Q′) \ {q, q′} ⊆ A∪B ∪ {v},

meeting only one of the sets A,B if possible. Then G|((V (Q) \ {a, b}) ∪ V (Q′)) is a P6 in G, a

contradiction. This proves Claim 2.

In the remainder of this section G is a P6-free graph.

(3) Let (G,L) be a minimal list-obstruction. Let A be a stable set in G. Let U be the set of vertices

of V (G) \A that are not mixed on A, and let k = |V (G) \ (A ∪ U)|. Then |A| ≤ 7× 2k.

Proof. Partition A by the adjacency in V (G) \ (A ∪ U) and by lists; more precisely let A = A1 ∪

A2 ∪ . . . ∪ A7×2k such that for every i and for every x, y ∈ Ai, N(x) \ (A ∪ U) = N(y) \ (A ∪ U)

and L(x) = L(y). Since A is stable and no vertex of U is mixed on A, it follows that for every

x, y ∈ Ai, N(x) = N(y). We claim that Ai ≤ 1 for every i. Suppose for a contradiction that there

exist x, y ∈ Ai with x 6= y. By the minimality of (G,L), G \ x is L-colorable. Since N(x) = N(y)

and L(x) = L(y), we deduce that G is L-colorable by giving x the same color as y, a contradiction.

This proves Claim 3.

(4) Let (G,L) be a minimal list-obstruction. Let H be an induced subgraph of G such that H is

connected and bipartite. Let (A,B) be the bipartition of H, and let u ∈ V (G) be complete to A∪B.

Let U be the set of all vertices in V (H)\(A∪B) that are not mixed on A. Let K = V (G)\(A∪B∪U)

and k = |K|. Then |A| ≤ 7 · 27·2k+k.

Proof. We partition A according to the adjacency in K and the lists of the vertices. More precisely,

let A = A1 ∪A2 ∪ . . . ∪A7·2k such that for any i and for any x, y ∈ Ai, N(x) ∩K = N(y) ∩K and

L(x) = L(y). Analogously, let B = B1 ∪B2 ∪ . . . ∪B7·2k .
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Next, for i = 1, . . . , 7 · 2k, we partition Ai = A1
i ∪ . . . ∪ A7·2k

i according to the sets B1, B7·2k in

which they have neighbors. More precisely, for any t and any x, y ∈ Ati, N(x) ∩Bj 6= ∅ if and only

if N(y) ∩ Bj 6= ∅, j = 1, . . . , 7 · 2k. We partition the sets in B analogously. We claim that Aji ≤ 1.

Suppose that there exist x, y ∈ Aji with x 6= y. Let N = N(x) ∩ B. Let C be the component of

H \ x with y ∈ C. Let N1 be the set of vertices of N whose unique neighbor in H is x, and let

N2 = N \N1.

Suppose �rst that there is a vertex s ∈ N2 \ C. Since y is not dominated by x, there exists

t ∈ (B ∩ N(y)) \ N(x). Since s 6∈ C, it follows that s and t have no common neighbor in H, and

so, since G is P6-free, there is a 5-vertex path Q in H with ends s and t; let the vertices of Q be

q1-. . .-q5, where s = q1 and t = q5. Since s 6∈ C, it follows that q2 = x. Since y-t-q4-q3-x-s is not a

P6 in G, it follows that y is adjacent to q3, and so we may assume that q4 = y. Let p ∈ A \ {x} be

a neighbor of s. Since p-s-x-q3-y-t is not a P6, it follows that p has a neighbor in {t, q3}, contrary

to the fact that s 6∈ C. This proves that N2 ⊆ C.

Observe that C∩N1 = ∅. By the minimality of (G,L), there is a coloring c of (G\(N1∪{x}), L).

Since u is complete to V (C), it follows that C ∩ A and C ∩ B are both monochromatic. We now

describe a coloring of G. Color x with c(y). Let n1 ∈ N1 be arbitrary. Since x, y ∈ Aji , there exists

n′1 in B such that n′1 is adjacent to y, L(n1) = L(n′1), and n1, n
′
1 have the same neighbors in K.

Now color n1 with c(n′1). Repeating this for every vertex of N1 produces a coloring of (G,L) a

contradiction. This proves Claim 4.

(5) There is a function q : N → N such that the following holds. Let (G,L) be a minimal list-

obstruction. Let D1, . . . , Dt be connected subsets of V (G) with the following properties.

• |Di| > 1 for every i,

• D1, . . . , Dt are pairwise disjoint and anticomplete to each other,

• for each i there is a set Ui ⊆ V (G) such that Ui is complete to Di,

• Di is anticomplete to V (G) \ (Ui ∪Di),

• for every i ∈ {1, . . . , t} there is ci ∈ {1, 2, 3} such that c(u) 6= ci for every coloring c of (G,L)

and for every u ∈ Ui, and
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• V (G) 6= D1 ∪ U1.

Then there is an induced subgraph F of G such that V (G) \
⋃t
i=1Di ⊆ V (F ) ⊆ V (G) and a list

system L′ such that

• |L′(v)| ≤ 2 for every v ∈ V (F ) ∩
⋃t
i=1Di,

• L′(v) = L(v) for every v ∈ V (F ) \
⋃t
i=1Di, and

• (F,L′) is a minimal list-obstruction, and |V (G)| ≤ q(|V (F )|).

Proof. Write D =
⋃t
i=1Di. Since V (G) 6= U1 ∪ D1, it follows from the minimality of (G,L) that

(G|(Di∪Ui), L) is colorable for every i, and so each G|Di is bipartite. Let D1
i , D

2
i be the bipartition

of G|Di. Then for every i there is a coloring of (G|Di, L) in which each of the sets D1
i , D

2
i is

monochromatic, and in particular
⋂
d∈Dji

L(d) 6= ∅ for every i ≤ t and j ∈ {1, 2}.

For every i ≤ t and j ∈ {1, 2}, let dji ∈ Dj
i such that d1i is adjacent to d2i . Set L′′(dji ) =⋂

d∈Dji
L(d). Let F ′′ be the graph obtained from G by deleting D\(

⋃m
i=1{d1i , d2i }). Set L′′(v) = L(v)

for every v ∈ V (F ′′) \D.

We may assume that there exists s ∈ {0, 1, . . . , t} such that |L′′(d1i )| = 3 for every i ≤ s, and

that for i ∈ {s+ 1, . . . , t} and j ∈ {1, 2}, |L′′(dji )| ≤ 2.

Let F ′ be obtained from F ′′ by deleting {d11, . . . , d1s}. For i ∈ {1, . . . , s}, let L′(d2i ) = L′′(d1i )\{ci}.

Let L′(v) = L′′(v) for every other vertex of F ′. Then V (G) \ D ⊆ V (F ′), L′(v) = L(v) for every

v ∈ V (F ′) \D, and |L′(v)| ≤ 2 for v ∈ V (F ′) ∩D.

We claim that (F ′, L′) is not colorable. Suppose c′ is a coloring of (F ′, L′). We construct a

coloring of (G,L). Set c(v) = c′(v) for every v ∈ V (G) \D. For i ∈ {1, . . . , t} and for every d ∈ D2
i ,

set c(d) = c′(d2i ). Then c(d) 6= ci if i ≤ s. For i ∈ {1, . . . , s}, set c(d) = ci for every d ∈ D1
i , and for

i ∈ {s+ 1, . . . , t}, set c(d) = c′(d1i ) for every d ∈ D1
i . Now c is a coloring of (G,L), a contradiction.

Let (F,L′) be a minimal obstruction induced by (F ′, L′). We claim that V (G) \ D ⊆ V (F ).

Suppose not, let v ∈ V (G) \ (D ∪ V (F )). It follows from the minimality of G that (G \ v, L) is

colorable. Let c be such a coloring. Set c′(v) = c(v) for every v ∈ V (F ) \ D. Let i ∈ {1, . . . , t}.

If Ui 6= {v}, then each of these sets Ui, D1
i , D

2
i is monochromatic in c. If Ui = {v}, then Di is

anticomplete to V (G) \ (Di ∪ {v}), and we may assume that each of D1
i , D

2
i is monochromatic in

c. Now set c′(d2i ) to be the unique color that appears in D2
i , and for i ∈ {s+ 1, . . . t}, set c′(d1i ) to

49



CHAPTER 4. OBSTRUCTIONS FOR THREE-COLORING AND LIST THREE-COLORING

H-FREE GRAPHS

be the unique color that appears in D1
i . Then c′ is a coloring of (F \ v, L), a contradiction. Now

Claim 5 follows from at most t ≤ |V (F )| applications of Lemma 4.

(6) Let x ∈ V (G) such that L(x) = {1, 2, 3} and let U,W ⊆ V (G) be disjoint non-empty sets such

that N(x) = U ∪W and U is complete to W . Then (possibly exchanging the roles of U and W )

either

1. there is a path P with |V (P )| = 4, such that the ends of P are in U , no internal vertex of P

is in U , and V (P ) ∩W = ∅, or

2. there exist distinct i, j ∈ {1, 2, 3} and vertices ui, uj ∈ U and wi, wj such that for every

k ∈ {i, j}

• k ∈ L(uk),

• |L(wk) ∩ {i, j}| = 1,

• there is a path Pk from uk to wk,

• if |V (Pk)| is even, then k 6∈ L(wk),

• if |V (Pk)| is odd, then k ∈ L(wk)

and V (Pi) is anticomplete to V (Pj).

Proof. Since we may assume that G 6= K4, it follows that U and W are both stable sets. By the

minimality of G, there is an L-coloring of G \ x, say c. Since G does not have an L-coloring, we

may assume that there exist u1, u2 ∈ U such that c(ui) = i. Then c(w) = 3 for every w ∈ W , and

c(u) ∈ {1, 2} for every u ∈ U . For i = 1, 2 let Ui = {u ∈ U : c(u) = i}. Let V12 = {v ∈ V (G) :

c(v) ∈ {1, 2}}, and let G12 = G|V12. Suppose �rst that some component of G12 meets both U1 and

U2. Let P be a shortest path from U1 to U2 in G12. Then |V (P )| = 4 since G is P6-free. Moreover,

V (P ) ∩W = ∅, and no interior vertex of P is in U , and 6.1 holds.

So we may assume that no component of G12 meets both U1 and U2. For i = 1, 2 let Vi be the

union of the components of G12 that meet Ui. Then V1 is anticomplete to V2. If we can exchange

the colors 1 and 2 on every component that meets U1, then doing so produces a coloring of G \ x

where every vertex of U is colored 2 and every vertex of W is colored 3; this coloring can then be

extended to G, which is a contradiction. So there is a component D that meets U1 and where such
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an exchange is not possible. Let (D1, D2) be a bipartition of D. We may assume that U1 ∩D2 = ∅.

Let us say that d ∈ D is de�cient if either d ∈ D1 and 2 6∈ L(d), or d ∈ D2 and 1 6∈ L(d). Then

there is a de�cient vertex in D. Let P1 be a shortest path in D from some vertex u1 ∈ U1 to a

de�cient vertex w1 of D. Then u1, w1, P1 satisfy the conditions of 6.2. It follows from symmetry

that there exist u2, w2 ∈ V2 and a path P2 from u2 to w2 satisfying the condition of 6.2. Since V1

is anticomplete to V2, it follows that V (P1) is anticomplete to V (P2) and 6.2 holds.

We also make use of the following result.

4.3.6 (Camby and Schaudt [8]). For all t ≥ 3, any connected Pt-free graph H contains a connected

dominating set whose induced subgraph is either Pt−2-free, or isomorphic to Pt−2.

Our strategy from now on is as follows. Let (G,L) be a minimal list-obstruction, where G is

P6-free. At every step, we �nd a subgraph R of G, and consider all possible partial precolorings of

R. For each precoloring, we update three times with respect to R, and possibly modify the lists

further, to produce a minimal list-obstruction (G′, L′) where G′ is an induced subgraph of G, and

|L(v)| ≤ 2 for every v ∈ V (G′), and such that |V (G)| is bounded from above by a function of |V (G′)|

(the function does not depend on G, it works for all P6-free graphs G). Since by Lemma 4.3.1 V (G′)

has bounded size, it follows from Lemma 4.3.3 and Lemma 4.3.4 that V (G) \ R has bounded size.

Now we use the minimality of G and the internal structure of R to show that R also has a bounded

number of vertices, and so |V (G)| is bounded. Next we present the details of the proof.

(1) There exists an integer C such that the following holds. Let (G,L) is a minimal list-obstruction,

where G is C5-free. Then |V (G)| ≤ C.

Proof. We may assume that |V (G)| > 8, and therefore there is no K4 in G. Let H be as in

Theorem 4.3.6. Then H is either P4 or P4-free. If |V (H)| ≤ 4, the result follows from Lemma 4.3.5,

so we may assume that H is P4-free. Now by a result of [52] V (H) = A ∪ B, where A is complete

to B, and both A and B are non-empty. Choose a ∈ A, b ∈ B. De�ne the set S0 as follows. If

there is a vertex c complete to {a, b}, let S0 = {a, b, c}; if no such c exists, let S0 = {a, b}. Then no

vertex of V (G) is complete to S0. Let X0 be the set of vertices of G with a neighbor in S0, and let

Y0 = V (G)\ (S0∪X0). By Theorem 4.3.6 every vertex of Y0 has a neighbor in X0. By Lemma 4.3.3

and Lemma 4.3.4 we may assume that the vertices of S0 are precolored; let L1 be the list system
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obtained from L by updating three times with respect to S0. Then |L1(x)| ≤ 2 for every v ∈ X0.

Let S′1 = {v ∈ V (G) : |L(v1)| = 1}, and let S1 be the connected component of S′1 such that S0 ⊆ S1.

Let X1 be the set of vertices of V (G) \ S1 with a neighbor in S1, and let Y1 = V (G) \ (S1 ∪X1).

Then X1 ∩ S′1 = ∅, and every vertex of Y1 has a neighbor in X1. Since S0 ⊆ S1, no vertex of G is

complete to S1. For i, j ∈ {1, 2, 3} let X1
ij = {x ∈ X1 : L1(x1) = {i, j}}.

We now construct the sets S2, X2, Y2. For every i, j ∈ {1, 2, 3} let Ui,j be de�ned as follows. If

there is a vertex u ∈ X1
ij such that there exist y, z, w ∈ Y1 where {y, z, w} is a clique and u has

exactly one neighbor in {y, z, w}, choose such a vertex u with N(u)∩Y1 maximal, and let Ui,j = {u}.

If no such vertex u exists, let Ui,j = ∅. Let X1′
i,j be the set of vertices of X

1
i,j that are anticomplete

to Ui,j . Let Y ′1 be the set of vertices in Y1 that are anticomplete to U1,2 ∪ U1,3 ∪ U2,3.

Next we de�ne Vi,j for every i, j ∈ {1, 2, 3}. If there is a vertex v ∈ X1′
ij such that there exist

adjacent y, z ∈ Y ′1 where v has exactly one neighbor in {y, z}, choose such a vertex v with N(v)∩Y ′1
maximal, and let Vi,j = {v}. If no such vertex v exists, let Vi,j = ∅.

Now let S2 = S1 ∪
⋃
i,j∈{1,2,3}(Uij ∪ Vij). Precolor the vertices of S2. Observe that S2 is

connected. Let L3 be the list system obtained from L1 by updating three times. By Lemma 4.3.3

and Lemma 4.3.4 we may assume that (G,L3) is a minimal list-obstruction. Let S′3 = {v ∈ V (G) :

|L(v1)| = 1}, and let S3 be the connected component of S′3 such that S2 ⊆ S3. Let X3 be the set

of vertices of V (G) \ S3 with a neighbor in S3, and let Y3 = V (G) \ (S3 ∪X3). Then every vertex

of Y3 has a neighbor in X3. Since S1 ⊆ S3, no vertex of G is complete to S3, and for every x ∈ X3,

|L(x)| = 2. For i, j ∈ {1, 2, 3} let X3
ij = {x ∈ X1 : L1(x1) = {i, j}}. Then X3

ij is anticomplete to

Uij ∪ Vij .

No vertex of X3 is mixed on an edge of Y3. (4.3)

Suppose that there exist x ∈ X3 and y, z ∈ Y3 such that y is adjacent to z, and x is adjacent

to y and not to z. We may assume that x ∈ X3
12. Then x ∈ X1

12 ∪ Y1, and y, z ∈ Y1. Suppose �rst

that x ∈ Y1. Then there is s3 ∈ S3 \S1 such that x is adjacent to s3. Since y, z ∈ Y3, it follows that

s3 is anticomplete to {y, z}. Since s3 ∈ S3 \ S1, there is a path P from s3 to some vertex s′3 ∈ S3,

such s′3 has a neighbor in S1, and V (P ) \ {s′3} is anticomplete to S1. Then s′3 is not complete to S1,

and since S1 is connected, it follows from Claim 1 that there exist s1, s′1 ∈ S1 such that s′3-s1-s
′
1 is a

path. But now z-y-x-s3-P -s′3-s1-s
′
1 is a P6, a contradiction. This proves that x 6∈ Y1, and therefore
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x ∈ X1
12.

Since y, z ∈ Y1 ∩ Y3, it follows that V12 6= ∅. Let v be the unique element of V12. Then v is

non-adjacent to x, y, z. Since x is adjacent to y, and v is non-adjacent to y, it follows from the

choice of v that there exists y′ ∈ Y1 such that y′ is adjacent to v and not to x. Since v has a

neighbor in S1, and v is not complete to S1, and since S1 is connected, Claim 1 implies that there

exist s, s′ ∈ S1 such that v-s-s′ is a path. Since neither of s′-s-v-y′-y-z and s′-s-v-y′-z-y is a P6, it

follows that y′ is either complete or anticomplete to {y, z}. Suppose �rst that y′ is anticomplete to

{y, z}. Let P be a path from v to x with interior in S1. Then |V (P )| ≥ 3. Now y′-v-P -x-y-z is a

P6, a contradiction. This proves that y′ is complete to {y, z}.

Now {y′, y, z} is a clique in Y1, and v has exactly one neighbor in it. This implies that U12 6= ∅.

Let u be the unique element of U12. Then u is anticomplete to {v, y′, y, z}. It follows from the

maximality of u that there exists y′′ ∈ Y1 such that y′′ is adjacent to u and non-adjacent to v. Since

u has a neighbor in S1, and u is not complete to S1, and since S1 is connected, Claim 1 implies

that there exist t, t′ ∈ S1 such that u − t − t′ is a path. Suppose y′′ has a neighbor in {y′, y, z}.

Since G 6= K4, there exist q, q′ ∈ {y′, y, z} such that y′′ is adjacent to q and not to q′. But now

t′-t-u-y′′-q-q′ is a P6, a contradiction. This proves that y′′ anticomplete to {y′, y, z}. Let P be a

path from u to v with interior in S1. Then |V (P )| ≥ 3. Now y′′-v-P -u-y′-y is a P6, a contradiction.

This proves (4.3).

For i, j ∈ {1, 2, 3} let Xij be the set of vertices in X3
ij with a neighbor in Y3.

The sets X12, X13, X23 are pairwise complete to each other. (4.4)

Suppose x1 ∈ X12 is non-adjacent to x2 ∈ X13. Since S3 is connected and both x1, x2 have

neighbors in S3, there is a path P from x1 to x2 with V (P ) \ {x1, x2} ⊆ S3. Since L3(x1) = {1, 2}

and L3(x2) = {1, 3}, it follows that no vertex of S3 is adjacent to both x1 and x2, and so |V (P )| ≥ 4.

Let yi ∈ Y3 be adjacent to xi. If |V (P )| > 4 or y1 6= y2, then y1-x1-P -x2-y2 contains a path with at

least six vertices, a contradiction. So |V (P )| = 4 and y1 = y2. But now y1-x1-P -x2-y1 is a C5 in G,

again a contradiction. This proves (4.4).

Let D1, . . . , Dt be the components of Y3 that have size at least two. Moreover, let Y ′ =
⋃t
i=1Di.
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There is an induced subgraph F of G with V (G) \ Y ′ ⊆ V (F ) and a list system

L′ such that

• |L′(v)| ≤ 2 for every v ∈ V (F ) ∩ Y ′,

• L′(v) = L(v) for every v ∈ V (F ) \ Y ′, and

• (F,L′) is a minimal list-obstruction, and |V (G)| depends only on |V (F )|.

(4.5)

For in ∈ {1, . . . , t} let Ui be the set of vertices of X3 with a neighbor in Di. It follows from Claim 1

and (4.3) that Ui is complete to Di. Since each Di contains an edge, (4.4) implies that each Ui is

a subset of one of X3
1,3, X

3
1,3, X

3
2,3. Therefore there exists ci ∈ {1, 2, 3} such that for every u ∈ Ui,

ci 6∈ L(u). Now (4.5) follows from Claim 5. This proves (4.5).

Let (F,L′) be as in (4.5). Since our goal is to prove that (G,L3) induces a minimal obstruction

of bounded size, it is enough to show that |V (F )| has bounded size (where the bound is independent

of G). Therefore we may assume that G = F and L3 = L′, and in particular that |L3(v)| ≤ 2 for

every v ∈ Y ′.

Let Y = Y3 \ Y ′. Then the set Y is stable, N(y) ⊆ X12 ∪X13 ∪X23 for every y ∈ Y , and for

v ∈ V (G), if |L3(v)| = 3, then v ∈ Y . Moreover, if y ∈ Y has |L3(y)| = 3 and N(y) ⊆ Xij for some

i, j ∈ {1, 2, 3}, then (G,L3) is colorable if and only if (G \ y, L3) is colorable, contrary to the fact

that (G,L3) is a minimal list obstruction. Thus for every y ∈ Y with |L3(y)| = 3, N(y) meets at

least two of X12, X13, X23. By (4.4) it follows that the sets X12, X13, X23 are pairwise complete to

each other, and therefore no v ∈ Y has neighbors in all three of X12, X13, X23.

Next we de�ne a re�nement L of L3.

• If exactly one of X12, X13, X23 is non-empty, then L = {L3}.

• If at least two of X12, X13, X23 are non-empty and some Xij contains two adjacent vertices a, b,

let L′ be the list obtained by precoloring {a, b} and updating three times, and let L = {L′}.

• Now assume that at least two of Xij are non-empty, and each of Xij is a stable set. Observe

that in this case, in every coloring of G at least one of Xij is monochromatic. For all i, j such

that Xij 6= ∅ and for all k ∈ {i, j} add to L the list system Liij , where L
i
ij(x) = {i} for all
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x ∈ Xij and Liij(v) = L3(v) for all v ∈ V (G) \Xij , and we updated three times with respect

to Xij .

Now L is a re�nement of L and satis�es the hypotheses of Lemma 4.3.3. We claim that for

every L′ ∈ L there exist i, j ∈ {1, 2, 3} such that after the �rst step of updating |L′(x)| = 1 for all

x ∈ (X12 ∪X13 ∪X23) \Xij ,

In view of (4.4), this is clear if some Xij is not stable or if only one of the sets X12, X13, X23 is

non-empty. So we may assume that all Xij are stable, and at least two are non-empty. Let L′ = Liij .

Then L′(x) = {i} for all x ∈ Xij . Let k ∈ {1, 2, 3} \ {i, j}, then by (4.4) after the �rst step of

updating L′(x) = {k} for every x ∈ Xik. Thus after the �rst step of updating only one of the sets

Xij may contain vertices with lists of size two.

Since every y ∈ Y with |L3(y)| = 3 has neighbors in at least two of X12, X13, X23, it follows

that after the second step of updating all vertices of Y have lists of size at most two, and so for

all L′ ∈ L we have that |L′(v)| ≤ 2 for all v ∈ V (G). By Lemma 4.3.1, each of (G,L′) induces

a minimal obstruction with at most 100 vertices. Applying the Lemma 4.3.3 and Lemma 4.3.4,

we deduce that |V (G) \ (X12 ∪X13 ∪X23)| depends only on the sizes of the minimal obstructions

induced by (G,L′), and therefore does not depend on G. Now, since each of Xij is a stable set,

Claim 3 implies that |V (G)| is bounded, and Claim 1 follows.

In the remainder of this proof we deal with minimal list-obstructions (G,L) containing a C5, by

taking advantage of the structure that it imposes. Let C be a C5 in G, say C = c1-c2-c3-c4-c5-c1. Let

X(C) be the set of vertices of V (G)\V (C) that have a neighbor in C, let Y (C) be the set of vertices

of V (G)\ (V (C)∪X(C)) that have a neighbor in X, and let Z(C) = V (G)\ (V (C)∪X(C)∪Y (C)).

(2) Assume that |V (G)| ≥ 7. Then the following assertions hold.

1. For every x ∈ X(C) there exist indices i, j ∈ {1, . . . , 5} such that x-ci-cj is an induced path.

2. No vertex of Y (C) is mixed on an edge of G|Z(C).

3. If v ∈ X(C) is mixed on an edge of G|(Y (C) ∪ Z(C)), then the set of neighbors of v in C is

not contained in a 3-vertex path of C.

4. If v ∈ X(C) has a neighbor in Y (C), then the set of neighbors of v in C is not contained in

a 2-vertex path of C.
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5. If z ∈ Z(C) and u, t ∈ N(z) ∩ Y (C) are non-adjacent, then no vertex of X(C) is mixed on

{u, t}.

6. Let D be a component of Z(C) with |D| = 1, and let N be the set of vertices of Y (C) with a

neighbor in D. Then either N is anticonnected, or N = U ∪W where U and W are stable

sets, and U is complete to W .

7. Let D be a component of Z(C) with |D| > 1, and let N be the set of vertices of Y (C) with a

neighbor in D. Then D is bipartite, and N is a stable set complete to D.

Proof. Since |V (G)| ≥ 7, no vertex is complete to V (C), as that would lead to a list-obstruction on

6 vertices. Thus, the �rst assertion follows from the fact that G is connected and Claim 1.

Next we prove the second assertion. Suppose that u ∈ Y (C) is mixed on the edge st with

s, t ∈ Z(C), namely u is adjacent to s and not to t. Let b ∈ N(u) ∩X and i, j ∈ {1, . . . , 5} be such

that b-ci-cj is an induced path (as in Claim 2.1). Then t-s-u-b-ci-cj is a P6, a contradiction.

To see the third assertion, suppose that x ∈ X is adjacent to t ∈ Y and non-adjacent to

s ∈ Y ∪ Z, where t is adjacent to s, and suppose that N(x) ∩ V (C) ⊆ {c1, c2, c3}. We may assume

that x is adjacent to c3. Then c5-c4-c3-x-t-s is a P6 in G, a contradiction.

To prove the fourth statement, we may assume that x ∈ X is adjacent to c1 and to y ∈ Y , and

non-adjacent to c2, c3 and c4. Now y-x-c1-c2-c3-c4 is a P6 in G, a contradiction.

To prove the �fth statement, suppose that w ∈ X(C) is adjacent to u and non-adjacent to t.

By Claim 2.1 there exists i, j such that w-ci-cj is an induced path. Then t-z-u-w-ci-ci+1 is a P6, a

contradiction.

Next let D = {v} be a component of Z, then N(v) ⊆ Y , and Claim 2.6 follows immediately

from the fact that there is no K4 in G.

Finally let D be a component of Z(C) with |D| > 1. By Claim 2.2 N is complete to D. Since

there is no K4 in G, it follows that D is bipartite and N is a stable set. This proves Claim 2.7.

By Lemma 4.3.3 and Lemma 4.3.4 we may assume that in (G,L) the vertices of C are precolored,

and that we have updated three times with respect to V (C). We may assume that |V (G)| > 8.

(3) There is an induced subgraph F of G with V (G) \ Z(C) ⊆ V (F ) and a list system L′ such that

• |L′(v)| ≤ 2 for every v ∈ V (F ) ∩ Z(C),
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• L′(v) = L(v) for every v ∈ V (F ) \ Z(C), and

• (F,L′) is a minimal list-obstruction, and |V (G)| depends only on the size of |V (F )|.

Proof. We write X = X(C), Y = Y (C) and Z = Z(C). Let D1, . . . , Dt be components of Z with

|Di| ≥ 2. Write D =
⋃t
i=1Di. For every i let Ui be the set of vertices of Y with a neighbor in

Di. By Claim 2.7 for every i, Ui is a stable set complete to Di. By Claim 2.3 every x ∈ X with

a neighbor in Ui has neighbors of two di�erent colors in V (C), and so every such x has list of size

one after the �rst step of updating. Now by Claim 2.5 and since we have updated three times, it

follows that for every i there exists ci ∈ {1, 2, 3} such that for every u ∈ Ui, ci 6∈ L(u). By Claim 5

there exist an induced subgraph F of G with V (G) \ Z(C) ⊆ V (F ) and a list system L′ such that

• |L′(v)| ≤ 2 for every v ∈ V (F ) ∩D,

• L′(v) = L(v) for every v ∈ V (F ) \ Z(C), and

• (F,L′) is a minimal list-obstruction, and |V (G)| depends only on the size of |V (F )|.

It remains to show that that L′(v) ≤ 2 for every v ∈ V (F )∩Z. Suppose there is v ∈ V (F )∩Z with

|L(v)| = 3. Let D be the component of Z containing v. Then D = {v}. If N(v) is anticonnected,

then by Claim 2.5 every x ∈ X with a neighbor in N(v) dominates v, contrary to the fact that

(F,L′) is a minimal list-obstruction. So by Claim 2.6 N(v) = U ∪W , both U and W are stable

sets, and U is complete to W .

We now apply Claim 6. We may assume that if Claim 6.1 holds then p1, p4 ∈ U , and if Claim 6.2

holds, then u1, u2 ∈ U . We show that in both cases some vertex t ∈ V (G) \ U is mixed on U . If

Claim 6.1 holds, we can take t = p1, so we may assume that Claim 6.2 holds. We may assume that

u1 = w1 and u2 = w2, for otherwise some vertex of V (P1) ∪ V (P2) is mixed on U . By Claim 2.3

and Claim 2.5, and since we have updated, it follows that there exists i ∈ {1, 2, 3} such that for

every u ∈ U , i 6∈ L(u). Since |L(v)| = 3, and we have updated three times, it follows that after

the second step of updating all u ∈ U have exactly the same list, and this list has size two. Since

u1 = w1 and u2 = w2, it follows that the lists of u1 and u2 changed and became di�erent in the

third step of updating, and so some vertex V (G) \ U is mixed on U , as required. This proves the

claim. Let t be a vertex of V (G) \ U that is mixed on U . By Claim 2.5, it follows that t ∈ Y ∪ Z.
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First we show that if y ∈ Y \ (U ∪W ) has a neighbor u ∈ U , and x ∈ X is adjacent to y, then x

is complete to U . Suppose not, let i be such that x− ci− ci+1 is a path (such i exists by Claim 2.1).

By Claim 2.5, x is anticomplete to U . Then v-u-y-x-ci-ci+1 is a P6, a contradiction. This proves

the claim.

Now we claim that Y \ (U ∪W ) is anticomplete to U ∪W . Suppose y ∈ Y has a neighbor

u ∈ U , and let x ∈ X be adjacent to y. Then x is complete to U . Since x does not dominate v,

it follows that x has a non-neighbor w ∈ W , and again by the previous claim, y is anticomplete to

W . Let x1 ∈ X be adjacent to w. By Claim 2.5 x1 is complete to W . Since x1 does not dominate

v, it follows that x1 has a non-neighbor in U , and so by Claim 2.5 x1 is anticomplete to U . By the

previous claim, x1 is non-adjacent to y. Let i be such that x1-ci-ci+1 is a path (such i exists by

Claim 2.1). Now ci+1-ci-x1-w-u-y is a P6, a contradiction. This proves the claim, and in particular

we deduce that t ∈ Z.

Since t is mixed on U , there exists an edge a, b with one end in U and the other in W , such

that t is adjacent to b and not to a. Let x ∈ X be adjacent to a. Since x does not dominate v,

we deduce that x is not complete to U ∪W , and so by Claim 2.5 x is non-adjacent to b. Let i be

such that x-ci-ci+1 is a path (as in 2.1). Now t-b-a-x-ci-ci+1 is a P6, a contradiction. This proves

Claim 3.

Let (F,L′) be as in Claim 3. Since our goal is to prove that |V (G)| is bounded, it is enough

to prove that |V (F )| is bounded, and so we may assume that G = F , L = L′, and in particular

|L(v)| ≤ 2 for every v ∈ Z(C).

(4) Assume that in the precoloring of C c2 and c5 receive the same color, say j. Let A = {a ∈

X(C) : N(a) ∩ V (C) = {c2, c5}} and W = {y ∈ Y : N(y) ∩X ⊆ A}. Let D be a component of W

such that there exists a vertex with list of size 3 in D, and let N be the set of vertices of A with a

neighbor in D. Then D is complete to N , and either

• D is anticomplete to V (G) \ (D ∪N), or

• there exists vertices d ∈ D and v ∈ N(d) such that precoloring d, v with distinct colors and

updating with respect to the set {d, v} three times reduces the list size of all vertices in W to

at most two.
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Proof. By Claim 2.3 no vertex of X(C) is mixed on D, and so N is complete to D. Also by Claim 2.3

W is anticomplete to Z(C).

Let d ∈ D, and let v ∈ N(d) \ (N ∪D). Since D ⊆W , it follows that v ∈ Y (C). By Claim 2.3,

N(v) ∩ A = N . Let x ∈ N(v) ∩ (X(C) \ A). Then N(x) ∩ V (C) are not contained in a 3-vertex

path of C, and therefore |L(x)| = 1.

First suppose that N(x) ∩ {c2, c5} 6= ∅. Then j 6∈ L(x). We precolor {v, d} and update with

respect to the set {v, d} three times. We may assume that the precoloring of G|(V (C) ∪ {v, d}) is

proper. Since {v, d} is complete to N and not both v, d are precolored j, it follows that |L(n)| = 1

for every n ∈ N , and |L(u)| ≤ 2 for every u ∈ W such that u has a neighbor N . Suppose there is

t ∈W with |L(t)| = 3. Then t is anticomplete to {v, d}. Since t ∈W , there exists s ∈ A adjacent to

t, and so s is not complete to {v, d}. Since s ∈ A, it follows from Claim 2.3 that s is not mixed on

the edge vd, and so s is anticomplete to {v, d}. Since |L(t)| = 3, it follows that L(s) = {1, 2, 3}\{j},

and so s is non-adjacent to x (since we have updated three times with respect to V (C)). Assume

by symmetry that c2 is adjacent to x, then t-s-c2-x-v-d is a P6, a contradiction.

Therefore we may assume that N(x) ∩ {c2, c5} = ∅, and so N(x) = {c1, c3, c4}. It follows

that L(x) = {j}, and consequently L(v) ⊆ {1, 2, 3} \ {j}. If D = {d}, then |L(d)| = 3; but

L(u) ⊆ {1, 2, 3} \ {j} for all u ∈ N(d), which contradicts the fact that (G,L) is a minimal list

obstruction. Therefore we may assume there exists d′ ∈ N(d) ∩D. Since G is not a K4, d′ is not

adjacent to v. But now c5-c1-x-v-d-d′ is a P6, a contradiction.

(5) Assume that there is a vertex c′1 ∈ V (G) adjacent to c1, c2, c5 and non-adjacent to c3, c4. Then

|V (G)| is bounded from above (and the bound does not depend on G).

Proof. By Lemma 4.3.3 and Lemma 4.3.4, we can precolor the vertices of V (C) ∪ {c′1} and update

with respect to V (C) ∪ {c′1} three times. By symmetry, we may assume that L(c1) = {1}, L(c′1) =

L(c3) = {2}, L(c2) = L(c5) = {3} and L(c4) = {1}. Let C ′ = c′1-c2-c3-c4-c5-c
′
1. We write X =

X(C), X ′ = X(C ′), and de�ne the sets Y , Y ′, Z, and Z ′ in a similar manner. We abuse notation

an denote the list system thus obtained by L. Recall that (G,L) is a minimal list-obstruction.

Let A be the set of all vertices a ∈ X ∪ X ′ for which N(a) ∩ {c1, c′1, c2, c3, c4, c5} = {c2, c5}.

Let W be the set of vertices y ∈ Y ∩ Y ′ such that N(y) ∩ (X ∪X ′) ⊆ A. Since we have updated

|L(x)| ≤ 2 for every x ∈ X ∪ X ′. By Claim 3 applied to C ′, we may assume that |L(z)| ≤ 2 for
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every z ∈ Z ∪Z ′. Thus if |L(v)| = 3 then v ∈ Y ∩ Y ′, and an easy case analysis shows that v ∈W .

By Lemma 4.3.1 we may assume that W 6= ∅. Let D1, . . . , Dt be the components of W that contain

vertices with lists of size three. Suppose �rst that |Di| = {d} for some i. Then, letting c be a

coloring of G \ d, we observe that no vertex of N(d) is colored 3, and so we can get a coloring of G

by setting c(d) = 3, a contradiction. This proves that |Di| ≥ 2 for every i.

Let i ∈ {1, . . . , t}. Let Ui be the set of vertices of A with a neighbor in Di. By Claim 4 , Di is

complete to Ui and anticomplete to V (G) \ (Di ∪ Ui). Since Ui ⊆ A, it follows that 3 6∈ L(u) for

every u ∈ Ui. Let (F,L′) be as in Claim 5. Since |L′(v)| ≤ 2 for every v ∈ V (F ), Lemma 4.3.1

implies that |V (F )| ≤ 100. Since |V (G)| depends only on |V (F )|, Claim 5 follows. This completes

the proof of Claim 5.

We can now prove the following claim, which is the last step of our argument. We may as-

sume that C is precolored in such a way that the precoloring is proper, and the set {c2, c4} is

monochromatic and the set {c3, c4} is monochromatic.

(6) |V (G)| is bounded from above (and the bound does not depend on G).

Proof. We may assume that L(c1) = 1, L(c2) = L(c4) = 2 and L(c3) = L(c5) = 3. Write X =

X(C), Y = Y (C) and Z = Z(C). Let A′ = {v ∈ X : N(v) ∩ C = {c2, c4}} and B′ = {v ∈ X :

N(v) ∩ C = {c3, c5}}.

It follows from Claim 2.4 that after the �rst step of updating every v ∈ X \ (A′ ∪ B′) with a

neighbor in Y has list of size one. Let Y ′ be the set of vertices that have lists of size 3 after the third

step of updating. Since L(z) ≤ 2 for every z ∈ Z, it follows that Y ′ ⊆ Y , and N(y) ∩X ⊆ A ∪ B

for every y ∈ Y ′.

Let A,B be the subsets of A′, B′ respectively consisting of all vertices with a neighbor in Y ′.

Then after the second step of updating, the list of every vertex in A is {1, 3} and the list of every

vertex in B is {1, 2}. If one of A′, B′ is not a stable set, Claim 5 completes the proof. So, we may

assume that each of A′, B′ is a stable set.

Let H be the graph obtained from G|(A ∪ B) by making each of A,B a clique. Let C1, . . . , Ct

be the anticomponents of H such that both Ai = Ci ∩ A and Bi = Ci ∩ B are nonempty. Let

A′′ = A \
⋃t
i=1Ci and let B′′ = Bi \

⋃t
i=1Ci.
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Let v ∈ Y ′. Then N(v)∩A is complete to B′ \N(v), and N(v)∩B is complete

to A′ \ N(v). In particular, A is complete to B′ \ B, B is complete to A′ \ A,

and v is not mixed on Ci for any i.

(4.6)

Suppose this is false. By symmetry, we may assume there exists w ∈ A non-adjacent to k ∈ B′ such

that v is adjacent to w but not to k. Then v-w-c2-c1-c5-k is a P6 in G, a contradiction. This proves

(4.6).

Suppose v ∈ Y ′ is adjacent to y ∈ V (G) \ (A∪B ∪ Y ′). Then precoloring y and

v and updating three times reduces the list size of all vertices in Y ′ to at most

two.

(4.7)

Since v ∈ Y ′, it follows that N(v) ∩ X ⊆ A ∪ B, and therefore y 6∈ X. It follows from Claim 2.3

that N(v) ∩X is complete to N(v) \X.

By Claim 4 v has both a neighbor in A and a neighbor in B. We precolor v and y and update

three times; denote the new list system by L′′. If v and y have the same color, or one of v, y is

colored 1, then L′′(u) = ∅ for some vertex u ∈ N(v)∩(A∪B), and (4.7) holds. Thus we may assume

that one of v, y is precolored 2, and the other one 3. We claim that, after updating, |L(x)| = 1

for every x ∈ X. Recall that even before we precolored v and y we had that |L(x)| = 1 for every

x ∈ X \ (A′ ∪B′). Since v and y are colored 2, 3, and {v, y} is complete to N(v)∩X, it follows that

|L(x)| = 1 for every x ∈ N(v) ∩X. Since both N(v) ∩ A and N(v) ∩B are nonempty, L(x) = {1}

for every x ∈ N(v) ∩X. By (4.6), N(v) ∩ A is complete to B′ \ N(v), and N(v) ∩ B is complete

to A′ \N(v). Since we have updated, L(a) = {3} for every a ∈ A′ \N(v) and L(b) = {2} for every

b ∈ B′ \N(v). Consequently |L(w)| ≤ 2 for every w ∈ Y . This proves 4.7.

In view of (4.7), Lemma 4.3.3 and Lemma 4.3.4, we may assume that |L(v)| ≤ 2 for every

v ∈ Y (C) for which N(v) \ (A ∪B) 6= ∅.
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Let T = {y ∈ Y : N(y) ⊆ A′′ ∪ B′′}. There is collection L of list systems such

that for every L′ ∈ L

• |L′(v)| ≤ 2 for every v ∈ T , and

• L′(v) = L(v) for every v ∈ V (G) \ T ,

For every L′ ∈ L, let (GL′ , L′) be a minimal list obstruction induced by (G,L′).

Then |V (G)| depends only on |
⋃
L′∈L V (GL′)|.

(4.8)

Let y ∈ T ∩ Y ′. First we show that y has a neighbor in A and a neighbor in B. Suppose

N(y) ∩ B = ∅. Then, by the remark following (4.7), N(y) ⊆ A. But now a coloring of G \ y can

be extended to a coloring of G by assigning color 2 to y, contrary to the fact (G,L) is a minimal

obstruction. This proves that y has a neighbor in A and a neighbor in B. In particular both A′′

and B′′ are non-empty.

Observe that in every coloring of G either A′′ or B′′ is monochromatic (since they are complete

to each other). Let L be the following collection of list systems. For each i ∈
⋂
a∈A′′ L(a) we add to

L the list system L′, where L′(a) = {i} for all a ∈ A′′ and L′(v) = L(v) for all v ∈ V (G) \ A′′; and

we update three times with respect to A′′. Moreover, for each j ∈
⋂
b∈B′′ L(b) we add to L the list

system L′, where L′(b) = {j} for all b ∈ B′′ and L′(v) = L(v) for all v ∈ V (G) \B′′, and we update

three times with respect to B′′.

Now L is a re�nement of L and satis�es the hypotheses of Lemma 4.3.3 with R = G|(A′′ ∪B′′).

Let L′ ∈ L. Since either |L(a)| = 1 for every a ∈ A′′, or |L(b)| = 1 for every b ∈ B′′, and since we

have updated three times, we have that |L′(y)| ≤ 2 for every y ∈ T . Let (GL′ , L′) be a minimal

list-obstruction induced by (G,L′).

By Lemma 4.3.3 and Lemma 4.3.4,

V (G) = A ∪
⋃
L′∈L

V (GL′).

Since A is a stable set, Claim 3 implies that |A| only depends on |
⋃
L′∈L V (GL′)|, and (4.8) follows.

This proves (4.8).

Let L be as in (4.8). Since our goal is to prove that G has bounded size, it is enough to show

that (G,L′) induces a minimal obstruction of bounded size for every L′ ∈ L. Therefore we may
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assume that for every y ∈ Y ′ there exists an index i such that y is complete to Ci.

Let y1 ∈ Y ′ and let C1 ⊆ N(y1). Then we may assume that no vertex of

V (G) \ C1 is mixed on A1 (and similarly on B1).
(4.9)

Suppose x ∈ V (G) \C1 is mixed on A1. Since x is mixed on C1, and C1 is an anticomponent of H,

there exist a1 ∈ A1 and b1 ∈ B1 such that a1b1 is a non-edge, and x is mixed on this non-edge. Let

a′1 ∈ A1 be such that x is mixed on {a1, a′1}. By Lemma 4.3.3 and Lemma 4.3.4 we can precolor

T = {x, a1, a′1, b1, y1}, and update three times with respect to T . Let Y ′′ be the set of vertices with

lists of size 3 after updating. We claim that Y ′′ = ∅. Suppose not and let v ∈ Y ′′. By the remark

following (4.8) there exists an index i such that v is complete to Ci. Then i 6= 1. Since v ∈ Y ′′,

{a1, a′1} is complete to Bi and b1 is complete to Ai, and we have updated three times with respect

to T , it follows that L(a1) = L(a′1) = {3} and L(b1) = {2}. Since x has a neighbor in {a1, a′1} we

may assume that L(x) 6= {3}.

First consider the case that x is adjacent to a1 and not to b1. Then x is non-adjacent to a′1.

Choose ai ∈ Ai. Since x-a1-y1-b1-ai-v is not a P6 in G, it follows that x is adjacent to ai. Since

v ∈ Y ′′, it follows that L(x) = {2}, and therefore x is anticomplete to Bi. Choose bi such that aibi

is a non-edge, then x-ai-v-bi-a′1-y1 is a P6 in G, a contradiction. Therefore x is adjacent to b1 and

not to a1. Since x-b1-y1-a1-b-v is not a P6 in G for any b ∈ Bi, it follows that x is complete to Bi,

which is a contradiction since L(x) 6= {3} and v ∈ Y ′′. This proves (4.9).

Let v ∈ Y ′ and let Ci ∈ N(v). Then we may assume |Ai| = |Bi| = 1. (4.10)

Suppose this is false. We may assume that i = 1. By (4.9), no vertex of G \ C1 is mixed on A1

and no vertex of G \ C1 is mixed on B1. Choose a1 ∈ A1 and b1 ∈ B1 such that a1b1 is an edge if

possible. Then (G \ (A1 ∪B1)) ∪ {a1, b1} is not L-colorable, since otherwise we can color A1 in the

color of a1 and B1 in the color of b1. Since (G,L) is a minimal list-obstruction, (4.10) follows.

Let Y1 = {y ∈ Y ′ : N(y) ⊆ (A\A′′)∪ (B \B′′)}, and let Y2 = Y ′ \Y1. By (4.10) and since (G,L)

is a minimal list-obstruction, every y ∈ Y1 is complete to more than one of C1, . . . , Ct. We may

assume that each of C1, . . . , Cs is complete to some vertex of Y1, and Cs+1∪ . . .∪Ct is anticomplete

to Y1. Let F be the graph with vertex set V (F ) = {1, . . . , s} where i is adjacent to j if and only

if there is a vertex y ∈ Y1 complete to Ci ∪ Cj . We will refer to the vertices of F as 1, . . . , s and

C1, . . . , Cs interchangeably.
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Let F1, . . . , Fk be the components of F , let A(Fi) =
⋃
Cj∈Fi Aj , and let B(Fi) =

⋃
Cj∈Fi Bj .

Moreover, let Y (Fi) = {y ∈ Y1 : N(y) ⊆ A(Fi) ∪B(Fi)}.

Let i ∈ {1, . . . , k} and let T ⊆ V (G) be such that A(Fi)∪B(Fi)∪Y1 ⊆ T . Then

for every L-coloring of G|T , both of the sets A(Fi) and B(Fi) are monochro-

matic, and the color of A(Fi) is di�erent from the color of B(Fi).

(4.11)

Let c be a coloring of G|T . Let y ∈ Y (Fi). We may assume that y is complete to C1, and C1 ∈ Fi.

Let α = c(A1) and β = c(B1), where c(Ai) and c(Bi) denote the color given to the unique vertices in

the sets Ai and Bi respectively. Since y is complete to at least two of C1, . . . , Cs, the sets N(y)∩A

and N(y) ∩ B are monochromatic, and α 6= β. Pick any t ∈ Fi, and let P be a shortest path in

F from C1 to t. Let s be the neighbor of t in P . We may assume that s = C2 and t = C3. We

proceed by induction and assume that c(A2) = α, and c(B2) = β. Since s is adjacent to t in F ,

there is y′ ∈ Y1 such that y′ is complete to C2 ∪ C3. Then c(y′) ∈ {1, 2, 3} \ {α, β}. Moreover, A2

is complete to B3, and A3 is complete to B2, and so c(A3) /∈ {c(y′), β} and c(B3) /∈ {c(y′), α}. It

follows that c(A3) = α and c(B3) = β, as required. This proves (4.11).

We now construct a new graph G′ where we replace each Fi by a representative in A and a

representative in B, as follows. Let G′ be the graph obtained from G\ (C1∪ . . .∪Cs∪Y1) by adding

2s new vertices a1, . . . , as, b1, . . . , bs, where

NG′(ai) = {bi} ∪
⋃

a∈A(Fi)

(NG(a) ∩ V (G′))

and

NG′(bi) = {ai} ∪
⋃

b∈B(Fi)

(NG(b) ∩ V (G′)),

for all i ∈ {1, . . . , s}. Note that, in G′, the set {a1, . . . , as} is complete to the set {b1, . . . , bs}. Let

L(ai) = {1, 3} and L(bi) = {1, 2} for every i. By repeated applications of Claim 2, we deduce that

G′ is P6-free.

Let A∗ = (A \ (A′′ ∪A1 . . .∪As))∪{a1, . . . , as} and B∗ = (B \ (B′′ ∪B1 . . .∪Bs))∪{b1, . . . , bs}.

Note that A∗ is complete to B′′, and B∗ is complete to A′′.

Let R = G|(A∗ ∪B∗ ∪A′′ ∪B′′).
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We may assume that |A∗| ≥ 2, and de�ne the list systems L1, L2, and L3 as follows.

L1(v) =


{3} if v ∈ A′′

{2} if v ∈ B′′

L(v) if v 6∈ A′′ ∪B′′

L2(v) =


{3} if v ∈ A∗

L(v) if v 6∈ A∗

L3(v) =


{2} if v ∈ B∗

L(v) if v 6∈ B∗

Let L = {L1, L2, L3}. It is clear that, for every L-coloring c of G′, there exists a list system

L′ ∈ L such that c is also an L′-coloring of G′. Recall that by the remark following (4.8) every

vertex of Y2 has a neighbor in A∗, a neighbor in B∗, and a neighbor in A′′∪B′′. Therefore, for every

L′ ∈ L, every vertex in Y2 is adjacent to some vertex v with |L′(v)| = 1. Now by Lemma 4.3.1,

Lemma 4.3.3, and Lemma 4.3.4, for every L′ ∈ L, G′ contains an induced subgraph G′′ such that

(G′′, L) is not colorable, and |V (G′′) \ V (R)| ≤ 3 · 36 · 100. We may assume that for every index

i, ai ∈ G′′ or bi ∈ G′′, for otherwise we can just delete Fi from G contradicting the minimality of

(G,L).

We claim that the subgraph induced by G on the vertex set

S = (V (G) ∩ V (G′′)) ∪ Y1 ∪
s⋃
i=1

(A(Fi) ∪B(Fi))

is not L-colorable. Suppose this is false and let c be such a coloring. By (4.11), for every i ∈

{1, . . . , k} the sets A(Fi) and B(Fi) are both monochromatic, and c can be converted to a coloring

of G′′ by giving ai the unique color that appears in A(Fi) and bi the unique color that appears in

B(Fi), a contradiction. Thus V (G) = S, and it is su�cient to show that |Y1∪
⋃s
i=1(A(Fi)∪B(Fi))|

has bounded size. To see this, let T = S \ (A ∪B ∪ Y1), then |T | < |V (G′′) \R| ≤ 3 · 36 · 100.

First we bound s. Partition the set of pairs {(a1, b1), . . . , (as, bs)} according to the adjacency of

each (ai, bi) in T ; let H1, . . . ,Hl be the blocks of this partition. Then l ≤ 22|T |.
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We claim that |Hi| = 1 for every i. Suppose for a contradiction that (ai, bi), (aj , bj) ∈ H1. Let

c be an L-coloring of G′′ \ {ai, bi}. Note that, since N(ai) = N(aj) and N(bi) = N(bj), setting

c(ai) = c(aj) and c(bi) = c(bj) gives an L-coloring of G′′, a contradiction. This proves that s ≤ 22|T |.

Next we bound |Fi| for each i. Let i ∈ {1, . . . , s}. Partition the set {Cj : j ∈ Fi} according

to the adjacency of Cj in T . Let Ci1, . . . , C
i
qi be the blocks of the partition. Then qi ≤ 2|T |. Let

Cl ∈ Ci1. For each j ∈ {2, . . . , qi} let Qij be a shortest path from Cl to Cij in F . In G, Q
i
j yields a

path Qij
′
= a′1-y

′
1-a
′
2-y
′
2-. . .-y

′
m-a

′
m where a′1 ∈ Cl, a′m ∈ A∩Cij , a′2, . . . , a′m−1 ∈

⋃
l∈{1,...,q}\{1,j}A∩Cil

and y′1, . . . , y
′
m ∈ Y1. Let Y (Qij) = {y′1, . . . , y′m}. Since Qij

′ does not contain a P6, it follows that

|Y (Qj)| ≤ 2. Let Y i
1 =

⋃qi
j=2 Y (Qij), and note that |Y i

1 | ≤ 2qi − 2 ≤ 2(2|T | − 1). Moreover, let

Ŷ =
⋃s
i=1 Y

i
1 , and note that |Ŷ | ≤ 2(2|T | − 1)s.

Next we claim that Ŷ = Y1. To see this, suppose that there exists a vertex y ∈ Y1 \ Ŷ . Note

that y is critical, and let c be a coloring of G \ y. We may assume that N(y) ⊆
⋃
i∈F1

Ci. We will

construct a coloring of G′′ and obtain a contradiction. By (4.11), for every i ∈ {2, . . . , s} both of

the sets A(Fi) and B(Fi) are monochromatic and so we can color ai and bi with the corresponding

colors.

Let F ′ be the graph with vertex set F1 and such that i is adjacent to j if and only if there is

a vertex y′ ∈ Ŷ (and therefore y′ ∈ Y 1
1 ) complete to Ci ∪ Cj . Recall the partition C1

1 , . . . , C
1
q1 . By

the de�nition of Y 1
1 , there exists C

′
1 ∈ C1

1 such that for every i ∈ {2, . . . , q1} there is a path in F ′

from C ′1 to a member C ′i of C
1
i . Write {a′1} = C ′1 ∩ A and {b′1} = C ′1 ∩ B, and let α = c(a′1) and

β = c(b′i). Following the outline of the proof of (4.11) we deduce that α 6= β, and that for each

i ∈ {1, . . . , q} some vertex of
⋃
C∈C1

i
C ∩A is colored with color α, and some vertex of

⋃
C∈C1

i
C ∩B

is colored with color β. Observe that for every index i only vertices of Y1 ∪
⋃
C∈C1

i
(C ∩ B) are

mixed on
⋃
C∈C1

i
(C ∩ A), and only vertices of Y1 ∪

⋃
C∈C1

i
(C ∩ A) are mixed on

⋃
C∈C1

i
(C ∩ B).

Thus we can color a1 with color α and b1 with color β, obtaining a coloring of G′′, a contradiction.

This proves that |Y1| ≤ 2(2|T | − 1)s. Now applying Claim 4 |Y1| times implies that there is a

function q that does not depend on G, such that |
⋃s
i=1(A(Fi) ∪ B(Fi))| ≤ q(|T |). Consequently,

|V (G)| ≤ |T |+ |Y1|+ q(|T |) ≤ |T |+ 2(2|T | − 1)s+ q(T ). This completes the proof.

Now Lemma 4.3.2 follows from Claim 6.
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4.4 2P3-free 4-vertex critical graphs

The aim of this section is to show that there are only �nitely many 2P3-free 4-vertex critical graphs.

The proof follows the same outline as the proof of the previous section. Lemma 4.4.1 deals with

2P3-free minimal list-obstructions where every list has size at most two. In view of Lemma 4.6.2

the exact analogue of Lemma 4.3.1 does not hold in this case, however if we add the additional

assumption that the minimal list-obstruction is contained in a 2P3-free 4-vertex-critical graph that

was obtained by updating with respect to a set of precolored vertices, then we can show that the

size of the obstruction is bounded.

4.4.1. There is a an integer C > 0 such that the following holds. Let (G,L) be a list-obstruction.

Assume that G is 2P3-free and the following holds.

(a) Every list contains at most two entries.

(b) Every vertex v of G with |L(v)| = 2 has a neighbor u with |L(u)| = 1 such that for all w ∈ V (G)

with |L(w)| = 2, uw ∈ E(G) implies L(w) = L(v).

Then (G,L) contains a minimal list-obstruction with at most C vertices.

Like in the case of P6-free list-obstructions, we can use the precoloring technique to prove that

the lemma above implies our main lemma.

4.4.2. There is an integer C > 0 such that every 2P3-free 4-vertex-critical graph has at most C

vertices. Consequently, there are only �nitely many 2P3-free 4-vertex-critical graphs.

4.4.1 Proof of Lemma 4.4.1

Let G′ be an induced subgraph of G such that (G′, L) is a minimal list-obstruction. By Lemma 4.2.1,

it su�ces to prove that the length of any propagation path of (G′, L) is bounded by a constant. To

see this, let P = v1-v2-. . .-vn be a propagation path of (G′, L) starting with color α, say. Consider

v1 to be colored with α, and update along P until every vertex of P is colored. Let this coloring of

P be denoted by c. Recall condition (4.1) from the de�nition of propagation path: every edge vivj

with 3 ≤ i < j ≤ n and i ≤ j − 2 is such that

S(vi) = αβ and S(vj) = βγ,

67



CHAPTER 4. OBSTRUCTIONS FOR THREE-COLORING AND LIST THREE-COLORING

H-FREE GRAPHS

where {1, 2, 3} = {α, β, γ}.

First we prove that there is a constant δ such that there is a subpath Q = vm-vm+1-. . . -vm′ of

P of length at least bδnc with the following property. After permuting colors if necessary, it holds

for all i ∈ {m, . . . ,m′} that

S(vi) =


32, if i ≡ 0 mod 3

13, if i ≡ 1 mod 3

21, if i ≡ 2 mod 3

.

To see this, suppose there are two indices i, j ∈ {3, . . . , n − 3} such that i + 2 ≤ j and c(vi) =

c(vi+2) = c(vj) = c(vj+2). Moreover, suppose that c(vi) = c(vi+2) = c(vj) = c(vj+2) = α and

c(vi+1) = c(vj+1) = β for some α, β with {α, β, γ} = {1, 2, 3}. Thus, L(vi+1) = L(vi+2) = L(vj+1) =

L(vj+2) = {α, β}, α ∈ L(vj+3), and α 6= c(vj+3). But now vi-vi+1-vi+2 and vj+1-vj+2-vj+3 are both

induced P3's, according to (4.1), and there cannot be any edge between them. This is a contradiction

to the assumption that G is 2P3-free. The same conclusion holds if c(vi+1) = c(vj+1) = γ. Hence,

there cannot be three indices i, j, k ∈ {3, . . . , n− 3} such that i+ 2 ≤ j, j + 2 ≤ k, and

c(vi) = c(vi+2) = c(vj) = c(vj+2) = c(vk) = c(vk+2) = α.

Consider the following procedure. Pick the smallest index i ∈ {3, . . . , n − 3} such that c(vi) =

c(vi+2) = 1, if possible, and remove the vertices vi, vi+1, and vi+2 from P . Let P ′ be the longer of the

two paths v1-v2-. . .-vi−1 and vi+3-v2-. . .-vn. Repeat the deletion process and let P ′′ = vr-vr+1-. . . -vr′

be the path obtained. As shown above, we now know that there is no index j ∈ {r + 2, . . . , r′ − 3}

with c(vj) = c(vj+2) = 1.

Repeating this process for colors 2 and 3 shows that there is some δ > 0 such that there is a

path Q = vm-vm+1-. . . -vm′ of length bδnc where c(vi) 6= c(vi+2) for all i ∈ {m − 1, . . . ,m′ − 2}.

Thus, after swapping colors if necessary we have the desired property de�ned above.

From now on we assume that G has su�ciently many vertices and hence m′ −m is su�ciently

large. Since G is 2P3-free and hence P7-free, the diameter of every connected induced subgraph of

G is bounded by a constant. In particular, the diameter of the graph G|({vm, . . . , vm′}) is bounded,

and so we may assume that there is a vertex vi with m ≤ i ≤ m′ with at least 20 neighbors in the

path Q. We may assume that c(vi) = 1 and, thus, S(vi) = 13.
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We discuss the case when |N(vi)∩{vm, . . . , vi−1}| ≥ 10. The case of |N(vi)∩{vi+1, . . . , vm′}| ≥ 10

can be dealt with in complete analogy.

We pick distinct vertices vi1 , . . . , vi10 ∈ N(vi) ∩ {vm, . . . , vi−1} where i1 < i2 < . . . < i10. Note

that (4.1) implies that S(vij ) = 21 for all j ∈ {1, . . . , 10}.

We can pick three indices j1, j2, j3 with r′ < j1 < j2 < j3 < m′ such that

• S(vj1) = S(vj2) = S(vj3) = 32, and

• i2 + 5 = j1, j1 + 6 = j2, j2 + 4 ≤ i7, i8 + 5 = j3, and j3 + 4 = i.

Recall that assumption (b) of the lemma we are proving implies the following. Since L(vju) = {2, 3},

vju has a neighbor xju with L(xju) = {1}, u = 1, 2, 3, such that xju is not adjacent to any vertex vj

with m ≤ j ≤ m′ and j ≡ 1 mod 3 or j ≡ 2 mod 3.

Suppose that xju = xju′ for some vju′ with u
′ ∈ {1, 2, 3} \ {u}. Now the path vju-xju-vju′ is an

induced P3, and so is the path vi1-vi-vi2 , both according to condition (4.1). Moreover, there is no

edge between those two paths, due to (4.1), which is a contradiction. Hence, the three vertices xju ,

xju , and xju are mutually distinct and, due to the minimality of (G,L), mutually non-adjacent.

Consider the induced P3's vj1+1-vj1-xj1 and vj3+1-vj3-xj3 . Since G is 2P3-free, there must be

an edge between these two paths. According to (4.1), it must be the edge vj1+1vj3 . For similar

reasons, the edge vj2+1vj3 must be present. Now the path vj1+1-vj3-vj2+1 is an induced P3, and so

is the path vi7-vi-vi8 . Moreover, there is no edge between those two paths, due to (4.1), which is a

contradiction. This completes the proof.

4.4.2 Proof of Lemma 4.4.2

We start with two statements that allow us to precolor sets of vertices with certain properties. In

this subsection G is always a 2P3-free graph, and all lists are subsets of {1, 2, 3}.

(1) Assume that (G,L) is a list-obstruction. Let X ⊆ V (G) be such that there exists a coloring c of

G|X with the following property: for each x ∈ X there exists a set Nx ⊆ V (G) with |Nx| ≤ k such

that x is colored c(x) in every coloring of (G|({x} ∪Nx), L). Let L
′ be a list system such that

L′(v) =


L(v), if v ∈ V (G) \X

{c(x)}, if v ∈ X
.
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Then the following holds.

(a) (G,L′) is a list-obstruction.

(b) If K ⊆ V (G) is such that (G|K,L′) is a minimal list-obstruction induced by (G,L′), then (G,L)

contains a minimal list-obstruction of size at most (k + 1)|K|.

Proof. Since L′(v) ⊆ L(v) for all v ∈ V (G), (G,L′) is also a list-obstruction. This proves (a).

Let A = G|(K∪
⋃

x∈K∩X
Nx), then |V (A)| ≤ (k+1)|K|. Suppose that there exists a coloring, c′ of

(A,L). Note that for every x ∈ V (A), Nx ⊆ A. Hence by the de�nition of X, c′(x) = c(x) for every

x ∈ V (A). This implies that c′ is also a coloring of (A,L′), which gives a coloring of (G|K,L′), a

contradiction. Therefore (A,L) is a list-obstruction induced by (G,L). Since |V (A)| ≤ (k + 1)|K|,

(b) holds. This completes the proof.

(2) Let (G,L) be a list-obstruction, and let X ⊆ V (G) be a vertex subset such that |L(x)| = 1 for

every x ∈ X. Let Y = N(X), and let Y ′ ⊆ Y be such that for every v ∈ Y ′, |L(v)| = 3. For every

v ∈ Y ′, pick xv ∈ N(v) ∩X. Let L′ be the list de�ned as follows.

L′(v) =


L(v), if v ∈ V (G) \ Y ′

L(v) \ L(xv), if v ∈ Y ′
.

Let (G′, L′) be a minimal list-obstruction induced by (G,L′). Then there exists a minimal list-

obstruction induced by (G,L), say (G′′, L), with |V (G′′)| ≤ 2|V (G′)|.

Proof. Let R = {xv : v ∈ V (G′) ∩ Y ′} and let P = R ∪ V (G′). It follows that |V (P )| ≤ 2|V (G′)|.

It remains to prove that (G|P,L) is not colorable. Suppose there exists a coloring c of (G|P,L).

Note that c is not a coloring of (G′, L′) and G′ is an induced subgraph of G|P . Hence there exists

w ∈ V (G′) such that c(w) 6∈ L′(w). By the construction of L′, it follows that w ∈ Y ′ and that

c(w) ∈ L(w) \ L′(w) = {c(xw)}, which is a contradiction. This completes the proof.

Let G be a 2P3-free 4-vertex-critical graph such that |V (G)| ≥ 5, then the following claim holds.

(3) At least one of the following holds

1. There exists S0 ⊆ V (G) such that |S0| ≤ 5, G|S0 contains a copy of P3 and S0 ∪ N(S0) ∪

N(N(S0)) = V (G), or
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2. G has a semi-dominating set of size at most 5.

Proof. Since G is 2P3-free and thus also P7-free, Theorem 4.3.6 states that G has a dominating

induced P5 or a dominating P5-free connected induced subgraph, denoted by Df . Recall that a

dominating set is always a semi-dominating set; so we may assume that the latter case holds and

|V (Df )| ≥ 6. By applying Theorem 4.3.6 to Df again, we deduce that Df has a dominating induced

subgraph T , which is isomorphic to P3 or a connected P3-free graph.

If T is isomorphic to P3, then we are done by setting S0 = V (T ). Hence we may assume T is

a connected P3-free graph. Therefore T is a complete graph, and so V (T ) ≤ 3. If there exists a

vertex s′ ∈ V (G \ T ) mixed on T , we are done by setting S0 = V (T ) ∪ {s′}. Hence we may assume

that for every v ∈ V (Df \ T ), v is complete to T . Since |V (G)| ≥ 5, it follows that Df is K4-free.

Therefore there exist v, w ∈ V (Df \T ) such that v is non-adjacent to w and we are done by setting

S0 = V (T ) ∪ {v, w}.

If G has a semi-dominating set of size at most 5, we are done by Lemma 4.3.5 and Lemma 4.4.1.

Hence we may assume there exists S0 de�ned as in Claim 3.

For a list system L′ of G, we say that (X1, X2, B, S) is the partition with respect to L′ by setting:

(a) S = {v ∈ V (G) : |L′(v)| = 1}.

(b) B = N(S); assume that |L′(v)| = 2 for every v ∈ B.

(c) Let X = V (G) \ (S ∪ B). We say that C is a good component of X if there exist x ∈ C and

{i, j} ⊆ {1, 2, 3} so that x has two adjacent neighbors a, b ∈ Bij , where Bij = {b ∈ B such that

L′(b) = {i, j}}. Let X1 be the union of all good components of X and let X2 = X \X1.

Let (X1, X2, B, S) be the partition with respect to L′. De�ne X = X1 ∪X2. For every 1 ≤ i ≤

j ≤ 3, de�ne Bij = {b ∈ B such that L′(b) = {i, j}} and Xij = {x ∈ X2 such that |N(x)∩Bij | ≥ 2}.

For {i, j, k} = {1, 2, 3}, let us say that a component C of X2 is i-wide if there exist aj in Bik and ak

in Bij such that C is complete to {aj , ak}. We call aj and ak i-anchors of C. Note that a component

can be i-wide for several values of i. Let L′′ be a subsystem of L′ and let (X ′1, X
′
2, B

′, S′) be the

partition with respect to L′′. Then S ⊆ S′, B′ \B ⊆ X1 ∪X2 and X ′2 ⊆ X2.

Next we de�ne a sequence of new lists L0, . . . , L5. Let {i, j, k} = {1, 2, 3}. Let S0 be as in

Claim 3, and let L0 = L.
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1. Let L1 be the list system obtained by precoloring S0 and updating three times. Let (X1
1 , X

1
2 , B

1, S1)

be the partition with respect to L1.

2. For each k ∈ {1, 2, 3}, choose xk ∈ X1
ij such that |N(xk) ∩ B1

ij | is minimum. Let ak, bk ∈

N(xk) ∩ B1
ij . Let L2 be the list system obtained from L1 by precoloring

3⋃
i=1
{ai, bi, xi} and

updating the lists of vertices three times. Let (X2
1 , X

2
2 , B

2, S2) be the partition with respect

to L2 .

3. For each k ∈ {1, 2, 3}, let B̂k ⊆ B2
ij with |B̂k| ≤ 1 be de�ned as follows. If there does not exist

a vertex v ∈ B2
ij that starts a path v-u-w where u,w ∈ X2

2 , then B̂k = ∅. Otherwise choose

bk ∈ B2
ij maximizing the number of pairs (u,w) where bk-u-w is a path and let B̂k = {bk}.

Let L3 be the list system from L2 obtained by precoloring B̂1 ∪ B̂2 ∪ B̂3 and updating three

times. Let (X3
1 , X

3
2 , B

3, S3) be the partition with respect to L3.

4. Apply step 2 to (X3
1 , X

3
2 , B

3, S3) with list system L3; let L4 be the list system obtained and

let (X4
1 , X

4
2 , B

4, S4) be the partition with respect to L4.

5. For every component Ct of X4
2 with size 2, if Ct is i-wide with i-anchors at, bt, set L5(a

t) =

L5(b
t) = {i}; then let L5 be the list system after updating with respect to

⋃
t{at, bt} three

times. Let (X5
1 , X

5
2 , B

5, S5) be a partition with respect to L5.

By Lemma 4.3.3 and Lemma 4.3.4, it is enough to prove that (G,L4) induces a bounded size

list-obstruction. To do that, we prove the same for (G,L5), and then use Claim 1 and Lemma 4.3.4,

as we explain in the remainder of this section.

We start with a few technical statements.

(4) Let 1 ≤ m ≤ l ≤ 5. Then the following holds.

1. For every vertex in x ∈ Xm, |Lm(x)| = 3, and every component of Xm is a clique with size

at most 3.

2. If no vertex of Bm
ij is mixed on an edge in G|Xm

2 , then no vertex of Bl
ij is mixed on an edge

in G|X l
2.

3. If no vertex of Xm
2 has two neighbors in Bm

ij and no vertex of Bm is mixed on an edge in

G|Xm
2 , then no vertex of X l

2 has two neighbors in Bl
ij.
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Proof. By construction, for every vertex in x ∈ Xm, |Lm(x)| = 3. Observe that S0 ⊆ Sm. Recall

that G is 2P3-free and that S0 contains a P3. Hence Xm does not contain a P3, and so every

component of Xm is a clique. Since |V (G)| ≥ 5, it follows that every component of Xm has size at

most 3. This proves the �rst statement.

Let b ∈ Bl
ij be mixed on the edge uv such that u, v ∈ X l

2. Recall that X l
2 ⊆ Xm

2 ; thus

{u, v} ⊆ Xm
2 . By assumption b 6∈ Bm

ij and hence b ∈ Xm. But now b-u-v is a P3 in Xm, a

contradiction. This proves the second statement.

To prove the last statement, suppose that there exists y ∈ X l
2 with two neighbors u, v ∈ Bl

23.

Since y ∈ X l
2, it follows that u, v are non-adjacent. Note that y ∈ Xm

2 , hence by assumption and

symmetry, we may assume that v /∈ Bm. Therefore v ∈ Xm. Since Xm
1 is the union of components

of Xm, and y ∈ Xm
2 is adjacent to v, it follows that v ∈ Xm \Xm

1 , and consequently v ∈ Xm
2 . If

u /∈ Bm, then u-y-v is a P3 in G|Xm, contrary to the �rst statement. Hence u ∈ Bm and then u is

mixed on the edge vy of G|Xm
2 , a contradiction. This completes the proof.

(5) X1
12 ∪X1

23 ∪X1
13 ⊆ B2 ∪ S2.

Proof. Suppose that there exists x′ ∈ X1
ij \ (B2 ∪ S2) for some 1 ≤ i ≤ j ≤ 3; then |L2(x

′)| = 3.

Let xk ∈ X1
ij and ak, bk ∈ N(xk) ∩ B1

ij be the vertices chosen to be precolored in the step creating

L2. Then x′ is non-adjacent to {xk, ak, bk}. The minimality of |N(xk) ∩ B1
ij | implies that there

exist a′, b′ ∈ (N(x′) ∪ B1
ij) \ N(xk). Since G is 2P3-free, there exists an edge between {ak, bk, xk}

and {a′, b′, x′}. Speci�cally, there exists an edge between {ak, bk} and {a′, b′}. We may assume that

L2(ak) = {i} and ak is adjacent to at least one of a′, b′. Recall that L1 is obtained by precoloring
3⋃
i=1
{ai, bi, xi} and updating three times. It follows that j /∈ L2(x

′), a contradiction.

(6) No vertex of B3 is mixed on an edge of X2.

Proof. Suppose that there exists a path b′-x′1-x
′
2 such that b′ ∈ B3

ij and x′1, x
′
2 ∈ X3

2 . Note that

x′1, x
′
2 ∈ X2

2 since L3 is a subsystem of L2. By Claim 4.1, X2 is P3-free. Hence b′ ∈ B2
ij . By

Claim 4.3, there exists b ∈ B2
ij such that b−x−y is a path where x, y ∈ X2

2 . Then in step 3, B̂k 6= ∅

and let b ∈ B̂k. By the construction of L3 and since x′1, x
′
2 ∈ X3

2 , b is anticomplete to {b′, x′1, x′2}.

By the construction of B̂k, there exist x1, x2 ∈ X2
2 such that b-x1-x2 is a path and b′ is not mixed

on x1x2. If {x1, x2} is not anticomplete to {x′1, x′2}, then by Claim 4.1 G|{x1, x2, x′1, x′2} is a K4,

a contradiction to the fact that |V (G)| ≥ 5. Hence {x1, x2} is anticomplete to {x′1, x′2}. Since G
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is 2P3-free, there exists an edge between b′ and {x1, x2}. Consequently, b′ is complete to {x1, x2}.

Now x1 has two neighbors in B2
ij , namely b and b′. By Claim 5, x1 /∈ B1

ij . It follows that either

b ∈ X1 or b′ ∈ X1. If b ∈ X1, then b− x− y is a P3 in X1, contrary to Claim 4.1. Hence b′ ∈ X1.

It follows that b′-x′1-x
′
2 is a P3 in X1, again contrary to Claim 4.1. This completes the proof.

We are now ready to prove that it su�ces to show that (G,L5) induces a mininal list-obstruction

of bounded size. Let Ct be an i-wide component of X4
1 with Ct = {xt, yt}, and let at, bt be the

i-anchors of Ct that were chosen in step 5. By the de�nition of i-anchors, L4(at)∩L4(bt) = {i} and

{at, bt} is complete to Ct; therefore c(at) = c(bt) = i for every coloring c of (G|{xt, yt, at, bt}, L4).

Hence we can apply Claim 1 to L4. By Claim 1 and Lemma 4.3.4, it is enough to show that (G,L5)

induces a bounded size list-obstruction.

(7) X5
2 is stable.

Proof. Since |V (G)| ≥ 5 and since no vertex of B5 is mixed on an edge of G|X5
2 , by Claim 4.1 every

component of X5
2 has size at most 2. We may assume some component C of X5

2 has size exactly 2,

for otherwise the claim holds. Then C is a component of X4
2 . By Claim 4 and Claim 5, no vertex

of X4
2 has two neighbors in B4

ij . Since every vertex in G has degree at least 3, every vertex of C

has a neighbor in at least two of B4
12, B

4
23, B

4
13. It follows that C is i-wide for some i and therefore

C ⊆ S5 ∪B5, a contradiction.

By Claim 4 and Claim 6, no vertex of X5
2 has two neighbors in B5

ij . Since every vertex in G has

degree at least 3, it follows that every vertex of X5
2 has exactly one neighbor in each of B5

ij . Let Y0,

Y1, . . . , Y6 be a partition of X5
2 as follows. Let x ∈ X5

2 and ak = N(x)∩B5
ij for {i, j, k} = {1, 2, 3}.

If {a1, a2, a3} is a stable set, then x ∈ Y0; if E(G|{a1, a2, a3}) = {aiaj}, then x ∈ Yk; and if

E(G|{a1, a2, a3}) = {aiaj , aiak}, then x ∈ Yi+3. Note that G|{a1, a2, a3} cannot be a clique since

V (G) ≥ 5. For each non-empty Ys, pick xs ∈ Ys, and let ask ∈ N(xs) ∩ B5
ij for {i, j, k} = {1, 2, 3}.

Let L6 be the list system obtained by precoloring
6⋃
i=0
{xi, ai1, ai2, ai3} with c and updating three

times.

(8) For every x ∈ X5
2 , |L6(x)| ≤ 2

Proof. Suppose there exists y ∈ Yi such that |L6(y)| = 3; let b1 = N(y) ∩ B5
23, b2 = N(y) ∩

B5
13, and b3 = N(y) ∩ B5

12. Then {ai1, ai2, ai3, xi} and {b1, b2, b3, y} are disjoint sets. Note that
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c(ai1), c(ai2), c(ai3) can not all be pairwise di�erent, and so by symmetry we may assume that

c(ai1) = c(ai2) = 3 and c(ai3) = 2. Thus, ai1ai2 is a non-edge. By the construction of L6 and since

|L6(y)| = 3, the only possible edges between the sets {ai1, ai2, ai3} and {b1, b2, b3} are ai3b2, ai1b3

and ai2b3. Recall that every vertex of X5
2 has exactly three neighbors in B5, and so N(y) ∩ B5 =

{b1, b2, b3} and N(xi) ∩ B5 = {ai1, ai2, ai3}. Since G|{ai1, xi, ai2, b1, y, b2} is not a 2P3, it follows

that b1 is adjacent to b2. But this contradicts to the fact that both xi and y belong to Yi.

Let (X1
6 , X

2
6 , B

6, S6) be the partition with respect to L6. For every component Cs ⊆ X6
1 , let

{i, j, k} = {1, 2, 3} be such that there exists xks ∈ Cs with two adjacent neighbors in B6
ij . De�ne

L′6(x
s
k) = {k}; let P be the set of all such vertices xsk, and let L′6(v) = L6(v) for every v 6∈ P .

Let L∗ be the list system obtained from L′6 by updating with respect to P three times. Pick

x ∈ P , then there exist i, j ∈ {1, 2, 3} for which some a, b ∈ N(x) ∩ B6
ij are adjacent. Then

L6(a) = L6(b) = {i, j}. As a result, for every coloring c of (G|{x, a, b}, L6), c(x) = k. This implies

that we can apply Claim 1 to L6. By Lemma 4.3.4 and Claim 1, it is enough to prove that (G,L∗)

induces a bounded size list-obstruction. Let (X∗1 , X
∗
2 , B

∗, S∗) be the partition with respect to L∗.

Then by Claim 4.1 X∗1 , X
∗
2 are empty. Now (G,L∗) satis�es the hypotheses of Lemma 4.4.1, and

this �nishes the proof of Lemma 4.4.2.

4.5 P4 + kP1-free minimal list-obstructions

In this section we prove that there are only �nitely many P4 + kP1-free minimal list-obstructions.

This also implies that there are only �nitely many P4 + kP1-free 4-vertex-critical graphs.

4.5.1. Let (G,L) be a minimal list-obstruction such that each list has at most two entries. Moreover,

let G be (P4+kP1)-free, for some k ∈ N. Then V (G) is bounded from above by a constant depending

only on k.

Proof. By Lemma 4.2.1, it su�ces to prove that every propagation path in (G,L) has a bounded

number of vertices. To see this, let P = v1-. . . -vn be a propagation path in (G,L) starting with

color α, say. Consider v1 to be colored with α, and update along P until every vertex is colored.

Call this coloring c. Suppose that n ≥ 100k2 + 100. Our aim is to show that this assumption is

contradictory. Recall condition (4.1) from the de�nition of propagation path: every edge vivj with
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3 ≤ i < j ≤ n and i ≤ j − 2 is such that

S(vi) = αβ and S(vj) = βγ,

where {1, 2, 3} = {α, β, γ}.

First we suppose that there is a sequence vi, vi+1, . . . , vj with 2 ≤ i ≤ j ≤ n and j − i ≥ 5 + 2k

such that c(vi′) = c(vi′+2) for all i′ with i ≤ i′ ≤ j − 2. But then (4.1) implies that vi+1-vi+2-. . . -vj

is an induced path, and thus G is not P4 + kP1-free, a contradiction.

Suppose now that there is an index i with 2 ≤ i ≤ dn/2e − 3 such that c(vi) = c(vi+2) = α and

c(vi+1) = c(vi+3) = β. In particular, L(vi+3) = {α, β}. Now condition (4.1) of the de�nition of a

propagation path implies that there cannot be an edge between vi and vi+3, and so vi-vi+1-vi+2-vi+3

is an induced P4. Therefore no such sequence exists.

We now pick k disjoint intervals of the form {j, . . . , j +7+2k} ⊆ {dn/2e+1, . . . , n}. As shown

above, each of these intervals contains an index i′ in its interior with c(vi′) = α. These vi′ form a

stable set and (4.1) implies that the induced path vi-vi+1-vi+2-vi+3 is anticomplete to each vi′ , a

contradiction to the fact that G is P4 + kP1-free.

Now suppose that there is an index i with r+1 ≤ i ≤ d(r+s)/2e−3 such that c(vi) = c(vi+2) = α

and c(vi+1) = β. From what we have shown above we know that c(vi−1) = c(vi+3) = γ, where

{α, β, γ} = {1, 2, 3}. Thus, we have S(vi) = αγ, S(vi+1) = βα, S(vi+2) = αβ, and S(vi+3) = γα.

According to (4.1), the path vi-vi+1-vi+2-vi+3 is induced.

Pick a vertex vj with dn/2e + 1 ≤ j ≤ n. According to (4.1), vj is anticomplete to the path

vi-vi+1-vi+2-vi+3 unless one of the following holds.

(a) S(vj) = αβ,

(b) S(vj) = αγ,

(c) S(vj) = βγ, or

(d) S(vj) = γβ.

Let us say that vj is of type A if it satis�es one of the above conditions. If vj is not of type A, we

say it is of type B.

We claim that there are at most 3k−3 vertices of type B. To see this, suppose there are at least

3k − 2 vertices of type B. By de�nition, each vertex of type B is anticomplete to the set the path
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vi-vi+1-vi+2-vi+3. Since (G,L) is a minimal obstruction and not every vertex is of type B, the graph

induced by the vertices of type B is 3-colorable. Picking the vertices of the majority color yields a

set S of k independent vertices of type B. But now the set {vi, . . . , vi+3} ∪ S induces a P4 + kP1 in

G, a contradiction.

So, there are at most 3k − 3 vertices of type B. Suppose there are more than (3k − 2)(7 + 2k)

many vertices of type A. Then there is an index t ≥ dn/2e+ 1 such that vt + j′ is of type A for all

j′ ∈ {0, . . . , 6+2k}. Suppose that there is an index j′ ∈ {0, . . . , 5+2k} such that c(vt+j′) = α. Then

S(vt+j′+1) = · α, in contradiction to the fact vt+j′+1 is of Type A. So, for all j′ ∈ {0, . . . , 5+2k} we

have that c(vt+j′) 6= α, in contradiction to what we have shown above. Summing up, n is bounded

by 2(3k− 2)(7 + 2k) + 1 if there is an index i with 2 ≤ i ≤ dn/2e − 3 such that c(vi) = c(vi+2) = α

and c(vi+1) = β.

Hence, our assumption n ≥ 100k2 + 100 implies that c(vi) 6= c(vi+2) for all i with 2 ≤ i ≤

dn/2e − 3. This means that, without loss of generality,

c(vi) =


1, i = 1 (3)

2, i = 2 (3)

3, i = 0 (3)

(4.12)

for all i with 2 ≤ i ≤ dn/2e − 3.

Consider the path v4-v5-. . . -v7+2k. Since G is P4+kP1-free, this is not an induced path. Hence,

there is an edge of the form vivj with i < j. If S(vi) = αβ, we must have S(vj) = βγ, due

to (4.1). Consequently, S(vi−1) = βγ, and S(vj+1) = αβ. In particular, (4.1) implies that vi−1 is

non-adjacent to vj+1, and so vi−1-vi-vj-vj+1 is an induced path.

Like above, we now pick k disjoint intervals of the form {j, . . . , j+7+2k} ⊆ {dn/2e+1, . . . , n}.

Each of these intervals contains an index i′ in it's interior with c(vi′) = α. These vi′ form a stable set

and (4.1) implies that the induced path vi−1-vi-vj-vj+1 is anticomplete to each vi′ , a contradiction.

This completes the proof.

Using the above statement, we can now derive our main lemma.

4.5.2. There are only �nitely many P4 + kP1-free minimal list-obstructions, for all k ∈ N.

Proof. Let (G,L) be a P4 + kP1-free minimal list-obstruction. If G is P4-free, we are done, since

there is only a �nite number of P6-free minimal obstructions. So, we may assume that G contains
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an induced P4, say v1-v2-v3-v4. Let R = V (G) \ N({v1, v2, v3, v4}). Let S be a maximal stable

set in R; then every vertex of V (R) \ S has a neighbor in S. Since G is P4 + kP1-free, it follows

that |S| ≤ k − 1, and so {v1, v2, v3, v4} ∪ S is a dominating set of size at most k + 3 in G. Now

Lemma 4.5.2 follows from Lemma 4.3.5 and Lemma 4.5.1.

4.6 Necessity

The aim of this section is to prove the following two statements.

4.6.1. There are in�nitely many H-free 4-vertex-critical graphs if H is a claw, a cycle, or 2P2+P1.

Here, a claw is the graph consisting of a central vertex plus three pairwise non-adjacent pendant

vertices attached to it. In the list-case, the following variant of this statement holds.

4.6.2. There are in�nitely many H-free minimal list-obstructions if H is a claw, a cycle, 2P2 +P1,

or 2P3.

We remark that Lemma 4.6.1 implies the following. Whenever H is a graph containing a claw, a

cycle, or 2P2+P1 as an induced subgraph, there are in�nitely many H-free 4-vertex-critical graphs.

A similar statement is true with respect to Lemma 4.6.2 and minimal list-obstructions.

4.6.1 Proof of Lemma 4.6.1

Recall that there are in�nitely many 4-vertex-critical claw-free graphs. For example, this follows

from the existence of 4-regular bipartite graphs of arbitrarily large girth (cf. [38] for an explicit con-

struction of these) whose line graphs are necessarily 4-chromatic. Moreover, there are 4-chromatic

graphs of arbitrarily large girth, which follows from a classical result of Erd®s [18]. This, in turn,

implies that there exist 4-vertex-critical graphs of arbitrary large girth. Putting these two remarks

together, we see that if H is the claw or a cycle, then there are in�nitely many 4-vertex-critical

graphs.

We now recall a construction due to Pokrovskiy [47] which gives an in�nite family of 4-vertex-

critical P7-free graphs. It is presented in more detail in our earlier work [10].

For each r ≥ 1, let Gr be the graph de�ned on the vertex set v0, . . . , v3r with edges as follows.

For all i ∈ {0, 1, . . . , 3r} and j ∈ {0, 1, . . . , r−1}, the vertex vi is adjacent to vi−1, vi+1, and vi+3j+2.

Here, we consider the indices to be taken modulo 3r + 1. The graph G5 is shown in Figure 4.1.

78



CHAPTER 4. OBSTRUCTIONS FOR THREE-COLORING AND LIST THREE-COLORING

H-FREE GRAPHS

Figure 4.1: A circular drawing of G5

Up to permuting the colors, there is exactly one 3-coloring of Gr \ v0. Indeed, we may assume

that vi receives color i, for i = 1, 2, 3, since {v1, v2, v3} forms a triangle in Gr. Similarly, v4 receives

color 1, v5 receives color 2 and so on. Finally, v3r receives color 3. It follows that Gr is not

3-colorable, since v0 is adjacent to all of v1, v2, v3r.

As the choice of v0 was arbitrary, we know that Gr is 4-vertex-critical. The graph Gr is 2P2+P1-

free which can be seen as follows.

(1) For all r the graph Gr is 2P2 + P1-free.

Proof. Suppose there is some r such that Gr is not 2P2 + P1-free. Let vi1 , . . . , vi5 be such that

Gr[{vi1 , . . . , vi5}] is a 2P2 + P1. Since Gr is vertex-transitive, we may assume that i1 = 1 and

N(vi1) ∩ {vi2 , . . . , vi5} = ∅. In particular, i2, . . . , i5 6= 0.

Consider Gr \v0 to be colored by the coloring c proposed above, where each vi receives the color

i mod 3. Due to the de�nition of Gr, vi1 is adjacent to every vertex of color 3, and thus c(vj) 6= 3

for all j ∈ {i2, . . . , i5}.

We may assume that c(vi2) = c(vi4) = 1, c(vi3) = c(vi5) = 2, and both vi2vi3 and vi4vi5 are

edges of E(Gr). For symmetry, we may further assume that i2 < i4. Due to the de�nition of Gr,

vi2 and vi4 are adjacent to every vertex of color 2 with a smaller index, and thus i4 < i3. But now

i2 < i4 < i3, a contradiction to the fact that vi2vi3 ∈ E(Gr). This completes the proof.

Consequently, there are in�nitely many 2P2 + P1-free 4-vertex-critical graphs, as desired.
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4.6.2 Proof of Lemma 4.6.2

In view of Lemma 4.6.1, it remains to prove that there are in�nitely many 2P3-free minimal list-

obstructions.

For all r ∈ N, let Hr be the graph de�ned as follows. The vertex set of Hr is V (Hr) = {vi : 1 ≤

i ≤ 3r− 1}. There is an edge from v1 to v2, from v2 to v3 and so on. Thus, P := v1-v2-. . . -v3r−1 is

a path. Moreover, there is an edge between a vertex vi and a vertex vj if i ≤ j − 2, i ≡ 2 mod 3,

and j ≡ 1 mod 3. There are no further edges. The graph H5 is shown in Figure 4.2.

The list system L is de�ned by L(v1) = L(v3r−1) = {1} and, assuming 2 ≤ i ≤ 3r − 2,

L(vi) =


{2, 3}, if i ≡ 0 mod 3

{1, 3}, if i ≡ 1 mod 3

{1, 2}, if i ≡ 2 mod 3

.

Next we show that the above construction has the desired properties.

(2) The pair (Hr, L) is a minimal 2P3-free list-obstruction for all r.

Proof. Let us �rst show that, for any r, Hr is not colorable. Consider the partial coloring c that

assigns color 1 to v1. Since L(v2) = {1, 2}, the coloring can be updated from v1 to v2 by putting

c(v2) = 2. Now we can update the coloring from v2 to v3 by putting c(v3) = 3. Like this we update

the coloring along P until v3r−2 is colored. However, we have to put c(v3r−2) = 1, in contradiction

to the fact that L(v3r−1) = {1}. Thus, Hr is not colorable.

Next we verify that (Hr, L) is a minimal list-obstruction. If we delete v1 or v3r−1, the graph

becomes colorable. So let us delete a vertex vi with 2 ≤ i ≤ 3r − 2. We can color (Hr \ vi, L) as

follows. Give color 1 to v1 and update along P up to vi−1. Moreover, give color 1 to v3r−1 and

update along P backwards up to vi+1. Call this coloring c.

To check that c is indeed a coloring, we may focus on the non-path edges for obvious reasons.

Pick an edge between a vertex vj and a vertex vk with j ≤ k−2, if any. By de�nition, j ≡ 2 mod 3

and k ≡ 1 mod 3. If j < i < k, c(vj) = 2 and c(vk) = 3. Moreover, if j < k < i, c(vj) = 2 and

c(vk) = 1. Finally, if i < j < k, c(vj) = 1 and c(vk) = 3. So, c is indeed a coloring of Hr \ vi and it

remains to prove that Hr is 2P3-free.

Suppose this is false, and let r be minimum such that Hr contains an induced 2P3. Let F be

a copy of such a 2P3 in Hr. It is clear that r ≥ 2. Note that Hr \ N(v2) is the disjoint union of
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Figure 4.2: A drawing of H5. The vertices v1 to v14 are shown from left to right.

complete graphs of order 1 and 2, and so v2 /∈ V (F ). Since N(v1) = {v2}, we know that v1 /∈ V (F ).

Moreover, as F \ (N(v5) ∪ {v1, v2}) is the disjoint union of complete graphs of order 1 and 2, we

deduce that v5 /∈ V (F ). But F ′ := F \ {v1, v2, v3} is isomorphic to Hr−1, and thus the choice of r

implies that F ′ is 2P3-free. Consequently, v3 ∈ V (F ). Since N(v3) = {v2, v4} and v2 /∈ V (F ), we

know that v4 ∈ V (F ). Finally, the fact that N(v4) = {v2, v3, v5} implies that v3 and v4 both have

degree one in F , and they are adjacent, a contradiction.

4.7 Proof of Theorem 4.1.2 and Theorem 4.1.3

We now prove our main results. We start with a lemma.

4.7.1. For every graph H, one of the following holds.

1. H contains a cycle, a claw or 2P2 + P1.

2. H = 2P3.

3. H is contained in P6.

4. There exists k > 1 such that H is contained in P4 + kP1.

Proof. We may assume that H does not contain 2P2 + P1, a cycle, or a claw. It follows that

every component of H induces a path. Let H1, H2, . . . Hk be the components of H, ordered so that

|H1| ≥ |H2| ≥ . . . ≥ |Hk|.

If |H2| ≥ 2, then, since H is 2P2 + P1-free, it follows that k = 2, |H1| ≤ 3, and |H2| ≤ 3, and so

either H is contained in P6 or H = 2P3. This proves that |H2| = . . . = |Hk| = 1.

If |H1| ≥ 5, then since H is 2P2 + P1-free, it follows that k = 1, and H is contained in P6. This

proves that |H1| ≤ 4, and so H is contained in P4 + (k − 1)P1. This proves Lemma 4.7.1.
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Next we prove Theorem 4.1.2, which we restate:

4.1.2. Let H be a graph. There are only �nitely many H-free 4-vertex-critical graphs if and only if

H is an induced subgraph of P6, 2P3, or P4 + kP1 for some k ∈ N.

Proof. If H contains a cycle, a claw or 2P2 + P1, then there is an in�nite list of 4-vertex-critical

graphs by Lemma 4.6.1. By Lemma 4.7.1, H = 2P3, H is contained in P6, or for some k > 1, H is

contained in P4 + kP1, and Lemmas 4.4.2, 4.3.2 and 4.5.2, respectively, imply that there are there

are only �nitely many H-free 4-vertex-critical graphs.

Finally, we prove the list version of the result, Theorem 4.1.3, which we restate:

4.1.3. Let H be a graph. There are only �nitely many H-free minimal list-obstructions if and only

if H is an induced subgraph of P6, or of P4 + kP1 for some k ∈ N.

Proof. If H contains a cycle, a claw, 2P2+P1 or 2P3, then there is an in�nite list of obstructions by

Lemma 4.6.2. By Lemma 4.7.1, H is contained in P6, or for some k > 1, H is contained in P4+kP1.

Now Lemmas 4.3.2 and 4.5.2, respectively, imply that there are there are only �nitely many H-free

list-obstructions.

82



CHAPTER 5. SCHEDULING WHEN YOU DON'T KNOW THE NUMBER OF MACHINES

Chapter 5

Scheduling When You Don't Know the

Number of Machines

5.1 Introduction

In scheduling problems, there are many ways to model uncertainty in the jobs, including online

algorithms [1; 2], stochastic scheduling [45], and work on schedules that are good against multiple

objective functions [4; 43; 51]. But there is much less work studying the possibility of uncertainty

in the machines. Motivated by the need to understand how to make scheduling decisions without

knowing how many machines we will have, in this chapter, we consider the following model. We

are given a set of n jobs, J , with a known processing times p(j) for each job j, and a number M ,

which is an upper bound on the number of machines we might have. An algorithm must commit,

before knowing how many machines there are, to grouping the jobs into M bags, where each job is

assigned to exactly one of the bags. We call this step the packing step. Only after completing the

packing step do we learn the number of machines m. We now need to compute a schedule, with the

restriction that we must keep the bags together, that is, we will assign one or more bags to each

machine. We call this step the scheduling step. As in other robust problems, we want to do well

against all possible numbers of machines. We therefore evaluate our schedule by the ratio of the

makespan of our schedule, ALG(m,M), to the makespan of a schedule that knew m in advance,

optm, taking the worst case over all possible values of m. If an algorithm always provides a ratio
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of at most α, where α = max
1≤m≤M

ALG(m,M)
optm

, we call it α-robust. (We may also consider scenarios in

which there are di�erent upper and lower bounds on the range of m; the de�nition of robustness

extends in the obvious way.)

Our main result is an algorithm for minimizing makespan on parallel machines. which is (53 +ε)-

robust; and we show a lower bound of 4/3 on the robustness of any algorithm for minimizing

makespan on parallel machines. As with many scheduling problems, there are two di�erent aspects

to address. One is the load-balancing aspect, but in this two-stage problem, it seems that one

wants to create bags of a variety of di�erent sizes, in order to allow a more balanced �nal schedule.

The second is to deal with large jobs, and to handle cases where one or several large jobs are the

dominant term in the makespan. Large jobs seem to provide a particular challenge in this problem,

and much of our algorithm and analysis are devoted to handling various cases involving large jobs.

In order to focus on the load balancing issues, we also consider the �continuous� case where we

have a set of in�nitesimal jobs. That is, in the packing stage, we simply need to divide our total

load into M bags. In traditional makespan scheduling, this case is trivial, we would just divide the

load into M equal pieces and achieve an optimal makespan. But in this two stage-problem, even

the continuous case is challenging. We can, however, obtain signi�cantly stronger results than in

the discrete case, showing an upper bound of 1.233 and a lower bound of 1.207 on the robustness.

The continuous case also models a problem in fair allocation. In fair allocation, you typically

have resources that you want to split �fairly� among several parties. The literature on this problem

is vast and we will not attempt to summarize it here. We will only observe that we are solving a

problem in fair allocation that has not previously been studied, to our knowledge. We are given some

objects to share, and everyone agrees on the values, but we don't know how many people will be

sharing them. We place the objects into bags, and have the restriction that each person must take a

subset of the bags. In the makespan variant, we are minimizing the maximum amount that anyone

gets. Motivated by fairness, we also consider a version where you want to minimize the di�erence

between the maximum allocation and the minimum allocation (this objective makes sense in fair

allocation, but not necessarily in scheduling). Here we consider a case where we know a lower bound

of αM on the eventual number of machines, and can show a lower bound of min{2/3, 2/(4α+ 1)}A

on the di�erence and we can obtain an upper bound ofmin{2/3, 1/(α+ 1)}A, where A is the average

load.
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5.1.1 Overview of this chapter and a Lower Bound

We give a brief overview of this chapter, and for intuition, a simple lower bound.

In Section 5.2, we consider the case when all jobs are in�nitesimal. We give an algorithm which

is approximately 1.233 robust. And we also show a lower bound which is approximately 1.207.

For the in�nitesimal case, we also consider the objective of minimizing the maximum di�erence

between the most loaded and least loaded machine. For this case, and the average load is A, if we

know that the eventual number of machines is in the range [αM,M ], we can show an asymptotic

lower bound of min{2/3, 2/(4α+ 1)}A on the di�erence and we can obtain an upper bound of

min{2/3, 1/(α+ 1)}A.

In Section 5.3, we consider the general case with arbitrarily sized jobs. We give an algorithm

which gives a robust ratio of 5
3 + ε, breaking the simple 2 bound that can be obtained by running

LPT on M sets and then repeatedly merging the two smallest sets until m sets remain. In our

algorithm, we �rst calculate the optimal schedule for m ∈ {M2 ,
3M
4 ,M} within a factor of 1 + ε

using the algorithm in [34]. We then take one of these schedules and partition the jobs that were

scheduled on some machines into a larger number of sets, which we call bags. After learning how

many machines we have, we place the bags on the machines. This algorithm is more involved than

the previous ones, and has several cases, based on the values of optM , opt3M/4 and optM/2 and

demonstrates how a more careful investigation of the packing and scheduling steps can lead to

improved bounds.

We conclude the introduction with a simple lower bound. Consider the following example. Let

the upper bound on the number of machines,M , be 3 and assume we have n = 6 identical jobs, each

of which has processing time 1. We will prepare 3 bags which will ultimately have to be scheduled on

either 1, 2 or 3 machines. Note that the unconstrained optimal makespan for 1, 2 and 3 machines

are 6, 3 and 2 respectively. First, consider the packing which gives each bag 2 jobs. Then the

makespans are 6, 4, and 2 respectively if there are 1, 2 and 3 machines. Hence this algorithm is

max{6/6, 4/3, 2/2} = 4/3-robust. Next consider the packing which places {1, 2, 3} jobs in each bag

respectively. Then the makespans are 6, 3, and 3 respectively if there are 1, 2 and 3 machines, which

makes this algorithm max{6/6, 3/3, 3/2} = 3/2-robust. In this example, the former algorithm is

better. Moreover, this example demonstrates that 4/3 is a lower bound on the robustness of any

algorithm. Note that there exists a same lower bound for any number of M : Consider an arbitrary
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M and n = 2M identical jobs with each processing time 1, if we put at least one bag with at least

3 jobs, then the robust ratio is at least 3/2; otherwise we put 2 jobs in each bag and it provides a

robust ratio which is at least 4/3.

5.2 Scheduling in�nitesimal jobs

Throughout this paper, we use p(j) to denote the processing time of job j. For any set of jobs S,

we use p(S) =
∑

pi∈S p(i) to denote the sum of the processing times of jobs in S. We informally

say a job set S is big if the value of p(S) is large and small otherwise.

We now consider the case of in�nitesimal jobs. Suppose we are given a job set J with all

in�nitesimal jobs such that p(J) = s, for some s > 0. We �rst pack the jobs to M ≥ 3 sets and

then schedule the bags on m machines, where m ∈ [1,M ] is only known after we pack the jobs.

Let ALG(m,M) be the makespan of scheduling the bags on m machines, then our objective is to

minimize the robust ratio, α = maxm

{
ALG(m,M)

optm

}
. Recall optm is the makespan of a schedule

that knew m in advance, and speci�cally optm = s/m when all jobs are in�nitesimal.

The main idea in the packing is to produce a set of bags with a diverse set of sizes. More

precisely, we consider the following packing, which we call packing PC. S1, S2, . . . , SM are the bags:

for i = 1, 2, 3, . . . , 2 bM/3c, p(Si) =
ks

M − d i2e
− ks

2(M − 1)
; for j = 2 bM/3c+1, 2 bM/3c+2, . . . ,M ,

p(Sj) =
ks

M
, were k is a parameter which only depends on M , chosen to ensure that

M∑
i=1

p(Si) = s.

Speci�cally, k = 1/(2 ·
bM/3c∑
i=1

1

M − i
−
⌊
M

3

⌋
1

M(M − 1)
+ 3

{
M

3

}
1

M
) ≈ 1.233 when M is large

(Here we use {} to denote the integer remainder). And we will show that for all M , k ≤ 1.2333.

See Figure 5.1 to see how k changes with M .

Using packing PC to put the jobs into bags, we obtain the following theorem.

5.2.1. For m ∈ [1,M ], there exists a schedule with makespan at most koptm ≤ 1.2333optm which

schedules {S1, S2, . . . , SM} on m machines.

Proof. We �rst consider the case when m ≥ M/2, and we schedule the bags as follows. Let

t =M −m. For machine i = 1, 2, . . . , t, we schedule bags Si and S2t−i+1 on machine i; for machine

j = t + 1, . . . ,m, we schedule bag Sj+t on machine i . The machines with one bag are all within

the bound, since for i ≤ 2

⌊
M

3

⌋
, p(Si) =

ks

M − d i2e
− ks

2(M − 1)
≤ ks

M −M/3
− ks

2M
=
ks

M
≤ ks

M
≤
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Figure 5.1: k as a function of M .

ks

m
= koptm. Therefore it remains to bound the load on machines with two bags. We will use

L(i, t) to denote the load on the machine i for a particular value of t. We therefore need to prove

that L(i, t) = p(Si) + p(S2t−i+1) ≤ koptm for 1 ≤ i ≤ t, t = M −m ≤
⌊
M

2

⌋
. Observe that when

i is even, L(i, t) = p(Si) + p(S2t−i+1) = p(Si−1) + p(S2t−i+2) = L(i − 1, t), hence we may assume

that i is odd. Since i ≤
⌊
M

2

⌋
≤ 2

⌊
M

3

⌋
, p(Si) =

ks

M − i+1
2

− ks

2(M − 1)
.

We �rst consider the subcase when 2t − i + 1 ≥ 2

⌊
M

3

⌋
+ 1, then p(S2t−i+1) =

ks

M
. Since i is

odd, i ≤ 2t− 2

⌊
M

3

⌋
− 1. Hence we have

L(i, t) =
ks

M − i+1
2

− ks

2(M − 1)
+
ks

M
(5.1)

≤ ks

M − t+ bM/3c
+

ks(M − 2)

2(M − 1)M

Recall that optm =
ks

m
=

ks

M − t
. Since t ≥

⌊
M

3

⌋
+
i

2
, t ≥

⌊
M

3

⌋
+ 1. Using (5.1), it follows
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that

L(i, t)− ks

M − t

=
ks

M + bM/3c − t
+

ks(M − 2)

2(M − 1)M
− ks

M − t

≤ ks(M − 2)

2(M − 1)M
− ks bM/3c

(M + bM/3c − t)(M − t)

≤ ks(M − 2)

2(M − 1)M
− ks bM/3c

(M − 1)(M − bM/3c − 1)

= ks
M2 − 3M + 2− (3M − 2) bM/3c
2M(M − 1)(M − bM/3c − 1)

≤ ks
M2 − 3M + 2− (3M − 2)(M/3− 2

3)

2M(M − 1)(M − bM/3c − 1)

= ks
−M/3 + 2

3

2M(M − 1)(M − bM/3c − 1)
< 0 .

That is, L(i, t) ≤ ks

M − t
= koptm. Next, we consider the subcase that that 2t − i + 1 ≤ 2

⌊
M

3

⌋
.

Now, we have p(S2t−i+1) =
ks

M − 2t−i+1
2

− ks

2(M − 1)
=

ks

M + (i+ 1)/2− (t+ 1)
− ks

2(M − 1)
(Recall

that we assume i is odd then 2t− i+ 1 is even). Hence we have

L(i, t) =
ks

M − i+1
2

+
ks

M + i+1
2 − (t+ 1)

− ks

M − 1

=
ks(2M − t− 1)

(M − i+1
2 )(M + i+1

2 − (t+ 1))
− ks

M − 1

=
ks(2M − t− 1)

−1
4(i− t)2 +

1
4(t+ 1)2 +M2 − (t+ 1)M

− ks

M − 1

≤ ks(2M − t− 1)

−1
4(1− t)2 +

1
4(t+ 1)2 +M2 − (t+ 1)M

− ks

M − 1

=
ks(2M − t− 1)

(M − 1)(M − t)
− ks

M − 1
=

ks

M − t
.

The inequality holds because 1 ≤ i ≤ t. This proves that for the case m ≥M/2, the makespan

of our schedule is at most
ks

M − t
= koptm.

Next, we consider the case when 1 ≤ m < M/2. Let x ≥ 2 be the integer such that

M
x+1 ≤ m < M

x . Let t = M − mx. For machine i = 1, 2, . . . , t, we schedule bags Si, S2t−i+1,
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Si+2t, . . . , Si+xt on such machine; for machine j = t+1, . . . ,m, we schedule bags Sj+xt, Sj+xt+(m−t),

Sj+xt+2(m−t) . . . , Sj+xt+(x−1)(m−t) on such machine. Recall that ∀i ≤M , p(Si) ≤
ks

M
. Observe that

we schedule x bags on the last m − t machines, hence the processing times of jobs on such those

machines are at most
xks

M
=

ks

M/x
≤ ks

m
= koptm. The processing time of the bags scheduled on

machine i ≤ t is (note that m = (M − t)/x):

p(Si) + p(S2t−i+1) +
x∑
j=2

p(Si+jt) = L(i, t) +
x∑
j=2

p(Si+jt)

≤ ks

M − t
+ (x− 1)

ks

M

≤ kxs

M − t
= koptm

The last is to show a bound of k. Recall that k is chosen to ensure that
M∑
i=1

p(Si) = s, so we

have (here we use {} to denote the integer remainder),

M∑
i=1

p(Si) = 2 ·
bM/3c∑
i=1

(
ks

M − i
− ks

2(M − 1)
)

+ (M − 2 bM/3c) · ks
M

= 2 ·
bM/3c∑
i=1

ks

M − i
− bM/3c ks

M(M − 1)
(5.2)

+ 3{M/3}ks
M

.

We can solve (5.2) for k and obtain that k = 1/b(M) where b(M) = 2·
bM/3c∑
i=1

1

M − i
−
⌊
M

3

⌋
1

M(M − 1)
+

3{M
3
} 1

M
. Note that when M is large,

b(M) ≈ 2
M−1∑

i=M−bM/3c

1

i
≈ 2(ln(M − 1)− ln(2M/3))

≈ 2 ln 1.5

Hence k = 1/b(M) ≈ 1/(2 ln 1.5) ≈ 1.233 when M is large. We verify by computer that when
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M < 10000. k ≤ 1.2333. And for M ≥ 10000,

b(M) ≥ 2 ·
∫ bM/3c

0

1

M − i
− 1

3(M − 1)

≥ 2ln
M − bM/3c

M
− 4 · 10−5 ≥ 0.81089

So k ≤ 1/0.81089 ≤ 1.2333.

We can also show a lower bound. That is, we can show that, no matter how you divide the jobs,

you cannot achieve a robust ratio below 1.207, which is close to (but does not exactly match) our

upper bound. We state the theorem in terms of a function Q(M) which we de�ne precisely below

and which, for large M is 1.207.

5.2.2. Let S1, S2, . . . , SM be M bags of in�nitesimal jobs such that
M∑
i=1

p(Si) = s for some s > 0.

Assume there exists a constant k′ such for all m ∈ [1,M ], we can schedule {S1, S2, . . . , SM} on m

machines with makespan at most k′optm. Then k
′ ≥ Q(M), where Q(M) = max

t≤M
2
,t∈N

1
t

M−t +
M−2t
M

≈

1.207.

Proof. We may assume that p(S1) ≤ p(S2) ≤ · · · ≤ p(SM ). We �rst prove the following statement.

For t ≤M/2, there exists a schedule of {S1, S2, . . . , SM} on m =M−t machines

with minimum makespan such that S1, S2, . . . , S2t are on the �rst t machines.
(5.3)

Let {T1, T2, . . . , Tm} be a schedule of {S1, S2, . . . , SM} on m machines with minimum makespan,

where Ti is a set of bags scheduled on machine i. We may assume that every Ti contains at least

one bag. Since we schedule M bags on M − t machines, there are at least M − 2t machines contain

exactly one bag. We rename the machines such that Tt+1, Tt+2, . . . , Tt+(M−2t) = Tm contain only

one bag. Suppose that at least one of S1, S2, . . . , S2t is not scheduled on the �rst t machines, that

is, there exists i ≤ 2t, j ≥ t+1 such that Tj = {Si} . Then since |
⋃t
i=1 Ti| =M −|

⋃m
i=t+1 Ti| = 2t,

there exists i′ ≥ 2t + 1, j′ ≤ t such that Si′ ∈ Tj′ . De�ne T ′j = {Si′}, T ′j′ = Tj′ \ {Si′} ∪ {Si}, and

T ′` = T` for ` 6= j, j′. Since p(Si′) ≥ p(Si), p(T ′j′) ≤ p(Tj′). Note also that p(T ′j) ≤ maxMi=1{p(Si)} ≤

maxmi=1{p(Ti)}. Hence maxmi=1{p(T ′i )} ≤ maxmi=1{p(Ti)}. This implies that {T ′1, . . . , T ′m} is also a

schedule with minimum makespan. Note that the �rst t machine of schedule {T ′1, . . . , T ′m} contains

more bags from {S1, S2, . . . , S2t} than the �rst t machine of schedule {T1, . . . , Tm}. By repeating

the above process, we can get a schedule with minimum makespan such that S1, S2, . . . , S2t are all

scheduled on the �rst t machines. This completes the proof of (1).
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Figure 5.2: Q(M) as a function of M

By choosing m = M , we know that p(Si) ≤ k′optM =
k′s

M
for any 1 ≤ i ≤ M . For t ≤ M/2,

consider the schedule with minimum makespan on m = M − t machines such that S1, S2, . . . , S2t

are scheduled on the �rst t machines. It follows that
2t∑
i=1

p(Si) ≤ t · k′optm =
tk′s

M − t
Hence for any t ≤M/2, we have

s =

M∑
i=1

p(Si) =

2t∑
i=1

p(Si) +

M∑
i=2t+1

p(Si)

≤ tk′s

M − t
+ (M − 2t) · k

′s

M

It follow that k′ ≥ Q(M) = max
t≤M

2
,t∈N

1
t

M−t +
M−2t
M

. Let L(t) =
t

M − t
+
M − 2t

M
. Then by

taking the derivative, it is not hard to obtain that min
0≤t≤M

2

L(t) = L((1−
√
2
2 )M) = 2(

√
2− 1). And

Q(M) ≈ 1

min
0≤t≤M

2

L(t)
=

√
2 + 1

2
≈ 1.207.

Figure 5.2 shows how Q(M) changes with M .

5.2.1 Minimizing the Maximum Di�erence

Another objective we consider is to minimize the di�erence between the load of the most loaded and

least loaded machines. This objective is particularly relevant to settings in which we want to achieve

fairness. First of all, minimizing the maximum di�erence is a well-studied scheduling objective in
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situations where fairness is important. Second, it models a type of fair allocation problem. Suppose

that we want to split some goods among m people, where we don't know what m is in advance. In

order to simplify the process, we can �rst divide the goods into M groups or bags, and then have

the restriction that each person must take a subset of the bags.

For this problem, we consider a case where after packing the jobs into M bags, we are given

m ∈ [αM,M ] machines on which to schedule. Our bounds (see below) will depend on α, with, not

surprisingly, better bounds for larger α. Since we assume every job is in�nitesimal, the minimum

di�erence between the load of the most loaded and least loaded machines is always 0 if we know the

number of machines in advance. So we can not use the α-robust settings to evaluate our algorithms

in this section and we introduce some new de�nitions here. Let s denote the sum of processing time

of all jobs and let A = s/M . For a set of bags S = {S1, S2, . . . , SM}, we use Dm(S) to denote the

minimum di�erence between the load of the most loaded and least loaded machines when we schedule

S onmmachines. Our goal is to choose S so as to minimizeD(M,α, S,A) = maxm∈[αM,M ]{Dm(S)}.

Assume that αM is an integer with value at most M − 1 and M ≥ 3. Let D∗(M,α,A) =

minS{D(M,α, S,A)}. We now give a lower bound of D∗(M,α,A).

5.2.3. If αM > M
2 , then

D∗(M,α,A) ≥ 2(1− α)M
1 + (4α+ 1)(1− α)M

·A .

If αM ≤ M
2 , then

D∗(M,α,A) ≥ 2M2 − 2M

3M2 +M − 2
·A, if M is odd;

D∗(M,α,A) ≥ 2M2 − 4M

3M2 − 8
·A, if M is even.

Proof. We may assume that p(S1) ≤ p(S2) ≤ · · · ≤ p(SM ). For i = 1, 2, . . . ,M , let Ai =∑i
j=1 p(Sj)/i. We �rst prove the following statement.

For m > M/2,

Dm(M,α, S,A) ≥ 2A2M−2m − p(S2M−2m+1). (5.4)

It is su�cient to proof the following: there exists a scheduling to minimize the di�erences by

schedule S1, S2, . . . , S2M−2m on the �rstM−mmachines and schedule S2M−2m+1, . . . , SM to the rest

of the 2m−M machines. Since then the maximum load on a machine is at least
∑2M−2m

i=1 Si/(M −
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m) = 2A2M−2m and the minimum load on a machine is at most S2M−2m+1. Suppose not. Let the

optimal way to schedule {Si} on m machines is by scheduling a set of bags, Yi, on the i-th machine.

We may assume that every Yi contains at least one bag. Note that are at least 2m −M machine

receive exactly one bag. We rename the machines so that YM−m+1, YM−m+2, . . . , YM−m+(2m−M) =

Ym contain only one bag. Suppose there exists i ≤ 2M − 2m, j ≥M −m+ 1 such that Yj = {Si}

. Then there exists i′ ≥ 2M − 2m + 1, j′ ≤ M − m such that Si′ ∈ Yj′ . De�ne Y ′j = {Si′},

Y ′j′ = Yj′ \ Si′ ∪ {Si}, and Y ′` = Y` for ` 6= j, j′. Since p(Si′) ≥ p(Si), p(Y ′j′) ≥ p(Yj′). Note

also that p(Y ′j ) ≤ maxMi=1{p(Si)} ≤ maxMi=1{p(Yi)}. Hence maxmi=1{p(Y ′i )} ≤ maxmi=1{p(Yi)}. Since

p(Y ′j′) ≥ p(Si) = p(Yj) and p(Y ′j ) = p(Si′) ≥ p(Yj), minmi=1{p(Y ′i )} ≥ minmi=1{p(Yi)}. This implies

that {Y ′i } is also an optimal way of scheduling the bags. So we may assume that {Yi} satis�es

that
⋃m
i=M−m+1 Yi = {S2M−2m+1, S2M−2m+2 . . . S2M−2m+2m−M = SM}. This completes the proof

of (4).

Let D = D∗(M,α,A) and let S = {Si} be the set of bags that reaches the optima. First we

assume that αM > M
2 . Let A

′ = A2M−2αM . By (5.4), p(S(2−2α)M+1) ≥ 2A′ −DαM (S) ≥ 2A′ −D.

Since D ≥ DM (S) = p(SM ) − p(S1) ≥ p(S(2−2α)M+1) − p(S1), p(S1) ≥ 2A′ − 2D and p(SM ) ≥

p(S(2−2α)M+1) ≥ 2A′ −D.

We know that A2 ≥ p(S1) ≥ 2A′ − 2D. For 1 ≤ k < (1 − α)M , assume we know that A2k ≥

2A′− 2D+
k − 1

2
(2A′− 3D). Then by (5.4), we have p(S2k+1) ≥ 2A2k−DM−k(S) ≥ 2(2A′− 2D+

k − 1

2
(2A′−3D))−D = 2A′−2D+k(2A′−3D). Also p(S2k+2) ≥ p(S2k+1) ≥ 2A′−2D+k(2A′−3D).

Therefore A2k+2 ≥ A2k
2k

2k + 2
+ (2A′ − 2D + k(2A′ − 3D))

2

2k + 2
≥ 2A′ − 2D +

k

2
(2A′ − 3D).

Inductively, this implies that A′ = A2M−2αM ≥ 2A′ − 2D +
(1− α)M − 1

2
(2A′ − 3D), which is

equivalent to

D ≥ 2(1− α)M
1 + 3(1− α)M

A′

Recall that p(Si) ≤ p(S1) +D ≤ A′ +D for any i, we have

MA = s ≤ 2(1− α)MA′ + (2α− 1)M(A′ +D)

=MA′ + (2α− 1)MD

≤ 1 + 3(1− α)M
2(1− α)

D + (2α− 1)MD.
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This is equivalent to

D ≥ 2(1− α)M
1 + (4α+ 1)(1− α)M

·A .

For the case of αM ≤ M
2 , if M is odd, then

D∗(M,α,A) ≥ D∗(M,
M + 1

2M
,A) ≥ 2M2 − 2M

3M2 +M − 2
·A .

If M is even, then

D∗(M,α,A) ≥ D∗(M,
M + 2

2M
,A) ≥ 2M2 − 4M

3M2 − 8
·A .

These bounds can most simply be parsed by saying that, if M is large then the lower bound

is given by min{2/3, 2/(4α+ 1)}A. Note that when α ≤ 1
2 , the lower bound goes to 2

3A as M

goes large. If M is even, then the bound of 2
3A can be reached by setting the bags as follows.

Choose S = {S1, S2, . . . , SM} such that p(S1) = p(S2) = · · · = p(SM/2) = 2
3A and p(SM/2+1) =

p(SM/2+2) = · · · = p(SM ) = 4
3A, then it is easy to verify that Dm(S) ≤ 2

3A for any m ∈ [1,M ].

For α > 1
2 , we can set D =

(1− α)M
α+ (1− α)(α+ 1)M

·A and A′ =
1 + 3(1− α)M
2(1− α)M

·D. Now we can

choose the bags, T = {T1, T2, . . . , TM}, as follows. For k ≤ (1 − α)M , set p(T2k+1) = p(T2k+2) =

2A′− 2D+ k(2A′− 3D); for i ≥ 2(1−α)M +1, set p(Ti) = 2A′−D. The idea of this construction

follows from the proof of Theorem 5.2.3, and by following this proof, it is not hard to verify that

Dm(S) ≤ D for any m ∈ [αM,M ]. Note that D′ ≈ 1
α+1 ·A if M is large.

5.3 Scheduling discrete jobs

In this section we will provide an algorithm which, for any set of jobs, gives a 5
3 + ε robust ratio for

m ∈ [1,M ]. For ease of presentation, in this section we assume M is divisible by 4. In Appendix

B, we sketch the changes that are needed when M is not divisible by 4.

Our algorithm will start by computing minimum makespan schedules for M , 3M/4 and M/2

machines. We can use a PTAS for minimizing makespan on parallel machines to compute a (1+ ε)-

approximate schedule. We use opt′i to denote the value of the makespan obtained by running the

PTAS on a scheduling instance with i machines. We will especially use opt′M/2 and will denote this
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value by b. We use PTAS(i) = {S1, S2, ..Si} to denote the result of the PTAS on a scheduling

instance with i machines, where Sj is the set of jobs assigned to machine j.

Based on the values opt′M , opt′3M/4 and opt′M/2, we will consider several cases. Each case will

have the same structure. First, we will compute sets of jobs Si from a PTAS. Second we will use

partitioning routines to split the job set into M bags. We then learn the number of machines and

need to schedule the bags on machines. In di�erent cases, we will use di�erent combinations of

partitioning and scheduling routines. We then show that, for each case, the resulting schedule is

5
3(1 + ε) robust.

In Section 5.3.1, we will give our partitioning routines and prove some properties about each

one. In Section 5.3.2, we will describe how to assemble the jobs into bags and then schedule them

on machines.

5.3.1 Partitioning

In this subsection we will describe three useful partitioning algorithms, which will be used as sub-

routines in the main algorithm. Each one will take one or four sets of jobs and partition them into

multiple bags with special properties, achieving some balance between the sizes of the bags and

controlling the placement of large jobs. In all routines we will assume that we process the jobs in

sorted size order, largest-to-smallest.

We begin with the �rst partitioning algorithm, Partition I, which partitions a job set into two

bags such that neither of them is too big. This partitioning algorithm will be useful when we want

to partition a job set �evenly�. It implements the LPT algorithm, sorting the jobs in non-increasing

order and then repeatedly placing the next job in the least loaded bag. It appears in Algorithm 3.

We now bound the sizes of the bags. Recall that the standard analysis of LPT shows that it

is a 4/3 − 1/3m = 7/6-approximation algorithm on 2 machines [25]. The bounds that we give are

tight and are not implied by the standard analysis of LPT.

5.3.1. Let (A,B) be the output of Partition I, then p(A) = max{p(A), p(B)} ≤ max{p(j1), 2b/3}.

If the maximum is achieved by p(j1) then A = {j1}.

Proof. If j1 has larger processing time than all the other jobs combined, i.e. p(j1) ≥
K∑
i=2

p(ji), then

for i = 2, ..,K, LPT will put ji in B and max{p(A), p(B)} = p(A) = p(j1).
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Algorithm 3 Partition I(S)

Input:

A set of jobs S = {j1, j2, .., jK} with p(j1) ≥ p(j2) ≥ .. ≥ p(jK) and p(S) ≤ b.

Main Process:

Run LPT on 2 machines, A and B, breaking ties in favor of A. If p(A) ≤ p(B), swap the names

of A and B.

Output: (A,B).

Next consider the case when p(j1) <
K∑
i=2

p(ji). We use dt to denote the di�erence in the loads of

A and B after adding job jt (Note that dK = p(A)− p(B))ã�� Pick k as the smallest integer such

that p(j1) <
k∑
i=2

p(ji), clearly k ≥ 3. Then p(jk) ≥ dk =
k∑
i=2

p(ji) − p(j1) since
k−1∑
i=2

p(ji) ≤ p(j1).

When we decide where to put ji+1, the di�erence between the loads of A and B is di, and we put

ji+1 in the bag with less load. Hence we must have di+1 ≤ max{p(ji+1), di}. Then inductively

dK ≤ max{p(jK), p(jK−1), .., p(jk+1), p(jk), dk}. Because the jobs are indexed largest to smallest,

and because k ≥ 3, we can simplify the previous inequality to dK ≤ p(j3) ≤ b/3 (recall that dk ≤ jk).

Since p(A) + p(B) = b, it immediately follows that max{p(A), p(B)} ≤ 2b/3.

Since we almost always need to put multiple bags on one machine, we want to create enough

small bags to control the makespan. This demand leads to the next two partitioning algorithms,

in which we partition job sets to bags such that half of them are small enough and the others are

not too big. The �rst one, Partition II, works for the case when we have a job set with at most

one large job. We will place the job with the largest processing time in set A and then �ll set B

greedily up to b/3 and then place the remaining jobs in A. The details appear in Algorithm 4.

5.3.2. Let (A,B) be the output of Partition II, then p(A) ≤ 5b/6 and p(B) ≤ b/3.

Proof. By line 2 clearly we have p(B) ≤ b/3. Suppose, for a contradiction, that p(A) > 5b/6.

Then t 6= K and it follows that p(j1) +
K∑

i=t+1
p(ji) > 5b/6. Since

K∑
i=1

p(ji) ≤ b, we must have
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Algorithm 4 Partition II(S)

Input:

A set of jobs S = {j1, j2, . . . , jK} with 5b/6 ≥ p(j1) ≥ p(j2) ≥ · · · ≥ p(jK), p(j2) ≤ b/3

and p(S) ≤ b.

Main Process:

1 B = ∅, A = {j1}.

2 Let t be the largest integer such that p(j2) + p(j3) + · · ·+ p(jt) ≤ b
3 ; put j2, . . . , jt in B.

3 Add jt+1, . . . , jK into A if t 6= K.

Output: (A,B).

t∑
i=2

p(ji) =
K∑
i=1

p(ji)− (p(j1) +
K∑

i=t+1
p(ji)) < b/6 .

But since
t+1∑
i=2

p(ji) > b/3, we also have p(jt+1) =
t+1∑
i=2

p(ji) −
t∑
i=2

p(ji) > b/3 − b/6 = b/6. Note

that t ≥ 2, hence p(j2) ≥ p(jt+1) > b/6 >
t∑
i=2

p(ji), a contradiction.

The last partitioning algorithm, Partition III, will handle the case when we have at least two

large jobs and Partition II is not working. Speci�cally, we will take four job sets as input; three

of them, S1, S3, S4, have two large (≥ b/3) jobs and the other, S2, has all small (< b/3) jobs. We

partition them into eight bags such that we have four small bags and four bags that are not too

big. The algorithm �rst puts the second biggest job from S1 into A1 and the remaining jobs from

S1 into A2. It then greedily puts jobs from S2 into A1 and A2 as long as they don't cause the load

to go over 5b/6. By greedily, here, we mean that it goes through the jobs in non-decreasing order

of processing time, and if the job can �t on A1 or A2, we place it on one which it �ts. We then

use Partition I on the remaining jobs of S2, running LPT to place jobs on B1 and B2. We also use

Partition I to partition S3 to (A3, B3), and S4 to (A4, B4). We will show that either p(B1) + p(B3)

and p(B2) + p(B4) are both not too big or we can switch jobs to ensure that neither is. The details

of the algorithm appear in Algorithm 5.
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Algorithm 5 Partition III(S1, S2, S3, S4)

Input:

Four sets of jobs: S1 = {x1, x2, .., xp} such that p(x1) ≥ p(x2) ≥ b/3, p(S1) ≤ b,

S2 = {y1, .., yq} such that b/3 ≥ p(y1) ≥ .. ≥ p(yq), p(S2) ≤ b, S3 with p(S3) ≤ b and S4

with p(S4) ≤ b. Moreover for i = 1, 2, 3, 4, p(j) ≤ 2b/3 for every j ∈ Si.

Main Process:

1 A1 = {x2}. A2 = S1 − {x2}, i = 1.

2 while ( (p(A1) + p(yi) ≤ 5b/6) or (p(A2) + p(yi) ≤ 5b/6) ) and (i ≥ 1)

3 if p(A1) + p(yi) ≤ 5b/6, add yi to A1 else add yi to A2,

4 i++

5 Let S′ be the jobs remaining in S2.

6 Set (B1, B2) = Partition I(S′), (A3, B3) = Partition I(S3), (A4, B4) = Partition I(S4).

7 If B1 ∪B2 contains 3 jobs and B2 contains only one job, let j3 be the job with the least processing

time in B1. If p(j3) + p(A3) ≤ 5b/6, move j3 from B1 to A3; Else if p(j3) + p(A4) ≤ 5b/6, move

j3 from B1 to A4; Else set temp = B1, B1 = B4, B4 = temp.

8 Else if B1 ∪B2 contains more than 3 jobs and B2 contains one job. Let j′ denotes the job in B2

with the least processing time. Move j′ from B2 to A3 if p(j′) + p(A3) ≤ 5b/6.

Output: (A1, A2, A3, A4, B1, B2, B3, B4).
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5.3.3. Let (A1, A2, A3, A4, B1, B2, B3, B4) be the output of Partition III. These bags satisfy:

1. p(Ai) ≤ 5b/6, for i = 1, 2, 3, 4;

2. p(Bi) ≤ b/2, for i = 1, 2, 3, 4;

3. p(B1) + p(B3) ≤ 5b/6, p(B2) + p(B4) ≤ 5b/6.

Proof. Let kij denote the load of jobs from Si that are placed in bag Aj . Note that the jobs in bags

B1 and B2 all come from S2. Thus k11 + k12 ≤ b and k21 + k22 + p(B1) + p(B2) ≤ b. For i = 1, 2,

de�ne the non-negative slack in each Ai as δi = 5b/6− k1i − k2i and δ = max{δ1, δ2}.

Note that at line 1, p(A1) = p(x2) ≤ b/2 and p(A2) = p(S1)− p(x2) ≤ b− b/3 ≤ 2b/3. Since we

call Partition I to separate S3 and S4, by Lemma 5.3.1, p(A3) ≤ 2b/3, p(A4) ≤ 2b/3 at line 6. Since

for i = 1, 2, 3, 4, we will only add job to Ai as long as the load does not exceed 5b/6, condition 1

holds.

We now consider conditions 2 and 3. By line 2, any job in B1 ∪ B2 has load greater than δ.

First consider the case when B1∪B2 contains at most two job. Then p(B1) ≤ b/3 and p(B2) ≤ b/3.

Note that also p(B3) ≤ p(S3)/2 ≤ b/2 and similarly p(B4) ≤ b/2, hence the claim follows.

Next we consider the case when B1 ∪B2 contains l ≥ 3 job before line 7. Note that,

p(B1) + p(B2) ≤ b− k21 − k22

= b−
(
5b

6
− δ1 − k11

)
−
(
5b

6
− δ2 − k12

)
≤ b

3
+ 2δ .

If both B1 and B2 contain at least 2 jobs, then p(B1) ≥ 2δ and p(B2) ≤ b/3+2δ− p(B1) ≤ b/3.

Similarly p(B2) ≤ b/3, hence the claim follows.

Next we consider the case when l = 3. If B1 contains only one job, then b/3 ≥ p(B1) ≥ p(B2)

and the claim follows. We may assume B1 = {j2, j3}, B2 = {j1} and p(j1) ≥ p(j2) ≥ p(j3). Since

k11 = p(x2) ≤ b/2 and 5b/6 − k11 ≥ b/3 ≥ p(y1), we will always put y1 in A1. It implies that S2

contains at least 4 jobs and j3 ≤ p(S2)/4 ≤ b/4. If in line 7 we move j3 to either A3 or A4, then

clearly claim follows since after line 7, both B1 and B2 contains one job and thus have load at most

b/3. So we may assume that before line 7, p(A3) > 5b/6 − p(j3) ≥ 5b/6 − b/4 = 7b/12, and then

p(B3) ≤ b− p(A3) < 5b/12. Similarly, we have p(B4) < 5b/12. Hence p(B3) + p(B4) < 5b/6 before
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line 7. Note also that p(j2) + p(j3) ≤ p(j1) + p(y1), hence p(j2) + p(j3) ≤ p(S2)/2 ≤ b/2. So before

line 7, p(B1) ≤ b/2 and p(B2) ≤ b/3. Recall that we will swap the name of B1 and B4, hence the

claim follows.

The last case is when l ≥ 4 and one of B1 and B2 contains only one job. If B1 contains only

one job, then b/3 ≥ p(B1) ≥ p(B2) and the claim follows. We may assume that B2 = {j1} and

B1 = {j2, j3, . . . , jl} with p(j1) ≥ p(j2) ≥ · · · ≥ p(jl). Then by Partition I, p(j2) + · · · + p(jl−1) ≤

p(B1) ≤ b/3. Recall that l ≥ 4, hence p(jl) ≤ (p(j2)+ · · ·+p(jl−1))/(l−2) ≤ b/6. By Lemma 5.3.1,

p(A3) ≤ 2b/3. Thus p(A3) + p(jk) ≤ 5b/6. So in line 8 we will always move jk to A3. After line 8,

p(B2) = p(j2) + · · ·+ p(jl−1) ≤ b/3. Hence the claim also follows.

5.3.2 Packing and Scheduling

In the previous subsection, we gave di�erent algorithms to partition jobs into bags. We will now

show how to use these algorithms in conjunction with additional algorithms to schedule the bags

(and thus jobs) onto machines. Recall that opt′M/2 is the value of the makespan obtained by running

the PTAS on a scheduling instance with M/2 machines and b = opt′M/2. Two simple facts we will

use throughout this section are that optm is non-increasing with m, the number of machine, and

that 2optM ≥ optM/2, which implies that optM ≥
opt′

M/2

2(1+ε) = b
2(1+ε) .

We now prove our bound of 5
3 + ε by considering three di�erent cases. The �rst case is when

opt′M ≥ 3b/5, which implies that the PTAS of the jobs onM/2 is good enough forM machines. We

remark that if this case does not hold then there is no job with processing time greater than 3b/5.

The next case is when opt′3M/4 ≤ 4b/5, which implies that we can start with opt′3M/4 and do not need

to split all job sets. The last and the hardest case is when opt′3M/4 > 4b/5 and opt′M < 3b/5. In this

case we will start with the PTAS on M/2 and split each job sets according to its structure. Before

going to the detail of those three cases, we start with a lemma which gives a su�cient condition for

bags to give a 5
3(1 + ε) robust ratio when the number of machine is less than M/2. It will be used

in both the second and the last case.

5.3.4. Let {S1, . . . , SM} denotes M bags such that for i = 1, 2, . . . ,M/2, p(Si) ≤ 5b/6, and for

i =M/2 + 1,M/2 + 2, . . . ,M , p(Si) ≤ 2b/3. Then the following algorithm yields a schedule for the

bags with a makespan of at most 5(1 + ε)optm/3 for any m ∈ [1,M/2).
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1 if M/4 ≤ m < M/2. For i = 1, 2, . . . ,m, put Si on machine i; for i = m+ 1,m+ 2, . . . ,M/2,

put Si on machine i−m; for i =M/2 + 1, . . . ,M , put Si on the machine with the least load.

2 if M
2(k+1) ≤ m < M

2k for some integer k ≥ 2, sort {S1, S2, . . . , SM} in decreasing order according

to their processing times. For i = 1, . . . ,m, put Si on machine i; for i = m+ 1, . . . , 2m, put

Si on machine i−m; for i = 2m+ 1, . . . ,M , put Si on the machine with the least load.

Proof. First note that since m < M/2, optm ≥ optM/2 ≥ b/(1 + ε). Let machine r be the machine

with the largest load and among the bags scheduled on machine r, St is the one with the largest

index. For the case M/4 ≤ m < M/2, if t > M/2, then we know p(St) ≤ 2b/3 ≤ 2(1 + ε)optm/3

and the makespan of our algorithm is at most p(St) + optm ≤ 5(1 + ε)optm/3. Else t ≤ M/2,

then we know that we only put two bags on machine r, and therefore the makespan is at most

2 · 5b/6 = 5b/3 ≤ 5(1 + ε)optm/3.

For the case M
2(k+1) ≤ m < M

2k with k ≥ 2, if t ≤ 2m, then similarly we know that we only put two

bags on machine r, and therefore the makespan is at most 2 · 5b/6 = 5b/3 ≤ 5(1+ ε)optm/3. So we

may assume that t ≥ 2m+ 1. Since
2m∑
i=1

p(Si) ≥
2m∑
i=1

p(St) = 2mp(St), optm ≥
2m∑
i=1

p(Si)/m ≥ 2p(St).

This implies that p(St) ≤ optm/2 and the makespan of our algorithm is at most p(St) + optm ≤

3optm/2.

5.3.2.1 Case I: opt′M ≥ 3b/5.

The �rst case is quite simple. We start with PTAS(M/2), and partition each job set into two bags

using Partition I. Those are our bags. For scheduling, if m ≥ M/2, we just revert to the M/2

machine schedule, leaving the remaining machines empty. If m < M/2, we can run LPT to the

bags on the machines. The details appear in Algorithm 6.

5.3.5. If opt′M ≥ 3b/5, Algorithm 6 is 5
3(1 + ε)-robust.

Proof. For m ≥M/2,

ALG(m,M)

optm
≤

opt′M/2

optM
≤ b

opt′M
1+ε

≤ b
3b/5
1+ε

= (1 + ε)
5

3
.

For m < M/2, optm ≥ optM/2 ≥ b/(1 + ε). We may assume the bags are S′1, . . . , S
′
M such that

p(S′1) ≥ p(S′2) · · · ≥ p(S′M ). Let k be the number such that for i ≤ k, p(S′i) > 2b/3 and for i > k,

p(S′i) ≤ 2b/3. Recall that each bag S′i comes from running Partition I on some job set Sj with
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Algorithm 6 Algorithm for Case I

Packing:

1 Let S = PTAS(M/2) = {S1, . . . , SM/2}.

2 for k = 1 . . . ,M/2, let (Ak, Bk) = Partition I(Sk).

3 Return the M bags {A1, . . . , AM/2, B1, . . . , BM/2}.

Scheduling:

1 if m ≥M/2, schedule Ai and Bi on machine i for i ≤M/2. Leave the remaining machines empty.

2 if m < M/2, run LPT to schedule the bags on m machines.

p(Sj) ≤ b. Hence by Lemma 5.3.1, either p(S′i) ≤ 2b/3 or it is a bag with a single job. Speci�cally,

S′1, . . . , S
′
k all contain only one job. Let the jobs be j1, j2, . . . , jk respectively. Let machine r be the

machine with the largest load and among the bags scheduled on machine r, St is the one with the

largest index. If t > k, then we know p(St) ≤ 2b/3 ≤ 2(1 + ε)optm/3. By the property of LPT, the

makespan of our algorithm is at most p(St)+optm ≤ 5(1+ε)optm/3. If t ≤ k, then the makespan of

our algorithm is equal to the makespan of running LPT on jobs {j1, j2, . . . , jk}, which is at most 4/3

times the minimum makespan of scheduling {j1, j2, . . . , jk} on m machines [25]. Since the minimum

makespan of scheduling {j1, j2, . . . , jk} on m machines is at most optm, our makespan in this case

is at most 4optm/3.

5.3.2.2 Case II: opt′M < 3b
5 and opt′3M/4 ≤ 4b/5.

In this case, we will use the PTAS schedule for 3M/4 machines as input to Partition I. For Si ∈

PTAS(3M/4), we call Si bad if Si contains a job with processing time at least 2
3opt

′
3M/4. For the

packing step, We will run Partition I on M/4 job sets, try to avoid a bad set if possible and then

schedule the bags on machines. For the scheduling step, we will have several cases, based on how

many bad machines that we have. The details appear in Algorithm 7.

5.3.6. If opt′M < 3b
5 and opt′3M/4 ≤ 4b/5 then Algorithm 7 is 5

3(1 + ε)-robust.
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Algorithm 7 Algorithm for Case II

Packing:

1 Let S = PTAS(3M/4) = {S1, .., S3M/4}. Let v be the number of bad sets in S. Rename the sets

so that S1, . . . , Sv are bad sets.

2 For M/2 < k ≤ 3M/4, let (Ak, Bk) = Partition I(Sk).

3 Return the M bags {S1, S2, .., SM/2, AM/2+1, . . . , A3M/4, BM/2+1, .., B3M/4}.

Scheduling:

1 if m ≥ 3M/4, schedule Si on machine i for i ≤M/2, and schedule Aj , Bj on

machine j for j > M/2 . Leave the remaining machines empty.

2 if v > M/2 and v ≤ m < 3M/4, �rst put S1, S2, . . . , SM/2, AM/2+1 ∪BM/2+1, . . . , Av ∪Bv on v

machines respectively, then schedule the rest of the bags with at most one in each machine.

3 if v > M/2 and M/2 ≤ m < v − 1, or v ≤M/2 and M/2 ≤ m < 3M/4, schedule the bags

arbitrarily such that each machine contains at most two bags and at most one bag comes from

{S1, . . . , SM/2}.

4 if m < M/2, we follow the strategy in Lemma 5.3.4.
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Proof. For m ≤ 3M/4, the load on each machine is at most opt′3M/4 ≤ 4b/5, hence we have,

ALG(m,M)

optm
≤

opt′3M/4

optM
≤ 4b/5

b
2(1+ε)

< (1 + ε)
5

3
.

By Lemma 5.3.1, for k > max{v,M/2}, p(Bk) ≤ p(Ak) ≤ 2
3opt

′
3M/4. If v > M/2, and v ≤

m < 3M/4 or v ≤ M/2 and M/2 ≤ m < 3M/4, the load on each machine is at most opt′3M/4 +

maxi>v{p(Ai)} ≤ 5
3opt

′
3M/4, so we have,

ALG(m,M)

optm
≤

5
3opt

′
3M/4

opt3M/4

≤ (1 + ε)
5

3
.

If v > M/2 and M/2 ≤ m < v − 1, then since the number of jobs with processing time at least

2
3opt

′
3M/4 is at least v, optv−1 ≥ 4

3opt
′
3M/4. On the other hand, each machine has load at most

2opt′3M/4. So we obtain

ALG(m,M)

optm
≤

2opt′3M/4

optv−1
≤

2opt′3M/4

4
3opt

′
3M/4

< (1 + ε)
5

3
.

Since opt′M < 3b/5, every job has processing time at most 3b/5. Notice that for i ≤ M/2 and

j > M/2, p(Si) ≤ opt′3M/4 ≤ 4b/5 and p(Bj) ≤ p(Aj) ≤ max{3b/5, 2opt′3M/4/3} = 3b/5 < 2b/3, we

can apply Lemma 5.3.4 on the case m < M/2.

5.3.2.3 Case III: opt′M < 3b
5 and opt′3M/4 > 4b/5.

This �nal case is the most complicated one. We say a job is big if it has processing time at least

b/3. Given a set of jobs, we call the set 2-big if it has two big jobs. We call the set 1-big if it is not

2-big and has one big job. We call a set that is neither 1-big nor 2-big, 0-big. Give a set S of job

sets, we let vi(S) denote the number of i-big sets and we assume that we have functions i-big(S)

which return an i-big set from S, assuming one exists. For a job set Si, we use Si(j) to denote the

jth largest job in set Si.

The main idea for packing here is to use the optimal schedule for M/2 machines, but to split

the jobs assigned to each machine into 2 bags. For each Si, we want to partition it into two sets

such that one is small enough and the other is not too big. We can use Partition II to achieve this

goal, if and only if Si contains at most one big job, that is, Si is 0-big or 1-big. If Si is 2-big and

thus contain two big jobs, we try to group three 2-big job sets with one 0-big job set, and then
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partition them into eight sets such that four are small enough and four not too big, using Partition

III. Roughly speaking, if many Si contain two big jobs, then we can give a good lower bound on

opt, else we will have a good partition. The details appear in Algorithm 8.

5.3.7. If opt′M < 3b/5 and opt′3M/4 > 4b/5, Algorithm 8 is 5
3(1 + ε)-robust.

Proof. Since opt′M < 3b/5, every job has processing time at most 3b/5. For k = 1, 2, 3, . . . , 4u,

by Lemma 5.3.2, we have p(Ak) ≤ 5b/6 and p(Bk) ≤ b/2 and if moreover k = 4t + 1 or 4t + 2

for an integer t, p(Bk) + p(Bk+2) ≤ 5b/6 and we call such Bk and Bk+2 paired bags. For k =

4u+1, 4u+2, .., 4u+w, we partition a 2-big job set Si into {Ak, Bk} by putting the second biggest

job in Bk and the rest in Ak. Hence b/3 ≤ p(Bk) ≤ b/2, p(Ak) = p(Si)− p(Bk) ≤ b− b/3 = 2b/3.

For k = 4u + w + 1, 4u + w + 2, .., M2 , by Lemma 5.3.3 we have p(Ak) ≤ 5b/6, p(Bk) ≤ b/3 (note

that after line 3 there is no 2-big job set left and hence we can use Partition II in line 4).

Next consider the scheduling process in Algorithm 4. First consider the casem ≥ max {3M/4,M/2+

w + 2u}. For i ≤ M/2, the load of each machine is at most maxi{p(Ai)} ≤ 5b/6. For i =

M/2 + 1,M/2 + 2, . . . ,M/2 + 2u, we always schedule a paired bags on the machines, so the load

is still at most 5b/6. For the rest of the machines, we schedule B4u+1, . . . , BM/2 on them such

that at most two bags on each machines and if there are two bags, at most one of them is from

B4u+1, . . . , B4u+w, hence the load is at most b/3 + b/2 = 5b/6. Therefore

ALG(m,M)

optm
≤ 5b/6

optM
≤ 5b/6

b
2(1+ε)

= (1 + ε)
5

3
.

Next consider the case w+2u > M/4 and 3M/4 ≤ m < M/2+w+2u. Since 4u ≤ v2(S)+v0(S) ≤

M/2, 2u ≤ M/4 and v2(S) − 3u = w ≥ 1. If u = bv2(S)/3c < v0(S), since v2(S) ≥ 3u + 1,

v2(S) = 3u + 1 or 3u + 2. If v2(S) = 3u + 1, then M/4 < w + 2u = v2(S) − u = 2u + 1 and

M/4 ≤ 2u, but M/2 ≥ v2(S) + v0(S) > 3u + 1 + u, a contradiction. If v2(S) = 3u + 2, then

M/4 < v2(S) − u = 2u + 2 and M/4 ≤ 2u + 1, but M/2 ≥ v2(S) + v0(S) > 3u + 2 + u, a

contradiction. So we have u ≥ v0(S) and w + 2u = v2(S) − u ≤ v2(S) − v0(S). Note that in total

we have at least 2v2(S) + v1(S) = M/2 + v2(S) − v0(S) jobs with processing time at least b/3.

Hence optM/2+w+2u−1 ≥ 2b/3. On the other hand in this case the load on each machine is at most

max{maxi{Ai}, 2maxi{Bi}} ≤ b.

ALG(m,M)

optm
≤ b

optM/2+w+2u−1
≤ b

2b/3
< (1 + ε)

5

3
.
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Algorithm 8 Algorithm for Case III

Packing:

1 Let S = PTAS(M2 ) = {S1, .., SM2 }, u = min{
⌊
v2(S)

3

⌋
, v0(S)}, w = max{v2(S)− 3u, 0} and S′ = S.

2 if u ≥ 1, for k = 1, 5, 9, . . . , 4u− 3,

C = 2-big(S′);D = 0-big(S′);E = 2-big(S′);F = 2-big(S′);

(Ak, . . . , Ak+3, Bk, . . . , Bk+3) = Partition III(C,D,E, F );

S′ = S′ − C −D − E − F .

3 if w ≥ 1, for k = 4u+ 1, 4u+ 2, . . . , 4u+ w,

C = 2-big(S′);Bk = {C(2)};Ak = C/Bk;S
′ = S′ − C.

4 for k = 4u+ w + 1, 4u+ w + 2, . . . , M2 .

Let C be any set in S′. (Ak, Bk) = Partition II(C); S′ = S′ − C.

5 Return the bags {A1, A2, . . . , AM
2
, B1, . . . , BM

2
}.

Scheduling:

1 if m ≥ max{3M/4,M/2 + w + 2u}

for i ≤M/2, schedule Ai on machine i;

for i =M/2 + 1,M/2 + 3, . . . ,M/2 + 2u− 1, schedule B2i−M−1 and B2i−M+1 on

machine i and B2i−M and B2i−M+2 on machine i+ 1;

for i =M/2 + 2u+ 1, . . . ,m, schedule the rest of the bags on those machine such that

each machine contains at most two bags and if there are two bags on a machine, at

most one of them is from B4u+1, . . . , B4u+w;

2 if w + 2u > M/4 and 3M/4 ≤ m < M/2 + w + 2u

for i ≤M/2, schedule Ai on machine i;

for i =M/2 + 1, . . . ,m, schedule the rest of the bags on the machines so that

each machine contains at most two bags;

3 if M/2 ≤ m < 3M/4

Schedule all bags amongst the machines so that there are at most two

bags on each machine and if there are 2 bags on a machine, at most one of

them is Ai for some i.

4 if m < M/2, we follow the strategy in Lemma 5.3.4.
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In the case M/2 ≤ m < 3M/4, the load on each machine is at most maxi{Ai} + maxi{Bi} ≤

5b/6 + b/2 = 4b/3. Therefore we have

ALG(m,M)

optm
≤ 4b/3

opt3M/4

≤ (1 + ε)
4b/3

4b/5
= (1 + ε)

5

3
.

For the case when m < M/2, by Lemma 5.3.4 the claim follows.

By combining Lemma 5.3.5, 5.3.6 and 5.3.7, we can deduce the following lemma. The running

time comes from calling the PTAS [34] 3 times, various sorting and heap data structure operations

needed to implement LPT and the other algorithms. The M term is in the running time because

of the need to perform operations on the M bags.

5.3.8. When M is divisible by 4, Algorithm 6, 7, 8 together gives a 5
3(1 + ε)-robust algorithm with

running time of O((M + n) log n), where the hidden constant depends exponentially on 1/ε.

Recall that the algorithm uses the terms M/2 and 3M/4 and assumes that they are integers.

When M is not divisible by 4, the algorithm and analysis still work with some small changes.

5.3.9. When M is not divisible by 4, with some small changes, Algorithm 6, 7, 8 still work with a

5
3(1 + ε) robust ratio.

Proof. We �rst consider the case whenM = 4r+2, for some nonnegative integer r. Then we can still

follow Algorithm 6. For Algorithm 8, we replace everyM/4 by r+1 and every 3M/4 by 3r+2. And

then Lemma 5.3.7 still holds with the same argument under the assumption that opt′3r+2 > 4b/5

instead of opt′3M/4 > 4b/5. So the only remaining case is opt′3r+2 ≤ 4b/5 and we can follow

Algorithm 7 with small modi�cations. In the packing phase of Algorithm 7, we will only partition

r sets and return with M = 4r + 2 bags {S1, . . . , S2r+2, A2r+3, . . . , A3r+2, B2r+3, . . . , B3r+2}. Then

in the scheduling phase, line 1 holds for m ≥ 3r+2, line 2 holds for v > 2r+2 and v ≤ m < 3r+2,

and line 3 holds for v > 2r + 2 and 2r + 2 ≤ m < v − 1, or v ≤ 2r + 2 and 2r + 2 ≤ m < 3r + 2.

The corresponding part of Lemma 5.3.6 holds accordingly. The last case is when m ≤ 2r + 1, and

we can follow Lemma 5.3.4 with the same strategy except for replacing M/2 with 2r + 2 and M/4

with r + 1.

Next we consider the case when M = 4r + 1, for some nonnegative integer r. In this case we

denote b = opt′2r+1 instead of opt′M/2 and we replace M/2 by 2r+1 in all three algorithm. Then we
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still have that optM ≥
b

1 + ε
. For Algorithm 6, in the packing phase, we start with S = PTAS(2r+1)

in line 1 and we run partition I for S1, S2 . . . , S2r in line 2. Then we can still return M bags

{A1, . . . , A2r, B1, . . . , B2r, S2r+1} in line 3. We may assume that either S2r+1 contains a job with

processing time greater than 2b/3 or every job has processing time at most 2b/3. For the case

m ≥ 2r+1, we follow line 1 of the scheduling phase of Algorithm 6 and clearly the robust ratio still

holds. Next we consider the case for m ≤ 2r, and we run LPT to schedule the bags on m machines.

Recall that for i = 1, 2, . . . , 2r, either p(Ai) ≤ 2b/3 or Ai is a bag with a single job, and same for Bi.

To prove the ratio still hold, it is su�cient to show that the bags �nish last has size at most 2b/3. If

S2r+1 does not contain a job with processing time greater than 2b/3, then every job has processing

time at most 2b/3. We may assume that we run LPT with S2r+1 �rst (otherwise p(S2r+1) ≤ 2b/3)

and that S2r+1 is not the bag �nishes last since otherwise the makespan is at most b. But now the

bags �nishes last has size at most 2b/3 and the claim holds. So we may assume S2r+1 contains a job

with processing time greater than 2b/3, say j. Then the proof of Lemma 5.3.5 works except for the

case when the machine �nishes last contains only bags with single jobs and S2r+1. But its makespan

is at most 4optm/3+p(S2r+1 \{j}) ≤ 5optm/3. For Algorithm 8, recall that we do it under the case

when opt4r+1 < 3b/5 < 2b/3, then it implies that for the sets in {S1, S2, . . . , S2r+1} = PTAS(2r+1),

at most 2r of which contain at least 2 big jobs. As we can only provide 4r + 1 bag, in the packing

phase, we will return with the bags {A1, . . . , A2r+1, A
′ = B1∪B3, B2, B4, B5, . . . , B2r+1} if u ≥ 1 and

{A1, . . . , A2r+1, A
′ = B1∪B2r+1, B2, B3, . . . , B2r} otherwise. Then p(A′) ≤ 5b/6 and we will treat it

like an A-bag. Then in the scheduling phase, line 1 holds form ≥ max{3r+2, 2r+1+w+2u}, line 2

holds for w+2u > r+1 and 3r+2 ≤ m < 2r+1+w+2u, and line 3 holds for 2r+2 ≤ m ≤ 3r+1. The

corresponding part of Lemma 5.3.7 holds accordingly under the assumption that opt3r+1 > 4b/5.

Also for the case when m ≤ 2r + 1, we can follow Lemma 5.3.4 with the same strategy except for

replacing M/2 with 2r+2 and M/4 with r+1. It left the case when opt3r+1 ≤ 4b/5 and we follow

Algorithm 7 with modi�cations. In the packing phase of Algorithm 7, we will only partition r sets

and return with M = 4r+ 1 bags {S1, . . . , S2r+1, A2r+2, . . . , A3r+1, B2r+2, . . . , B3r+1}. Then in the

scheduling phase, line 1 holds for m ≥ 3r + 1, line 2 holds for v > 2r + 1 and v ≤ m < 3r + 1, and

line 3 holds for v > 2r + 1 and 2r + 1 ≤ m < v − 1, or v ≤ 2r + 1 and 2r + 1 ≤ m < 3r + 1. The

corresponding part of Lemma 5.3.6 holds accordingly. Also for the case when m ≤ 2r + 1, we can

follow Lemma 5.3.4 similarly.
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For the last case when M = 4r + 3, for some nonnegative integer r. In this case we denote

b = opt′2r+2 instead of optM/2 and we replaceM/2 by 2r+2 in all three algorithm. The modi�cation

of Algorithm 6 is exactly the same as in the case when M = 4r + 1. For Algorithm 8, similarly

we have at most 2r + 1 sets in PTAS(2r + 2) which contain at least 2 big jobs. in the packing

phase, we will return with the bags {A1, . . . , A2r+2, A
′ = B1 ∪ B3, B2, B4, B5, . . . , B2r+2} if u ≥ 1

and {A1, . . . , A2r+2, A
′ = B1 ∪ B2r+2, B2, B3, . . . , B2r+1} otherwise. Then in the scheduling phase,

line 1 holds for m ≥ max{3r + 3, 2r + 2 + w + 2u}, line 2 holds for w + 2u > r + 1 and 3r + 3 ≤

m < 2r + 2 + w + 2u, and line 3 holds for 2r + 3 ≤ m ≤ 3r + 2. The corresponding part of

Lemma 5.3.7 holds accordingly. Also for the case when m ≤ 2r + 2, we can follow Lemma 5.3.4

with the same strategy except for replacing M/2 with 2r + 3 and M/4 with r + 2. It left the case

when opt3r+2 ≤ 4b/5 and we follow Algorithm 7 with similar modi�cations as in the previous case.

This �nishes the proof of 5.3.9.
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