2017 Articles
Altered Cortical Ensembles in Mouse Models of Schizophrenia
In schizophrenia, brain-wide alterations have been identified at the molecular and cellular levels, yet how these phenomena affect cortical circuit activity remains unclear. We studied two mouse models of schizophrenia-relevant disease processes: chronic ketamine (KET) administration and Df(16)A+/-, modeling 22q11.2 microdeletions, a genetic variant highly penetrant for schizophrenia. Local field potential recordings in visual cortex confirmed gamma-band abnormalities similar to patient studies. Two-photon calcium imaging of local cortical populations revealed in both models a deficit in the reliability of neuronal coactivity patterns (ensembles), which was not a simple consequence of altered single neuron activity. This effect was present in ongoing and sensory-evoked activity and was not replicated by acute ketamine administration or pharmacogenetic parvalbumin-interneuron suppression. These results are consistent with the hypothesis that schizophrenia is an ‘‘attractor’’ disease and demonstrate that degraded neuronal ensembles are a common consequence of diverse genetic, cellular, and synaptic alterations seen in chronic schizophrenia.
Files
- HammNeuron2017.pdf application/pdf 5.1 MB Download File
Also Published In
- Title
- Neuron
- DOI
- https://doi.org/10.1016/j.neuron.2017.03.019
More About This Work
- Academic Units
- Biological Sciences
- Physiology and Cellular Biophysics
- Neuroscience
- Published Here
- April 2, 2018