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ABSTRACT 

Defining and controlling the subtype identity of human stem cell-derived motor neurons 

Gist F. Croft 

One cardinal promise of stem cell research is that many intractable, common, and poorly 

understood diseases may be studied in an entirely new way: in vitro in the specific human cell 

types affected in vivo.  Embryonic stem (ES) cells have the pluripotency to generate all somatic 

cells types, and the invention of somatic cell reprogramming techniques has allowed the creation 

of cell lines with both ES-cell grade pluripotency—induced pluripotent stem (iPS) cells—and the 

genetic determinants of diseases.  If iPS cells derived from patients with genetic disease are to 

enable studying the affected human cell types in vitro then it is necessary to: first, precisely 

define the appropriate cellular phenotypes in vivo; second, selectively generate those cell types 

in vitro; and third, demonstrate that iPS cells retain similarly predictable and tractable cellular 

potential as ES cells.  In the motor neuron degenerative disease Amyotrophic Lateral Sclerosis 

(ALS) spinal motor neurons innervating different types of muscles and individual muscle groups 

show selective vulnerability or resistance to disease.  We therefore set out to define the subtypes 

of human motor neurons in vivo and to generate these in vitro.  Here we report that human motor 

neurons in vivo share with mouse the molecular markers of motor neuron column, division, and 

pool organization, as well as positional expression of HOX proteins which regulate this diversity 

in chick and mouse.  We then used combinations of these markers to classify motor neuron 

subtypes derived from human ES cells in vitro under standard differentiation conditions.  These 

human ES cell-derived motor neurons expressed marker combinations appropriate to each motor 



 
 

column, but were strongly biased to cervical phenotypes.  In order to access a greater diversity of 

motor neuron subtypes, including some with differential responses to ALS in vivo, we defined a 

developmental strategy to generate more caudal ES-cell derived motor neurons.  We show that 

FGF treatment, in a patterning window we defined, generated human ES-cell derived motor 

neurons with more caudal (brachial, thoracic, and lumbar) phenotypes.  We then participated in a 

long term collaboration to generate iPS cell lines from donors with ALS-genotypes (familial 

ALS), and no clinical motor dysfunction (controls).  We first showed that ALS and control iPS 

cells from patients of advanced age could generate motor neurons in vitro (Dimos, Rodolfa et al. 

2008).  To address questions about the variability of iPS cells, and their comparability to ES cells 

for making defined neuronal subtypes, we generated a panel of iPS lines from donors of varying 

demography, thoroughly characterized these cells by standard assays for pluripotent cells, and 

assessed their ability to generate functional motor neurons in comparison to a panel of ES cell 

lines.  We showed that iPS cells were equivalent to ES cells, and that human genetic diversity 

may influence the efficiency of motor neuron generation (Boulting, Kiskinis et al. 2011).  Next, 

we used these lines to show that iPS cells could generate the same diversity of motor neurons in 

vitro, and that the rostrocaudal output of this diversity was rationally manipulable.  Finally, since 

ALS is an adult onset disease, we anticipated that if ES and iPS cell-derived motor neurons could 

reach significant landmarks of functional maturation in vitro, then the chances of manifesting 

disease phenotypes would be increased.  Therefore we developed methods for long term cultures 

in which ES and iPS cell-derived motor neurons showed progressive molecular, morphological, 

and electrophysiological maturation.  Together these results enable future studies to ask if ALS-

patient iPS cell-derived motor neurons will show pan-motor neuron or subtype-specific ALS 



 
 

phenotypes in vitro.  In turn these which may help elucidate mechanisms of disease resistance 

and vulnerability and identify novel therapeutic targets. 
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Chapter 1. General Introduction 

 

Part I. INTRODUCTION 

The function of the central nervous system is predicated on the specific connectivity of billions 

of distinct neuronal subtypes that form trillions of plastic synapses.  At the founding of the 

modern discipline of neuroscience Ramon y Cajal described thousands of these distinct neuronal 

types by their morphologies (Fig. 1.1).  Thus even at the beginning Cajal‘s studies clearly 

articulated two fundamental questions for understanding brain function, although this was highly 

controversial at the time.  First, distinctive morphologies suggested distinct neuronal subtypes.  

Second, the axonal and dendritic morphologies that distinguished neuronal subtypes, as Cajal 

argued, were themselves the myriad specific connections formed from one neuron to another.  As 

molecular and genetic methods have replaced silver staining and camera lucida our appreciation 

for neuronal diversity and our knowledge of the circuits formed by specific connections between 

them have expanded like the Purkinje cell arbors Cajal depicted.  From a reductionist standpoint 

however his basic questions remain:  What are the different neuronal actors and what makes 

them distinct?  And how do they connect to each other in functional circuits to produce 

behavior? 

Because of its concrete behavioral output, the motor system has been an attractive target for 

studies seeking to define specific neuronal subtypes and the logic and development of functional 

circuit connections between them.  We now understand a great deal about the hierarchy of motor 

neuron subtypes at the molecular, genetic, and circuit levels.  A distinct group of motor neurons 

in the ventral horn of the spinal cord, termed a motor pool, innervates and controls the 
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contractions of each of several hundred skeletal muscles. Motor pools in turn are organized in 

rostrocaudal columns, termed motor columns, according to the type of target muscle they 

innervate (Fig. 1.2).  During development motor columns and their constituent motor pools are 

generated in rostrocaudal register with their target muscle by pattering factors and genes which 

articulate the rostrocaudal body plan of the embryo.  

The result is that individual motor neurons possess distinct transcriptional identities, accumulated 

from rostrocaudal and columnar identities, and finally specific to the individual motor pools to 

which they belong.  Functional identities are downstream of these transcriptional identities.  For 

example, the axons of a leg muscle innervating motor neurons must make a series of directional 

choices in order to arrive successfully at the muscle that they are destined to control.  Centrally 

they must also choose to participate in forming hundreds or thousands of specific synapses with 

sensory afferents, descending cortical inputs and local interneurons, and spinal central pattern 

generators in order to mediate motor behavior.   

The human motor system conforms to of the same basic functional and anatomic categories that 

have been described in vertebrate model systems.  However, almost all of the genetic and 

molecular information about of the development of the motor system and motor neuron subtypes 

is based on studies in animal models, since human motor neurons were available only in 

postmortem samples.  This scarcity, and the lack of living motor neurons for experimental 

studies, was compounded by the diversity of motor neuron subtypes and pools requiring study.  

With the establishment of human embryonic stem (ES) cells as a research tool, and the 

demonstration that they could be directed to differentiate into spinal motor neurons, this 

inaccessibility has changed.  Now the field is in a position to study human spinal motor neurons 
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directly, and attempt to understand the development and function of human motor neuron 

subtypes. 

Spinal motor neurons are of intellectual interest, but they are also the target of several diseases.  

The motor neuron disease Amyotrophic Lateral Sclerosis (ALS) becomes symptomatic as the 

spinal motor neurons which innervate muscles die, leading to progressive paralysis and 

ultimately death.  The mechanisms of motor neuron-selective degeneration are not well 

understood and there are no effective therapies.  The derivation of induced pluripotent stem (iPS) 

cells from ALS-patients brings together the genotypes which determine familial forms of the 

disease with the pluripotency to generate the affected cells in vitro.  However, reproducing 

degenerative cellular phenotypes in vitro will be a major challenge using ES/iPS-derived cells.  

While ALS is not believed to have a developmental component, developmental biology could 

provide leverage on this problem in two ways.  First, motor neurons show differential 

susceptibility depending on their motor column or motor pool subtypes, therefore these subtypes 

may offer novel and specific ways to understand the mechanisms of motor neuron degeneration 

in ALS.  However, human motor neuron subtypes have not been molecularly defined in vivo, 

and rational means to generate them in vitro have not been described.   Second, it is likely that in 

order to model an adult-onset neurodegenerative disease like ALS, ES/iPS cell-derived motor 

neurons should at the minimum adopt coherent in vivo-like identities and progress to states of 

maturity as indicated by changes at the molecular, morphological, and electrophysiological 

levels, however  maturational strategies and assays to monitor maturation need to be defined. 
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Aims 

The aim of the this thesis was to lay the groundwork for the study of ALS using motor neurons, 

and their specific subtypes, derived from ALS-patient iPS cell lines.  First, we needed to 

establish that the molecular markers of vertebrate motor neurons and their subtypes were 

conserved in humans in vivo.  Second, we sought to characterize the subtype diversity of motor 

neurons differentiated from ES cells (ES-MNs) and to develop assays under which to test the 

maturation of motor neurons.  Third, in order to generate ALS-motor neurons, we participated in 

collaborative efforts to generate iPS cell lines from familial ALS patients and control donors, and 

to compare these lines to each other and to ES cells for their capacity to generate motor neurons 

and the functional phenotypes of those cells.  Fourth, we designed a strategy, based on 

developmental mechanisms, to control the rostrocaudal subtype of ES and iPS cell-derived motor 

neurons, and asked if coherent subtype identities could be rationally orchestrated. 

Summary of research background 

In order to set the stage for the studies described in Chapters 2-5, it is necessary to review the 

literature which forms the background for this work.  First, we review the molecular markers that 

distinguish motor column subtypes as defined in vertebrate models.  Then we review the 

developmental mechanisms which generate motor column subtype identity (Part II).  Next, we 

review the evidence that motor neurons can be differentiated from mouse ES cells, and describe 

the molecular and functional diversity of mouse ES cell-derived motor neurons (ES-MNs) (Part 

III).  Then, we describe the generation of human ES cells, their differentiation to motor neurons, 

and the evidence for in vitro subtype diversity in human ES-MNs (Part IV).  Finally we review 
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the development of iPS cells which allow patient-specific ALS-genotypes to be captured in cells 

with the properties of ES cells (Part V).   

Part II.  SPINAL MOTOR NEURON DIVERSITY AND ONTOGENY IN 

VERTEBRATES 

Categories of motor neuron diversity: motor columns, divisions, and pools 

Motor neurons control muscle contraction and motor behavior 

Motor neurons are the sole means of behavioral output from the nervous system.  Their cell 

bodies are located in rostrocaudal columns in the ventral horns of the spinal cord and in the 

dorsal hindbrain, and their axons synapse on muscles controlling contractions.  Central control of 

motor neuron/muscle activity is governed by descending cortical inputs which synapse on local 

interneurons and on some motor neurons directly as well as on central pattern generators.  Motor 

neurons are also integrated into spinal reflex circuits which modulate the activity of motor 

neurons based on sensory feedback from homonymous and antagonistic muscles.  Finally, 

central pattern generators are complex local circuits which coordinate the activity of many 

muscle groups acting in concert to effect locomotion and other stereotyped motor behaviors. 

Motor neurons with similar muscle targets are grouped into motor columns 

The organization of spinal motor neurons is described by a series of hierarchical categories 

which are defined by their peripheral targets, and these are reflected by characteristic anatomical 

positions in the spinal cord and the expression of definitive molecular markers  (Fig. 1.2A-C) 

(Jessell 2000).  First, motor neurons can be divided into two classes: by far the most abundant 
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 are somatic motor neurons, which project directly to muscle targets, and second are visceral 

preganglionic motor neurons, which synapse on sympathetic ganglia.  The visceral preganglionic 

motor neurons are grouped into a dorsal column termed the preganglionic motor column (PGC, 

or Column of Terni in chick) and are found at thoracic levels (Prasad and Hollyday 1991).  

Somatic motor neurons can then be subdivided into three columnar categories.  First,  median 

motor column (MMC) cells constitute a continuous column in a medial and ventral position 

throughout the rostrocaudal length of the spinal cord, and innervate dorsal epaxial muscles of the 

back (Fetcho 1987; Gutman, Ajmera et al. 1993).  Second, hypaxial motor column (HMC) motor 

neurons, which are restricted primarily to the thoracic spinal  cord, are located just lateral to the 

MMC, and innervate intercostal and abdominal muscles (Gutman, Ajmera et al. 1993). Third, the 

lateral motor columns (LMCs), which are located dorsal and lateral to the MMC, are found only 

at the level of the fore- and hind-limbs that contain their muscle targets.  The LMC is further 

subdivided into medial and lateral divisions which innervate muscles derived from the ventral or 

dorsal primordial muscle masses of the limb (Landmesser 1978).   

Molecular markers of motor column subtype identity  

At the molecular level all motor neurons can all be identified by expression of the acetylcholine 

synthetic enzyme choline acetyltransferase (ChAT), since this is the neurotransmitter by which 

they communicate with muscles, and the transcription factors HB9 (Arber, Han et al. 1999) and 

or ISLET1 (ISL1) (Ericson, Thor et al. 1992).  Motor column and division subtypes can be 

identified by their combinatorial expression of specific molecular markers (Fig. 1.2D). The 

MMC expresses transcription factor LHX3, which is initially expressed by all nascent motor 

neurons but rapidly downregulated in all motor columns except the MMC.  At brachial and 

lumbar levels LMC motor neurons express either HB9 or ISL1, the forkhead box protein 
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FOXP1, and the retinoid synthetic enzyme RALDH2, which serve as specific molecular markers 

of LMC identity among motor neurons (Dasen, De Camilli et al. 2008).  The LMC divisions can 

be identified based on their combinatorial expression of LIM homeodomain proteins and HB9: 

medial division (LMCM: ISL1 and ISLET2 (ISL2)) and lateral division (LMCL: HB9 and LIM1, 

ISL2).  At thoracic levels, the HMC is marked by expression of HB9 and ISL1/2, the absence of 

both FOXP1 and LHX3 and the expression of ER81 (Dasen, Liu et al. 2003), while PGC motor 

neurons express ISL1, low levels of FOXP1, nNOS, and phosphorylated SMAD (pSMAD) 

proteins (Dasen and Jessell 2009).  

Motor pools innervate individual muscles 

The last level of specificity is the motor pool: the group of motor neurons which are dedicated to 

synapse on one specific muscle (Romanes 1942).  Axonal retrograde transport of horse radish 

peroxidase, and later fluorescent dyes, allowed the nerves innervating individual muscle to be 

traced to their origin at spinal motor neurons.  This allowed a one-to-one map to be established 

between individual limb muscles and the motor pools which innervate them (Romanes 1964; 

Landmesser 1978; Landmesser 1978; Hollyday 1980). 

While motor pool identity is defined by muscle target, many pools can be identified centrally by 

a distinct profile of transcription factor expression.  For example, in the rostral brachial chick 

LMCL the deltoid (DL) motor pool expresses high level ISL2 and LIM1, the extensor metacarpi 

radialis/ulnaris (EMR) motor pool expresses low levels of ISL2 and LIM1, and the rhomboideus 

(RB) motor pool, not part of the LMC, expresses ISL1, ISL2, and LHX3 (Ensini, Tsuchida et al. 

1998).   Additionally, dozens of HOX genes and HOX cofactors (MEIS and PBX proteins) are 

expressed in the brachial LMC where their cross-repressive activities determine the location 
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identity of many motor pools (Dasen, Tice et al. 2005).  Some motor pools can be identified by 

expression of specific transcription factors (PEA3, ER81, RUNX1, SCIP, and Nkx6 proteins) 

which can serve as pool markers (Lin, Saito et al. 1998; Arber, Ladle et al. 2000; Haase, Dessaud 

et al. 2002; Livet, Sigrist et al. 2002; Dasen, Tice et al. 2005). 

In some cases pool markers have been shown to respond to peripheral signals and drive motor 

pool specific connectivity phenotypes.  For example, intermediate target- and muscle-derived 

GDNF induces the expression of the ETS protein PEA3 in cutaneous maximus (CM) and 

latissumus dorsi (LD) motor pools (Haase, Dessaud et al. 2002). PEA3 and GDNF knockout 

mice showed defects in cell body settling position and terminal arborization pattern of these 

motor pools pools (Haase, Dessaud et al. 2002; Livet, Sigrist et al. 2002).  Thus selective 

expression of transcription factors not only marks motor pool identities, but can result from 

interaction with muscle targets and determine functional motor pool phenotypes. 

Anatomy and molecular markers of human motor neurons and their subtypes 

Human spinal motor neurons are arranged in the same broad categories as mouse, medial motor 

neurons (MMC, HMC), intermediolateral motor neurons (PGC),and lateral column motor 

neurons ( LMCM/L) as described by histological criteria (Rath, Gopinath et al. 1982; Altman and 

Bayer 2001; Bayer and Altman 2002).  However, molecular tools and tracing studies have not 

been used to definitively establish a distinction between the MMC and HMC, the divisions of the 

LMC, or specific motor pools.  At the molecular level, in situ probes for the motor neuron 

marker HB9 identified motor neurons in the anterior horn of the spinal cord at Carnegie stage 

(CS) 15 (35-38 days of development) (Ross, Ruiz-Perez et al. 1998; Hagan, Ross et al. 2000), 

(Fig. 1.3A).  Cells in the subventricular zone also showed hybridization beginning at CS14 (not 
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shown), however by CS19 (day 48-51) only more caudal regions showed subventricular staining 

(Fig. 1.4C, D) and by CS21 (day 53-54, data not shown in publication, the sacral subventricular 

signal was no longer detected).  The authors also report but do not show that anterior horn and 

subventricular signal was seen at CS14 (31-35 days) but not at CS12 (26-30 days).  These data 

validate the use of HB9 as a selective marker for embryonic human motor neurons and they 

appear at day 35-38 and perhaps as early as day 31-35. 

If the subventricular expression pattern is interpreted as HB9  expression in motor neuron 

progenitors, this suggests that human motor neurons initiate HB9 at an earlier stage than do chick 

(Tanabe, William et al. 1998) but similar to mouse (Arber, Han et al. 1999).  Whether HB9 is 

expressed in motor neuron progenitors or in immediately post-mitotic motor neurons, the 

rostrocaudal progression of signal loss strongly suggests it is correlated with motor neurogenesis.  

The period of human motor neurogenesis is thus likely to occur in vivo over a period of almost 3 

weeks: embryonic days 31 to 51. 

Histological analysis offers another perspective on the period of motor neurogenesis, suggesting 

essentially the same start but perhaps an earlier conclusion.  Incipient motor neurons were 

recognized by Ramon y Cajal in the human spinal cord at  ―week 4‖ as early as 1909 (Fig 1.4A)   

(Altman and Bayer 2001).  More recently a detailed analysis of dozens of archival embryos was 

used to construct a comprehensive histological account of spinal development from GW 4 to 

gestational month 4 (Bayer and Altman 2002) of which the first trimester data is most relevant 

here (Fig. 1.4A).  These authors clearly identify motor neurons which have migrated out of the 

subventricular germinal zone by GW 4.5, and interpret a subsequent thinning of the 

subventricualr neuroepithelium at GW 5.5—the presumed human motor neuron progenitor 

domain—as indication of largely completed motor nuerogenesis (Fig 1.5A,  B).  This particular 
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estimate however, derives from the cervical spinal cord only, and is only a few days in advance 

of the loss of subventricualr HB9 expression described above, and they do not present a full 

rostrocaudal account of spinal cords samples before GW 8.5.    In summary the period of human 

motor neurogenesis cannot be definitively established with these tools alone, but the histological 

and molecular evidence supports the idea that human motor neurons are born between about 

embryonic day 30 and 50. 

Motor columns begin to separate from a histologically undifferentiated mass of motor neurons 

by GW 6.5 and are quite well segregated into columns by GW 7, however cell group movements 

and further separation of motor columns and pools occurs well into the second trimester (Bayer 

and Altman 2002).  Between GW7.5 and GW17 motor neurons express increasingly distinctive 

levels of non-phosphorylated neurofilaments relative to immediately surrounding cells, and at 

late embryonic stages (GW10-14) they express EphA4 with relative uniformity (Clowry, Moss et 

al. 2005).  Chromatolytic reactions in the cell bodies of motor neurons degenerated through 

injury or disease (poliomyelitis) allowed identification of some motor pools, although in the 

absence of tracing studies in human, the current hypotheses about motor pool-muscle maps are 

based mostly on analogy to precise retrograde tracing in experimental vertebrates (Sharrard 

1955; Romanes 1964; Altman and Bayer 2001; Bayer and Altman 2002).   

None of the molecular markers which delineate specific columnar or motor pool subtypes in 

chick or mouse have been investigated in human, with the exception of ER81.  ER81 expression 

was not associated with the HMC in this study, but the timepoint of analysis was long after the 

period of columnar diversification (Clowry, Moss et al. 2005).  ER81 was, however, observed in 

some unidentified LMC pools at GW14, suggesting that it functions in human as a pool marker.  

ER81 was also observed in dorsal root gangli as it has been in mouse (Arber, Ladle et al. 2000).  
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Since these reports numerous new antibodies against proteins expressed in a motor neuron 

subtype-specific manner were generated.  Therefore, new, detailed studies of the molecular 

markers and determinants of motor column, division, and pool identities in first trimester human 

embryos are needed to confirm the relevance of the markers of rostrocaudal and columnar 

identity, and validate their use in assigning in vitro derived cells to cognate in vivo categories. 

 

Rostrocaudal patterning generates motor column diversity 

Motor neurons are grouped into columns, divisions and pools, and many of these subtypes can be 

identified by transcriptional codes.  We next ask how generic motor neurons acquire these 

subtype identities in vivo.  A detailed understanding of the processes governing motor neuron 

diversification has been adduced in chick and mouse.  These mechanisms can be reduced to the 

idea that the embryo deploys developmental morphogens along the dorsoventral and rostrocaudal 

axes, to generate unique positional identities defined by the concentration, timing and 

combination of these cues.  Interactive genetic mechanisms then interpret these positional 

identities, resolving a series of unique cellular motor neuron columnar identities.  A classic 

example of this principle is found in the dorsoventral patterning which generates cellular 

diversity, including pan-motor neuron identity, in the ventral spinal cord. 

Dorso-ventral patterning and the specification of motor neuron progenitors 

Motor neuron progenitors (pMNs) are induced in a specific ventral domain of the spinal cord by 

high levels of sonic hedgehog (SHH) protein and are then marked by the expression of OLIG2 

(Roelink, Porter et al. 1995).  The most ventral neural tube cells, floorplate cells secrete that then 

diffuses dorsally generating a concentration gradient in the ventral half of the spinal cord.  SHH 
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induces expression of Class II homeodomain (HD) proteins Nkx2.2 and Nkx6.1, and represses 

expression of Class I HD proteins Pax7, Dbx1, Dbx2, Irx3, and Pax6 at staggered threshold 

concentrations (Fig. 1.6).  Cross repressive interactions between Class I and II HD proteins then 

resolve the SHH gradient into a set of 5 unique progenitor cell identities—(p0, p1, p2, pMN, and 

p3) located in serial dorsoventral domains in the spinal cord.  In this fashion, a morphogen 

gradient is interpreted by cross repressive genetic mechanisms, and positional information is 

translated into a array of unique cellular identities 

HOXC genes determine motor column subtype identities 

Since all motor neurons arise from a single dorsoventral progenitor domain, generated by high 

levels of SHH signaling, how is the columnar diversity of motor neurons orchestrated?  The 

interaction of HOX genes underpins the diversification of generic motor neurons into columnar 

subtypes and links their diversity to rostrocaudal topography in register with their muscle targets.  

HOX genes are induced in the neural tube, and later are expressed by postmitotic motor neurons 

in a rostrocaudal sequence which is collinear to their 3‘-5‘ position in HOX clusters in the 

genome (Deschamps and van Nes 2005). Cross repressive activity of many HOXC genes helps 

resolve initial graded expression patterns into sequential regions where cells express unique 

combinations of HOX genes.  The result is that motor neurons at brachial limb-innervating levels 

express HOXC6, those at thoracic non-limb innervating levels express HOXC9, and those at 

lumbar limb-innervating levels express  HOXC10 (Liu, Laufer et al. 2001) (Fig. 1.2).  In these 

domains HOXC genes determine the elaboration of level appropriate columnar identities: 

HOXC6 and HOXC10 are required for the specification of the LMCs and repress thoracic motor 

columns, whereas HOXC9 suppresses LMC fate in thoracic spinal cord and supports the 

elaboration of HMC and PGC column subtypes (Dasen, Liu et al. 2003; Jung, Lacombe et al. 
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2010).  Finally dozens of HOX genes, including HOXA5 and HOXC8, work in combination to 

generate the diversity of forelimb innervating motor pools (Dasen, Tice et al. 2005).  HOX genes 

are thus both instrumental in the diversification of motor neurons and serve as specific markers 

of motor neuron rostrocaudal subtype identity. 

Wnt and FGF induce CDX genes to determine caudal neural identity in primitive streak and 

neural plate stage embryos 

While HOXC genes appear to control the columnar identity of postmitotic motor neurons, in 

order to manipulate these identities it is necessary to work backwards in development to 

understand how HOXC genes are induced in this pattern in the spinal cord in the first place.  The 

emerging model for this process again conforms to the principle of developmental morphogens 

inducing positional identities interpreted by interactive gene expression programs.  However, in 

this case the axis is rostrocaudal, the process unfolds in several temporal waves, each sculpting 

more refined positional zones, and progenitor cells must integrate information from several 

overlapped morphogen signaling pathways.  Caudal neural identity is first induced in chick in 

vivo in response to morphogens secreted from two anatomical sources.  First, at the beginning of 

gastrulation through the 1-4 somite stage (Hamburger and Hamilton (HH) stage 3
+
-8) gradients 

of Wnt, from the paraxial mesoderm, and FGFs from the primitive streak induce caudal neural 

identity in cells which will form the spinal cord (Bel-Vialar, Itasaki et al. 2002; Nordstrom, 

Jessell et al. 2002; Nordstrom, Maier et al. 2006).  This primitive caudal identity is encoded by 

the expression of CDX genes in the caudal neural plate by the 1-4 somite stage (HH 8) (Fig. 1.7). 

This first caudal determining period of Wnt and FGF signaling begins coincident with primary 

neural induction and gastrulation.  At this timepoint the prospective neural plate has been 
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specified—as shown by fate mapping studies—however it does not yet express the first 

identified definitive marker of neural plate identity in chick and mouse (SOX1). 

Spinal identity is subdivided and diversified by FGF and RA in neural plate and neural tube: 

HOXB genes 

Next, from the 4-17 somite stages (HH8-12) FGF from the regressing Hensen‘s node exposes 

progressively more caudal spinal regions to higher levels of FGF for longer time periods: it is 

adjacent to the presumptive cervical region at HH8, brachial region at HH10, and lumbar region 

at HH15 (Liu, Laufer et al. 2001).  Meanwhile the somites are formed from paraxial mesoderm 

in the anterior wake of the node, and expose brachial progenitors to a rostral to caudal gradient of 

Retinoic Acid (RA) (Fig. 1.8). The generic caudal identity of prospective spinal cord cells, 

encoded by CDX genes, is then refined into rostral and caudal zones by the activity of RA, acting 

directly on 3‘ HOX genes (HOXB1, HOXB3-5), and FGF acting through CDX genes as well as 

on 5‘ HOX genes (HOXB6-9) more directly (Bel-Vialar, Itasaki et al. 2002).  These morphogens 

refine HOX expression such that by HH stage 17 the hindbrain and spinal cord can be subdivided 

into three progenitor zones based upon their expression of HOXB/C genes: caudal hindbrain, 

rostral and caudal spinal cord can be prospectively identified by their combinatorial expression 

of HOXB4, HOXB8, and HOXC9 (Nordstrom, Maier et al. 2006).  Importantly, these authors 

showed that this entire spectrum of specific regional identities, at the CDX and then HOX levels, 

can be rationally reconstructed by exposing prospective forebrain explants to combination of 

Wnt, FGF, and RA signals.  As described previously, by the time motor neurons have exited the 

cell cycle (~HH24), they have been imbued with positional identities marked by HOXC6 

(Brachial), HOXC9 (thoracic), and HOXC10 (lumbar) (Liu, Laufer et al. 2001; Dasen, Liu et al. 
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2003).  Finally the most caudal identities—lumbar: HOXC10—depend on additional node-

derived GDF signals  (Liu, Laufer et al. 2001) (Fig. 1.8). 

Many HOX genes interact to diversify limb innervating motor pools 

After specifying columnar identities, many other HOX genes act at a tertiary level to diversify 

the generic identity of forelimb innervating LMC motor neurons into the multiple pool identities 

required for targeted innervation of limb muscles (Dasen, Tice et al. 2005).  HOXA5 is 

expressed in the rostral, and HOXC8 in the caudal brachial LMC and the respective motor pools 

therein.  HOXA5 is required for the scapulohumeralis posterior (SCA ) which is marked by 

RUNX1 expression, and HOXC8 is required for the specification of the flexor carpi ulnaris 

(FCU, SCIP
+
), pectoralis (PEC, PEA3

+
), and anterior latissimus dorsi (ALD, PEA3

+
) motor 

pools.  Cross-repressive actions between HOXA5 and HOXC8, with HOXC8 in a dominant 

position, establish the boundary of HOX expression and pool location, and positive or negative 

perturbations of HOXC8 expression result in shifts in pool identity as measured by molecular 

profile of motor pools and axonal target selection.  A second tier of interactions between other 

HOX genes and the HOX-cofactor MEIS1 sculpts a series of motor pool identities at the same 

intrasegmental (HOXC8
+
) level.  These include MEIS repression of HOX4, HOX7 repression of 

HOX4, and HOX4 activation of Pec-, ALD-, and FCU-motor pool-specific expression of their 

respective pool-markers PEA3 and SCIP. 

 FOXP1 gates limb level HOX diversification of motor pools 

FOXP1, as previously described, is a marker for LMC motor neurons, however it is also a 

required determinant of LMC functional identity.  The FOXP1 knockout mouse showed a loss of 

functional motor pool identities leading to random limb innervation and complete absence of 
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coordinated limb muscle control (Dasen, De Camilli et al. 2008).  All motor neurons reverted to 

an axial innervating character (MMC/HMC), an atavistic phenotype characteristic of 

evolutionarily basal aquatic vertebrates without limbs or sympathetic nervous systems, relying 

on axial, sinusoidal locomotion: which was the striking locomotor phenotype of these animals.  

In limbed vertebrates, high-level FOXP1 expression, in the context of HOXC6 or HOXC10, 

directs limb-level LMC motor neuron diversification by enabling the productive interaction of 

the dozens of HOX genes to determine motor pool identities.   At thoracic levels however, in the 

context of HOXC9 expression, low-level FOXP1 expression direct motor neurons to adopt PGC 

motor neuron identities (Fig. 1.9).   

Relationship to human development 

No direct evidence is available on the expression of any of the rostrocaudal morphogens, CDX or 

HOX genes in the human spinal cord.  However the human embryo generates the same 

anatomical structures—primitive streak, node and somites—that produce these morphogens in 

the chick and mouse. While molecular studies on human or primate embryos would be extremely 

useful in this regard, it is unlikely that relevant staged samples could be procured at all and if so 

intact at an early enough timepoint in development to be useful.  Moreover, an experimental 

system in which perturbations could be introduced and their effects tested is not conceivable in 

human.  Therefore it would be highly desirable to develop the ability to investigate these 

mechanisms and markers in human in the one available system: human ES cell in vitro 

differentiation. 
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Motor neuron degeneration in ALS 

ALS is an adult onset neurodegenerative disease that was first described by Jean-Martin Charcot 

(Charcot and Joffroy 1869) and is characterized by the selective death of spinal motor neurons 

and upper motor neurons of the motor cortex.  Axonal degeneration and cell loss spreads, from 

an from an initiating motor pool, to nearly all others causing muscle weakness, spasticity and 

paralysis leading to death within a few years of diagnosis (Ravits and La Spada 2009).   90% of 

ALS is sporadic—without known genetic cause—however 10% is familial.  Mutations in several 

genes have been linked to ALS:  beginning with SOD1 (Rosen, Siddique et al. 1993), and now 

including many others (Boillee, Vande Velde et al. 2006).  Most recent and exciting was the 

identification of TDP-43 in several reports in both familial (Gitcho, Baloh et al. 2008; Van 

Deerlin, Leverenz et al. 2008) and sporadic (Kabashi, Valdmanis et al. 2008; Sreedharan, Blair et 

al. 2008) ALS, which therefore links the familial and sporadic and by implicating a new 

molecule may give new clues to mechanisms.  Mutations in the SOD1 gene have formed the 

basis for rodent models which have provided important insights into the sequence and specifics 

of pathology—axonal dieback, misfolded SOD1 and protein aggregation, axonal transport 

defects, mitochondrial dysfunction, and glutamate excitoxicity, for example—pointing towards 

key players but not identifying upstream mechanisms which could serve as therapeutic targets.  

Animal models have also generated some groundbreaking insights, for example, the importance 

of non motor neurons to disease progression: astrocytes and microglia (Clement, Nguyen et al. 

2003; Boillee, Yamanaka et al. 2006).  Despite this progress disease mechanism are not well 

understood and there are no effective therapies. 

 



18 
 

 

Motor neuron subtype-selective disease phenotypes 

The motor neuron selectivity of cell loss in ALS has historically, and with good reason, occupied 

much attention.  However, while almost all motor neurons degenerate in ALS, certain classes 

and motor pools show enhanced susceptibility or resistance to degeneration (Kanning, Kaplan et 

al. 2010).  

Distal limb projecting, or facial motor muscles in bulbar forms, are typically affected first, 

compared to thoracic muscles (Ravits, Paul et al. 2007).  These clinical findings suggest that 

limb innervating motor neurons of the LMC are more susceptible to the onset or triggers of ALS 

than are the axial muscle innervating MMC or HMC motor neurons of the trunk.  Whether this 

susceptibility is due to intrinsic properties of these motor neurons, their interactions with glia, or 

circuit and activity characteristics is not known.  Sympathetic motor function and motor neurons 

may be relatively less affected in ALS, suggesting that PGC motor neurons are resistant to 

degeneration.  This strength of this subtype-phenotype is less clear and is complicated by a less 

direct understanding of the neural substrates of sympathetic nervous system function and less 

direct measures.  Bunina bodies, characteristic of degenerating motor neurons in ALS, have been 

identified in PGC (intermediolateral column) motor neurons suggesting that they are affected, 

although depending on the spinal level the density of deposits was less than compared to somatic 

motor neurons (Takahashi, Oyanagi et al. 1993).  The number of PGC motor neurons with NF-H 

accumulations was higher in ALS patients compared to controls, but not as frequent as in ALS-

patient ventral motor column (MMC/HMC/LMC) motor neurons (Itoh, Sobue et al. 1992).  To 

address this controversy a series of functional tests on human patients determined that 

sympathetic nervous system function was somewhat tonically increased in ALS patients, 

although there was a wide variety of patient responses and the authors concluded that there was 
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subtle involvement of the sympathetic nervous system in ALS (Oey, Vos et al. 2002).  In 

conclusion it seems clear that PGC motor neurons are affected in ALS, but perhaps less 

pervasively than somatic muscle motor neurons.  If LMC and PGC motor neurons can be studied 

in vitro, it will be intriguing to determine if they indeed are relatively susceptible and relatively 

resistant, respectively. 

One clear subtype-selective phenotype in ALS is the relative order of degeneration of fast 

fatigable (FF), followed by fatigue-resistant (FR), and finally slow (S) motor units (Kanning, 

Kaplan et al. 2010).  This sequence is evident in the muscle morphology of  mutant-SOD1 mice 

(Frey, Schneider et al. 2000; Pun, Santos et al. 2006), early loss of large diameter (FF) axons in 

ventral roots (Fischer, Culver et al. 2004), and calcitonin gene related peptide
+
 (FF) cell bodies in 

the spinal cord (Kong and Xu 1998).  Loss of FF and FR motor units may be compensated for by 

sprouting from FR and S motor units with resulting EMG and fiber type changes (Kanning, 

Kaplan et al. 2010).  Data from human patients supports this sequence of events: early signs of 

deinnervation in muscles, electromyelograms consistent with deinnervation/reinnervation, and 

twitch force studies (Dengler, Konstanzer et al. 1990; Fischer, Culver et al. 2004; de Carvalho, 

Pinto et al. 2008).  Despite these intriguing differences, the developmental mechanisms leading 

to FF, FR, or S motor unit motor neurons are not known.  Furthermore these motor neurons can 

be distinguished in situ by differences in cell soma size and axon caliber, but are not 

unambiguously distinguished by any molecular or any genetic markers. 

Two motor pools however show remarkable resilience even at end stages of disease.  In ALS 

patients‘ eyes muscle and pelvic sphincter functions are well preserved even at end stages 

(Mitsumoto, Przedborski et al. 2006).  ALS patient autopsy samples showed significance 

preservation of both the oculomotor (Gizzi, DiRocco et al. 1992; Kaminski, Richmonds et al. 
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2002) and Onuf‘s nuclei (Mannen, Iwata et al. 1977; Schroder and Reske-Nielsen 1984; Mannen 

2000).  Furthermore these phenotypes translate robustly to ALS mice, where several eye muscle-

innervating nuclei, including the oculomotor (Ferrucci, Spalloni et al. 2010), as well as Onuf‘s 

(Artem Kaplan and Christopher E. Henderson, unpublished results) are also robustly preserved.  

These strong motor pool-specific ALS-resistance phenotypes suggest that studying these motor 

pools could identify mechanisms of cellular resistance or vulnerability by comparison with other 

motor neurons. 

 

Summary 

Chick and mouse motor neuron subtypes are defined at the level of motor column, division, and 

pool, and can be identified by molecular markers.  These functional subtypes are conserved in 

human, but will these molecular markers be conserved as well?  The developmental mechanisms 

which produce the diversity of motor neuron subtypes in chick are early embryonic rostrocaudal 

patterning, initiated by morphogens secreted from discrete embryological structures over several 

developmental time periods. We know that the human embryo generates the same structures as 

the chick and mouse (see Chapter 6) but we do not know if the same cues are deployed.  In 

models systems these morphogenetic cues are translated into positional identity and motor 

neuron subtype diversity by CDX and HOX genes.  While human embryonic stem cells can 

respond to two of these morphogens, RA and SHH (see Chapter 1, Part IV), will Wnt, FGF, and 

RA in combination have similar activities as in model systems?  

ALS is a disease with poorly understood mechanism which selectively targets motor neurons, but 

we have observed that this response is not uniform among motor neuron subtypes.  If human 
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motor neuron subtypes can be defined at the molecular level in vivo, and developmental 

mechanisms controlled in vitro, it may be possible to generate motor neurons from human stem 

cells with identifiable subtype identities which match those showing differential responses to 

ALS in vivo.  Comparing the disease-response phenotype of these outlying subtypes to more 

classically affected, or especially to more susceptible motor neurons may reduce the noise of 

gene expression, cell-biological, or phenotypic changes which distinguish ALS motor neurons 

from non-motor neurons, and produce a novel range of mechanistic insights. 

 

Part III. MOUSE EMBRYONIC STEM CELL-DERIVED MOTOR NEURONS  

Introduction 

The development of the mouse embryonic stem (ES) cells in the 1980s revolutionized mouse 

genetics but also opened several possible avenues for in vitro investigation.  Because of the 

pluripotency of stem cells developmental biologists could imagine studying lineage development 

in a highly reduced but highly tractable system.  Those interested in diseases could also imagine 

generating the affected cell types in vitro and using these to build new models to understand 

disease mechanisms.  Finally, many were excited by the prospect of generating differentiated 

cells in vitro to be used in transplantation approaches to replace damaged or dead cells.  Since 

research on mouse ES cells and ES-derived motor neurons frame much of the work on the 

human system, it is important to review these precedents.  Here we review the origins and 

defining characteristics of mouse stem cells and their application to the problem of mouse motor 

neuron differentiation and diversity. 
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Mouse embryonic stem cells 

In 1981 mouse ES cells were derived from the blastocysts of the preimplantation mouse embryo 

(Evans and Kaufman 1981; Martin 1981).  These cells provided the functional in vitro definition 

of ES cells: unlimited proliferation (self-renewal) with retention of the ability to differentiate into 

cells from each of the three embryonic germ layers: ectoderm, mesoderm, and endoderm 

(pluripotency).  25 years of concerted effort have defined a core network of transcription factors 

(OCT4, SOX2, NANOG, TCF3) that determine the self-renewing pluripotent state and maintain 

it through mutual transcriptional positive feedback (Loh, Wu et al. 2006).  Not least this work 

provided the groundwork for reprogramming approaches to induce the state of pluripotency (iPS, 

see below) using defined genetic factors. 

In vivo tests of pluripotency 

The formal test of ES cell pluripotency was provided by the ability to contribute significantly to 

all tissues in the morula aggregation assay (Bradley, Evans et al. 1984).  This advance provided a 

technical means to manipulate the mouse germline, and formally demonstrated that ES cells, in 

the context of implantation development, were able to give rise to all cells of the embryo .  A 

more direct test of pluripotency is the tetraploid embryo complementation assay (Eggan and 

Jaenisch 2003).  In this assay a fertilized egg at the two-cell stage is fused to create a tetraploid 

cell.  The result is normal development only up to the morula stage, and a normal trophoblast, 

but a complete failure of embryonic development.  If diploid ES cells are inserted into this 

blastocyst, only these cells contribute to development of the embryo.  Therefore when embryos 

do develop, they are constituted of cells differentiated exclusively from the ES cells inserted, 

thus providing formal proof of the pluripotency of the ES cells used in the experiment.  
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In vitro and in situ tests of pluripotency  

Several in vitro or transplantation assays are commonly used shortcuts to the more complete 

demonstrations of pluripotency described above.  First, ES cells can be allowed to undergo 

spontaneous differentiation by removing the factors (leukemia inhibitory factor (LIF) and or 

fibroblast conditioned medium) which actively maintain an undifferentiated state in vitro (Smith, 

Heath et al. 1988).  Transcriptional or protein endpoints can then be used to look for the 

elaboration of cellular identities characteristic of the 3 embryonic germ layers.  Alternatively the 

teratoma formation assay is interpreted as slightly stronger evidence of pluripotency.  In this 

assay, spontaneous differentiation occurs when ES cells are transplanted into immune deficient 

(SCID) mouse kidney capsule, where pluripotent cells elaborate not only cellular and molecular 

markers of 3 germ layers, but develop tissue patterns characteristic of the 3 germ layers.   

 

ES-cell derived motor neurons 

Motor neurons can be generated from stem cells in vitro using developmental mechanisms 

Pluripotency implies than any given somatic cell can be generated from ES cells.  A new 

subfield of motor neuron and stem cell biology was inaugurated by the finding that 

developmental mechanisms could be used to robustly direct mouse ES cells to differentiate to a 

specific post-mitotic fate: the spinal motor neuron (Wichterle, Lieberam et al. 2002).  Mouse ES 

cells were removed from pluripotency-maintaining culture conditions, cultured as free floating 

aggregates termed embryoid bodies (EBs) and allowed to differentiate spontaneously for several 

days.  Then, since RA is synthesized by anterior (cervical) somites in early somite stage embryos 

and activates rostral spinal HOX gene expression in the neural tube (Muhr, Graziano et al. 1999; 
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Liu, Laufer et al. 2001) it was used to impose a caudal, spinal identity on neuroectodermal cells 

with a default anterior identity.  Again following developmental principles SHH was used to 

induce the ventral identity and gene expression programs required for motor neuron 

specification.  The resulting population of neurons was composed of almost 50% HB9
+
, ISL

+
, 

ChAT-expressing cells which met the molecular characteristics of spinal motor neurons and were 

defined as ES-derived motor neurons (ES-MNs).  When transplanted to chick embryonic neural 

tube these ES-MNs were able to settle in the ventral horn and projects axons to muscle targets 

(Fig. 1.10).  It is important to note that the timecourse of motor neuron lineage elaboration in 

these experiments precisely paralleled that found in vivo, and this allowed the morphogenetic 

cues RA and SHH to be presented in a logical and defined temporal window in vitro. 

ES-MN diversity in mouse 

The subtype diversity of ES-MN was later found to be almost exclusively of a rostral, cervical 

phenotype under these RA-based differentiation conditions, as assessed by expression of 

HOXA5 (Wichterle, Lieberam et al. 2002; Soundararajan, Miles et al. 2006; Peljto, Dasen et al. 

2010).  Most mouse ES-MNs however express the MMC marker LHX3(Wichterle, Lieberam et 

al. 2002; Soundararajan, Miles et al. 2006; Peljto, Dasen et al. 2010).   

Controlling subtype diversity of mouse ES-MNs  

Subsequent research identified a differentiation strategy which was able to generate motor 

neurons expressing more caudal HOX genes (HOXC6, HOXC8) which, following in vivo 

developmental rules, resulted in the emergence of more caudal columnar identities including 

FOXP1-expressing LMC motor neurons (Peljto, Dasen et al. 2010).  This differentiation strategy 

did not use exogenous morphogens, but the authors showed that elaboration of caudal identities 
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and subsequent brachial LMC fates were dependent on FGF and Wnt signaling endogenous to 

the cultured EBs, and operated through CDX-dependent mechanisms, as in vivo.  Further work is 

needed to generate more caudal motor neuron identities, to specify them by rational addition of 

salient patterning factors, and to increase the efficiency of differentiation.   

Elaboration of motor pool identities in ES-MNs in vitro 

Once these caudalizing conditions were defined it was possible to ask if the motor neurons with 

LMC phenotypes— expressing HOXC6 and FOXP1—were able to generate identified molecular 

phenotypes of motor pools characterized within the brachial LMC.  Caudalized ES-MNs 

expressed several LMC motor pool markers (SCIP, expressed by the FCU and PEA3, expressed 

by the CM) consistent with their HOX and LMC divisional profiles (Peljto, Dasen et al. 2010).  

Furthermore PEA3 expression was dependent on exogenous application of the growth factor 

GDNF, which is required for its expression in vivo.  These results suggest that if the appropriate 

HOX profile is established in ES-MNs, then coherent column identities will follow, and that if 

required growth factors are present, then motor pool identities will crystallize. 

 

Functional phenotypes of ES-MNs 

Electrophysiology 

Perhaps the most functional property of a mature neuron is its ability to integrate chemical 

synaptic activity into coherent and stereotyped electrophysiological responses.  It was therefore 

important to ask if ES-MNs were capable of developing mature electrophysiological 

characteristics.  ES-MNs have been shown to develop a physiological profile appropriate to 
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developing motor neurons (Miles, Yohn et al. 2004):  they respond to salient neurotransmitters 

(GABA, glycine, glutamate), fire repetitive action potentials, and form synapses with myotubes 

in co-culture.  Impressively, when ES-MNs were transplanted into the mouse tibial nerve (distal 

to nerve sectioning) they were able to send projections to the gastrocnemius muscle, form 

synapses and drive muscle contractions, and ameliorate functional deficits (Yohn, Miles et al. 

2008).  Together these results demonstrate that ES-MNs have a significant capacity for 

functional maturation. 

Motor neuron subtype-specific phenotypes 

A series of xenotransplantation experiments supports the idea that ES-MNs can become 

functional, but that they exhibit phenotypes specific to their transcriptionally defined motor 

column subtype.  ES-MNs expressing the MMC marker LHX3 showed a strong preference for 

axial, MMC axonal trajectories upon transplantation to developing chick neural tube, thus 

confirming the functional nature of MMC identity for in vitro derived cells (Soundararajan, 

Miles et al. 2006; Peljto, Dasen et al. 2010).  When FOXP1
+
 ES-MNs were generated along with 

LHX3
+
 MMC ES-MNs, their relative functional phenotypes could be addressed even more 

clearly.  LHX3
+
 or FOXP1

+
 ES-MNs showed significant preferences for medial or lateral settling 

positions in accord with their endogenous MMC and LMC counterparts (Peljto, Dasen et al. 

2010).  Furthermore LHX3
+
 or FOXP1

+
 ES-MNs preferentially selected appropriate axonal 

trajectories through axial or limb innervating nerves respectively, as confirmed by retrograde 

labeling of axons of transplanted ES-MNs.  These findings demonstrated that ES-MNs with 

appropriate HOX and column marker profiles were competent to interpret endogenous cues for 

cell body positioning and axon guidance.  This suggests that if HOX and motor column markers 

are coherently specified, then not only molecular but correct functional phenotypes will follow. 



27 
 

 

Using ES-MNs to model ALS 

Several reports point toward the specific utility of ES-derived motor neurons for modeling ALS.  

Mouse ES-MNs were able to recapitulate the selective sensitivity to mutant SOD1  rodent 

primary astrocytes (Di Giorgio, Carrasco et al. 2007; Nagai, Re et al. 2007) shown by primary 

motor neurons. These data point to a significant role for non-cell-autonomous mechanisms in 

animal models of familial ALS. In one report there were indications of a potentially cell-

autonomous protein aggregation and survival phenotype for mutant-SOD1 ES-MNs (Di Giorgio, 

Carrasco et al. 2007), although these findings have not been confirmed by subsequent reports.  

 

Conclusions 

The promise of ES cell pluripotency was confirmed in the mouse system by the selective 

generation of motor neurons in vitro.  We have seen that in vivo developmental principles can 

guide successful differentiation strategies and that these need to be timed appropriately to 

parallel in vivo development.  The motor neuron subtypes generated showed specific 

combinatorial molecular profiles that matched in vivo categories.  Importantly when the HOX 

and column marker profiles were successively induced in ES-MNs then appropriate motor 

column and pool identities and functional phenotypes precipitated.  These results engendered the 

question of whether similar approaches and results could be taken in the human ES system, and 

they establish a required context for the studies presented in this work. 
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Part IV. HUMAN EMBRYONIC STEM CELL-DERIVED MOTOR NEURONS 

Introduction 

The rapid adoption of mouse ES cell technology as a productive system for biological 

investigation made the establishment of human ES cell lines doubly exciting.  Human ES cells 

potentially made human specific aspects of neural development and disease available for study 

for the first time, as well as representing a potential allogeneic substrate for cell transplantation 

strategies.  Here we review the derivation of human ES cell lines and their utilization to generate 

spinal motor neurons. 

Human ES cells are pluripotent 

In 1989 human embryonic stem cells were first derived from surplus human blastocysts 

(Thomson, Itskovitz-Eldor et al. 1998).  These ES cell lines demonstrated the hallmark 

characteristics of self-renewal and pluripotency. While the gold standard pluripotency assays of 

morula aggregation or tetraploid embryo complementation are ethically impossible using human 

cells, human ES cells passed all the standard in vitro tests for mouse ES cells. They expressed 

similar markers to mouse ES cells, and were competent to generate 3 germ layers by spontaneous 

differentiation or teratoma formation.  Despite domestic and international political limitations 

many ES lines have subsequently been derived by similar methods, contributing to a moderate 

diversity of ES lines and an enriched understanding of the core transcriptional and functional 

phenotype of human ES cells (Cowan, Klimanskaya et al. 2004). 
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Motor neurons can be differentiated from human ES cells using developmental mechanisms 

The demonstration that mouse ES cells could be efficiently directed to motor neuron fate then 

raised the question of whether the same approach could be used with human.   Several groups 

initially reported the differentiation of motor neurons from human ES cells (Li, Du et al. 2005; 

Shin, Dalton et al. 2005; Lee, Shamy et al. 2007).  While protocols varied slightly, especially 

regarding timing and means of neural induction, specification of the motor neurons in each 

system was based on the same developmental mechanisms used in mouse: caudalization of 

default anterior identity with RA and ventralization with SHH.  These cues were delayed and 

prolonged compared to mouse to adjust for the slower tempo of human development in vivo. 

Subsequent work has made advances in the efficiencies of motor neuron differentiation by 

several means.  First, the efficiency of neural induction could be increased by initiating small 

EBs by starting from single cell suspensions, utilizing an inhibitor of Rho kinase (ROCK) which 

permitted survival of isolated single ES cells (Watanabe, Ueno et al. 2007).  These conditions 

potentiated the effects of in-vivo inhibitors of non-neural differentiation like Noggin, and 

promoted homogenous differentiation by limiting EB size and thus the stochastic formation of 

uncontrolled signaling centers in large EBs.  More recently pharmacological means were found 

to increase the efficiency of neural induction to nearly 100% (Chambers, Fasano et al. 2009).  

When an inhibitor of TGF-beta superfamily Type I signaling (SB-431542, Activin Receptor Like 

Kinases (ALK)-4, -5, -7  inhibitor (Inman, Nicolas et al. 2002)) was used in combination with  

Noggin, nearly uniform neural induction was achieved at 7-10 days in advance of the average 

timing in previous protocols.  Finally, a pharmacological substitute for Noggin (LDN-193189, 

and inhibitor of ALK-2 and -3 (Yu, Deng et al. 2008) was shown to have equivalent if not more 

penetrant effect to Noggin in combination with SB-431542 (Boulting, Kiskinis et al.). 
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Analysis of generic ES-MN identity and differentiation efficiency 

Many other groups have now reported human ES-MN differentiation from ES cells and all have 

used either HB9 or ISL1 to identify motor neurons (Di Giorgio, Boulting et al. 2008; Li, Hu et al. 

2008; Marchetto, Muotri et al. 2008; Karumbayaram, Kelly et al. 2009; Wada, Honda et al. 

2009; Patani, Hollins et al. 2011).  HB9 is the more selective of these markers in rodent, because 

of the relative abundance of ISL
+
 interneurons in the spinal cord and dorsal root ganglia.  Finally, 

because other somatic cell types, particularly in the pancreas and esophagus (Ross, Ruiz-Perez et 

al. 1998; Hagan, Ross et al. 2000) also express HB9 or ISL, it is important to confirm the 

neuronal character of HB9
+
 or ISL

+
 cells in vitro as well.  The efficiencies of differentiation vary  

widely, from 8% (Di Giorgio, Boulting et al. 2008) 80% (Erceg, Lainez et al. 2008), however 

HB9 staining was as intense in cytoplasm of every cell shown as in nuclei.  Most groups show 

nuclear staining for HB9 and report efficiencies around 20-30%.   

Reported efficiencies are based on immunostaining nuclei using an HB9-specific antibody 

(Table 7.1, #1) and are completely dependent on the methods used seed cells, pick fields, and 

count  HB9
+
 cells.  For example only one group has reported strictly dissociated EBs which were 

subsequently quantitated for %HB9 out of all cells in the resulting re-seeded homogenous 

mixture, 8% (Di Giorgio, Boulting et al. 2008).  Most groups attach undissociated rosette clusters 

or EBs to polyamino acid/laminin substrata and immunostain heterogeneous and partly-three 

dimensional cultures.  This method is not amenable to accurate quantitation with respect to total 

differentiated cell numbers because heterogeneous fields must be hand-picked in the immediate 

environment of attached EBs.  Furthermore, many groups culture human ES-MN cultures for 3 

weeks (Wada, Honda et al. 2009; Patani, Hollins et al. 2011) before analysis of differentiation 
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efficiency (30% and 17% respectively).  These authors do not report how fields are selected for 

analysis.   

In order to further confirm motor neuron identity only one group has tested coexpression of HB9 

and ISL1 ~80% of HB9
+
 cells expressed ISL1 (Li, Du et al. 2005), but as discussed above, field 

selection in these cultures means this value must be interpreted with caution.  Therefore this 

aspect of motor neuron transcription factor expression needs a rigorous quantitative treatment.  

Most groups have also shown ChAT expression by some HB9
+
 cells at mostly later (6-8 weeks) 

timepoints in culture, consistent with maturing motor neuron identity (Li, Du et al. 2005; Lee, 

Shamy et al. 2007; Di Giorgio, Boulting et al. 2008; Placantonakis, Tomishima et al. 2009; 

Wada, Honda et al. 2009; Boulting, Kiskinis et al. 2011). 

Maturation of ES-MNs in vitro 

Since human ES-MNs are born in vitro (above reports) about the same time as in vivo (30-50 

days of development (Hagan, Ross et al. 2000; Altman and Bayer 2001; Bayer and Altman 

2002)) they are presumably immature.  The utility of ES-MNs as a tool to study functional 

physiology or disease phenotypes may depend on their ability to attain significant maturation in 

vitro.  

Since the most fundamental functional property of motor neurons is their ability to integrate 

synaptic input and generate action potentials to trigger muscle contraction, their 

electrophysiological status and activity are a the key indicator of maturity.  Almost every group 

reporting ES-MN differentiation has shown a that some ES-MNs acquire electrical activity at 

later timepoints (day 30-90), including single or repeated action potentials, response to 

glutamate, voltage gated sodium channels, delayed inward rectifier channels (Li, Du et al. 2005; 
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Singh Roy, Nakano et al. 2005; Lee, Shamy et al. 2007; Wada, Honda et al. 2009; Patani, Hollins 

et al. 2011).  In one instance depolarization of motor neuron (RA and SHH induced)  but not 

parallel control cultures released Acetylcholine, providing the only evidence thus far, beyond 

ChAT staining, for ES-MNs able to functionally secrete their characteristic neurotransmitter 

(Lee, Shamy et al. 2007).  However a detailed timecourse of the transition from recently-born 

ES-MNs to spike-train competent motor neurons or an analysis of the efficiency has not been 

reported.  Since no MN-selective electrophysiological properties have yet been investigated for 

hES-MNs, it would be useful to both describe the timecourse and character of ES-MN 

electrophysiological maturation, and to determine the extent to which this functional physiology 

mirrors in vivo MN-selective phenotypes. 

Another approach to assaying motor neuron-specific phenotypes is to study their behavior when 

transplanted in vivo.  In these conditions, hES-MNs were found to survive in the spinal cord, 

showed some evidence of ventral migration, projected axons to the periphery over long distances 

>3.5mm in pursuit of mostly axial and body wall targets (Lee, Shamy et al. 2007).  

Transplantation approaches to examine the phenotypic behavior of hES-MNs have shown basic 

proof of principle and may in the future be able test motor neuron subtype-selective phenotypes. 

ES-MN diversity 

One principal category of functional and molecular diversity among motor neurons in vivo is the 

division into one of 4 motor columns.  There is evidence that the MMC marker LHX3 is 

expressed by some post-mitotic ES-MNs.  When HB9-enhancer lentivirus labeled presumed ES-

MNs were FACS sorted for GFP, LHX3 mRNA was coenriched (Singh Roy, Nakano et al. 

2005).  A BAC:HB9:GFP reporter line also showed that some GFP cells stained for LHX3 
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(Placantonakis, Tomishima et al. 2009).  Another report showed LHX3
+
 and FOXP1

+
 cells in 

cultures that also contained some HB9
+
 cells, but none of these cells was tested for either HB9 or 

ISL1 (Patani, Hollins et al. 2011).  In conclusion, although evidence from several reports 

suggests that some ES-MNs show a LHX3
+
 MMC-like columnar subtype identity no systematic 

analysis of column marker expression by HB9
+
 or ISL

+
 cells has yet been performed.  Since 

motor column subtypes have different developmental, survival, and disease related properties it 

is critical to systematically define the diversity of subtypes present in hES-MN differentiations. 

As we have seen from in vivo studies in mouse and chick, motor neuron columnar and pool 

subtypes are strongly dependent on rostrocaudal identity as encoded by HOX gene expression.  It 

is therefore of principal interest to characterize the rostrocaudal/HOX diversity of human ES-

MNs.  Several reports have addressed this aspect of subtype identity at the level of gene 

expression, by microarray or PCR, and also at the level of protein expression in single cells.  

HOXA5, HOXC6, HOXC8, HOXC9 and HOXC10 protein have been reported in hESMN-

containing cultures.  Only in the case of HOXC6 was this gated on a MN-selective marker 

(HB9), though HOXC8 was expressed by NKX6.1 cells, and HOXC6 and HOXC8 were 

coexpressed in some cells as well (Lee, Shamy et al. 2007).  Many HOXC8
+
TuJ1

+
 cells have 

been shown as examples from a group which routinely produces some of the most robust and 

most believable ES-MN cultures, however these HOXC8 cells have never been formally shown 

to express either HB9 or ISL1 (Li, Du et al. 2005).  Another group reporting HOXC8
+
 human 

ES-MNs showed HOXC8
+
 ChAT

+
 staining in which, the HOXC8 stain was as cytoplasmic as the 

HB9 and accounted apparently for 80% of total cells (Erceg, Lainez et al. 2008).  Finally one 

group reported HOXC9 and HOXC10 expressing cells but these were not stained with HB9 or 

ISL1, HOXC9 was not shown, and one of the HOXC10 antibodies which was used is known to 
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work on chick but not mouse, therefore these data must also be interpreted cautiously (Patani, 

Hollins et al. 2011).  Gene expression studies of ES-MN cultures or FACS purified HB9:GFP
+
 

cells have shown enrichment for anterior HOX1-6 genes indicative of hindbrain to brachial 

spinal positional HOX identities (Lee, Shamy et al. 2007; Placantonakis, Tomishima et al. 2009).  

In aggregate these data suggest that human RA-dependent ES-MNs may be biased towards 

rostral spinal fates, but there are some reliable examples of more brachial expression (HOXC6 

and HOXC8).  However, a quantitative profile of HOX protein-expression has yet to be 

established at the level of individual human ES-MNs.  Since columnar and motor pool identities 

emerge in the context of rostrocaudal identities, in order to begin studying these subtypes it is 

important to determine the rostrocaudal diversity and any biases present in ES-MNs.  

Furthermore if strategies to control motor neuron diversity are to be devised, it is critical to 

establish the rostrocaudal starting points. 

 

Conclusion 

Human ES cells have been used to generate cells with many of the molecular characteristics of 

motor neurons, importantly including the basic transcription factors HB9 and ISL and expression 

of appropriate neurotransmitter synthetic enzyme ChAT.  These ES-MNs appear to be rostrally 

biased and at least contain some LHX3-expressing cohort.  However a systematic 

characterization has not been undertaken and in most cases direct confirmation of pan-MN 

markers was lacking.  Human ES-MNs can acquire mature characteristics including active 

electrophysiology, and axonal pathfinding on transplant to chick embryo, which are consistent 

with maturing motor neuron identity.  However it will be important to understand the timecourse 
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and extent of maturation at a quantitative and systematic level.  Assays which are more definitive 

for motor neuronal identity, rather than pan-neuronal, and functional assays that can discriminate 

between motor neuron subtypes are also needed.  Finally, most publications on hES-MNs do not 

employ methods of quantitation that can reliably represent the population of ES-MNs generated.  

It is therefore not possible to draw strong conclusions about overall differentiation efficiency or 

the relative contribution of motor neuron subtypes.  In order to measure the outcome of strategies 

aimed at controlling subtype diversity, it is important to be able to quantitatively account for the 

population representatively.  qPCR is one such approach, but it lacks the single cell resolution 

which can definitively assign, for example, HOXC8 expression to a cell also expressing a 

validated motor neuron marker, like HB9.  A homogeneous culture approach could allow for 

quantitative description of ES-MN diversity, and would additionally be well-suited for  high-

throughput assays for of phenotype or drug screening.  Therefore unbiased and homogeneous 

methods of culture and quantitation are needed to address developmental questions, characterize 

subtype diversity, and lay the groundwork for screening assays. 

 

Part V. INDUCED PLURIPOTENT STEM CELL-DERIVED MOTOR NEURONS 

Motivation 

Two of the major goals of translational stem cell biology are cell replacement strategies and 

modeling diseases using disease-specific stem cells.  Because of graft vs. host rejection of even 

immunomatched allogeneic transplants, a syngeneic alternative is obviously the ideal.  If 

replacement cells could be generated from the same individual this serious complication might 

be avoided.  One strategy to generate replacement cells is to generate syngeneic stem cells, and 
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then differentiate the transplant cells from these.  Another broad goal for the field is to use the 

disease genotype of patients suffering from genetic diseases to generate disease-allele bearing 

stem cells, and then produce the affected cell types from them for study in vitro.  Notably, this 

strategy provides a unique opportunity to generate disease models from patients where no known 

etiologic alleles have been identified.  For both of these aims it was thus important to generate 

patient-specific stem cell lines. 

 

Approaches to patient-specific and disease-model stem cell lines. 

Transgenesis, gene targeting, and somatic cell nuclear transplantation 

One approach to modeling ALS in human stem cell-derived motor neurons would be to 

differentiate these from stem cells bearing ALS causing alleles.  Since no extant ES cell lines 

harbor alleles linked to ALS, this goal required the insertion of pathological alleles as transgenes, 

via gene targeting, or the through the derivation of pluripotent cell lines natively harboring these 

disease-associated alleles.  While both transgenesis and gene targeting are routine tools in mouse 

genetics, they have been problematic to accomplish in human ES cells.  Human ES cells have a 

particularly vigilant and robust host defense mechanism which silences transgenic DNA.  In 

addition, if transgenic lines could be made they might be limited to alleles which show toxic gain 

of function phenotypes.  While a subset of ALS-causing alleles fits this description, notably the 

well studied SOD1 gene, other alleles (TDP43, FUS, PON) may not.  Furthermore, even if gene 

silencing can be overcome, the gene regulation and dosage achieved may vary greatly from the 

genetic setting of affected patients, and lead to an exaggerated model which may be less faithful 

to the in vivo conditions.  Another goal of genetic modification would be to rescue loss-of-
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function alleles in patient-specific lines.  To this end, a recent study identified the location of 

genomic ―safe harbors‖ showing limited silencing and unregulated expression which may offer 

an attractive alternative approach for therapeutic transgenes as well as disease modeling 

(Papapetrou, Lee et al. 2011). 

Gene targeting on the other hand, offers precise control of gene dosage and endogenous 

regulation of gene expression.  Unfortunately this strategy has proven even more difficult than 

transgenesis in human ES cells, having been successful only twice (Zwaka and Thomson 2003; 

Urbach, Schuldiner et al. 2004) and its success is potentially dependent on the targeted allele.  

Recently zinc finger nuclease-mediated gene-editing has been developed as a much higher 

efficiency method to induce or rescue pathogenic lesions (Lombardo, Genovese et al. 2007). 

Another strategy for developing patient-specific pluripotent cell lines is to convert somatic cells 

from affected patients into pluripotent cells.  In other species this has been achieved by 

enucleation of fertilized eggs and insertion of donor cell nucleus or DNA, a procedure known as 

somatic cell nuclear transplantation (SCNT), which was used to clone the much heralded sheep  

Dolly (Wilmut, Schnieke et al. 1997) thereby demonstrating the ultimate developmental 

competence of a reprogrammed somatic cell: the generation of an entire animal.  While this 

approach is very promising, it is for now blocked by tactical and technical obstacles in human 

cells.  First, procuring human oocytes is extremely difficult, hazardous to donors, and not 

scaleable.  More importantly, while this process has relatively high efficiency in mouse and 

many other species, even if it is extremely labor intensive, and it has recently been demonstrated 

in primates (Byrne, Pedersen et al. 2007), SCNT reprogramming has yet to be accomplished 

using human cells. 
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Somatic cell reprogramming with defined factors: induced pluripotent stem cells 

Mouse induced pluripotent stem cells (iPS) cells 

SCNT experiments in many species did however prove a critical principal: factors in the ooplasm 

are capable of reprogramming a terminally differentiated somatic cell to a state of pluripotency.  

This insight, combined with emerging consensus descriptions of ES cell and core pluripotency 

networks described above, became the foundation of a search to define these factors.  In a 

technical tour de force, a combinatorial approach was used to test highly expressed stem cell 

genes for their ability to reprogram somatic cells to pluripotency.  This study identified 4 genes 

that, when delivered by viral vectors, were sufficient to reprogram mouse somatic cells to a fully 

pluripotent state (Takahashi and Yamanaka 2006).  These cells, termed induced pluripotent stem 

(iPS) cells, derived from mouse, demonstrated equivalent pluripotency to mouse ES cells and 

were subsequently shown to contribute to germline in chimeras and then to pass the tetraploid 

embryo complementation assay of pluripotency (Wernig, Meissner et al. 2007). 

Human iPS cells 

Because of the understanding of the core pluripotency transcription factor network in human ES 

cells (Boyer, Lee et al. 2005), and its fundamental similarity to mouse, the rapid same viral 

reprogramming approach was subsequently used to reprogram human somatic cells (Yu, 

Vodyanik et al. 2007; Nakagawa, Koyanagi et al. 2008; Park, Zhao et al. 2008).  These 

reprogrammed cells were similar to ES cells and met all in vitro tests of ES cell pluripotency and 

the teratoma assay.  For ethical reasons, the formal proof of pluripotency, the ability to clone an 

entire human, including germ cells, must never be done. 



39 
 

 

Technical innovations 

Subsequent work has technically improved on the basic iPSC methodology.  Early 

reprogramming cocktails used the oncogene c-MYC, and this was later shown not to be 

necessary (Nakagawa, Koyanagi et al. 2008; Wernig, Meissner et al. 2008).  Other groups have 

found small molecules which could replace one or more reprogramming genes or increase 

efficiency.  Others have used removable cassettes (Soldner, Hockemeyer et al. 2009), or non 

integrating vectors, to avoid genetic lesions at integrations sites (Okita, Nakagawa et al. 2008).  

More recently attempt to use synthetic RNA reprogramming has been successful (Warren, 

Manos et al. 2010). 

 

Assessing the quality of human iPS cells 

General equivalence of iPS and ES cells and concerns 

Many concerns remain over the general comparability of first- or subsequent-generation iPS to 

ES cells as well as their utility in disease modeling or especially in cell transplantation 

approaches.  First there is widespread and legitimate concern that multiple genomic lesions viral 

integration sites creates the risk of seriously perturbing genetic function and cellular phenotype.  

However given the rapid advances in non-integrating reprogramming described above it is likely 

that these concerns will soon be historical. 

Persistent cellular memory of somatic cell identities in iPS cells may be a more difficult issue to 

resolve.  Failure to reset DNA methylation marks appears to result in misexpression of proteins 

(Ohi, Qin et al. 2011) and chromatin modifications may also not be reset to an embryonic state.  
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Indeed it was recently shown that misexpressed proteins lead to immune rejection even in highly 

inbred syngeneic mice (Zhao, Zhang et al. 2011).  These are serious concerns for those 

contemplating cell replacement with iPS cells.  However, while these issues should serve as an 

important caveat to consider and variable to control in disease modeling studies they do not 

present a strong argument against the utility of iPS cells for these purposes.  

Indeed, even if first- or later-generation iPS cells are genetically damaged, or maintain epigenetic 

and or gene expression signatures of the somatic cells from which they were induced, it is 

possible that they could still be very useful tools for modeling disease.  As long as iPS cells can 

give rise to disease-relevant cell types whose function is relatively unperturbed by these defects, 

and if these cell types can manifest disease phenotypes in vitro, then they may still offer a unique 

and valuable resource for studying disease. 

 

Motor neuron lineage equivalence of iPS and ES cells 

Proof of principle 

Once iPS cells were derived from human somatic cells, the technical stage was set to ask if 

somatic cells from patients with genetic diseases, like ALS, could also be reprogrammed to 

pluripotency and if so whether this capacity would include the ability to generate cell types 

highly relevant to ALS: motor neurons and astrocytes.  To answer this question we participated 

in a collaboration with the Eggan Laboratory at Harvard University, clinicians at the Eleanor and 

Lou Gehrig ALS clinic at Columbia University Medical Center, and colleagues here in the basic 

sciences.  We were the first to demonstrate that iPS cells derived from ALS patient and control 

somatic cells could be differentiated to motor neurons (Dimos, Rodolfa et al. 2008).  
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Mixed data on iPS MN-lineage differentiation efficiency 

While our data provided the proof of principle that ALS iPS cells could differentiate to disease 

relevant cell types, and others reported similar results for lines from a variety of diseases, a 

subsequent report showed consistently compromised neural differentiation efficiency, and most 

problematic, high variability in the motor neuron lineage differentiation when compared with 

one ES cell line controls (Hu, Weick et al. 2010).  Since the crucial step in using iPS cells to 

study disease will be to define disease phenotypes in vitro, the Hu study raised the worrisome 

possibility that large variability between iPS-MNs from different donors or reprogramming 

events, and in general between iPS and ES cells, might obscure disease phenotypes, making 

them technically ill-suited for disease modeling.  To address the utility of virally reprogrammed 

iPS cells for disease modeling, it was therefore necessary to test their ability to generate motor 

neurons, and compare the variability and efficiency in comparison to ES cells.  To this end we 

undertook a large comparative study of iPS and ES cell motor neuron differentiation described in 

Chapter 3. 

Ability of iPS cells to recapitulate disease phenotypes 

Several proof of principle demonstrations of the ability of iPS cells to model developmental or 

early onset diseases have been published, including Familial Dysautonomia (FDA) (Lee, 

Papapetrou et al. 2009),  Long Q-T syndrome (Moretti, Bellin et al. 2010), and SMA (Ebert, Yu 

et al. 2009).  The phenotype described for FDA-iPS cells was particularly interesting because it 

faithfully reproduced the sensory neuron-selective IKBAP splicing defects seen in vivo as well 

as functional neuronal phenotypes, and was amenable pharmacological rescue in vitro.  The 

phenotype for SMA-iPS cells on the other hand, was determined in relation to a motor neuron 
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marker—a reduced number of ISL
+
 cells—but it is not clear how this phenotype is related to the 

in vivo disease, and it was not rescued.  Importantly, while iPS cells have now been generated 

for a wide variety of late onset neurodegenerative diseases—ALS, Alzheimer‘s, and 

Parkinson‘s—no phenotypes have yet been reported and this remains the major challenge for the 

field.  

Another hope for the field of disease modeling is that human cells will be able to reproduce 

human-specific phenotypes not accurately reproduced in rodent models.  This potential remains 

to be tested.  Whether the disease phenotypes are specific to human cells or redundant to current 

mouse models, using human cell types as a screening platform may offer another significant 

advantage:  the potential to eliminate at the outset false positives from drug screens where 

activity is limited to model systems but fails in the human genetic context.  

Cell transplantation 

A startling proof of principle experiment has also demonstrated the potential utility of IPS cells 

for cell replacement gene therapy approaches.  iPS cells were derived from humanized sickle cell 

mice, the sickle allele was then corrected by gene targeting.  Gene corrected iPS clones were 

then differentiation into hematopoietic progenitors and transplanted back to the sickle cell 

donors, which generated a profound rescue of the sickle phenotype (Hanna, Wernig et al. 2007). 

 

Conclusions 

We have seen that iPS cells can be generated from mouse and human somatic cells and that these 

can reproduce the cardinal functional characteristics of embryonic stem cells.  Importantly they 



43 
 

 

can generate the cell types affected in many diseases and have already been used to generate 

highly relevant new model systems for a variety of developmental disorders and diseases.  

Several challenges and question remain from a disease modeling perspective however.  Most 

generally, will iPS-derived neurons, with presumably an embryonic ―age‖ like ES-derived 

neurons be able to mature sufficiently to reproduce disease relevant phenotypes which take 

decades to develop in vitro.  It also remains to be shown that the genetic constellation driving or 

permitting ALS or other neurodegenerative diseases will be powerful enough to effect this 

pathological transition in vitro.  Finally, do human iPS cells regain the tabula rasa of embryonic 

cells which will allow them navigate in vitro the normal course of development to generate 

extremely specific differentiated derivatives?  Specifically, in the context of ALS and motor 

neurons, will iPS cells demonstrate responsivity to multiple patterning cues to enact programs of 

diversification into dozens of specific and coherent motor neuron subtypes? 

 

Summary of outstanding questions and results 

We have reviewed the categories of vertebrate motor neuron diversity and their ontogeny.  In 

order to address the open question of how relevant these molecular categories are to human 

motor neurons in vivo we present  in Chapter 2 an analysis of the molecular markers of human 

motor neurons in vivo.  This study shows that the human spinal cord is remarkably similar in 

molecular organization to the mouse at the level of HOX protein, pan motor neuron, column and 

divisional marker expression.  In addition several motor pools familiar from chick and mouse 

and potentially one novel profile not found in those species could be putatively identified in 
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human cords.  Most important for our purposes these findings validate a set of markers which 

can be used to assess human motor neuron subtypes in vitro.  

 We have seen that mouse ES cells can be used to model motor neuron development and 

generate a spectrum of motor neuron subtypes which adhere to coherent in vivo categories and 

display appropriate functional phenotypes.  We have learned that human ES and iPS cells can 

also generate motor neurons with perhaps a larger variety that mouse ES cells.  However there is 

limited evidence regarding the subtypes of motor neurons generated from human stem cells.  

Furthermore the maturation of human ES-derived motor neurons has not been systematically 

addressed in vitro.  We therefore present in Chapter 3 a detailed description of the diversity of 

motor neuron subtypes generated from human ES cells at the level of rostrocaudal and columnar 

identity, and analyses of their morphological and electrophysiological maturation in vitro.  These 

studies show that human ES-MNs include cells matching the molecular profiles of all identified 

in vivo motor columns and divisions, but are restricted predominantly to rostral spinal levels.  I 

also present evidence of the temporal sequence of ES-MN maturation in vitro at the level of 

molecules, morphology, and electrophysiology. 

We  have reviewed the exciting advances in the field of iPS cell reprogramming, but the capacity 

of these cells to generate ALS relevant cell types has been called into question.  In Chapter 4 I 

therefore present the collaborative derivation of a test set of human iPS cell lines and analysis of 

these lines for their ability to generate functional motor neurons, in comparison to human ES cell 

lines.  The results of these studies demonstrated a fundamental equivalence of iPS and ES cells 

in their ability to generate motor neurons with coherent identities and functional 

electrophysiology.  We also identify potential demographic sources of variability which could 

explain previous reports. 
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Finally, we reviewed the developmental mechanisms which control the diversification of spinal 

motor neurons from generic progenitors into a diverse array of columnar, divisional, and pool 

identities.  However these mechanisms have not been rationally deployed to generate specific 

subsets of motor neurons.  I therefore present in Chapter 5 the design of a developmentally based 

strategy to generate rostral vs. caudal spinal motor neurons.  These studies show that both ES and 

iPS cells can be manipulated developmental cues presented in a defined in vitro developmental 

time window to generate rostral or more caudal motor neuron subtypes, together representing 

most of the molecular diversity of coherent spinal motor neurons subtypes down to the level of 

divisional identity.  

Together these studies lay the groundwork for asking if specific motor pool subtypes can be 

generated from human stem cells. They also establish the conditions to test whether specific 

motor neuron columnar or motor pool subtypes will show differential responses to ALS in vitro, 

with the hope that these future studies will illuminate the mechanism of degeneration and 

facilitate the development of new therapies. 
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Figure 1.1. Neuronal subtype diversity in the central nervous system.  

(A) Cortical pyramidal neuron, Ramon y Cajal (B) Cells of the neural retina, Ramon y Cajal.  
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Figure 1.2
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Figure 1.2. Motor columns, divisions, and pools: anatomy, targets, and molecular markers 

Motor neurons are grouped into 4 columns in the spinal cord: media motor column (MMC), 

hypaxial motor column (HMC), preganglionic motor column (PGC), and lateral motor column 

(LMC). (A) the MMC is continuous, while LMC is restricted to limb-levels, and HMC and PGC 

are restricted to thoracic.  HOXC6, HOXC9, HOXC10 are expressed in brachial, thoracic, and 

lumbar spinal cord and determine column identities appropriate to level.  HOXA5, HOXC8, and 

HOXD9 expression spans limb and non-limb levels. HOXA5 and HOXC8 participate in motor 

pool diversification in the brachial LMC. (B) Cross section at  limb and non-limb levels showing 

columns present.  The LMC is partitioned into a medial and lateral division.  (C) Motor column 

muscle targets: LMC, limb muscles;  PGC, sympathetic ganglia; HMC; hypaxial muscles: 

intercostals and abdominals;  MMC, epaxial muscles.  (D) Combinatorial gene expression 

uniquely identifies motor columns and divisions;  black type, high expression; grey type, low 

level or no expression; no type, no expression. Adapted from (Dasen and Jessell 2009). 
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Figure 1.3 

 

 

Figure 1.3. HB9 is expressed by motor neurons in the human embryo  

Adapted from (Hagan, Ross et al. 2000) (A) Autoradiographic image of HB9 in situ on Carnegie 

stage (CS)15 (day 35-38) human embryo section at the cervical level shows motor neurons in the 

lateral ventral horn, subventricular HB9 expressing cells (presumptive progenitors), and stomach. 

(B) Motor neurons and presumptive progenitors at cervical level CS 17 (day 42-44). (C-D) CS 

19 (day 48-51) sections(Bayer and Altman 2002) at cervical (C) and sacral (D) levels show 

subventricular HB9 expression is lost at cervical and maintained at sacral levels at this timepoint. 
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Figure 1.4. Histological analysis of the developing human spinal cord. 

 (A) ―4 week embryo‖ showing newborn motor neurons extending axons through the ventral 

root, Ramon y Cajal 1909 (B) Gestational week (GW) 4-14 human embryo time series shows the 

period of motor neurogenesis and motor column segregation at the cervical level. From (Altman 

and Bayer 2001; Bayer and Altman 2002) 
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Figure 1.5. Histological analysis of the period of motor neurogenesis in the human spinal 

cord 

(A) Gestational week (GW) 4.5 embryo section from cervical level shows the first motor neurons 

have migrated laterally. (B) GW 5.5 embryo at cervical level has large contingent of motor 

neurons in ventral horns and a thinned, potentially depleted ventral subventricular 

neuroepithelium suggesting the end of motor neurogenesis.  From (Bayer and Altman 2002). 
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Figure 1.6 

 

 

Figure 1.6. Sonic hedgehog protein patterns the ventral neural producing neuronal 

diversity 

 Sonic hedgehog (Shh) protein is secreted by the notochord and forms a ventral to dorsal 

concentration gradient in the ventral half of the neural tube.  Class I and Class II HD 

transcription factors are induced and inhibited at staggered Shh concentration thresholds.  Cross 

repressive interactions between Class I and Class II HD proteins resolve a series of 5 progenitor 

cell identities in specific dorsoventral domains.  Motor neuron progenitors (pMN)s express 

Nkx6, Olig2, and Pax6.  pMNs give rise to postmitotic motor neurons which express HB9, 

ISL1/2, and LHX3/4.  From (Dasen and Jessell 2009). 
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Figure 1.7 

 

 

 

Figure 1.7. Wnt and FGF induce CDX gene expression which encodes caudal neural 

identity  

(A) Wnt is secreted from paraxial mesoderm and FGF from the primitive streak in Hamburger 

and Hamilton (HH) stage 3
+
/4 chick embryos leading to (B) expression of CDX genes by HH8 (4 

somite stage) in prospective caudal neural tissue (hindbrain and spinal cord).  Adapted from 

(Nordstrom, Maier et al. 2006). 

 

 

 

  



57 
 

 

Figure 1.8 
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Figure 1.8.  FGF and RA subdivide caudal neural pattern through HOXC genes  

(A) Between the 4- and 15-somite stages retinoic acid (RA) produced by rostral somites, and 

FGF secreted by the node generate (B) the pattern of spinal cord and motor neuron HOXC gene 

expression which controls motor column identity.  Node derived GDFs are required for 

expression of the lumbar determinant HOXC10.  From (Liu, Laufer et al. 2001). 
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Figure 1.9. FOXP1 dose-dependently marks LMC and PGC motor neurons  

(A-D). FOXP1 is expressed at high levels by (A) brachial and (C) lumbar LMC motor neurons, 

and low levels by thoracic PGC motor neurons. (D) FOXP1 pixel intensity for dorsal spinal cord 

(dSC), HMC, MMC, brachial and lumbar LMC, and PGC shows ~5 fold lower level expression 

in PGC vs LMC motor neurons. (E-F) partial molecular profile of motor columns present at (E) 

thoracic and (F) brachial or lumbar levels. Adapted from (Dasen, De Camilli et al. 2008). 
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Figure 1.10 

 

 

Figure 1.10.  Xenotransplanted mouse ES-MNs integrate into chick motor system 

Mouse HB9:GFP ES-MNs (green) were xenotransplanted to brachial spinal cord of HH 15/16 

chick neural tube and the host was allowed to develop for 2-3 days.  Mouse ES-MNs settled in 

ventral horns and projected along endogenous muscle nerves (neurofilament-red) towards 

hypaxial, epaxial, and limb muscles, but not towards sympathetic chain ganglia.  Mouse ES-MNs 

formed neuromuscular junctions with host muscles (not shown).  From (Wichterle, Lieberam et 

al. 2002). 
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Chapter 2.  Molecular description of human motor neuron diversity: rostrocaudal regions, 

columns, divisions, and pools 

 

Introduction 

Since the experimental work in this thesis was to be focused on identification of human motor 

neuron subtypes, we first reviewed the published data on motor neurons in the fetal human spinal 

cord. Human spinal motor neurons are arranged in rostrocaudal columns in the ventral horns of 

the spinal cord (Altman and Bayer 2001; Bayer and Altman 2002).   These are anatomically 

divided into a medial group, innervating axial muscles and found throughout the cord, a lateral 

group, innervating limb muscles, found only at cervical and lumbar levels, and a dorsolateral 

group found predominantly at thoracic levels which innervates sympathetic ganglia (Altman and 

Bayer 2001; Bayer and Altman 2002).  In vertebrate model systems the molecular determinants 

and markers of the subtypes of motor neurons have been well defined at the ontological and 

molecular levels and were reviewed above.  Taken together these markers form a combinatorial 

code that links expression of a set of markers to in vivo subtype identities at the level of motor 

column and division (Table 2.1).  If similar correlations could be established for human motor 

neurons in vivo, this would provide important tools for developmental studies. 

While a wealth of histological information is available regarding the development of the human 

spinal cord (Altman and Bayer 2001; Bayer and Altman 2002), few molecular tools have been 

brought to bear on these samples.  Of the classical markers of motor neuron identity only HB9 

(Ross, Ruiz-Perez et al. 1998; Hagan, Ross et al. 2000) has been investigated at the level of 

mRNA.  However, this study did not address motor neuron columnar or rostrocaudal diversity.  

Another study showed that subsets of LMC motor neurons, presumably motor pools stained for 
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ER81 at GW 13, but did not find HMC-specific expression as expected (Clowry, Moss et al. 

2005).  These findings suggest that human motor neurons do express some of the markers 

characterized in other vertebrate models but leave the question of human motor neuron 

rostrocaudal and columnar diversity completely open.   

We have discussed the determinant role that HOX genes play motor neuron diversification.  We 

have also discussed the expression pattern and subsequent role that HOXA5 and HOXC8 play in 

diversifying the brachial lumbar LMC into a series of motor pools.  Other HOX proteins are also 

expressed throughout the rostrocaudal length of the spinal cord as well and serve as markers of 

rostrocaudal identity and appear to have significant functions in determining motor neuron 

diversity.  The expression profile of HOXD9 in mouse, for example, like HOXA5 and HOXC8, 

spans the border between thoracic and limb-innervating (lumbar) regions (Jung, Lacombe et al. 

2010), summarized in Table 2.1.  Furthermore, functional experiments show that HOXD9 over-

expression in thoracic spinal cord was able to ectopically drive LMC identity.  Additionally, 

because of surfeit of HOX paralogs and possible redundancies, their modular and shifting 

activities across evolution, and the action of multiple interacting co-factors, it will be important 

to test for the expression of proteins like HOXA5, HOXC8, and HOXD9, in addition to HOXC 

genes and other HOX proteins in human cords. 

Our overall goal was to determine which markers of motor neuron diversity at the level of 

rostrocaudal HOX protein expression and markers of motor column, division, and pools are 

conserved in the human system.  We hoped this effort would generate molecular markers and 

validated reagents that could be used to analyze the subtypes of motor neurons generated in vitro 

from human stem cells.  To this end we first defined the expression pattern of the classical motor 

neuron markers HB9 and ISL1 in early human spinal cord with respect to the mouse.  Next we 
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sought to determine the presence and expression pattern of the molecular markers of motor 

column identity (FOXP1, LHX3, pSMAD, ISL2, and LHX1).  We then addressed whether the 

combinatorial expression of LIM homeodomain proteins and pan-MN markers could distinguish 

the medial and lateral divisions of the LMC.  We then searched for the molecular signature of 

specific motor pools in the brachial LMC, first by examining LIM homeodomain combinations 

in the context of column markers, and second by addressing expression of motor pool specific 

markers.  Finally, since HOX proteins are markers of rostrocaudal identity in vertebrate motor 

neurons, and some HOX proteins are determinant for columnar and many pool identities, we 

tested a series of HOX antibodies to determine the characteristic expression of HOX proteins 

along the rostrocaudal length of the spinal cord.   

 

Results 

Description of human embryonic spinal cord samples 

In order to compare the molecular profile of human motor neurons to the model established for 

chick and mouse, we collaborated with clinicians at CUMC to obtain first-trimester human 

embryos from voluntary terminations.  The developmental stage of samples was estimated by 

clinicians by patient oral history by subtracting 2 weeks from the date of the last menstrual 

period (LMP) to yield an estimated gestational week (GW) age of development.  In some cases 

this was supplemented by intrauterine ultrasound to measure crown-rump length.  Following 

informed consent and termination procedure, products of conception were evaluated for the 

presence of intact spinal tissues within 10 minutes.  Samples were photographed, dissected free 

of vertebrae and attached tissue, and fixed.  These were subsequently cryoprotected, sub-
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dissected into ~5-mm segments for embedding, measured and photographed again (Fig. 2.1).  

Ten spinal cord samples from reported GW 6-10+ were collected, processed and embedded 

(Table 2.2).  The remaining sections (of three embryos, see below) and un-sectioned tissue 

blocks (seven embryos) will remain at the Project ALS lab as an open resource for the 

investigation of protein expression in early human spinal cords.  Three almost fully intact spinal 

cords were examined in this study in detail: one GW 8 and two GW 7 cords.  All samples 

initially showed a full complement of dorsal root ganglia, however many of these were removed 

during sub-dissection from the vertebral column.  Both GW7 cords showed thin ventral rootlets, 

while the GW8 sample showed thicker ventral roots. 

In GW7 sample 1 (Fig. 2.1A) the spinal cord was intact from the cauda equina, which was 

embedded in the pelvis, to the level of the clavicle whereas all more rostral neural structures had 

been lost.  The linear length of the cord was 17 mm ( all measurements post-fixation).  GW 7 

sample 2 (Fig. 2.1B) was largely intact from the pelvic cauda equina through most of the 

hindbrain, however several lesions were present including a large one at the juncture of the 

spinal cord and hindbrain.  The linear length of this cord, including hindbrain, was 25 mm.  The 

GW 8 sample (Fig. 2.1C) was intact from cauda equina to mid-lumbar level where a lesion had 

sectioned the cord, and then intact again up to the level of the clavicle.  The GW 8 spinal cord 

was thicker and whiter, suggesting more advanced neurogenesis and development of white 

matter tracts, and showed obvious enlargements in the lumbar and cervical areas.  Both GW 7 

week cords were dissected into three, and the GW8 cord into four, ~6-mm segments, embedded, 

and then sectioned through their entire length into 12 µm serial sections deposited serially on 59-

112 slides per cord with 6-7 sections per slide.  This allowed observation of 18-24 sections per 

cord per slide representing all rostrocaudal levels.  We concluded from this collaboration that 
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human spinal cord samples are readily available following scheduled terminations, and that the 

vertebral column often protected this tissue from significant intra-operative physical damage 

even while most other neural and somatic tissues were lost or destroyed. 

Expression of pan-motor neuron and motor column markers 

We first sought to determine the rostral and caudal limits of the brachial and lumbar limb-

innervating LMCs using both histochemical and morphometric approaches.  Using antibodies 

that recognize the classical pan-motor neuron markers HB9 and ISL1, and another selective for 

the LMC (FOXP1) we identified groups of ventral horn cells positive for all combinations of 

these markers (Fig. 2.2A).  In order to align the two GW 7 cords we computed the rostrocaudal 

length of spinal cord in which we found lateral lying populations of HB9
+
 or ISL1

+ 
cells which 

were also
 
FOXP1

+
 (putative LMC MNs) by multiplying the number sections with LMC by the 

section thickness (12 µm).  The mean length of the rostral LMC-containing region was 3.3 mm 

(range=0.3 mm), and of the caudal LMC-containing region was 4.5 mm (range=0.4 mm), and 

these were designated as brachial and lumbar fore- and hind-limb innervating levels respectively.  

The length of spinal cord in between LMC-containing sections was designated as thoracic and 

measured 5.1 mm (range=0.3 mm) (Fig. 2.1D).  In these GW 7 cords the brachial and lumbar 

LMC were not visible as enlargements under the dissecting scope.  In the older, GW8 embryo 

however, both brachial and lumbar enlargements could be appreciated and corresponded to the 

rostrocaudal location of LMCs as identified later by immunohistochemistry (Fig. 2.1C).  In all 

subsequent experiments this allowed the coordinates of a given spinal section to be determined 

relative to these reference points and to total linear position as indexed by serial section number. 
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In order to determine whether human motor neurons shared the molecular markers of motor 

column identity as defined in chick and mouse, we analyzed the expression of the LMC and PGC 

marker FOXP1, and the MMC marker LHX3, among HB9 and ISL1-expressing cells in the 

ventral horns.  All observations were made on at least 4 sections per spinal level (limb/non-limb) 

and were consistent between both GW 7 and the GW 8 embryo, unless otherwise noted.  At all 

non-limb innervating levels, two continuous columns of motor neurons (HB9
+
/ISL1

+
) were 

observed in a ventromedial position (Fig. 2.2A).  These cells could be clearly delineated into two 

columns on the basis of strong LHX3 expression in the more medial group and the absence of 

LHX3 in the more lateral group.  These molecular profiles are consistent with MMC and HMC 

identity in mouse and chick.   ISL1 expression was generally higher in the HMC than MMC, and 

HB9 expression generally higher in the MMC, although there was substantial variation in 

expression levels of each marker in both columns (Fig. 2.5).  We next sought to confirm the 

identity of the HMC using antibodies that detect the ETS protein ER81, which serves as a 

specific maker for the HMC  (Dasen, Liu et al. 2003) (Table 2.2).  However, none of the ER81 

antibodies showed specific reactivity with any cells in human samples.  Finally, a small 

population of  ISL1
+
 cells was observed in a dorsolateral position corresponding to the PGC 

(Bayer and Altman 2002) and these co-expressed low levels of FOXP1, corresponding to the  

molecular profile of PGC MNs in chick and mouse (Fig. 2.3; see below). 

At limb-innervating levels the HMC was absent, while the MMC was retained.  Putative LMC 

MNs (FOXP1
+
/LHX3

-
) could be subdivided into a dorsomedial group with higher ISL1 and 

lower HB9 expression levels and a ventrolateral group with lower ISL1 and higher HB9 

expression.  These molecular profiles match those of the medial and lateral divisions, 

respectively, of the mouse LMC.  Notably the imbalance of ISL1 and HB9 expression for cells of 
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the medial or lateral divisions was more pronounced in the lumbar LMC (Fig 2.2 and see Fig 2.5 

for quantitation).    

In summary the motor columns of the human spinal cord show characteristic molecular profiles 

that correspond to those defined in mouse (summarized in cartoon, Fig. 2.2B, C).  At limb levels 

the MMC is marked by LHX3 and expresses HB9 and ISL1.  At non-limb levels LMCs are 

absent and the MMC is joined by the HMC and the PGC. For ease of reference data from 

subsequent figures has been incorporated into the summary diagrams of Fig. 2.2. 

PGC MNs express pSMAD and low levels of FOXP1 

In order to substantiate the identity of the putative PGC cells, we tested antibodies for other PGC 

markers (Fig 2.3).  First, cords were stained with an antibody specific for the phosphorylated 

forms of SMAD proteins 1,5 and 8, which act as a selective marker for chick and mouse PGC 

MNs (Dasen, De Camilli et al. 2008).  This antibody selectively distinguishes the dorsolateral 

population of putative PGC neurons found at thoracic levels, and was not co-expressed by MNs 

in other columns or spinal levels (Fig. 2.3B).  In addition we tested an antibody to neuronal nitric 

oxide synthase (nNOS) which is a specific marker for PGC cells in mouse. However this 

antibody showed no reactivity on human samples. 

Next, since PGC cells are known to express low levels of FOXP1 (Dasen, De Camilli et al. 2008) 

we analyzed the expression level of FOXP1 in LMC vs. PGC cells.  All images were captured at 

the same non-saturating exposure time in order to directly compare staining intensity.  In order to 

compare FOXP1 expression levels between these columns in one representative GW 7 embryo, 

we first restricted intensity analysis to the region including only the ISL1
+
 LMCm, at 2 

representative levels of the brachial, and 3 of the lumbar cord, and the region defined by ISL1
+
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pSMAD
+
 cells at 4 representative levels of the thoracic cord.  We used Metamorph to measure 

the FOXP1 staining intensity for ISL1
+
 nuclei in each of these regions showed that FOXP1 

intensity was significantly different between PGC, brachial and lumbar LMCM  (Shapiro-Wilk 

normality test failed, p<0.05,  ANOVA, Kruskal Wallis ANOVA on RANKS , H=206.650, 

DF=2, P=<0.001).  PGC cells (n=235) showed significantly lower FOXP1 intensity compared 

brachial LMCM (n=269, Dunn‘s pairwise comparison, Diff. of ranks= 201.709, Q=10.801, 

p<0.05), or  lumbar LMCm (n=220, Dunn‘s pairwise comparison, Diff. of ranks=267.972, 

Q=13.658, p<0.05).  Interestingly the brachial LMCM expresses significantly higher levels of 

FOXP1 than the lumbar LMCm  (Dunn‘s pairwise comparison, Diff. of ranks=66.264, Q=3.485, 

p<0.05) (Fig. 2.3C).  Finally, when grouped together LMC cells showed significantly higher 

FOXP1 staining than  PGC motor neurons (Shapiro-Wilk normality test failed, p<0.05, Mann 

Whitney Rank Sum Test, T=48440.000  n(small)= 235  n(big)= 489  (P = <0.001)).  We 

concluded from these data that this population represented human PGC MNs since there is a 

match for the anatomical location and appropriate combination of markers: ISL1
+
 HB9

-
 LHX3

-
 

pSMAD
+
 and a quantitatively low level FOXP1 expression.  

We therefore established that all mouse motor columns (MMC, HMC, LMC, and PGC)  are 

present in human at the same relative rostrocaudal levels as in mouse, and are unambiguously 

delineated by a combination of pan-MN (HB9 and ISL1) and motor column (FOXP1, LHX3, 

pSMAD) markers.  We next revisited the marked difference we had observed in HB9 and ISL1 

expression between lateral and medial LMC cells, in order to determine if the medial and lateral 

divisions of the LMC were molecularly distinct in the human.  To do this we used two 

approaches: first we examined the combinatorial profile of LIM homeodomain proteins which 
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can distinguish these divisions in mouse and chick, and second we performed a quantitative 

analysis on the expression levels of HB9 and ISL1 in these divisions and in control cells. 

Molecular characterization of the medial and lateral divisions of the human LMC 

To determine how closely human LMC medial and lateral divisions resemble mouse LMC 

divisions we profiled the expression of ISL2 and LHX1 in human LMC in the context of 

HB9/ISL1/FOXP1 expression (Fig. 2.4).  We found that LHX1 was excluded from the MMC 

and the LMCM but was expressed at high levels in the HB9
+
FOXP1

+
  LMCL.  LHX1 was also 

expressed at moderate levels by many non-motor neurons in the spinal cord.  ISL1, as shown 

previously, is expressed in both MMC and LMCM, but only weakly in the LMCL.  ISL2 however 

was expressed in LMCL as well as the MMC and the LMCM.  This pattern of expression mirrors 

that in mouse and chick and is summarized in Figure 2.4.  We concluded that human LMC 

divisions express combinations of LIM homeodomain proteins and column markers conforming 

to the established vertebrate models of divisional identity. 

HB9 and ISL1 expression levels vary from cell to cell but are correlated with motor column 

identity 

Because we had observed an obvious qualitative difference in average expression level of HB9 

and ISL1 between different LMC divisions, and variation in relative expression levels in HMC 

and MMC columns, we sought to describe this phenotype quantitatively.  We hoped these 

analyses would clarify the utility and limits of these widely used ―pan‖-MN marker proteins by 

reference to in vivo expression patterns, and that this should have direct implications for the use 

of these markers in vitro. 
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We therefore quantified the qualitative expression pattern of HB9 and ISL1 that was consistent 

across all 3 embryos, by examining one representative GW 7 embryo in greater detail.  We first 

drew boundaries closely around the cell groups as defined by the foregoing combinatorial 

analysis of motor column and division markers (regions shown in thin lines labeled  by column  

Fig. 2.5A) and then used Metamorph Multiwavelength Cell Scoring module to identify all 

DAPI
+
 nuclei, as well as nuclei which expressed high levels of either HB9 or ISL1 (Fig. 2.5A).  

This analysis quantitated the number of motor neurons (as defined by high level expression of 

either HB9 or ISL1 and within the boundaries of motor columns defined here and consistent with  

previous histological studies (Altman and Bayer 2001; Bayer and Altman 2002)  in 2-3 

representative sections per spinal level (as defined by limb or non-limb innervating (Fig. 2.5B, 

D, E) as well as the expression level of each protein in each cell, as judged by 

immunofluorescence intensity, which allowed us to describe the mean intensity of expression for 

each marker in each column (Fig. 2.5C).  

To define the specificity of these markers in human spinal cord we first analyzed their expression 

in non-motor neuron populations.  A population of dorsal cells, presumptive interneurons, found 

at all spinal levels (DOR IN, Fig. 2.5A, C), showed ISL1 levels comparable to those in the MMC 

or HMC but expressed only background levels of HB9.  Dorsal root ganglia (DRG) sensory 

neurons expressed variable but very high levels of ISL1 but showed only background signal for 

HB9.    Finally we observed at all spinal levels that a population of columnar epithelial cells 

composing the ventral floorplate (FP) (Bayer and Altman 2002) showed only background level 

ISL1 staining, but stained for HB9 at levels comparable to those in the HMC.  We concluded 

from these analyses that coexpression of HB9 and ISL1 is restricted to MNs, but that HB9 and 

ISl1 are expressed singly in several other—albeit minor—neuronal populations in the human 
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spinal cord at GW 7. With the exception of sub-floorplate expression, these expression patterns 

match those described in mouse literature. 

To determine if relative expression patterns of HB9 and ISL1 differed according to columnar 

identity, we next examined for each motor column the percentage of cells that scored positively 

for either marker, as well as the mean expression level per column (Fig. 2.5B-F).  All motor 

columns contained cells that expressed each combination (HB9
+
ISL

-
, HB9

+
ISL

+
, or HB9

-
ISL1

+
).  

The extremes were constituted by the LMCL, where very few ISL1
+
 cells did not co-express HB9 

and the brachial and lumbar LMCM, where many MNs expressed ISL1 but not HB9 (Fig. 

2.5B,D).  At both brachial and lumbar levels, the mean intensity of HB9 expression was greater 

in the LMCL than the LMCM, and the mean intensity for ISL1 was the reverse.  The range of 

expression levels however was relatively large compared to the mean difference, especially at 

brachial levels (Fig. 2C).  We concluded from these analyses that ISL1>HB9 is characteristic for 

LMCM MNs and HB9>ISL1 is characteristic for LMCL MNs in vivo.  However due to the 

presence of many co-expressing cells in both divisions, the presence of robust numbers of 

individual divisional MNs which violate this rule, and a wide range of expression values, 

HB9/ISL1 co-expression levels are insufficient to predict the divisional identity of individual 

cells.  Importantly, the presence of many LMC MNs expressing low or background levels of one 

motor neuron marker indicates that either marker in isolation is insufficient to capture the 

breadth of motor neuron diversity.  Analyses based on HB9 alone will miss much of the LMCM 

and those based on ISL1 alone will exclude much of the LMCL, for example. 

Finally, to determine if there was a distinctive pattern of HB9 and ISL1 expression in MMC vs. 

HMC motor columns we performed the same analyses on these populations.  We observed that a 

majority of MNs in both columns expressed high levels of HB9 and ISL1 together, although 
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some cells expressed only one or the other marker at high levels. (Fig. 2.5B, D).  We concluded 

that a more balanced level of HB9 and ISL1 co-expression is characteristic of both the MMC and 

HMC, when compared to the LMCs.  Again HB9 and ISL1 expression status alone could not 

alone distinguish columnar identity.  

In order to facilitate comparisons to ES-derived motor neurons in vivo, we also grouped these 

data together in several other ways.  Since ES-derived motor neurons may well include motor 

neurons from multiple columns at the same level, we asked what the overall distribution of HB9 

and ISL1 cells was if we grouped all columns together at a given level, grouped all levels of a 

given column together, or analyzed all motor neurons at once (Fig. 2.5E, F).  These could then be 

compared to similar profiles for ES- and iPS-derived motor neurons discussed in Chapter 3 and 

Chapter 5. 

In summary these analyses show that the ratio of HB9/ISL1 expression varied continuously from 

1:0 to 0:1.  This means that not all HB9
+
 MNs express ISL1 and vice versa.  Strong ISL1 

expression was characteristic of LMCM, strong HB9 expression characteristic of LMCL, and 

strong co-expression is characteristic for MMC and HMC.  However, wide variation between 

individual cells means that these markers alone are not sufficient to ascertain columnar or 

divisional identity and, outside the embryo, will need to be used in combination with other 

columnar or subtype markers.  

Molecular characterization of putative motor pools 

Having established that human motor neurons express the canonical markers delineating 

vertebrate motor neuron subtype identities at the level of motor neuron, column and division, we 

next asked if individual motor pools could be identified in the human spinal cord by matching 
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marker expression patterns to those of the mouse and chick.  We first looked at the rostral 

brachial LMC, a region in which in mouse and chicken motor pools have been mapped by 

retrograde tracing studies and correlated with a combinatorial code of LIM homeodomain protein 

expression (Ensini, Tsuchida et al. 1998) (Fig. 2.6).  First we established that MMC and LMC 

MNs at this level express HOXA5, thereby anchoring this region in the rostral brachial LMC 

(see below for HOX expression patterns).   

We first observed a more lateral-lying ventral population not found at other levels of the human 

cord which was positive for HB9, ISL1, ISL2, and LHX3 but not LHX1.  This distinctive 

molecular profile and lateral location are consistent with those of the chick rhomboideus (RB) 

motor pool, and we therefore concluded that this population is likely the human RB motor pool. 

We also observed a population of LMCL cells dorsal to the putative RB pool that expressed the 

combination of markers found in the chick deltoid (DL) motor pool: high ISL2, but not ISL1, 

and high LHX1, suggesting that this may be the human DL motor pool.  In the chick another 

LMCL pool is distinguishable at this level by its low level expression of ISL1 and LIM1, the 

extensor metacarpi radialis/ulnaris (EMR).  We did not see a clear indication of this molecular 

profile in our samples, however since it is based on a subtle reduction in staining intensity of 

ISL2 and LHX1 other markers may  be required. We did however observe another, more unusual 

combination of markers situated in a motor pool-size group of motor neurons situated within the 

boundary of the ISL1
+
 LMCM.  These cells expressed high levels of ISL1, ISL2, and FOXP1, but 

not LHX1, consistent with LMCM identity.  However, these cells also expressed high HB9, 

which as we have seen is not completely inconsistent with LMCM identity, especially at brachial 

levels. However such a concentrated group of strongly HB9
+
 cells in the LMCM was not seen at 

any other spinal level.  More intriguingly still this group expressed LHX3.  This expression 
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pattern was found in all three embryos examined.  There is no reported cognate for this 

expression pattern in mouse or chick, raising the possibility that this novel molecular profile 

corresponds to one or more motor pools that may be human- or primate-specific.  Although 

formal confirmation by retrograde labeling is clearly not feasible, this analysis therefore 

potentially confirms the presence in human of one motor pool, the RB, already identified in 

chick, provides evidence consistent with another, the DL, but fails to find clear evidence for the 

EMR motor pool. Interestingly we provide evidence for a novel species-specific motor pool with 

atypical molecular characteristics, which may be linked to evolutionarily new motor functions. 

Another approach to identifying human motor pools was to use motor pool-specific genes found 

in chick and mouse.  We tested several antisera used to identify chick and mouse motor pools 

including:  ER81, SCIP, PEA3, and RUNX1.  Of these only one, the anti-PEA3 antiserum, 

showed reactivity on human samples. A subset of motor neurons within the rostral end first 200 

µm of the HOXC8 domain (see below) of the rostral brachial LMCL (Fig. 2.7) stained for PEA3.  

Just caudal to these LMCL cells, a PEA3
+
 ,  LMCM population was also observed (not shown) to 

express PEA3 (Fig. 2.7).  The rostrocaudal position and divisional identity of the more rostral 

LMCL and more caudal LMCM putative motor pools match the anterior latissimus dorsi (ALD) 

motor pool in the chick/ the LD motor pool in the mouse and the cutaneous maximus (CM) 

motor pool in the mouse respectively (Dasen, Tice et al. 2005; Vrieseling and Arber 2006).  In 

the lumbar region we lack the precise rostrocaudal information conveyed by the 

HOXA5/HOXC8 boundary in the brachial LMC.  However since the PEA3
+
 cells were in the 

LMCL we can infer that they belong to the human cognate of one of three identified PEA3
+
 chick 

LCML motor pools: the iliotrochanterici (at chick LS1-3), the anterior iliotibialis (LS3-5), or the 

caudilioflexorius (LS6-7)  (Lin, Saito et al. 1998) or one of two identified mouse lumbar LMCL 
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motor pools: rectus femoris (L1-L2) or the gluteus (L2-L5)  (Arber, Ladle et al. 2000). Because 

of the caudal location of this human PEA3
+
 LMCL putative pool (3.1 mm caudal to the rostral 

aspect of the 5.5 mm LMC region) it is more likely to correspond to the mouse gluteus, the 

chicken iliotibialis or caudilioflexorius muscles, the latter of which does not have a clear cognate 

in human.  More definitive assignment of any of these pools would require retrograde tracing 

studies or additional markers.   

We have therefore shown evidence by combinatorial expression of LIM-HD proteins as well as 

the specific ETS protein marker PEA3, that the some of the molecular categories down to the 

level of motor pool are conserved in human.  In the process we identified a novel species-

divergent motor pool potentially associated with evolved hand/wrist motor functions. 

HOX gene expression defines rostrocaudal motor neuron domains 

We next asked if HOX proteins were expressed in the stereotyped collinear array which controls 

chick and mouse motor neuron diversification (Dasen, Liu et al. 2003; Dasen, Tice et al. 2005). 

We first screened a panel of 15 commercial and academic anti-HOX antibodies for their 

reactivity with human antigens present in our spinal cord samples and found that antibodies 

against HOXA5, HOXC8 and HOXD9 (Table 7.1) exhibited strong and stereotypical staining of 

human spinal cords (Fig 2.8).  HOXA5 expression began in the cervical region and penetrated to 

the mid-brachial LMC; HOXC8 expression began in the mid brachial LMC and continued about 

halfway into the thoracic region; and HOXD9 expression was initiated caudal to thoracic 

HOXC8 expression, and continued caudally through the rostral third of the lumbar LMC.    This 

expression pattern is identical to that described in chick (Liu, Laufer et al. 2001; Dasen, Liu et al. 

2003) for HOXA5 and HOXC8 and mouse  (Jung, Lacombe et al. 2010) for HOXD9.  We 
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concluded that human motor neurons conserved the same pattern of HOX protein expression for 

these family members. 

We also noted several other aspects of HOX expression which conform to expectations based on 

other vertebrate models.  First, the rostral onset of each HOX gene began in the dorsal, non-

motor neuron spinal cord, and gradually, within a few 100 µm caudal, penetrated ventrally to 

encompass all MNs at a given level.  Second, we noted that the HOX genes analyzed were 

almost never co-expressed by individual cells in any section examined.  This was especially 

important for the case of HOXA5 and HOXC8 whose expression zones in mouse and chick, and 

now in human, are immediately adjacent, and indeed slightly overlapped such that for several 

hundred µm  some LMC groups at the same level are HOXA5
+
 and some are HOXC8

+
.  Even at 

these levels however, individual cells coexpressing these HOX genes were exceptionally rare.  

We concluded from these data that these HOX genes were expressed mutually exclusively in 

human samples. 

Finally, as this thesis was being written, several HOX antibodies were reported to define the 

rostrocaudal subtype of human ES-derived motor neurons in vitro (Patani, Hollins et al. 2011)  

We therefore tested these in order to gain a more complete picture of HOX expression in the  

spinal cord.  One HOXC10 monoclonal antibody used in the Patani study showed no staining on 

any cells at any level in the spinal cord in our hands, and is reported to detect only chick and not 

mouse protein (Susan Morton and Jeremy Dasen personal communication, and DSHB data 

sheet).  Additionally, one HOXC9 antibody (#25 Table 7.1) stained every spinal cell at every 

location and dilution tested where any cells were stained.  These data suggest that the in vitro 

results of the Patani study should be interpreted with caution.   
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Discussion 

Together these studies provide a global map of human spinal motor neuron diversity that 

correlates the combinatorial expression of two classical motor neuron markers (HB9 and ISL1) 

with selective markers of motor column identity (FOXP1, LHX3), three accessory markers of 

columnar identity (ISL2, LHX1, pSMAD), and three HOX proteins (HOXA5, HOXC8, 

HOXD9) (Table 2.3).  We conclude that the molecular diversity of motor neurons at this early 

developmental stage is exquisitely conserved from mouse and chick to human, with the 

exception of one putative human-specific motor pool.  Importantly, these findings validate a set 

of antibodies that will be instrumental for characterization of in vitro derived human MNs. 

Human motor neurons show conserved molecular organization with vertebrate models 

We have provided evidence that human MNs in vivo are grouped into the same molecular 

categories as chick and mouse MNs.  This includes selective markers for the MMC (LHX3), 

LMC (FOXP1), and PGC (FOXP1
LOW

, pSMAD).  The medial and lateral divisions of the LMC 

(LMCM/L) also exhibited canonical distinguishing markers:  the LMCL showed dominant ISL1 

expression, and the LMCL showed dominant HB9 expression, and also the combination of ISL2 

and LHX1.  Human motor neurons also exhibited the conserved molecular signature of several 

individual motor pools.  At the brachial level, motor neuron groups matching the profile of the 

rhomboideus and deltoid motor pools were identified.  At both the brachial and lumbar levels 

restricted groups of LMCM/L motor neurons expressed PEA3, which matched the profile of 

anterior latissimus dorsi and cutaneous maximus pools at the brachial, and a likely match for the 

caudilioflexorius or gluteus motor pool at the lumbar levels.  Finally the pattern of expression of 
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those HOX proteins which we were able to detect, precisely matches that in chick and mouse, 

where HOXA5 is expressed in cervical to mid-brachial, HOXC8 in mid brachial to mid thoracic, 

and HOXC9 in mid thoracic to mid-lumbar. 

Implications for developmental mechanisms 

The remarkable conservation of markers for these key aspects of motor neuron organization 

suggests that the a very durable and flexible logic for motor neuron diversification and 

integration with an evolving body plan was achieved early in vertebrate evolution and has not 

significantly changed since.  Importantly this conservation implies that many of the mechanisms 

orchestrate the developmental elaboration of this diversity may also be strongly conserved.  In 

support of this idea are the known functional roles for several of the marker proteins used.  

FOXP1 in particular plays a decisive role in directing the organization of limb-innervating motor 

neurons, as shown by the atavistic phenotype of knockouts (Dasen, De Camilli et al. 2008).  

HOXA5 and HOXC8 also play strong functional roles, although downstream of both HOXC6 

and FOXP1, in controlling the elaboration of brachial motor pool identities (Dasen, Tice et al. 

2005).  And HOXD9 can drive lumbar LMC identity when over-expressed in thoracic MNs, 

although at endogenous levels this function is kept at bay by the LMC-repressive activity of 

HOXC9 (Jung, Lacombe et al. 2010). 

None of the HOX proteins we were able to study exclusively determine motor column identity in 

chick or mouse.  This is clear since in model systems and now in human each of their expression 

domains crosses a boundary between limb and non-limb levels and they are expressed in both 

LMC cells at limb-levels and MMC and HMC cells at limb and non limb levels.  It will thus be 

critical in future studies to develop reagents—antibodies or in situ probes—to assess the 
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expression of the HOXC genes (6, 9, 10) which have been shown to determine columnar 

identity.  This would add stronger evidence that the mechanisms underpinning motor column 

diversification are conserved in human, and also provide the most direct upstream markers by 

which to test ES-cell directed differentiation approaches aimed at controlling rostrocaudal and 

column specific identities.  Nevertheless the strong conservation of markers like FOXP1 and 

LHX3, known to be functional determinants of subtype identity, provides strong evidence 

supporting the idea that consensus vertebrate model mechanisms could be used as the basis for 

ES-cell directed differentiation approaches seeking to control the subtype output of motor 

neurons.   

Identification of a novel molecular profile and putative motor pool 

The one significant difference identified between human and other vertebrates was the 

identification of putative motor pool with novel characteristics in the rostral brachial LMCM.  

This pool expressed markers appropriate to the LMCM but also expressed LMCL markers, but 

more interestingly it expressed both LMCL and MMC marker proteins (FOXP1 and LHX3).  

There is no known cognate for this molecular profile in chicken or mouse.  In the most definitive 

study of human developmental spinal motor anatomy, which included inferences based on 

comparison to retrograde tracing studies in rat, cat, and other species, these authors speculate that 

motor neurons in this rostral cervical and most dorsal position were likely to innervate hand or 

wrist muscles (Altman and Bayer 2001).  It is tempting to speculate that this novel motor pool 

innervates a muscle with novel function in humans or primates, and one obvious choice would be 

thumb or hand muscles.  On the other hand, the presence of axial and limb muscle determinants 

may point toward an intermediate function, once involved perhaps in species or primate specific 

shoulder movements.  It will be interesting to examine primate spinal cords to determine if this 
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derived characteristic is shared with primates or if it is human specific.  In a general sense, we 

should expect more specific differences with mouse to emerge in future studies, particularly at 

the level of individual motor pools. 

Interpretation of negative results 

Most of the antibodies and antisera tested for HOX genes, column, and pool markers showed no 

reactivity on human samples.  We did not interpret these results as positive evidence that these 

factors were not expressed in human for the following reasons.  First, none of the reagents that 

failed to show staining in our hands have been validated by others to work on human tissues, 

with the exception of ER81, and we did not confirm the precise antiserum used in that study 

(Clowry, Moss et al. 2005).  Second, in most cases these reagents were designed based on chick 

or mouse protein sequences.  Protein sequence analysis where proteins or peptides were used for 

immunization, showed variable and incomplete similarity between human and mouse or chick 

sequences.  Even where differences concern only several amino acids, this could easily explain 

the inability to detect human proteins.  This points to the need to develop validated human-

reactive reagents for many marker proteins of interest, most importantly the HOXC proteins 6, 9, 

and 10 since these are determinant for columnar identities, and other motor pool markers.  In 

parallel, in situ hybridization approaches should be attempted to directly assess expression of 

human genes for which there are no antibodies. 

Interpretation of in vitro motor neuron phenotypes 

The map of marker expression detailed here can now be used as a strong basis from which to 

interpret in vitro molecular phenotypes (Table 2.2).  Based on this map, specific molecular 

profiles found in human ES-derived motor neurons can be assigned to one or several in vivo 
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identities.   Since some marker combinations were not observed in vivo—HOXA5
+
HOXC8

+
 

cells for example—this map can also indicate where potential in vitro expression patterns do not 

match any in vivo cell type.  This map can therefore be used to evaluate the effect of 

differentiation strategies on subtype or rostrocaudal identities and to confirm that these subtypes 

match coherent molecular identities. 
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Table 2.1. Summary of motor neuron rostrocaudal, columnar, and divisional subtype 

marker expression in chick and mouse 

Compiled from chick and mouse primary references reviewed in Chapter 1, rostral/caudal 

subdivisions of brachial, thoracic, and lumbar are defined by expression of HOXA5, HOXC8 

(Liu et al. 2003) in chick and HOXD9 (Jung, Lacombe et al.) in mouse.  Black boxes indicate 

high level expression, grey boxes indicate low level or no expression, and white boxes indicate 

no expression. Question marks indicate lack of strong supporting evidence for marker expression 

in indicated motor columns at indicated levels.  
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Figure 2.1 
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Figure 2.1. Documentation of human spinal cord samples and linear length of limb-

innervating and thoracic regions 

(A-C) embryonic human spinal cords from gestational week (GW) 7 and 8 used in this study. 

Scale bars 1 mm (D) Mean post-fixation linear length (µm) + range of regions in GW 7 samples 

(n=2) staining for FOXP1
+
 LMC in the brachial and lumbar regions, where thoracic was defined 

as the region between LMC
+
 segments.  
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Table 2.2. Human embryonic spinal cord resource 

Catalogue of human embryos collected for spinal cord staining.  Reported age in gestational 

weeks (GW) was determined by clinicians by patient reported last menstrual period and was 

sometimes informed by pre-operative crown-rump length ultrasound measurement.  Reported 

age was adjusted if embryonic development appeared to be out of phase with reported age.  All 

10 specimens were fixed, cryoprotected, dissected free from any attached tissue, photographed, 

subsectioned and embedded in OCT for cryosectioning.  Spinal cords in grey were fully 

sectioned (serially) and deposited on slides; unsectioned embryos were embedded in OCT and 

stored for future sectioned, along with unstained slides, at -80°C at the Project A.L.S. 

Laboratory.  Slides and tissue blocks are available as an open resource for studies of early human 

spinal cord development.  Sample #1 was overfixed but Tris-EDTA heat induced epitope 

retrieval unmasked antigen and revealed staining which matched other analyzed samples as 

described in Chapter 7: Experimental Procedures.  
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Figure 2.2
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Figure 2.2.  Human spinal motor neurons share column markers and organization with 

mouse 

(A)  Human spinal cords were found to contain populations of cells matching the molecular and 

anatomic characteristics of motor columns defined in chick and mouse.  MMC cells were located 

ventro-dorsally and expressed LHX3, HB9, and ISL1.  At non limb levels HMC motor neurons 

expressed neither LHX3 nor FOXP1.  At limb levels LMC cells expressed high level FOXP1. 

The LMC was subdivided into a lateral predominantly HB9high and ISL low/off  LMCL and a medial 

HB9 low/off  ISL1high LMCM.  Sections representative of all non-limb (cervical and thoracic) and 

limb (brachial and lumbar) spinal levels are shown. n=3 embryos. Scale bar 100 µm.  (B-C) 

Summary diagrams of non-limb level and limb level human motor columns expression profiles.  
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Figure 2.3 
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Figure 2.3.  pSMAD and low level FOXP1 identify human PGC at thoracic levels  

Human PGC motor neurons were located dorso-laterally at thoracic (A) but not at (B) limb 

levels. PGC motor neurons were identified by staining for ISL1, FOXP1 and pSMAD.  Scale bar 

100 um. >3 sections/spinal level (thoracic vs. limb) were examined from n=2 GW 7 embryos.  

(C) PGC motor neuron FOXP1 expression is quantitatively lower than in either brachial or 

lumbar LMC;  mean+/-SEM  FOXP1 intensity/ISL1+ cell in the brachial LMCM, (n=270 cells 

from 2 representative hemi-sections), thoracic PGC (n= 236 cells from 4 representative 

hemisections), and lumbar LMCM (n=221 cells from 2 representative hemi-sections) from one 

GW 7 embryo.  
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Figure 2.4 
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Figure 2.4.  Human MNs express markers of LMC divisional identities  

Human LMCM was identified by FOXP1 and high ISL1 expression with low or no HB9, as 

previously shown, and also expressed ISL2 and was negative for LHX1.  LMCL as described 

expresses FOXP1, high HB9 and low or no ISL1, however it also marker by LHX1 and ISL2.  

LHX1 therefore serves as a marker that distinguishes lateral vs. medial LMC divisions. Serial 

sections from lumbar cord shown are representative of  >4 limb level sections analyzed for n=3 

embryos. Scale bars 100 um.  Bottom right: summary of human LMC divisional gene expression 

profile.  
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Figure 2.5   
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Figure 2.5.  HB9 and ISL1 expression levels in motor neuron columns, division, and control 

cells.  

(A) motor neuron columns and divisions, as defined in serial sections by column and division 

markers described above, and control cell populations, were isolated as regions of interest 

(shown in dotted lines on sections: HMC, MMC, LMCM, LMCL, all motor columns at a given 

level considered together, HB9low sub floorplate cells (SUB FP), ISL1+ dorsal interneurons 

(DOR IN), non-motor neurons (NON MN), and ISL1+ dorsal root ganglia(DRG)) on 

representative sections from non-limb and limb levels and quantified for HB9 and ISL1 

expression. (B)  Cells in LMC, HMC, MMC anatomical regions were scored for high level of 

either HB9 or ISL1 were defined as motor neurons and pie charts show the percent of all motor 

neurons/column expressing either HB9 or ISL1: HB9+ (green), HB9+ISL1+ (yellow), or ISL1+ 

(red); n=1 cervical and mean of n=3 brachial or n=2 thoracic and n=2 lumbar sections, from one 

representative GW 7 embryo (#4).  Individual motor neurons were not counted in more than one 

category.  The area of the pie chart is proportional to the total number to motor neurons in the 

column, shown in (D).  (C) Average intensity/cell in each motor column at each level and in 

control cell populations (mean+/-SD, n=1 section analyzed/level).  For all regions with HB9+ or 

ISL1+ cells, intensity was analyzed among motor neurons only, except for the NON-MN region 

where intensity is for all cells in the region. (D-E) Total number of motor neurons per motor 

column (mean of n=2 sections/level except cervical n=1, and brachial n=3), and percentage of 

those cells in cell scoring categories as graphed in (B). (E) Total number of motor neurons in 

each cell scoring category, in all motor columns at each level (mean+/-SD, n=2 sections/level 

except cervical n=1, and brachial n=3). (F) Total number of motor neurons in each column and 
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for all motor neurons, mean+/-SD, All MMC n=8 sections, All HMC n=3 sections, All LMCM 

n=5 sections, All LCML n=5 sections, and All MN section n=8 sections. 900 µm field width.  
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Figure 2.6 

 

 

Figure 2.6. Some rostral brachial LMC pools identified by combinatorial expression of 

LIM-HD and column marker proteins. (A) Staining of serial sections of rostral (HOXA5+) 

brachial spinal cord reveals LMC cells (FOXP1+) can be subdivided into putative motor pools 

matching those in chick by expression profile of LHX1, LHX3, HB9, ISL1 and ISL2.  Diagram 

at left indicates putative pool expression profiles matched for the MMC, rhomboideus (RB), 

deltoid (DL), and novel human specific putative motor pool which expresses LHX3 and FOXP1 

(circled top right). Scale bar 100 um.  Sections are representative of n=3 embryos examined. 
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Figure 2.7 

 

 

Figure 2.7. PEA3 marks brachial and lumbar LMC pools 

At the HOXA5 level of the brachial spinal cord, and in the lumbar spinal cord, PEA3 selectively 

marks pool-size groups of LMCL  motor neurons. Representative sections of  n=2 GW 7 and n=1 

GW 8 embryos.  Scale bar 100 um. Diagonal (left) and horizontal (right) bars indicate position of 

pools in each channel.  

 

 

 

 

 

 

 

 



101 
 

 

Figure 2.8 
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Figure 2.8.  Human motor neurons in vivo express HOX proteins in rostrocaudal collinear 

sequence  

(A) HOXA5 was expression at cervical levels (rostral to the LMC) and persisted through the 

rostral half of the brachial LMC.  The most rostral HOXC8 expression was detected in dorsal 

spinal cord cells rostral to the caudal limit of HOXA5 expression. Within 200 um HOXC8 

displaced HOXA5 expression in motor neurons; in this intermediate brachial region some groups 

of motor neuron, likely LMC pools, expressed HOXA5 and some expressed HOXC8, but <20 

individual cells, of thousands of motor neurons examined, expressed both HOX proteins.  

HOXC8 expression persisted caudally into thoracic levels until just short of halfway between 

brachial and lumbar LMC levels.  HOXD9 expression was initiated in dorsal cells just after the 

caudal limit of HOXC8 expression and there was no overlap of expression at the same levels of 

the cord.  HOXD9 expression in the cord and in motor neurons persisted caudally through the 

first half of the lumbar LMC.  We did observe some low level HOXD9 staining at brachial 

levels, mostly in dorsal non-motor neurons.  n=3 embryos showed the same expression pattern; 

representative sections from GW 7 embryo #4 shown.  Length of spinal cord positive for: 

HOXA5= 3.7 +/-0.8 mm; HOXC8= 5.7 +/-0.7 mm; and HOXD9= 4.1 +/-0.3mm, (mean +/-SD 

of two GW 7 embryos).  Scale bar 100 um. (B) Diagram summarizes HOX expression patterns 

with respect to motor neuron column marker staining pattern. Diagram drawn to scale along 

rostrocaudal axis (scale bar 5 mm) but mediolateral dimension is dilated for clarity of labeling; 

dotted lines indicate rostrocaudal level of representative sections.  
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Table 2.3 

 

 

Table 2.3. Summary of motor neuron rostrocaudal, columnar and divisional subtype 

marker expression in human  

The same expression profile was detected for HB9 and ISL1, and all column and divisional 

markers and HOX genes tested as found in mouse spinal cord, with the exception of the 

LHX3
+
FOXP1

+
 pool detected at HOXA5

+
 levels of the brachial LMC.  Black boxes, high level 

expression; grey boxes, low or low to no expression; white boxes, no expression; yellow boxes, 

not examined at indicated levels.  Presence of sacral PGC not examined. n=3 embryos. 
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Chapter 3. Motor neuron differentiation from human embryonic stem cells: optimization, 

characterization of subtype diversity, and analysis of maturation 

 

Introduction 

The larger goal of these studies was to establish the conditions for modeling ALS using human 

ES cell-derived motor neuron subtypes.  Our first goal in this chapter was therefore to 

systematically describe the subtypes of motor neurons differentiated from human stem cells.  To 

do this we needed first to define a robust and reproducible method of differentiation which 

would be amenable to quantitative analysis.  Next, in order to establish confidence in the 

relevance of ES-MN biology in vitro to motor neurons in vivo, we needed to demonstrate that 

key in vivo phenotypes would be manifested in vitro.  Finally, since several hypotheses about the 

mechanisms of motor neuron degeneration in ALS hinge on mature characteristics of affected 

MNs, we needed to demonstrate maturation of ES-MNs in vitro and in vivo. 

MNs have now been differentiated from human stem cells by many different groups.  There is 

great variety among the protocols, methods of analysis, and efficiencies of differentiation in 

these reports.  Our first goal was therefore to develop a reproducible and highly robust protocol 

for motor neuron differentiation which was compatible with quantitative analysis of the entire 

population of differentiated MNs.  While some markers of motor neuron positional and columnar 

subtype identity have been tested in ES-MN cultures, in no case have these been systematically 

and representatively assessed in MNs as defined by HB9 and ISL1 expression. We therefore 

sought to determine the diversity of rostrocaudal and columnar motor neuron subtypes, using 
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markers and expression criteria defined in vivo in Chapter 2.  This description would also 

provide a necessary starting point for designing strategies to control subtype identities in future 

studies (Chapter 5) 

A general challenge for the utility of any stem cell-derived cell type is to demonstrate its in vivo 

bona fides.  To address this we picked several characteristic features of motor neurons in vivo 

and asked if in vitro generated cells would meet these expectations.  Expression of multiple 

subtype markers is in itself the first bar, but also allows us to ask if ES-MNs meet more subtle in 

vivo expression patterns, for example, mutual exclusion of specific HOX gene pairs and mutual 

exclusion of motor column markers.  MN-selective electrophysiological features and the 

interpretation of in vivo axon guidance cues have also not been addressed in previous studies, but 

would support the functional equivalence of ES-MNs to their in vivo counterparts and thus argue 

for their utility in modeling motor neuron biology and disease. 

Finally, several proposed mechanisms of MN-selective degeneration in ALS concern features 

typical of more mature motor neurons.  The large total size of MNs, specifically axo-dendritic 

outgrowth, may place unusual demands on energy metabolism and mitochondrial function, and 

axonal transport, suggesting that ES-MNs should achieve significant total outgrowth in order to 

better study disease relevant pathologies.  Finally, motor neuron degeneration may be linked to 

glutamate excitotoxicity.  In order to adequately address this hypothesis it is necessary to 

demonstrate electrophysiological activity in vitro, which several groups have done.  However an 

unmet need, with respect to designing in vitro assays of disease mechanisms is to systematically 

establish the timecourse and characteristics of ES-MN electrophysiological maturation in vitro. 
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Results 

Defining a Standard Protocol for efficient and robust motor neuron differentiation 

Our first goal was to define a simple and robust protocol for motor neuron differentiation from 

human ES cells, which was devoid of complicated manipulations and in which differentiated 

cells could be analyzed as a homogenized mixture.  In order to support homogeneity, enhance 

neural induction, and reduce manual intervention we made several adaptations to a previously 

published embryoid body (EB)-based differentiation protocol from the Zhang lab (Li, Du et al. 

2005).  The Zhang protocol requires positive and negative manual selection to isolate rosette 

neuroepithelia and remove non-neural colonies during a period of transient attachment.  We 

maintained EBs in suspension during the entire protocol to avoid potential bias of these manual 

interventions.  In order to increase the efficiency of neural induction without manual 

intervention, we made two further modifications to the Zhang protocol.  To both limit the size of 

EBs and ensure that their sizes were as regular and reproducible as possible we used a Rho 

kinase inhibitor (Y-27632) to maintain survival of individual ES cells at the pluripotent state 

(day 0 of differentiation) as they gradually nucleated EBs (Watanabe, Ueno et al. 2007).  This 

produced an initial population of very small (5-20 cell) EBs which was extremely regular in its 

size distribution (Fig. 3.1B, day 4).  Recombinant Noggin was also used during this time period 

to suppress induction of non-neural fates by BMP signaling (Munoz-Sanjuan and Brivanlou 

2002; Watanabe, Ueno et al. 2007; Elkabetz, Panagiotakos et al. 2008).  Beginning at day 10 RA 

and recombinant mouse SHH were used to impose the caudal (spinal) and ventral identity 

required for generation of motor neurons.  EBs continued to expand and by day 24 almost all 
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EBs were composed of tightly packed neural rosettes (Fig. 3.1B) (Elkabetz, Panagiotakos et al. 

2008).  We also observed that nearly all cells in all EBs expressed the neuronal marker NCAM 

and/or the neuronal progenitor marker Nestin (Fig. 3.1C).  We concluded that this protocol 

generated a highly regular population of EBs which was composed dominantly of neural 

derivates as judged by neural rosette morphology and neural lineage marker expression.   

We next asked whether motor neuron progenitor (pMN) marker OLIG2 and the post-mitotic 

motor neuron marker genes ISL1 and HB9 were expressed by qPCR (Fig. 3.1D).  As has been 

previously reported (Bock, Kiskinis et al. 2011) we detected low level expression of both ISL1 

and HB9 in undifferentiated ES cells, but this was extinguished by day 6.  HB9 expression 

increased at a relatively linear rate from day 6 to day 31, when it reached maximum measured 

levels.  ISL1 expression increased at a lower linear rate from day 6-17 and then rapidly reached 

maximum levels between day 17 and day 31.  OLIG2 expression, which we expected to precede 

the post-mitotic motor neuron markers, was only slightly increased at day 17 (<1%), but reached 

maximum expression by day 31.  We then confirmed these gene expression data at the protein 

level by immunostaining cryosectioned EBs (Fig. 3.1F).  These data showed that OLIG2 could 

be readily detected at day 17, but was considerably more prevalent at day 26 and 30.  ISL1 

protein was not detected until day 17, and then at low abundance, but was increased by 26 and at 

maximum by day 31.  HB9 protein on the other hand was not detected until day 26, and 

increased substantially by day 31.  To confirm the emergence of post-mitotic motor neurons we 

then tested this protocol on the motor neuron reported line HBG1, which expresses eGFP under 

control of the mouse HB9 promoter (Di Giorgio, Boulting et al. 2008).  GFP was first expressed 

in scattered cells at day 24 (not shown) but was robustly expressed by day 31 (Fig. 3.1D).  

Interestingly day 25 in vitro precisely matches the estimated day 31 in vivo onset of motor 
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neurogenesis (Chapter 1, Part II) if 5 days are added to the developmental time of ES cell 

differentiation (since they are derived from day 5 blastocysts).  We concluded from these data 

that under this protocol the motor neuron lineage was efficiently induced, that post-mitotic motor 

neurons were generated starting around day 25, and that they reached abundant levels by day 31.   

We next sought to assess the efficiency of motor neuron generation by measuring the most 

selective motor neuron marker available, HB9 as well as the other selective marker, ISL1.  We 

observed large differences within and between individual EBs in terms of the density of HB9 and 

ISL1 cells.  In order to assess the entire population, EBs were therefore dissociated to single cells 

using trypsin and mechanical trituration, seeded on poly-amino acid and laminin coated 

substrate, and fixed two days later.  Cells were then stained and scored for high level expression 

of HB9, ISL, and TuJ1 using the Multiwavelength Cell Scoring module in Metamorph (Fig. 

3.2A).  We observed a smooth continuum of expression levels for HB9 (and all other pan-MN 

and MN-subtype nuclear markers, not shown) (Fig. 3.2C).  A threshold of staining intensity was 

set for each immunostain and then empirically optimized to score the maximum number of 

intensely stained HB9 cells as positive, and keep to an absolute minimum the number of cells 

with very low or no appreciable HB9 staining scored positive (Fig. 3.2D).   The accuracy of 

utomated cell-scoring was therefore manually checked for each experiment and condition.  The 

result of this conservative approach to automated cell scoring was that cells scored positive for 

HB9 were restricted to those with high intensity staining, although this population included a 

large range of staining intensity, as illustrated for individual scored cells (Fig. 3.2D) and by the 

standard deviation of the mean of HB9 or ISL1 cells (Fig. 3.2E).  In addition some ―HB9
-―

 cells 

showed some real level of HB9 staining (Fig. 3.2 D, #1).  We therefore undercounted the total 

number of HB9 cells, however this approach maximized confidence that quantitated cells were 
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strongly positive.  This same approach to cell scoring was also taken with ISL1 and all 

subsequently discussed subtype markers. 

We then asked what fraction of cells co-expressed high levels of HB9 and ISL1.  HB9
+
ISL1

-
 

(HB9
high

-only) cells constituted 6.1 ±1.0% of total cells, HB9
+
ISL1

+
 6.5 ±1.0%, and ISL1

+
 HB9

- 

only 4.4 ±1.1% (mean ±SEM, n=5 independent experiments, Fig. 3.2B). The ratio of HB9 to 

ISL1 expression was continuous from 1:0 to 0:1  (Fig 3.2A) and included a broad range of values 

for both HB9 and ISL1 (Fig. 3.2E).  This percentage breakdown, and deviation closely matched 

the profile to what we had observed for MNs in vivo (Chapter 2, Fig. 2.5).  The percentage of in 

vitro cells expressing high level HB9, ISL1, or both was most similar to that produced when 

multiple in vivo columns were grouped together for analysis, and interestingly was closest of all 

to profile of the group of all MNs present at brachial levels (Fig. 2.5E).  We concluded from 

these data that the distribution of pan-MN makers in ES-MNs reproduced the spectrum of values 

we defined for MNs in vivo. 

Because HB9 and ISL1 are expressed in the pancreas and in other non-neural cells we co-stained 

cultures with HB9, ISL1, and the pan-neuronal marker βIII-Tubulin (TuJ1) to determine if all 

HB9
+
 and ISL1

+
 cells were indeed neurons (Fig. 3.2F).  We found that 65 ±9% of all cells 

expressed TuJ1, and that 96 ±1% of HB9
+
 cells were positive for TuJ1 (mean ±SEM, n=5 

independent experiments).  We concluded that this protocol efficiently generated a highly 

neuronal population, and when the large number of Nestin
+
 presumable neural precursors (Fig. 

3.1D) are included, a dominantly neural population.  Importantly the TuJ1/HB9 stain 

demonstrated that HB9
+
 cells were indeed neurons and not non-neural lineage HB9

+
 cells.  

Importantly the dissociated-reseeded endpoint is almost unique among motor neuron protocols 

and allowed for a novel accurate quantitation of motor neuron efficiency in the entire 
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differentiation culture by unbiased sampling and cell scoring of thousands of cells in a 

homogenized population.  This approach would also facilitate unbiased and representative 

analysis of motor neuron subtype frequencies (see below). 

 

Testing optimizations for the Standard Protocol for motor neuron differentiation 

In order to evaluate the effect of the optimizations we added to the Standard Protocol we tested 

them against the Zhang protocol.  To determine whether Noggin played a strong role in 

preventing non-neural fates and supporting default (Munoz-Sanjuan and Brivanlou 2002) or 

spontaneous neural induction we performed Standard Protocol single cell start EB 

differentiations described above and in one pilot experiment omitted Noggin.  We used %HB9 as 

the endpoint most relevant to our interest and also as a proxy for the efficiency of neural 

induction.  We found that Noggin strongly increased the % HB9 (Fig. 3.2A).  Since seeding 

density had been an important factor in optimizing mouse ES-MN differentiation protocols 

(Wichterle, Lieberam et al. 2002), we tested 3 different initial seeding densities, and found that 

without Noggin, only the highest was efficient for generating ES-MNs, and with Noggin all were 

efficient but the highest density was superior (Fig. 3.2A).  When we compared our Standard 

Protocol with the EB protocol from which it was derived, and also tested the efficiency of 

positive and negative manual selection for neural rosettes we found only a slight increase in HB9 

efficiency with manual selection, but both non-single cell EB protocols were less efficient than 

the Standard Protocol condition with Noggin.  We concluded that Noggin supported more 

efficient ES-MN differentiation, likely by supporting more efficient neural induction, and we 

used Noggin and the higher EB-nucleation density for all subsequent experiments.  We also 
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concluded that in our hands the protocol (referred to subsequently as Standard Protocol) was not 

only simpler but as or more efficient at ES-MN differentiation than published alternatives. 

Since motor neuron differentiation requires a caudal spinal identity and Wnt signaling has been 

linked to the induction of caudal neural identity (Nordstrom, Jessell et al. 2002; Nordstrom, 

Maier et al. 2006) we decided to provide a Wnt signal on days 10-17 of differentiation (see 

Chapter 4 for logic and timing of this decision).  To assess the impact of this decision we then 

asked if Wnt3a conditioned medium (Wnt3a-CM) (Willert, Brown et al. 2003) affected either the 

efficiency of neural induction, as measured by percent of cells staining for neuronal beta-III 

tubulin (TuJ1), or motor neuron induction efficiency, as measured by percent of cells positive for 

HB9 or ISL1.  We found that there was no significant difference in the percent of differentiated 

neurons (62% vs. 63%, n=4 independent experiments, t-test, p= 0.66) with or without Wnt3a-

CM.  To exclude the possibility that Wnt-CM affected the HB9
+
 cells differentially we measured 

the %TuJ1
+
 of HB9 cells and found no significant difference (92% vs. 94%, n=4 independent 

experiments, t-test, p= 0.79).  We also found that the efficiency of motor neuron differentiation, 

as measured by %HB9- and %ISL1-expressing cells, was not affected by Wnt-CM (n=4 

independent experiments, 11% vs. 12% HB9, t-test, p=0.93; 10% vs. 11%ISL1, t-test, p=0.37).  

We concluded from these data that exogenous Wnt-CM was not required for motor neuron 

generation, but also that it did not negatively affect differentiations.  Furthermore, in anticipation 

that Wnt might work in cooperation with other caudal patterning cues (see Chapter 5) we elected 

to retain this signal in all subsequent experiments. 

Accelerated Protocol 
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Subsequent to the completion of most studies in this report which used the Standard Protocol 

described above, new publications showed that pharmacological inhibition of TGF-β signaling 

increased the efficiency of neural induction to nearly 100%, and accelerated its timecourse by 7-

10 days (Chambers, Fasano et al. 2009).  We therefore asked if we could adapt our protocol with 

these inhibitors to increase the efficiency and speed of motor neuron differentiation (Fig. 3.4A).  

We substituted another inhibitor of TGF- β signal transduction for Noggin, which we report in a 

subsequent chapter and a previous publication (Boulting, Kiskinis et al. 2011).  Because of the 

shorter overall timecourse of this protocol we reasoned that we could start with slightly larger 

EBs, and thus avoid the single-cell suspension process we used to initiate the Standard Protocol.  

We found that this protocol was indeed able to generate a uniform population of very small EBs 

which grew consistently throughout the differentiation (Fig. 3.4B, C).  Initial experiments with 

the HBG1 MN-reporter line showed GFP expression at day 15 (data not shown): 10 days in 

advance of the Standard Protocol.  EBs were therefore dissociated to single cells at day 21, 

seeded, and fixed at day 23 for analysis. 

To ask if the Accelerated Protocol generated increased motor neuron percentages in this shorter 

timeframe we stained dissociated cultures with HB9 and ISL1, and NF (for wild type ES-MN) or 

GFP (for motor neuron reporter ES-MN) we observed a two-fold increase in the efficiency of 

motor neuron generation (22-31% HB9 depending on cell line, and 37% GFP) vs. Standard 

Protocol (Fig. 3.3D-G vs. Fig. 3.2).  Accelerated Protocol ES-MNs expressed HB9 and ISL1 in 

the same partially overlapping pattern as described above for the Standard Protocol.  When we 

analyzed the fidelity of the GFP reporter for ES-MNs we found that 70% of GFP cells expressed 

high levels of HB9 or ISL, and when considered together this figure was nearly 80% (Fig. 3.3H).   

We concluded that this protocol represented a faster and more efficient means to generate MNs 
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from ES cells.  We could therefore use it to validate reagents and more rapidly test hypotheses 

about mechanisms of differentiation.  For example, when a new lot of SHH protein was acquired, 

we titrated its activity using the accelerated protocol (Fig. 3.4F).  Since the %HB9 was less than 

1% in control or low SHH (200ng/ml) doses, this result also demonstrated the SHH dose-

dependence of ES-MN differentiation.  Accelerated protocol experiments were performed after 

the majority of work reported in these studies, therefore we used the Accelerated protocol for 

only a subset of studies and will indicate clearly where that is the case, while the Standard 

Protocol will be the default unless otherwise indicated. 

In summary we developed two robust protocols that do not require manual intervention and that 

reproducibly generated motor neurons at consistent efficiencies.  Both of these were established 

with dissociated re-seeded cells as the endpoint, and are therefore amenable to both bulk 

cryopreservation (see below) and homogenized phenotypic analysis.  We next asked if and how 

the ES-MNs generated in our hands would be capable of maturation in vitro. 

Maturational phenotypes of ES-MNs 

Since many significant aspects of motor neuron biology—e.g., trophic factor dependent survival 

and axon pathfinding— require maturation beyond initial specification, and because modeling 

ALS in vitro may require the elaboration of specific mature characteristics, we next sought to 

characterize the state of maturation of ES-MNs over 2 weeks in vitro using electrophysiological, 

morphological and immunocytochemical approaches.   

ES-MNs show progressive electrophysiological maturation during extended culture 

In order to address the maturation of ES-MNs we turned first to the principal functional feature 

of all neurons: electrophysiological activity.  Because of the prevalence of non-motor neurons in 
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our cultures, we used a motor neuron report line (HBG47) which expressed GFP under control of 

the mouse HB9 locus on transgenic bacterial artificial chromosome (Placantonakis, Tomishima 

et al. 2009) to prospectively identify ES-MNs for recordings.   

Progressive changes in active membrane properties 

To investigate the electrophysiological properties of ES-MNs over time we prepared low density 

cultures and our collaborator Tomonori Takazawa (Amy B. MacDermott‘s lab) tested passive 

and active membrane properties using patch clamp recordings between 2 and 13 days following 

seeding mat day 31 of dissociation. Recorded cells were backfilled with dye, fixed and then 

stained with motor neuron markers HB9 and ISL when cells were recoverable.  We confirmed 

that all intact recorded cells (n=7) expressed both GFP and the motor neuron marker HB9 or 

ISL1 (Fig. 3.5A).  When we asked if ES-MNs were competent to fire action potentials we found 

that 27 of 28 cells recorded were able to fire action potentials (APs) with depolarizing current 

injections, while the one AP-incompetent cell was at the youngest timepoint tested (day 2).  

Representative examples of voltage changes in response to depolarizing currents, and 

accompanying backfills are shown for 3 different cells at 3 different time-points (Fig. 3.5B-G).  

These data show an increase in repetitive firing accompanied by a decrease in input resistance 

over time in culture.  We conclude from these experiments that ES-MNs showed rapid and 

progressive functional maturation over time in culture.  We next sought to quantitatively describe 

these progressive changes in electrical properties. 

Progressive changes in membrane properties 

When input resistance was graphed as a function of time in culture, we found that it decreased 

significantly and progressively with time (Fig. 3.6A, n=28 cells, One-Way ANOVA, p < 0.01).  
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This decrease is consistent with an increase in the total number of ion channels contributing to 

leak conductance at resting potential.  Resting potential did not change significantly over the 

timecourse studied, however the mean decreased from -50 mV to -60 mV by the latest timepoint 

(Fig. 3.6B).  The rheobase—current step magnitude required to elicit AP—was also unchanged 

over this timecourse (Fig. 3.6C).  We conclude from these data that ES-MNs show evidence of 

maturation, decreased input resistance, and may have been entering a phase of further maturation 

as indicated by the lowering of resting potential at the end of the timecourse.  We next sought to 

examine more specific and quantitative changes in the APs generated by ES-MNS. 

Progressive changes in AP characteristics 

To understand in greater depth the maturational changes suggested by the increased frequency 

and number of APs fired by ES-MNs we next examined these spike trains quantitatively.  The 

duration of APs (as measured by half-width) showed a significant decrease from the earliest 

timepoint to all older time-points ((Fig. 3.6D) n=25 cells, One Way ANOVA, p < 0.01).  This 

result suggested a more mature profile of acute AP discharge which implied a more mature 

constellation of voltage gated Na
+
 and K

+
 channels.  Because both AP-half-width measures and 

rheobase showed a range of values even at the oldest time-points, we plotted rheobase vs. half-

width for individual cells at day 43 (Fig. 3.6E).  This analysis suggested that two distinct 

populations were present in older cultures: one with low rheobase and broad action potentials, 

and another with tight action potentials and higher rheobase.  This result could be interpreted as 

evidence of two different ES-MN subtypes, or as evidence for a less and a more mature 

population of ES-MNs. 
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To distinguish between the two possibilities we examined maturation state of ES-MNs more 

directly. As motor neurons mature they develop the ability to fire repetitive trains of action 

potentials (Gao and Ziskind-Conhaim 1998).  We next investigated whether a similar change had 

occurred with time in vitro. At the earliest timepoint studied, no ES-MN recorded was able to 

fire more than one action potential even during extended (1s) current injections.  Many ES-MNs 

however showed repeated AP-trains on subsequent days in vitro (Fig. 3.5B-G).  Indeed the 

maximum frequency of AP firing showed a progressive and significant increase over time ((Fig. 

3.6F) n=28 cells, One-Way ANOVA, p<0.05,).  Interestingly, even at the latest age measure, 

some ES-MNs were capable of firing only a single action potential, even during injections of 

large depolarizing current (>140 pA), showing that even after 13 days of maturation, ES-MNs 

are a mixture of cells with less and more mature properties.  We concluded from these 

experiments that in aggregate ES-MNs underwent progressive functional maturation, as shown 

by their membrane properties and increasing ability to fire repeated high frequency AP-trains 

and that late time point cultures consist of a mixture of more and less mature ES-MNs. 

Progressive development of motor neuron selective electrophysiological signatures 

We next asked if we could detect more subtle aspects of maturation consistent with motor neuron 

firing properties in vivo.  First, we noticed that the timing of APs within repeated spike trains 

gradually increase, a phenomenon identified in vertebrate motor neurons in vivo and termed 

spike frequency adaptation (SFA) (Fig. 3.7A).  When we graphed the ratio of last to first spike 

interval over time, we found a progressive increase with time in culture (Fig. 3.7B, n=8 cells, 

R=0.73, p= 0.05, Pearson‘s linear regression).  We concluded from this analysis that ES-MNs 

progressively acquired more mature physiological profile with time, and that this profile was 

consistent with the in vivo motor neuron firing properties. 
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We also noted that some ES-MNs showed depolarizations in response to hyperpolarizing current 

injections.  In some cases these post-inhibitory rebound depolarizations triggered APs, a 

phenomenon described in vertebrate MNs and termed rebound action potentials (RAPs) (Fig. 

3.7C).  No ES-MNs displayed RAPs at day 33; however at this timepoint one neuron did exhibit 

post-inhibitory rebound depolarization.  At every other subsequent time however nearly half of 

ES-MNs displayed RAPs (Fig. 3.7D).  We concluded from this analysis that many ES-MNs 

exhibit mature firing properties characteristic of MNs in vivo. 

 

 

ES-MNs show progressive morphological maturation with time in culture 

We have seen that ES-MNs showed a maturation of electrophysiological properties over time in 

culture.  But we also observed a second population of cells with immature characteristics at later 

time-points in culture.  The less mature cells might either correspond to a subset of ES-MNs 

refractory to maturation or to a population of newly born MNs generated during the maturation 

period.  We favor the latter, as parallel studies in the lab following HB9:GFP expression have 

seen dramatic increases in GFP
+
 cells after a week in culture (Nuno Lamas, Bethany Kerner, 

unpublished data).  Furthermore BrdU labeling of mitotic cells demonstrated ongoing birth of 

new motor neurons during this time period (Nuno Lamas, Bethany Kerner, unpublished data).  

This interpretation also fits both with the high level of OLIG2 expression we observed at day 31, 

and with the evidence for an extended timecourse of human motor neurogenesis in vivo: day 25-

56 (Hagan, Ross et al. 2000; Altman and Bayer 2001; Bayer and Altman 2002).  To address the 

extent of motor neurogenesis in our cultures we next used alkyne conjugated EdU, a nucleotide 
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analog used to label dividing cells which is more compatible with immunostaining.  When we 

stained cultures with or without EdU we first observed that the number of total cells in EdU 

treated cultures was greatly decreased (not shown).  This suggested that EdU was acting as a 

mitotic poison at the dose used (0.5 µM).  When GFP cells were co-stained with EdU we found 

that at each timepoint fewer than 10% of cells were labeled with Edu and we observed a gradual 

decrease in GFP cell numbers rather than the dramatic increase reported by colleagues above 

(Fig. 3.8).  We concluded from these experiments that maturation with EdU treatment was able 

to almost completely eliminate newborn ES-MNs from our cultures.  We could therefore 

examine the non-mitotic ES-MN population for progressive features of maturation in EdU 

treated cultures.  

Morphological maturation of ES-MNs 

In order to determine if surviving ES-MNs showed progressive maturation at the morphological 

level, we quantitated neurite outgrowth of all GFP
+
 cells during a 14 day timecourse subsequent 

to plating on day 31 of differentiation.  We optimized analysis parameters for each timepoint and 

condition separately to ensure the most accurate tracing possible, and then applied these to all 

cells for each of two coverslips per condition per timepoint.  First we noticed a clear increase in 

the extent of neurite projections with time (Fig. 3.9A), and determined that automated tracing 

could accurately quantify this morphological phenotype.  This outgrowth phenotype is 

represented at the qualitative level by camera lucida overlays of an unbiased sample (the first ten 

fields imaged) (Fig. 3.9B).  This analysis indicated that at a qualitative level cell outgrowth was 

progressive and substantial.  Quantitative analysis of morphometric parameters showed 

progressive increases in all measures of neurite outgrowth, complexity, and cell body size (Fig. 

3.9 C).  Day 33 vs day 45 values for both cell soma area and total outgrowth were distributed 
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non-normally (Shapiro-Wilk tests failed, P <0.050) therefore a Mann-Whitney Rank Sum Test 

was performed which showed a significant difference between the population of day 33 and day 

45 cells in both cell soma area (median 88 vs. 158 µm
2
, U=9723.000, T=29757.000 

n(small)=105 n(big)=323 P= <0.001) and total outgrowth (median 110 vs. 406 µm, U=5535.000, 

T=34374.000 n(small)=106 n(big)=323 P= <0.001) (Fig 3.9D, E).  Population histograms 

showed the contribution of increasing numbers of very large and complex cells to the mean 

outgrowth and cell body size (Fig. 3.9F, G).    Finally, in order to estimate the morphological 

characteristics of cells which were recorded in the previous experiment, all recorded, backfilled 

cells which were recoverable for staining were imaged and their morphometry was quantified as 

for the morphological time series and plotted on histograms (Fig. 3.9F, G). 

We conclude from this series of morphometry experiments that while ES-MNs are undergoing 

electrophysiological maturation they are also undertaking morphological elaboration.   This 

maturation consisted of progressive somatic growth and elaboration of neurites which were 

increasingly long and complex.  By eliminating proliferative cells that disrupt the growth of 

more differentiated cells and are capable of giving rise to new, smaller, ES-MNs, this 

morphological maturation could be quantified directly.  We next asked if there were any 

molecular changes which paralleled this morphological and functional maturation. 

ES-MN maturation marked by a switch to NF-H expression 

We next asked if we could detect any changes in the molecular profile of surviving matured ES-

MN under the anti-mitotic conditions defined above.  We have previously shown that short term 

(2 days after dissociation at Standard (day 31) or Accelerated (day 21)) cultures were composed 

of ES-MNs which were uniformly positive for TuJ1 and only some of which were positive for 
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NF-H.  We therefore seeded differentiated cells from two different ESC lines (RUES1 and 

HB9:GFP) in parallel: a replicate well was fixed at day 2, and another allowed to mature with 

mitotic inhibition for 8 days and then fixed.  Both sets were then stained for motor neuron 

markers HB9:GFP or HB9/ISL1( for RUES1 cells) and NF-H.  First, we noted a dramatic 

increase in the percent of MNs expressing NF-H and the intensity of expression: at day 2 only 

some ES-MN (HB9/ISL
+
 or GFP

+
) expressed NF-H, however by day 8 every single HB9/ISL1 or 

GFP cell (n >50 cells per cell line in one experiment each) expressed high level NF-H (Fig. 

3.10).  We also observed a strong qualitative increase in the intensity of NF-H staining in each 

cell suggesting a maturational switch to a higher expression level of NF-H.  Qualitatively, ES-

MNs showed long primary axons and dendrites in the older cultures compared to the bipolar or 

spindle shaped ES-MNs at day 2.  Surprisingly, EdU-mediated suppression of motor 

neurogenesis in culture was accompanied by a dramatic increase in the percent purity of motor 

neurons.  We observed at a qualitative level nearly every cell (n>50 cells for each cell line in one 

experiment each) positive for NF-H was also positive for HB9 or ISL1 or for HB9:GFP.  These 

striking differences are representative of 3 additional independent experiments, but should be 

more precisely quantified in future studies.  In combination with the previous data on functional 

and morphological maturation, we concluded that mitotic inhibition allowed us to observe a 

maturational switch from TuJ1 expressing MNs with immature morphology, to morphologically 

elaborate NF-H
+
 phenotypes.  And surprisingly, simply by eliminating dividing cells the fraction 

of motor neurons in culture rose nearly to purity. 

In conclusion our morphological, electrophysiological and molecular data demonstrate that ES-

derived motor neurons mature but that there is ongoing neurogenesis resulting in a mixed 
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population of mature and immature cells in aged cultures.  Interestingly this can be suppressed 

by EdU treatment and the maturational fraction can be observed independently. 

 

Characterization of ES-MN diversity in vitro 

ES-MNs express all motor column markers found in vivo 

We next asked if ES-MNs co-expressed the markers of motor column identity we had validated 

in vivo by staining cultures for the MMC marker LHX3 and the LMC/PGC marker FOXP1.  We 

found that most HB9
+
 or ISL1

+
 cells expressed neither columnar marker, 57% and 54% 

respectively; 27% and 25
 
% expressed only LHX3 respectively; 9% and 10% respectively 

expressed only FOXP1; and 7% and 8% respectively expressed both LHX3 and FOXP1 (Fig. 

3.11A-C, n=4 independent experiments).  Cells expressing HB9 or ISL1 and neither columnar 

marker match the expression profile for the human HMC in vivo and those expressing LHX3-

only match the expression profile of the MMC.  Cells expressing FOXP1-only could match the 

profile of the LMC or PGC, however, since high level FOXP1 expression was required to score a 

cell as positive for FOXP1, these cells are a better match for the LMC.  Cells with lower level 

FOXP1 (not included in the scored total fro FOXP1+) would then match the PGC (and would 

come out of the current putative HMC subset).  Cells expressing both LHX3 and FOXP1 do not 

match any defined motor columns, however they did match a group of MNs that we identified in 

the dorsal HOXA5
+
 brachial LMCM observed in vivo (Fig. 3.11D and Chapter 2).  Alternatively 

these cells may have confused or transitional identity. We concluded from these analyses that 

ES-MNs expressed marker combinations consistent with all in vivo motor column identities: 
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HMC, MMC, LMC, and PGC, and also with the novel LHX3
+
/FOXP1

+
 population.  We next 

turned to the issue of rostrocaudal identity. 

HOX protein expression in ES-MN 

To determine the rostrocaudal identity of ES-MNs we next tested the HOX protein antibodies 

which had shown specific rostrocaudal domains of expression in vivo (Chapter 2).  We found 

that many cells expressed HOXA5 whereas a much smaller number of cells expressed HOXC8 

or HOXD9 (Fig. 3.12A, B).  This suggested that most cells with a positively identifiable 

rostrocaudal identity were cervical.  When HOX gene expression gated on MNs (cells with high 

HB9 or ISL1) we found that about half of  ES-MNs expressed HOXA5 (45% of HB9
+
 and 50% 

of ISL1
+
 cells, n=4 independent experiments) with significantly smaller percentages which were 

HOXC8
+
 (3% of HB9

+
 and 13% of ISL1

+ 
respectively, n= 4 independent experiments, unequal 

variance rank sum test p=0.029 and t-test p=.008 respectively ) or HOXD9
+
 (3% of HB9

+ 
cells 

n= 3 independent experiments  and 3% of ISL1
+
 cells n=4 independent experiments, unequal 

variance rank sum test p=0.029 each) (Fig. 3.12C, D).  Interestingly the percent of MNs positive 

for each HOX gene was much higher than the percent of all cells, suggesting that HOX gene 

expression was somewhat selective to MNs as in vivo.  We also noted that ISL1
+
 cells had a 

larger fraction of HOXC8
+
 cells.  We concluded that under RA based differentiation conditions, 

ES-MNs adopted a predominantly HOXA5
+
 HOX phenotype, and based on our in vivo data this 

suggests a cervical or rostral brachial positional identity.  Interestingly, the group of motor 

neurons co-expressing FOXP1 and LHX3 was detected in cervical spinal cord expressing 

HOXA5 in vivo, suggesting that the minority of LHX3
+
/FOXP1

+
 ES-MNs might correspond to 

this newly identified motor neuron subtype.  A small percentage of ES-MNs did exhibit HOXC8 
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or HOXD9 expression, suggesting that small number of ES-MNs adopted caudal brachial or 

thoracic identity.   

Because MNs in vivo expressed only one of these three HOX genes depending on their 

rostrocaudal location, and mutually exclusive expression is a key outcome of repressive inter-

HOX interactions in mouse and chick, we asked if ES-MNs would conform to in vivo standards 

and express HOX proteins in a mutually exclusive manner.  When we triple stained cultures for a 

motor neuron marker (HB9 or ISL) and HOXA5 and HOXC8, or HOXA5 and HOXD9 we 

found that the majority (>96%) of ES-MNs expressing either HOX gene did so exclusively (Fig. 

3.12E, F).  We concluded from these results that ES-MNs adopt a range of coherent rostrocaudal 

phenotypes, strongly centered on the cervical spinal region. 

Cryopreserved ES-MN can be thawed for subsequent analyses 

Finally, because of the length of differentiation protocols, and the anticipated needs to revisit 

experiments, use differentiated motor neurons for either bulk screening purposes or 

transplantation experiments—either of which would be difficult to precisely time with respect to 

the end of differentiations—we next asked if it would be possible to cryopreserve motor neurons 

for subsequent live culture and analysis.  At the day of dissociation MNs were seeded as 

described and analyzed, while some were cryopreserved.  When these were later thawed, seeded 

as described for fresh MNs, and stained for motor neuron markers, we found that the matched 

cultures still contained robust populations of neurons and motor neurons (Fig. 3.13A).  The 

percentage of neurons was not significantly affected (n=3 independent experiments, t-test 

p=0.292) but the % HB9
+
 or %ISL1

+
 MNs of all cells were still robust but were significantly 

lower (n=5 independent experiments,  t-tests, p=0.028 and p=0.020 respectively) than the same 
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freshly dissociated cultures (Fig. 3.13B, C).  When we examined the expression of HOX proteins 

we also found a reduction in percentage, though this was not significant (HOXA5 fresh n=5 and 

frozen n=3 experiments, t-test p=0.131; HOXC8 fresh/frozen n=4 experiments, t-test p=0.846; 

and HOXD9 fresh n=3, frozen n=4, t-test p=0.296), and the same relative HOX distribution was 

preserved (Fig. 3.13D).  When we analyzed the motor column marker expression we found no 

change in %LHX3 of all cells (fresh n=2 and frozen n=3 experiments, t-test p=0.544) and a small 

but significant increase in %FOXP1 of all cells (n=5 experiments, t-test p=0.022) (Fig. 3.13E).  

We concluded from these experiments that while ES-MNs were sensitive to cryopreservation 

compared to all cells, they could in general be cryopreserved with limited reduction in survival 

or purity and limited effect on the distribution of rostrocaudal or columnar subtypes. 

Matured cells increase LMC marker FOXP1 expression in percent and quantity 

Having established the columnar identities among freshly dissociated ES-MNs we next asked if 

these identities changed during the maturation period described above using EdU treatment.    

Surprisingly, when EdU-treated matured cells were stained with FOXP1 and LHX3, we found 

that the vast majority (85%) of cells at 8 days after dissociation expressed extremely high levels 

of FOPX1 protein (Fig. 3.14).  This is in striking contrast to the 12% of ES-MNs which 

expressed FOXP1 at 2 days after dissociation.  Additionally the staining intensity for FOXP1 

was much brighter by eye at this later timepoint suggesting a large increase in expression level.  

One interpretation of this result is that only FOXP1
+
, putative LMC cells were able to survive 

under these conditions.  This interpretation does not explain the dramatic up-regulation in 

FOXP1 expression level for individual cells however. These data therefore better support the 

idea of maturational conversion to a nearly uniform FOXP1
+
 LMC phenotype, but they also do 

not contradict the idea that FOXP1/LMC cells have preferential survival under these conditions 
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compared to any other columnar subtype.  To determine if this column phenotype conversion or 

survival was a direct effect of anti-mitotic treatment, or the result of selective survival under 

these conditions, we next asked if we could devise non-EdU conditions under which to observe 

exclusively post-mitotic cells. 

 

 

FOXP1 cells show a distinctive morphological phenotype  

To ask if non-mitotically poisoned cells would show an increased percent and expression level of 

FOXP1, we used FACS to purify cells which expressed high levels of GFP immediately after 

dissociation.  These were then seeded at very low density on monolayers of commercially 

available human fetal spinal cord astrocytes and allowed to mature for 12 days.  When these 

cultures were fixed and stained 12 days later we again observed a percent of FOXP1 cells (72%),  

far higher than at day 31 and a complete lack of LHX3 staining (Fig. 3.15A, B). These cells 

again displayed extremely high intensity FOXP1 staining typical of matured ES-MN.  We 

concluded from these results that the increase in FOXP1 percentage and intensity was not a 

byproduct of selective resistance to mitotic poison. Because of the generally low survival 

following FACS these experiments did not however address whether the resulting increase in 

percentage of surviving FOXP1
+
/LMC  ES-MNs was a result of selective survival or a 

conversion of columnar phenotype. 

We next wanted to ask if FOXP1 cells would show a functional phenotype correlated with their 

expression profile.  Since these cultures were seeded at very low density we were able to perform 

automated neurite outgrowth morphometry analysis of individual cells.  In the few (n=10) fields 
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where cells were in direct contact, the field was excluded from quantitation.  We found that 

FOXP1
+
 (n=39) cells had trend increases in most aspects of neurite length and complexity, and 

the mean and median process length compared to FOXP1
-
 (n=20) cells were significantly larger 

(t-test, p<0.05, Fig. 3.15C).  This morphological phenotype was specific to neurite outgrowth 

since while both FOXP1
+
 and FOXP1

-
 cells showed large increases in cell soma area; there was 

no significant difference between the two populations. Since the total outgrowth of cells is 

traditionally a robust metric reflecting their morphological maturation, and FOXP1
+
 cells trended 

higher but not significantly so, we next examined the population distribution by cumulative 

percentage (Fig. 3.15D).  This analysis revealed both populations contained the same percent of 

smaller cells: 50% of cells had total outgrowth <0.91mm).  However The FOXP1
+
 cells 

contained many more cells with much larger total outgrowth.  This analysis shows that the 

divergence between FOXP1
+
 and FOXP1

–
 cells was mostly accounted for by a larger number of 

large (>0.1 mm: 43% vs. 20%) and very large (>1.8 mm: 20% vs. 5%) cells.  First we concluded 

that FOXP1
+
 putative LMC cells may exhibit a motor column-specific functional morphological 

phenotype in vitro consisting of more extensive neurite outgrowth in vitro.  Second we 

concluded from these pilot data that low density non-mitotic culture conditions are another 

promising assay in which to search for motor neuron subtype-specific phenotypes. 

ES-MNs show behavior on transplant consistent with functional subtype identities 

Finally we asked if human ES-MN would be competent to interpret in vivo cues directing motor 

axons projection patterns.  To do this we conducted a series of pilot experiments in which GFP
+
 

ES-MNs were transplanted to the chick neural tube at HH stage 15-16 and allowed to develop for 

2-3 days (Wichterle, Peljto et al. 2009; Peljto, Dasen et al. 2010).  We found that many ES-MNs 

were able to survive during this time period, some settled into ventral positions appropriate for 
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MNs and maintained expression of motor column markers FOXP1 or LHX3, and extended 

projections towards ventral roots (Fig. 3.16A, B).  We also found that transplanted ES-MNs were 

able to project axons very long distances (> 1.8 linear mm) out of the spinal cord, towards 

epaxial, hypaxial and limb muscles (Fig. 3.16C, D).  We also noted that the proportion of 

FOXP1
+
 ES-MNs in this context was again disproportionately high compared to pre-transplant 

cultures.  We conclude from these preliminary results that hES-MNs were able to respond to 

chick axon guidance cues in vivo and projected axons along in vivo paths muscle targets which 

were consistent with the columnar diversity of transplanted cells.  However, without backfilling 

projections and labeling for motor column markers, we have no evidence that individual ES-

MNs exhibited column-specific axonal pathfinding. 

 

Discussion 

Summary of findings 

We have defined 2 robust protocols for differentiating MNs from human ES-cells.  Both 

protocols are simple, robust, do not require manual intervention and utilize a homogenized 

dissociated cell endpoint.  This allowed us to perform the first systematic description of the 

diversity of ES-MNs.  ES-MNs are defined, like their in vivo counterparts, by expression of the 

motor neuron markers HB9 and or ISL and we found that the spectrum of expression matched 

that observed in vivo: a continuous range from 1:0 to 0:1.  We then showed that ES-MNs 

expressed motor column marker combinations consistent with all motor columns (MMC, HMC, 

LMC, and PGC) and describe their relative abundance.  The rostrocaudal diversity of ES-MNs 

on the other hand was restricted mostly to cervical and rostral brachial cells (HOXA5
+
) although 
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smaller populations of caudal brachial to rostral lumbar (HOXC8
+
 and HOXD9

+
) cells were 

generated as well.  We also show that ES-MNs displayed several phenotypes characteristic for 

motor neurons in vivo.  HOX genes were expressed in a mutually exclusive fashion, and column 

markers were expressed in a mostly exclusive fashion.  ES-MNs displayed electrophysiological 

features (spike frequency adaptation and rebound depolarizations) consistent with in vivo 

physiology and they could pursue a variety of axonal trajectories in the periphery consistent with 

their transcriptional diversity.  Finally, we show that ES-MNs undergo progressive and rapid 

maturation in vitro characterized by a conversion to mature neurofilament expression, extensive 

neurite outgrowth, and maturation of passive and active electrophysiological properties 

culminating in action potential spike trains.  Unexpectedly, during maturation in three different 

paradigms—EdU mitotic inhibition,  low density culture of FACS purified cells on astrocyte 

monolayer, and in chick transplant—the percentage of FOXP1
+
 (LMC) MNs was increased 

dramatically and LHX3 expression was lost. 

 

Simple, robust and quantitative protocols for ES-MN differentiation and phenotypic analysis 

Optimized protocols for ES-MN differentiation 

The Standard Protocol we describe relied upon facilitated spontaneous neural induction and 

proceeded at an in vivo-like developmental timecourse.  This direct comparison with in vivo 

timing should facilitate modeling developmental events with aim of controlling ES-MN subtype 

identities (Chapter 5).  The second, Accelerated Protocol increased the efficiency of neural 

induction using TGF-β signaling inhibitors and attained ~2 fold higher ES-MN differentiation 

efficiency in 10 fewer days than the Standard Protocol. 
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Efficiency of motor neuron induction 

In comparison to previously published results the pan-MN efficiency of our protocols (12% HB9 

for the Standard Protocol, and 25% HB9 for the Accelerated Protocol) are lower than most 

reports.   However, reported ES-MN differentiation efficiency is determined by different 

approaches.  The group of Su Chun Zhang was among the first three papers to describe human 

ES-MN differentiation, and this group consistently reports higher HB9% than our data, and 

generate what appear to be very high quality and bona fide motor neurons.  However their 

analysis of pan-MN differentiation efficiency (%HB9) is conducted when EBs are attached 

whole to substrate and some cells migrate out from clusters.  They report that HB9 rarely occurs 

outside of these clusters and HB9 was quantified by taking several fields surrounding, or perhaps 

within, several 3-dimensional masses of cells.  When we dissociated cells we are therefore 

killing some HB9
+
 motor neurons, and we are certainly looking at substantially different 

endpoint.   Based on their own statements, we can only assume that if their differentiations were 

quantified from dissociated re-seeded cell suspensions, their HB9 efficiency would be much 

lower. 

Additionally, as we have shown, HB9 is detected in a nearly smooth continuum from extremely 

bright, >10,000 grey levels above background, to 1 grey level above background.   When we 

assessed methods for quantifying HB9 we decided to restrict ourselves to scoring only the 

brightest and most unambiguously positive HB9-expressing cells in order to be certain that co-

expression analyses were restricted exclusively to MNs.  In the zero sum game of cell scoring, 

this decision minimized false positives, and as we have shown, necessarily increased the rate of 

false negatives, thereby depressing our %HB9 relative to less conservative approaches to cell 

scoring.  Most published reports are not explicit about cell scoring methods, but close 
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examination of published immunocytochemical results suggests that we have placed ourselves, 

as intended, at the most conservative end of the most conservative group.   Under our 

Accelerated Protocol however, our conservative estimate of motor neuron efficiency (25%) 

compares favorably with top echelon of reliable reports in the literature.  Most importantly we 

achieved our goal to develop robust differentiation protocol with high efficiency of motor neuron 

differentiation which would be amenable to rigorous quantitative analyses.   

Homogenized cultures 

Our decision to treat differentiations as a homogenous whole had direct implications for both the 

differentiation protocol we chose to develop and the endpoint, and was motivated by several 

factors.  First we elected not to perform any manual selection during the differentiation.  This 

undoubtedly retained some non-neural derivatives in Standard Protocol cultures.  Although in 

agreement with previous reports (Chambers, Fasano et al. 2009), these were minimized to 

apparently zero under the Accelerated Protocol. The ―hands-off‖ design of both of our protocols 

simplifies them and minimizes variability between experiments and operators.  Most importantly 

this decision was taken so that different populations of motor neurons were not inadvertently 

selected for or against at any stage.  This decision will become especially important when we 

turn to the topic of manipulating subtype identity by changing differentiation conditions in 

Chapter 5. 

Since few robust methods have been reported for purification of motor neurons, or efficiency of 

differentiation approaching 100%, all current ES-MN cultures are a mixed population of ES-

MNs and other cells.  The second implication of our commitment to homogeneity was therefore 

that our endpoint for analysis must assay the population as a homogenized whole.  We reasoned 
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that dissociating all EBs and re-seeding cells in a homogeneous mixture would provide the most 

rigorous approach to unbiased sampling of the population to quantitatively assess its constitution.  

One drawback of this approach is that we could not directly measure heterogeneity between EBs.  

Second this method engendered a non-zero level of cell death, of MNs and non-MN alike, due to 

trypsinization and physical trituration, which likely lowered our total efficiency of motor neuron 

induction.  An alternative approach such as acute fixation and intracellular staining of dissociated 

cells could provide an interesting window into the changes introduced by EB dissociation and 

reseeding in the future.  The motivation for this decision was four-fold.  First, when we later 

attempt to manipulate rostrocaudal identity by adding posterior patterning factors (Chapter 5) we 

did not want to bias results by excluding any EBs or cell types affected by these treatments.  

Second, we anticipated that defining and studying more mature phenotypes of motor neurons and 

motor neuron subtypes, especially disease related or survival phenotypes, would be greatly 

simplified by assaying a homogenous population which started from the same state of individual 

single cells, rather than cells emerging from distinct and variable 3-dimensional EB matrices. 

Third, in order to study motor neuron subtype phenotypes, we sought render any intercellular 

effects homogenously distributed throughout the culture.  Fourth, we wanted to be able to 

cryopreserve motor neurons for future phenotypic or screening studies.  Our short term and 

mature cultures were completely homogeneous across culture surfaces and the variability 

between fields in a sample was therefore extremely low.  We conclude that our protocols meet 

the above requirements and using very strict and conservative quantification show respectable 

and highly reproducible motor neuron yields. 

 

ES-MN subtype diversity 
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Precise characterization of pan-MN markers 

We have provided here the first detailed and quantitative treatment of co-expression of the pan-

MN transcription factor markers HB9 and ISL, which ranged continuously from an expression 

ration of 1:0 to 0:1.  Our data confirms the widespread co-expression of these markers in many 

cells, which has been reported previously (Li, Du et al. 2005; Di Giorgio, Carrasco et al. 2007; 

Li, Hu et al. 2008).  We substantiate these reports as well as contribute previously undocumented 

detail of the wide spectrum of expression levels which constitute this overlap.  The extent of 

apparent co-expression varies inversely with the strictness of thresholding used to score cells as 

positive for either marker.  Therefore our reported % of co-expressing cells does not include 

many cells which express low levels of the other marker.  However our analysis points to the real 

existence of many ES-MNs which are completely devoid of one or the other pan-MN marker.  

This finding matches the in vivo staining we show for human ES-MN in vivo in Chapter 2.  The 

in vivo suggested interpretations for the identity of HB9 and ISL1 expressed cells as well.  The 

in vivo cognate of any cell expressing appreciable levels both HB9 and ISL1 cannot be other 

than a spinal motor neuron.  Cells which express HB9 predominantly could match a minority of 

MNs in the MMC or many MNs in the LMCL, especially at lumbar levels.  While we observed 

few HB9
+
 interneurons in vivo, these are known to exist in other species at other timepoints, so it 

is formally possible that some in vitro generated HB9
+
 ISL1

-
 cells correspond to these.  Given 

the approximate stage of these cultures this interpretation is unlikely.  The ISL1
+
HB9

-
 cells could 

match a small subset of low/no-HB9 MMC, a slightly larger subset of HMC, many LMCM, 

especially at lumbar levels, or any PGC motor neuron.   However we identified three other in 

vivo ISL1
+
HB9

-
 cellular identities in human samples in vivo, which are also found in rodent: 

scattered ventral ISL1
+
HB9

-
 cells, a population of ISL1

+
HB9

-
 dorsal (presumably interneurons) 
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at all levels of the spinal cord, as well as dorsal root ganglion cells.  Given the high level of SHH 

signaling used in our protocols we predict that ISL1
+
HB9

-
 cells are unlikely to be dorsal 

interneurons and less likely to be neural crest-derived DRG neurons, and therefore that most of 

the ISL1
+
HB9

-
 cells are ventral motor neurons, however additional markers would be needed to 

address this proposition.   Choline Acetyltransferase (ChAT) would be a good marker to support 

motor neuron identity for HB9- or ISL1-only cells, however congruent with previous reports that 

ChAT is not expressed by ES-MNs until 6-8 weeks in vitro (Li, Du et al. 2005) , we observed no 

robust staining for this enzyme, although qPCR did indicate transcript was expressed (data not 

shown).  

When we examined the expression of GFP driven by the HB9 promoter in transgenic ES-MNs 

we found that most GFP
+
 cells expressed either HB9 or ISL1 (70%) and the vast majority (80%) 

expressed high levels of one or the other.  We also observed that many of the remaining 20% of 

cells expressed low levels of one or both motor neuron markers, but due to our conservative 

approach to thresholding were not included in this figure.  Our data supports previous 

publications using this reporter line, showing that its GFP expression is MN-specific, but shows 

that some cells express very little of one or both pan-MN markers. Given the distribution of HB9 

and ISL1 both in vivo and in wild type cells, the expression pattern of this reporter appears more 

faithful to pan-MN identity, than it is to strictly HB9 protein expression per se.  Furthermore the 

high level of LHX3 expression in our cultures supports the likelihood of this idea since LHX3 

and ISL1 are known to act directly on the HB9 promoter (in concert with NGN2, which we did 

not measure).  

In summary we have provided the most specific and systematic description, informed by in vivo 

expression patterns, of what ES-derived neurons may be safely or speculatively called ―MNs‖.  
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HB9 is the much more selective marker in vivo therefore the most conservative approach would 

denominate almost any HB9
+
 neuron as a motor neuron with high confidence.  Of these most 

should express high or intermediate levels of ISL1, while some should have low or no ISL1 

expression, especially if LMC cell types have been induced.  ISL1
+
 cells are also likely MNs 

under strong ventralizing protocols; again most but not all of these should co-express some level 

of HB9.  Finally, especially if LMC subtypes have been induced, some ES-MNs should express 

high ISL1 and low or no HB9.  Therefore from our data we suggest that some or all of these 

ISL1-only cells should be considered ―MNs‖ but without additional markers it is not possible to 

positively determine what percent. 

 

Quantitation of motor neuron column markers 

We also provide a quantitative description of the motor column diversity present in hES-MNs 

using the LMC/PGC and MMC specific markers FOXP1 and LHX3.  This is the first 

quantitative description which is strictly gated by validated markers of pan-MN identity, HB9 or 

ISL1.  Most ES-MNs expressed neither marker suggesting an HMC phenotype, while many 

expressed LHX3 suggesting an MMC phenotype, and fewer still expressed FOXP1 at the high 

level required for scoring, suggesting an LMC phenotype.  The prevalence of LHX3 expressing 

cells matches with other anecdotal reports showing LHX3 expression in ES-MN cultures as well 

as with the evidence of overwhelming LHX3 expression in mouse RA-based ES-MN 

differentiation (Wichterle, Lieberam et al. 2002; Soundararajan, Miles et al. 2006; Peljto, Dasen 

et al. 2010).  Only one previous  reports has shown FOXP1 expression in human neurons 

(putative LMC), and also shown FOXP1-LHX3- neurons (putative HMC) (Patani, Hollins et al. 
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2011), however neither of these markers were gated by either motor neuron transcription factor 

marker, but rather by non-phosphorylated neurofilament (SMI-32).  Furthermore these authors 

do not undertake to demonstrate the MN-specificity of SMI-32 in vitro.  On the other hand we 

have observed (data not shown and corroborated by Bethany Kerner, unpublished observations) 

has found that SMI-32 reactivity in ES-MN containing cultures is not selective for cells 

expressing HB9 or ISL1.  

Since we stained for LHX3 and FOXP1 in separate channels, as opposed to same species same 

fluorescent channel (Patani, Hollins et al. 2011), we could document 2 additional features not 

previously appreciated in any report on human cells.  First, these markers were expressed in most 

cells exclusively.  This suggests that the columnar phenotypes within individual cells are 

molecularly coherent.  Second we identified a subset of cells expressing both column markers in 

vitro.  This molecular phenotype has no cognate in mouse in vivo.  We considered two 

possibilities which could account for this hybrid identity.  First we did identify a hybrid 

population expressing this combination of markers in human in vivo.  This population was 

located in the HOXA5
+
 rostral brachial spinal cord, which is also the identity of most hES-MNs 

in our cultures.  Therefore these LHX3
+
FOXP1

+
 are a likely match the molecular profile of this 

newly identified population in terms of both HOX protein and column marker expression.  

However we did not directly co-stain LHX3, FOXP1, HB9 or ISL, and HOXA5 simultaneously, 

which could directly test the idea of an equivalence between our LHX3/FOXP1 coexpressing 

cells and those found in vivo.  Another possible interpretation of this molecular profile is that 

these hybrid cells have a confused or transient molecular identity.  Since LHX3 is a known 

determinant of pan-MN identity, it is possible that in vitro its down-regulation in non-MMC cells 

is delayed.  Delayed down-regulation of LHX3 has indeed been observed for mouse ES-MNs 
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(personal communication Hynek Wichterle).  And when more caudal conditions generated 

FOXP1
+
 cells from mouse ES-MN, most FOXP1

+
 cells were LHX3

-
, however a subset of cells 

was positive for both markers ((Peljto, Dasen et al. 2010) and M.W. Amoroso personal 

communication of unpublished observations). 

The broad diversity of MN-subtypes we describe has important implications for future studies on 

hES-MNs.  Because ES-MNs are a mixed population studies directed at defining motor neuron 

phenotypes, normal or diseased, will need to carefully address the possibility that different motor 

neuron subtypes may show different responses based on columnar and or rostrocaudal identity.  

Because of the consistencies between our results and protocols and other reports, the map of 

potential identities we provide is likely to be relevant for most hES-MN differentiations using 

RA for caudalization.  Whether or not the precise percentages are similar in our study or others, 

the markers we describe can be used to identify many subpopulations, and will therefore enable 

investigation of their specific properties.  Indeed when we began to look for such behaviors we 

found that LMC-phenotype MNs showed enhanced outgrowth characteristics.  Future studies 

directed at defining disease related phenotypes may benefit from this approach as well.  For 

example, will LMC subtype ES-MNs show enhanced or accelerated sensitivity to ALS 

genotypes or pathogenic triggers?  The ability to define LMC vs. non-LMC ES-MNs in vitro 

using molecular markers lays the technical foundation for asking this question. 

Precise characterization of rostrocaudal HOX profile 

Finally we have provided the first quantitative description of the rostrocaudal identity of hES-

MNs which is gated directly by motor neuron markers.  Previous work has not quantified the 

percent of hES-MNs expressing one or multiple HOX markers, and usually not reported HOX 
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expression in the context of an independent marker of pan-MN identity.  Our data show a strong 

cervical bias (~50%HOXA5
+
) but also trace populations of HOXC8 and HOXD9 expressing ES-

MNs.  The predominance of HOXA5 expression squares with evidence from developmental 

models systems showing direct action of RA on anterior HOX gene promoters.  Other reports 

have documented some HOXA5 expressing hES-MNs (Elkabetz, Panagiotakos et al. 2008).   

The presence of small but identifiable populations of HOXC8 and HOXD9 positive hES-MNs is 

at odds with the largely cervical nature of mouse ES-MN expressing HOXC4 and HOXA5 but 

lacking HOXC8 or HOXD9 positive MNs (Wichterle, Lieberam et al. 2002; Soundararajan, 

Miles et al. 2006; Peljto, Dasen et al. 2010).  This suggests that human ES-MN differentiations 

may develop some endogenous caudalizing activities during differentiation, or that human 

mechanisms of development are more open to caudal identity.  Our data fits with reports of more 

caudal HOX gene expression, HOXC6, HOXC8, HOXC9, HOXC10 in hES-MN containing 

cultures (Li, Du et al. 2005; Lee, Shamy et al. 2007; Patani, Hollins et al. 2011).  Although 

HOXC8 expression was not gated by a pan-MN marker in any report, the impressively high and 

believable % of HB9 expression in at least one publication (Li, Du et al. 2005) suggests that this 

HOXC8 expression may indeed have been in motor neurons.  Another report indicated even 

more caudal HOX genes HOXC9 and HOXC10, but this was without RA and in the presence of 

FGF and will be discussed in Chapter 5 (Patani, Hollins et al. 2011).  Gene expression studies on 

hES-MN-enriched vs. control cultures have also show induction of preferentially rostral HOX 

genes HOX1-6, which fits very well with the rostrally biased profile we show here (Lee, Shamy 

et al. 2007). 

While we have presented the first systematic account of rostrocaudal identity in ES-MNs, over 

40% of ES-MNs failed to stain for one of three confirmed markers available.  We speculate that 
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based on the rostral HOX activity of RA that many of these cells express HOX genes found in 

the vertebrate hindbrain, HOX1-4.  Our studies of gene expression also indicated the presence of 

HOXC6 (see Chapter 5) which fits with the identification of FOXP1 cells since evidence from 

chick and mouse shows HOXC6 is  required for brachial LMC identity.  A more comprehensive 

description of the rostrocaudal profile at the level of individual motor neurons will require the 

generation of new reagents to specifically detect human HOX proteins and mRNA by in situ in 

vivo and in hES-MNs in vitro. 

 

Maturational phenotypes 

Timecourse of physiological maturation and emergence of motor neuron selective characteristics 

We described for the first time the rapid timecourse under which ES-MNs acquire 

electrophysiological activity.  The characteristic of repeated action potential firing matches many 

previous studies done on ES-MNs but most of these were performed several weeks or months 

later than in this report.  Therefore our findings show that physiological maturity is attained by 

ES-MN earlier than has been previously appreciated and show the rapid and progressive nature 

of this maturation.  We also demonstrate two features which are characteristic for motor neuron 

firing properties in vivo.  Rebound action potentials are associated with rhythmic locomotor 

activity and spike frequency adaptation in AP trains is an optimal electrical strategy for inducing 

muscle contraction.  This report is therefore the first description of physiological properties 

beyond pan-neuronal characteristics, and therefore provides strong evidence of functional 

maturation of ES-MNs into cells indistinguishable from in vivo MNs. 
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The identification of MN-selective electrophysiological phenotypes and the description of 

mature physiological characteristics have important implications for studying ALS pathology in 

vitro.  First, since glutamate excitotoxicity has been identified as a potential mechanism of 

degeneration, it is important to rapidly achieve physiologically active motor neurons in vitro.  

Second, circuit and firing properties—loss of inhibition and relative vulnerability of fast vs. slow 

twitch motor neurons—selective to motor neurons have been implicated in ALS as well.  ES-

MNs have now been shown to adopt several in vivo motor neuron functional firing properties 

which increase the likelihood of modeling disease which is associated with connectivity and 

electrical activity. 

Molecular changes in matured ES-MNs 

Coincident with electrophysiological maturation we report progressive maturation in 

morphology and expression of the NF-H subunits.  These characteristics have not been 

investigated in previous studies, and add to our electrophysiological results in suggesting that 

ES-MNs rapidly acquire more mature features.  Surprisingly in both FACS and mitotic inhibition 

experiments we saw a dramatic increase in the relative proportion of FOXP1
+
 ES-MNs at later 

timepoints.  This observation could be explained by either a selective survival advantage of 

FOXP1
+
 vs. FOXP1

-
 cells or a conversion of columnar identity in favor of LMC in older cells.  

Our data does not strongly support either possibility preferentially.  It is also possible that at later 

timepoints FOXP1 becomes a less specific marker for LMC identity, although there is no 

evidence for this in mouse or human to date.  The only other report showing FOXP1 staining in 

hES-MN containing cultures examined cells after 9 weeks of differentiation (Patani, Hollins et 

al. 2011).  Again, the expression was not gated for a validated motor neuron marker, but the 
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overall percent of FOXP1 expression, especially in the context of low HB9 efficiency, was 

extremely low.  Future studies are needed to address this point in detail. 

We also observed that LHX3 expression was extinguished in mature cultures.  Whether this is 

explained by late down-regulation of pan-MN-progenitor LHX3 expression, the loss of 

LHX3
+
/MMC cells, or both is not addressed by the scope of our studies.  HB9 and HB9-driven 

GFP expression were also down-regulated in our hands at this timepoint.  The down-regulation 

of HB9 supports a previous report in older ES-MN cultures (Lee, Shamy et al. 2007), however, 

the timecourse of HB9 and ISL1 down-regulation has not been carefully defined in vivo in 

mouse and not addressed in human.  These findings suggest that early pan-MN markers may not 

retain their relevance as motor neurons mature and this in turn has implications for studying ES-

MNs for extended periods in vitro 

One important unresolved question which follows from these studies is what underpins the 

dramatic increase in the number of FOXP1
+
 cells?  As discussed we do not have experimental 

grounds to speculate on the relative contributions of FOXP1
+
/LMC-specific survival vs. a 

developmental conversion from FOXP1
-
 to FOXP1

+
 phenotypes.  Future studies should directly 

address this issue since it has important implications for the utility of this system and may in 

itself constitute an interesting LMC vs. MMC/HMC phenotype. 

Morphological maturation of ES-MNs 

The progressive elaboration of large and complex neurites we describe for ES-MNs has 

implications for modeling ALS in vitro.  The extraordinary size of MNs, specifically their 

extremely long axons has been suggested as one characteristic leading to their selective 

vulnerability in ALS.  Axonal dieback is one of the first clinical features of disease and suggests 
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a pathology which may also begin in the axon or neuromuscular junction.  Deficiencies in axonal 

transport and accumulations of proteins and varicosities are also hallmarks of disease and were 

speculated to trigger the degeneration.  Finally the energy demands of large cells and 

mitochondrial dysfunction have been identified as potentially relevant players (Boillee, Vande 

Velde et al. 2006).  We present methods to culture ES-MNs for extended time period, to very 

large sizes with increasingly complex and mature morphologies, which provides a novel and 

appropriate cellular substrate for testing these hypotheses. 

 

Future Directions 

Searching for functional and subtype specific phenotypes 

Data from mouse ES-MN studies argues that molecular motor column phenotypes are strong 

predictors of functional motor column phenotypes.  When mouse ES-MNs were 

xenotransplanted to the chick neural tube they showed significant preference for column-

appropriate settling position dependent on whether they had a MMC (LHX3
+
) or LMC 

(FOXP1
+
) transcriptional identity (Peljto, Dasen et al. 2010).  MMC or LMC transcriptional 

identities also resulted  in column-appropriate axial vs. limb muscle axonal trajectories 

(Soundararajan, Miles et al. 2006; Peljto, Dasen et al. 2010).   

Will human ES-MN‘s with LMC vs. MMC molecular marker expression shown functional 

motor column-specific phenotypes?  To begin to answer this question we conducted several pilot 

experiments to look for functional motor column-specific phenotypes.  First, in a preliminary 

study we found that FOXP1
+
 cells showed a larger total outgrowth than non-FOXP1

+
 cells after 

FACS sorting and low density culture.  While preliminary this the first in vitro evidence to date 
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of a human motor neuron phenotype which is potentially specific to motor neuron subtype.  

Second, we observed a dramatic increase in the relative abundance of FOXP1 cells in this assay, 

as well as when mitotic cells were killed by EdU.  Third, when ES-MNs were transplanted to the 

chick, the incidence of FOXP1
+
 cells was again higher than in the starting population. The 

relative abundance of FOXP1 vs. non-FOXP1 cells which we observed in these three different 

paradigms may constitute a column-specific phenotype.  However we cannot say if this was the 

result of selective survival of FOXP1
+
 cells, or initially-FOXP1

-
 cells turning on FOXP1 

expression.  It will be of great interest to determine the mechanism underlying these results. 

Our transplantation also showed many limb-projecting ES-MN axons.  In the future it will be 

crucial to use backfills to establish whether FOXP1
+
 putative LMC ES-MNs preferentially 

interpret chick axon guidance cues to seek limb muscle targets. 

Motor pools 

Many interesting aspect of motor neuron biology emerge at the level of the motor pool: the group 

of motor neurons dedicated to synapse on a particular muscle.  These include later stage axon 

pathfinding and arborization, gene expression changes in MNs, competence to selectively engage 

circuit afferents (Dalla Torre di Sanguinetto, Dasen et al. 2008), as well as disease associated 

survival differences.  For any study directed at motor pool identity or phenotype one must ask 

first if motor pool identities will emerge in human ES-MNs in vitro.  This final level of motor 

neuron specificity was not addressed in these studies.  However experience from mouse ES-MN 

differentiation predicts by analogy that they will.  When mouse ES-MNs were specified to 

express HOXC8 and the LMC marker FOXP1, and provided with GDNF, it appeared that a 

cutaneous maximus motor pool identity emerged: PEA3
+
 HOXC8

+
 cells expressed ISL1 (LMCM 
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marker) and not LHX1 (LMCL marker) (Peljto, Dasen et al. 2010).  Moreover, this 

transcriptional profile appear to be functional since PEA3 expression was dependent on 

exogenously added GDNF as it is in vivo.  Motor pool identity emerges within the context of 

established columnar identity, which in turn depends upon rostrocaudal identity.  Therefore our 

efforts to precisely identify the rostrocaudal profile of ES-MNs were a necessary prerequisite to 

an informed search for motor pool identities and phenotypes in vitro.  For example, phrenic 

motor neurons which innervate the diaphragm are generated in the HOXA5
+
 region of mouse the 

spinal cord.  This population does not show a differential response to ALS; however its function 

is crucial to patient survival.  Since we have established that the rostrocaudal identity of hES-

MNs is dominantly focused on this HOX region, it is therefore reasonable to begin looking for 

phrenic motor pool motor neurons in these cultures, or in matured cultures derived from them.  If 

phrenic motor neurons could be defined from these cultures in vitro, their specific survival 

requirements, naïve or in the context of ALS genotypes, could be tested in vitro.  In turn this 

could lead to the development of new cell replacement strategies for reinnervation of diaphragm 

in ALS patients or for discovery of new drug candidates. 

Two motor pools show a unique resilience to ALS degeneration: the oculomotor neurons of 

cranial motor nucleus III, and the MNs of Onuf's nucleus in the sacral spinal cord which 

innervate sphincters subserving urinary continence and male sexual functions.  Because of the 

rostral bias to defined rostrocaudal subtypes in our system it is unlikely that progenitors of 

Onuf‘s nucleus MNs are present in our cultures.  However since our cultures are rostrally biased, 

and 50% HOX-, it is not impossible that oculomotor motor neurons were generated, but we find 

it unlikely since different patterning cues are active in midbrain where they reside.  However it 
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would be of great interest to pursue strategies designed to generate these disease refractory motor 

neurons.  

Because of the scalability and reproducibility of the ES-MN differentiation protocols we have 

described, and the precisely defined mixture of subtypes generated, these populations may be a 

propitious substrate for drug screens to identify ALS pathologic pathways and drug targets 

within them. 
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Figure 3.1
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Figure 3.1. Establishing a Standard Protocol for ES-MN differentiation  

(A) Schematic of motor neuron differentiation protocol showing drugs, morphogens, and growth 

factor treatments. (B) Phase timecourse of ESC and EB morphology: day 0 typical ES colony 

morphology; day 6 EBs are small, uniform spheres; day 9 smoothness typical of neural spheres; 

day 24 large EBs showing high purity closely packed neural rosettes, scale bars 436 µm. (C) Day 

26 fixed, whole-mount stained EB, 10x Apotome optical section shows some differentiated 

neurons (NCAM) and abundant neural precursors (Nestin), scale bar  100 µm. (D) qPCR for 

motor neuron lineage genes OLIG2, ISL1, and HB9, % of maximum value/gene normalized to 

GAPDH (mean ±SEM), n=4 independent experiments.  (E) Day 30 fixed , whole-mount EB, 

with abundant HB9:GFP+ ES-MNs 10x Apotome optical section, scale same as (D). (F) 

Representative staining of fixed EB cryosections shows ordered progression of MN-lineage 

protein expression.  
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Figure 3.2 
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Figure 3.2. ES-MNs are defined by expression of HB9 and/or ISL1 at varying ratios  

(A) Day 33 cultures stained for HB9, ISL1 (B) % of all DAPI nuclei with high intensity staining 

for HB9, HB9 and ISL1, or ISL1 (mean ±SEM, n=5 independent experiments), ES-MNs exhibit 

a balanced, partially overlapping profile. (C-D) The wide range of mean HB9 fluorescence 

intensity grey levels (gl) per nucleus generates a smooth curve when (C) ranked and (D) includes 

high and low expressing cells (top, grey levels at left); typical Metamorph scoring result in 

subfield from (A) using a typical conservative 1600 gl above background threshold shows some 

cells scored HB9+ have high intensity, some less so, and some low expressers are scored DAPI-

only (grey), though most DAPI-only have no obvious HB9 signal.  (E) Mean HB9 and ISL1 

intensity (±SD) for the ~950 of 3500 cells ranked in (C) which were HB9+ and/or ISL1+ shows 

an equally broad range of intensities for both markers within ―ES-MN‖ population which is 

similar to the profile for MNs in vivo (Fig. 2.5).  Colored lines indicate background intensity 

ISL1 (red) and HB9 (green). (F) HB9+ and ISL1+ cells are neurons by morphology and TuJ1 

staining. (G) 65% of all cells in culture were neurons and 95% of HB9+ cells were neurons, 

(mean ±SEM, n=5 independent experiments).  
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Figure 3.3
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Figure 3.3. Optimization of a Standard Protocol for ES-MN differentiation  

(A) Single cell seeding and Noggin enhance motor neuron differentiation efficiency.  % HB9+ of 

total cells, (mean of 8 fields/condition ±SEM, n=1 experiment) shows Standard Protocol (single 

cell start) protocol is the most efficient tested when supported by Noggin.  Higher density is 

more efficient and much more efficient than traditional EB protocol even with manual selection 

(day 17-28) for rosettes; single-cell start densities tested: 0.1, 0.2, 0.4M cells/ml. (B) Wnt3a-

conditioned medium(CM) had no significant effect on neuronal differentiation, % TuJ1 of total 

cells (red), or the neuronal identity of HB9+ cells, %TuJ1 of HB9+ cells (yellow) (mean ±SEM 

n=4 independent experiments, t-tests, p=0.66 and 0.79 respectively.  (C) Wnt3a-CM also had no 

effect of on the efficiency of motor neuron differentiation % HB9 (green) or %ISL1 (blue) of 

total cells, (mean ±SEM,  n=4 independent experiments), t-tests p=0.93 and 0.37 respectively.  
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Figure 3.4 
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Figure 3.4. Defining an Accelerated Protocol for high efficiency ES-MN differentiation 

(A) Schematic of Accelerated protocol for the differentiation of ES-MNs showing drugs, 

morphogens, growth factors, and time. (B-C)  EBs were homogeneous and smooth when small 

(day 4) and after expansion (day15) for both (B) RUES1 and (C) HBG1 (HB9:GFP) ES lines, 4x 

phase-2 (D-E) Accelerated protocol generates ES-MNs at high purity by day 23 from both 

RUES1, 27% HB9+ or ISL1+ of total cells (mean ±SEM, n=3 independent experiments), and 

HBG1, 40% (n=1 experiment), with normal partial overlap of these markers. (F) Accelerated 

Protocol can be used to optimize reagents and test differentiation conditions: dose response curve 

for recombinant SHH protein shows activity plateau at 800ng/ml, no MNs with negative control 

or 200ng/ml, n= 1 experiment, mean of 8 fields/condition. (G-H) HBG1 HB9:GFP reporter 

retains high fidelity to endogenous HB9 expression under this protocol (70% of GFP+ cells 

express HB9 or express ISL1, while 80% express one or the other motor neuron marker, n=1 

experiment).  
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Figure 3.5 
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Figure 3.5.  ES-MNs progressively acquire action potential firing capacity 

(A) Representative image of day 36 HBG47 BAC-HB9:GFP human ESMNs showing mature 

neuronal morphology and coexpression of GFP with motor neuron marker HB9 and ISL1, scale 

bar  50 µm (B,D,F) Current-clamp voltage recordings of representative cells show GFP+ ES-MN 

action potential spiking increases consistently over 13 days,  bottom traces show injected 

currents.  (C,E,G) all recorded cells were injected with biocytin and example cells and GFP+ 

status was confirmed by post-staining.  Scale bars 50 m.  
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Figure 3.6 

 

 

 

 

 

 



156 
 

 

Figure 3.6. Progressive maturation in passive and active ES-MN membrane properties 

(A) Input resistance decreased over time in vitro (n = 28, P < 0.01, one-way ANOVA).  P < 

0.01, Tukey‘s post hoc test.  (B) Resting membrane potential and (C) rheobase did not change (n 

= 27 and 29, respectively).  Rheobase was defined as the current step magnitude required to 

activate the minimum number of action potentials.  Positive current steps were in 5 pA 

increments to distinguish small difference in rheobase among individual neurons.  (D) Half-

width of action potentials (APs), measured at 50% of peak amplitude at rheobase, changed over 

time in vitro (n = 26, P < 0.001, one-way ANOVA).  P < 0.01,  P < 0.001, Tukey‘s post 

hoc test.  (E) hESMNs at 43 days (n= 8) appeared to be divided into two distinct populations: 

neurons having small rheobase with narrow APs, and neurons having large rheobase with wide 

APs.  (F) Maximum frequency of APs after current injection increased over time in vitro (n = 28, 

P < 0.05, one-way ANOVA).  P < 0.05, Tukey‘s post hoc test.  Dots shows frequency values 

for individual neurons.  The numbers in parenthesis indicate the number of neurons used for 

analysis taken from 22 dishes in total.  
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Figure 3.7 
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Figure 3.7. ES-MNs display two characteristic features of in vivo motor neuron firing 

ES-MNs displayed spike frequency adaptation (SFA), and rebound action potentials (RAPs).  

(A) Inter spike intervals (ISIs) after positive current injection increased gradually during 1 sec 

steps. ISIs were normalized to the first ISI.  Inset shows APs (upper) and injected currents 

(bottom). APs between which 'a' and 'b' ISI values were measure are indicated in the inset as a 

and b, respectively.  (B) SFA ratio, calculated as the maximum value of normalized ISIs after 

any amplitude of positive current injection, increased developmentally (n = 8, R = 0.73, P < 0.05, 

Pearson‘s linear regression).  (C) RAPs were observed in a subset of hESMNs .  Upper trace 

shows voltage change after negative current injection.  Bottom trace shows injected negative 

current steps.  RAP follows the return of current to baseline after the hyperpolarizing step.  (D) 

Incidence of RAPs in hESMNs at 4 different ages (n = 29).  Negative current steps with 5 pA 

increments (to at least 20 pA) were injected while checking for RAPs.  
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Figure 3.8  

 

Figure 3.8.  EdU inhibits motor neurogenesis 

Fewer than 10% of ES-MNs (%Edu of GFP, red) costained for EdU; scattered flat non-neuronal 

cells with very large (>60 µm diameter) nuclei were internal positive control for EdU labeling.  

Total GFP+ ES-MN numbers declined steadily (323, 312, 135, and 105 cells at day 33, 36, 40, 

and 45 respectively), % of day 33 (blue), in stark contrast to the much high numbers in parallel 

cultures without EdU (362, 405, 300, 265 cells at days 33, 36, 40, and 45 respectively).  This 

accords with unpublished data Nuno Lamas and Bethany Kerner, Project ALS lab, however they 

report larger increases in cell numbers rather than the relatively steady state that we observed.  
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Figure 3.9 
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Figure 3.9.  Progressive morphological maturation of ES-MNs  

(A) Representative images of HBG47 BAC-HB9: GFP+ ES-MNs cultured with EdU and stained 

for GFP (green) and HB9 (red) show progressive elaboration of increasingly complex projections 

between day 33 and 45. (B) Metamorph automated neurite tracing was performed on all GFP+ 

neurons on two coverslips (n=323-105 cells/timepoint, n=1 experiment).  Camera lucida traces 

from the first 10 fields encountered show qualitative increases in outgrowth and complexity. (C) 

Mean cell body size, neurite outgrowth length and complexity increased over the timecourse 

(mean % of maximum value/metric +/-SEM, n=323, 312, 135, and 105 cells at days 33, 36, 40, 

and 45, respectively, in one experiment).  We confirmed zero values for the >100 cells counted 

by hemacytometer after dissociation at day 31 for number of neurites, branches, and total 

outgrowth, therefore these metrics include a day31 nominal 0 value (D-E) Total mm of neurite 

outgrowth (D) and um2 soma area (E) increased significantly between day 33 and 45 (mean/cell) 

Mann-Whitney Rank Sum Test P < 0.001, black line is median, grey boxes 25th-75th 

percentiles, whisker bars  10th-90th percentiles, and outliers individual hashes. (F-G) Total 

neurite outgrowth per cell (F) and cell soma area (G) Population histograms, normalized to 100 

cells, for day 33 and day 45, revealed many cells with only modest increases,  but a population of 

cells with much  larger outgrowth and soma area.  Backfilled cells from physiology experiments 

(Fig. 3.5) which were successfully recovered for staining (n=6), were subjected to morphometry 

and plotted on population histogram in the appropriate bins showing that physiology studies 

were performed on cells with broad range of soma areas but not in the larger component for 

outgrowth (day 33, blue; day 45, red).  
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Figure 3.10

 

 

Figure 3.10.  ES-MNs rapidly acquire mature NF-H expression profile 

Accelerated Protocol ES-MNs  HBG1(HB9:GFP) (top) or RUES1 (bottom, HB9/ISL) seeded at 

day 21 at high density (0.5M/12mm coverslip) and fixed two days later (day 2)  showed 

moderate intensity NF-H staining in only a little over half of cells, however ES-MNs seeded at 

low density (0.05M/12mm coverslip) , incubated with EdU for  8 days with a 2/3 media change 

at day 4 and then fixed, all showed high intensity NF-H staining in all observed cells.  With 

mitotic inhibition ES-MN purity was greatly increased: almost all (>80%) of NF-H+ cells were 

GFP+ or HB9+/ISL1+. This clear qualitative result was consistent across 3 independent 

experiments, n>100 cells examined/ experiment at day8. Scale bar 100 µm.  



163 
 

 

Figure 3.11 

 

Figure 3.11.  ES-MNs express marker combinations matching all in vivo motor columns  

(A) Standard Protocol RUES1 ES-MN differentiations were stained for ISL1 (or HB9, not 

shown), FOXP1, and LHX3 to determine the presence and frequency of putative motor column 

subtypes. (B-C) ISL1+ (B) or HB9+ (C) cells  which showed quantitatively high intensity 

staining for FOXP1 only, LHX3 only, neither, or both, correspond to the expression profiles of 

human LMC, MMC, HMC, and the novel HOXA5+ brachial pool shown in Fig. 2.6 and again 

here.  (mean ±SEM, n=4 independent experiments).  
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Figure 3.12 
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Figure 3.12.  ES-MNS express predominantly HOXA5 and exclude HOX-protein 

coexpression 

(A) Day 32 Standard Protocol RUES1 ES-MNs were stained for HB9 (A, red) or ISL1 (B, red) 

and HOXA5 (green), HOXC8 (green), or HOXD9 (green) to profile their rostrocaudal identities, 

scale bar 50 µm.  Both HB9 (C) and ISL1 (D) MNs were predominantly HOXA5+ (45% and 

50% respectively), and only small percentages coexpressed HOXC8 (3% and 13% respectively) 

or HOXD9 (3% and 3% respectively), indicating a dominantly cervical identity. (mean ±SEM, 

n=4 except n=3 for HB9 HOXA5 HOXD9 stain.  Significant differences were found between the 

% of HB9+ or ISL+ cells stained for HOXA5 vs. either HOXC8 or HOXD9; and also the % of 

ISL+ cells which stained for HOXC8 vs. HOXD9. (E-F)  When cultures were costained for HB9 

or ISL1(not shown) and both HOXA5(green) and HOXC8 (red) or HOXA5 and HOXD9 (red) 

we observed that  fewer than 5% of HB9+ or ISL1+ cells positive for either HOX gene 

coexpressed the other (yellow bar for HOXA5+HOXC8+, aqua bar for HOXA5+HOXD9+).  

(mean ±SEM, n=4 independent experiments). Statistical Analyses:  *p<0.05 for unequal variance 

Rank Sum test for all comparisons except HB9+HOXA5+ vs. HB9+HOXD9+, and ISL1+HOXC8+ 

vs. ISL1+HOXD9+, where equal variance test passed p<0.05 and t-test was used, * p<0.05.  
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Figure 3.13 
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Figure 3.13.  ES-MNs can be cryopreserved with limited effects on subtype identity  

(A) Day 31 RUES1 Standard Protocol ES-MNs from the same experiment were either seeded for 

fixation and analysis at day33, or cryopreserved, thawed and seed for analysis at +2 days; both 

cultures showed abundant live ES-MNs neurons by Tuj1+ morphology and HB9, ISL1 staining.  

(B) The mean %Tuj1+ of total cells was decreased but not significantly t-test p>0.05, (mean 

±SEM , n=3 experiments). (C) The percentage of HB9+ or ISL1+ of total cells were significantly 

reduced (t-tests, p<0.05), but many ES-MNs survived (mean ±SEM, n=5 experiments).   (D) 

surviving cells showed reduced percentage of HOXA5 and HOXD9 cells, but no changes were 

significant (mean ±SEM;  HOXA5, n=5 fresh, n=3 frozen; HOXC8, n=4; and HOXD9, n=3 

fresh, n=4 frozen, t-tests, p>0.05). (E) Surviving cells showed an increased %FOXP1 and LHX3 

of total cells (mean ±SEM ; FOXP1, n=5; LHX3, n=2 fresh, n=3 frozen) which was significant 

in the case of FOXP1 (t-test, p<0.05).  
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Figure 3.14

 

 

Figure 3.14.  ES-MN in matured cultures are predominantly FOXP1
+   

Accelerated Protocol HBG1(HB9:GFP) (top) or RUES1 (bottom) ES-MNs  seeded at high 

density (0.5M/12mm coverslip) and fixed at day 2 show the normal 5-10% range of %FOXP1 of 

ES-MNs we have described above.  However when seeded at low density and matured for 8 days 

in the presence of EdU, almost every ES-MN examined (n>100 cells for each of 2 ESC lines in 1 

experiment/line) stained intensely for FOXP1.  In addition these cultures were stained for LHX3 

(not shown) which identified abundant ES-MNs at day 2, but almost no MNs at day 8.  This clear 

qualitative result was consistent with 3 other independent experiments. Scale bar 100 µm.  
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Figure 3.15 
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Figure 3.15. FOXP1
+
 ES-MNs show a subtype-specific morphological phenotype  

(A) HBG1 (HB9:GFP) Standard Protocol ES-MNs were FACS sorted for GFP and seeded at 

ultra low density (0.01 M/12 mm coverslip) onto confluent layers of commercially available 

human fetal spinal cord astrocytes in one pilot experiment.  After 12 days 72% of surviving ES-

MNs showed intense FOXP1 staining, while LHX3 could not be detected (not shown), field 

width 900 µm. We also observed that astrocyte nuclei showed very weak but above background  

FOXP1 staining.  (B) FOXP1
+
 cells (n=39) showed significantly (t-tests p<0.05) longer mean 

and median process lengths and trend increases in all other aspects of neurite outgrowth, but no 

change in cell soma area compared to FOXP1
-
 cells (n=20); Metamorph neurite outgrowth 

morphometry was paired with a custom interactive journal to score celsl for FOXP1 and analyze 

neurite outgrowth.  Any GFP cells in direct contact with other GFP cells were manually excluded 

from analysis (C) Cumulative percentage population histogram showed that FOXP1
+
 cells had 

the same proportion of smaller cells, but more cells with much longer outgrowth (0.66 µm/pixel). 
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Figure 3.16
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Figure 3.16. Human ES-MNs respond to in vivo cues in xenotransplant to chick spinal 

cord.  

(A-D) Standard Protocol HBG1 (HB9:GFP) ES-MNs  were transplanted to the prospective 

brachial level of HH stage 15-16 embryos and allowed to develop for 2-3 days.  When chicks 

were sacrificed and cryosectioned we observed GFP
+
 human cells in many embryos (n=8 of 16 

surviving embryos).  Many GFP
+
 also expresssed FOXP1, and some but fewer which expressed 

LHX3.  Human ES-MNs extended projections (>1.8 linear mm in C and D) through ventral roots 

(A, C, D) or ectopic dorsal exit point in the case of one dorsal transplant (C) and in most cases 

along motor nerve paths and often into the limb (C, D).     
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Chapter 4. Motor neuron differentiation from human induced pluripotent stem cells: 

comparison to embryonic stem cells, sources of variability and motor neuron subtype 

diversity 

 

Introduction 

The discovery that somatic cells could be reprogrammed to a pluripotent state opened the door to 

the study of previously unavailable cell types with relevance to human disease (Takahashi and 

Yamanaka 2006).  The precise genotype of patients with disease could now be captured in a 

pluripotent cell with the potential to generate unlimited quantities of affected cell types in vitro 

(Park, Arora et al. 2008; Lee, Papapetrou et al. 2009; Soldner, Hockemeyer et al. 2009).  ALS-

iPSC lines were among the first human lines generated from patients because the human motor 

neurons affected in ALS were not otherwise available and their differentiation from human ES 

cells had been established.   Subsequent studies, however, have reported differences between 

iPSC and ESC lines.  In order for ALS-iPS-MNs to become a productive tool to model ALS it 

will be necessary to determine the reproducibility with which they can generate motor neurons.  

In addition it will be necessary to show that motor neurons derived from iPSC are bona fide 

motor neurons and capable of functional maturation.  Our first goal was therefore to generate a 

large test set of iPSC lines and compare these to ESC lines for their ability to generate motor 

neurons.  Second, we wanted to establish that motor neurons generated from iPSCs were 

functional and met specific criteria established by in vivo studies and for ESC-derived motor 

neurons.  Third, we designed this test set so that we could ask if several key variables, which 
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would routinely be encountered when building disease models, affect the performance of iPSC 

lines.  

Are iPSC lines comparable to ESC lines in making motor neurons? 

Several concerns have been raised about the general comparability of iPS to ES cells.  Some 

groups have reported epigenetic and gene expression differences between iPS and ES cells, 

potentially the result of incomplete reprogramming or epigenetic memory of their somatic cells 

of origin (Chin, Mason et al. 2009; Doi, Park et al. 2009; Taura, Noguchi et al. 2009; Armstrong, 

Tilgner et al. 2010; Ghosh, Wilson et al. 2010; Grigoriadis, Kennedy et al. 2010; Stadtfeld, 

Apostolou et al. 2010; Tokumoto, Ogawa et al. 2010; Xi, Khalil et al. 2010).  From the 

perspective of modeling ALS in vitro, the most relevant and troubling report concluded that 

iPSC lines have categorically and substantially lower rates of neural induction and more variable 

differentiation to motor neurons compared to ESC lines (Hu, Weick et al. 2010).  This study, 

however, used a relatively small number of iPSC lines, which limits the strength of conclusions 

about the general and motor neuron-specific comparability of iPS to ES cells.  Therefore a larger 

study which methodically addressed these issues was required.  

Does individual genetic background influence iPSC performance? 

The small sample sizes of previous comparative studies have also limited the investigation of 

potential sources of variability between iPSC lines.  This issue is no less acute in the case of ESC 

lines, where many studies have described large variability between lines.  The sources of this 

variability are poorly understood.  Methods of derivation, culture, and differentiation vary 

widely.  However because of the extremely limited availability of fertilized embryos from which 

ESC lines have been derived, and the lack of control over or publication of demographic 
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variables, it has not been feasible to study the contributions of these variables to ESC 

performance.  iPSC lines on the other hand are easily derived from any individual and it is 

therefore now possible to begin to ask what impact demographic factors and individual genetic 

background have on stem cell properties.  Understanding these effects will have major 

implications for the use of iPS-derived cell types to study cellular physiology and disease 

models.  Studies of a large number of iPS lines distributed across several demographic variables 

which will be commonly encountered as researchers undertake disease modeling are required. 

We have seen that some variability among ES lines may be related to the method of derivation.   

However a direct test of this idea is not possible since it is possible to derive a line only once 

from a unique embryo.  Multiple iPSC lines however can be derived from the same donor.  

Studying multiple lines from the same donor in comparative studies should contribute two 

related insights.  First, this could help define the extent of variability associated with the one-

time event of reprogramming since all lines will start from the same individual genotype.  At the 

same time, if conserved properties are found between lines from the same donor vs. other donors, 

this would provide the first demonstration of the effect of human genetic background on 

pluripotent cell properties and differentiation potential.  Studies aimed at assessing sources of 

variability should therefore also include multiple iPSC lines derived from the same donor. 

Are iPS-MNs functionally comparable to ES-MNs? 

The last question raised by studies of gene expression and epigenetic differences between iPSC 

and ESCs is whether terminally differentiated cells will be functionally compromised in 

important ways.  For example we have seen that ES-MNs acquire a specific set of dominantly 

cervical HOX-protein identities, and that HOX-proteins are mutually excluded from individual 
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ES-MNs as they are by motor neurons in vitro.  Since HOX-protein mutual exclusion is a 

principal mechanism by which limb-innervating motor pool identity is acquired, it is important 

that iPS-MNs not only respond similarly at the first level to patterning cues (by expressing 

HOXA5 in response to RA for example) but that the subtleties of gene expression are also 

preserved (mutual HOX-exclusion).  We have also defined the short timecourse during which 

ES-MNs acquire electrophysiological activity in vitro, which mirrors important aspects of motor 

neuron physiology in vivo.  If iPS-MNs are to be used to model disease in which 

electrophysiological activity may play a role, it is important that iPS-MNs are able to attain 

functional electrical properties matching or relevant to motor neurons in vivo as well.  While 

many groups have now reported the expression of pan-motor neuron transcription factors in iPS-

MNs, the rostrocaudal HOX subtype and HOX exclusion have not been tested.  And while others 

(Hu and Zhang 2009; Karumbayaram, Novitch et al. 2009; Hu, Weick et al. 2010) have shown 

that iPS-MNs can acquire functional physiological properties, this has not been done 

systematically on a large set of iPS lines.  It was therefore important to ascertain if iPS-MNs 

would display in vivo-like transcriptional identities, and to test their functional maturation. 

 

Statement of Contributions 

This chapter contains work which was highly collaborative; performed exclusively by 

collaborators; or led and performed almost entirely by myself at the experimental level, in that 

order.  Figures 4.1, 4.2, 4.3 (with the exception of  Figure 4.3D which was performed by myself 

contemporaneously), and 4.4A were adapted from a publication by the Eggan Laboratory, and 

the experiments described therein were performed entirely by members of the Eggan Laboratory 
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as described in the published manuscript (Dimos, Rodolfa et al. 2008) with the following 

exceptions:  for this publication I optimized skin biopsy and fibroblast culture methods and 

initiated and maintained cultures with technical help from Mary Lee;  I also adapted and 

optimized motor neuron differentiation and staining protocols which did not appear in, but 

contributed to the technical basis for this publication. The remaining figures are adapted from 

(Boulting, Kiskinis et al. 2011) and Figure 4.18 from (Bock, Kiskinis et al. 2011) with the 

exception of my unpublished data (Fig. 4.4B-D, and Fig. 4.8).  GFC performed biopsies and 

fibroblast cultures with technical help from Mary Lee, and some help from Annie Hon, MWA, 

and DHO.  CTR and JTD reprogrammed all iPS lines.  GLB and EK initially expanded all iPS 

lines and GFC, Annie Hon, MWA, and DHO expanded early passage lines at the PALS lab.  

FACS experiments of day 0 and day 29 cells were optimized and overseen by GFC with 

technical advice from KTR and some technical help from MWA, and analyses were performed 

by DJK with help from GFC, MWA, and DHO.  Standard motor neuron differentiations in the 

PALS lab were performed by MWA and GFC with some help from DHO.  Optimal motor 

neuron differentiations were performed by MWA and GFC.  HOX analyses were performed by 

GFC and MWA.  ABM, DJW, and DHO designed and carried out Ca2
+
 imaging experiments.  

BJW, GLB, and CJW performed physiological recordings.  MY assisted with teratomas.  LD 

assisted with quantitative cell scoring of imaging data in the Eggan Lab.  MWA and GFC 

performed quantitative cell scoring of imaging data in the PALS lab.  Southern Blots were 

performed by GFC and MWA with technical advice from Andrew Sproul (NYSCF) and the 

Eggan lab.  Statistical analysis was performed by GFC, with the following exceptions: FACS 

statistics performed by DHO, and sex difference ANOVA by MWA, 2 correlations performed by 

EK.  GLB and EK led and contributed equally to all other experiments in the Eggan Laboratory.  
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Scorecard analyses of iPS lines was conducted entirely in the Meissner/Eggan laboratories as 

described in their publication (Bock, Kiskinis et al. 2011). 

 

Results 

iPS-MNs and iPS-astrocytes: proof of principle experiments 

iPS cells from older ALS patient donors are pluripotent 

Since ALS is an adult-onset disease it was important to determine whether iPSC lines could be 

derived from ALS patients of advanced age, and to show that these lines could generate cell 

types of disease relevance.  We therefore obtained informed consent and cultured ALS patient 

skin biopsies to derive primary fibroblast cultures (Fig. 4.1A) (Dimos, Rodolfa et al. 2008).  

Cultures were transduced with 4 reprogramming factors and after several weeks colonies with 

ES-like morphology were observed (Fig. 4.1B).  These colonies stained with conventional 

markers of human ES and iPS cells (Fig. 4.11C, and (Dimos, Rodolfa et al. 2008))  These lines 

showed the same genetic mutation in the SOD1 gene (L144F) as the patient donor (data not 

shown, (Dimos, Rodolfa et al. 2008)) confirming that they were generated from patient 

fibroblasts.  Under a non-directed spontaneous differentiation protocol (Fig. 4.2A) these iPSC 

lines demonstrated pluripotency by generating cells expressing proteins indicative of 

differentiation to all three primary germ layers (Fig. 4.2B).  We concluded from these data that 

age and disease status were not obstacles to generating iPSC lines from ALS patients.  We next 

asked if these lines could generate the cell types of primary interest for modeling ALS in vitro, 

motor neurons and astrocytes. 
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ALS patient-derived iPS cells are competent to generate motor neurons 

To test the ability of patient-derived iPS cells to generate spinal motor neurons we applied a 

standard protocol from the Zhang lab used to induce motor neurons from human ES cells (Li, Du 

et al. 2005) described in Chapter 3, with minor modifications.  Retinoic acid was used to induce 

caudal, and SHH to induce ventral positional identity, and we maintained EBs in suspension until 

dissociation or seeding, rather than manually select rosettes (Fig. 4.3A).  When these cultures 

were stained for the markers of pan-MN identity, HB9 and ISL1, we observed that 20% of cells 

expressed HB9, and 90% of these co-expressed ISL1 (Fig. 4.3B).  The neuronal identity of these 

cells was confirmed by strong reactivity for the neuronal marker βIII-tubulin (TuJ1) and 

neuronal morphology (Fig. 4.3C, D) and over half of HB9
+
 cells stained for the MN-

neurotransmitter synthetic enzyme ChAT (not shown).  We concluded from these data that 

patient-derived iPS cells were capable of generating motor neurons.  We next asked if astrocytes, 

which manifest a strong toxicity for motor neurons in mouse models of ALS in vivo (Boillee, 

Vande Velde et al. 2006) and mouse and human in vitro models of ALS (Di Giorgio, Carrasco et 

al. 2007; Nagai, Re et al. 2007; Di Giorgio, Boulting et al. 2008), could also be generated from 

ALS-iPS cells. 

iPS cells are competent to generate astrocyte-like cells 

To determine the ability of patient-derived iPS cells to generate astrocytes we assessed the 

expression of the astrocytic marker glial fibrillary acidic protein (GFAP).  At the same timepoint 

that the above iPS-MN phenotype was observed (~40days of differentiation) many cells  that 

stained strongly for GFAP had small somata and few and very long processes suggestive of a 

radial glial rather than astrocytic identity (Fig. 4.4A).  Cells with similar morphology also stained 
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for the radial glia antigen RC-2 (not shown) at this timepoint, supporting this idea. Since 

gliogenesis begins around 3-4 months in human in vivo (Bayer and Altman 2002), we 

maintained cultures for this time in vitro with infrequent passaging.  After 120 days we observed 

that nearly all cells in the culture displayed flattened multipolar astrocytic morphology, most 

expressed GFAP in all possible permutations with the early astrocyte marker CD44 and the glial 

progenitor marker Vimentin (Fig. 4.4B-D).  While astrocyte generation was not the focus of our 

studies, and this novel qualitative result was not quantified, and further gene expression and 

functional analysis would be required to substantiate an astrocytic identity, we concluded from 

these experiments that ALS-iPS cells were capable of giving rise not only to motor neurons, but 

to cells with key molecular and morphological features of astrocytes as well. 

Establishing a test set of iPSC lines 

In order to address general concerns about the comparability of iPS and ES cells, specific 

concerns about reduced motor neuron differentiation efficiency, and test potential sources of 

variability, we set out to construct a large ―test set‖ of iPSC lines.  We generated 14 new iPSC 

lines, which, combined with the 2 lines reported above were derived from seven different donors, 

healthy or diagnosed with ALS, male and female, and whose ages ranged from 29 to 82 years 

(Table 4.1).  All 14 new lines were generated by 3-factor reprogramming, i.e., without c-MYC, 

to allow us to test for the impact of this oncogene by comparison to the two previously described 

iPSC lines.  To determine if individual genetic background had a strong impact on phenotype we 

included several independent lines derived from the several individual donors.  To compare iPSC 

lines as a group to ESC lines we included 6 well-characterized ESC lines.  
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All test set iPSC lines are pluripotent 

To determine whether these iPS cell lines met the established criterion for human ES cells we 

first assayed them using standard assays for marker expression and functional pluripotency.  All 

iPSC colonies showed classical ESC-like cellular and colony morphology, stained for cell-

surface, cytoplasmic, and nuclear markers of pluripotency, and showed active cell-cycle 

parameters similar to ESC controls (Fig. 4.5A, B, C).  All iPSC lines generated cells from all 3 

embryonic germ layers in undirected differentiation (Fig. 4.5D) and all tested lines formed 

typical teratomas including tissues from all 3 germ layers when injected into immune-

compromised mice (Fig. 4.5E).  These data demonstrated that all iPSC lines in our test set passed 

all conventional assays of pluripotency for human ES cells.  We then asked how these lines 

would perform in motor neuron directed differentiation. 

Most iPS cell lines generate functional motor neurons with in vivo-like molecular identities 

To compare the ability of iPSC and ESC lines to properly specify motor neurons, all lines were 

differentiated under standard protocols previously shown to generate motor neurons from ES 

cells (Fig. 4.6A).  To determine the robustness of these lines, differentiations were conducted in 

parallel in the Eggan laboratory and in the Project ALS laboratory.  We found that 81% (13/16) 

of iPSC lines, and all ESC lines generated robust populations of ISL1
+
 cells which also stained 

for TuJ1 and showed typical neuronal morphologies (Fig. 4.6B).  Of the lines tested in parallel in 

both labs there was a striking consistency in the quantitative %ISL1 for individual lines (Fig 

4.6C).  A Pearson correlation, however, did not show a strong correlation between lines tested in 

both labs however (n=10 lines, r=0.5038).  However, in both labs the same 3 of 16 iPSC lines 

failed to generate almost any ISL
+
 neurons (27e, 29e, and 11b, see below Sources of variability).  
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The striking consistency of line malperformance between labs could not be included in the 

Pearson correlation because these are non-numerical values (Fig. 4.6C).  If lab was considered as 

an independent variable, on the other hand, then there was no significant difference between the 

aggregate efficiency observed between labs (ANOVA, p>0.05, Table 4.2).  We therefore pooled 

the data between labs for subsequent analyses of all 13 lines which had generated ISL1
+
 neurons.  

Importantly, as a group, the 13 iPSC lines that generated ISL1
+
 cells did not show a significantly 

different efficiency compared to ESC lines (Table 4.2).  There were, however, significant 

differences in %ISL1 efficiency  between lines, and post-hoc tests showed that lines 11a and 11c 

in particular were significantly different from 18c (Fig. 4.6D, Table 4.3).    We concluded from 

these data that iPSC lines show robust and characteristic behavior in multiple settings, suggesting 

that motor neuron differentiation efficiency was a stable and intrinsic property of individual 

iPSC lines.  These data also showed that iPSC lines did not have more variable or lower 

efficiency motor neuron differentiation than ESC lines. 

To further validate the motor neuron phenotype defined by ISL1 expression, we tested several 

other endpoints required for more definitive assignment of motor neuron identity.  First, we 

found that all 13 lines tested generated HB9
+
 cells which stained for TuJ1 and showed neuronal 

morphologies (Fig. 4.7A).  We again observed characteristic differences between lines which 

paralleled the differences observed for %ISL1 (Fig. 4.7B).  Many ISL1
+
 cells from iPS and ES 

lines alike expressed the characteristic motor neuron neurotransmitter synthetic enzyme ChAT 

(Fig. 4.7C).  To ask if stem cell derived motor neurons were post-mitotic we stained cultures for 

the cycling cell marker Ki67, and found that ISL1
+
 cells were not positive, while PAX6

+
 

progenitor cells served as an internal positive control (Fig. 4.7D).  Finally we used qPCR to 

show that motor neuron lineage and marker genes (OLIG2, HB9, ISL1, ChAT, CHT1) and the 
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neuronal marker TuJ1 were strongly upregulated in these cultures compared to undifferentiated 

ESC or IPSC, or fibroblasts (Fig 4.7E).  We concluded from these data that iPSC-derived 

neurons met all established in vitro criteria to be considered bona fide motor neurons.  We next 

wanted to ask if these iPS-MNs met the criteria of coherent positional identity as defined by 

patterns of HOX protein expression as we have shown that ES-MNs did in Chapter 3. 

To determine if iPSC lines would respond to the patterning cue RA in a similar fashion to ESC 

we tested the expression of HOXA5 and HOXC8 (Fig. 4.8A).  iPS-MNs adopted a strikingly 

similar positional profile to that of ES-MNs (Fig 4.8B).  The largest fraction of iPS- and ES-MNs 

expressed HOXA5 (42% vs. 41% respectively), indicative of a cervical positional identity, 

whereas about ~4 fold fewer motor neurons from both cell types expressed HOXC8 (14% vs. 

12% respectively), indicative of a brachial to thoracic identity.  Impressively, the fraction of 

motor neurons abnormally expressing both HOXA5 and HOXC8 was extremely small and was 

consistent between iPS- and ES-MNs (4% and 2% respectively).  We concluded from these data, 

that iPSCs appear to interpret the positional cue RA with the same results as ESCs.  Furthermore, 

iPS-MNs are no less faithful to the in vivo phenomenon of HOXA5-HOXC8 mutual exclusion 

than are ES-MNs.  This phenomenon is particularly important since it controls the diversification 

of several brachial motor pools from generic LMC precursors.   

To test whether iPS-MNs were functional we compared the electrophysiological activity of 

neurons from four iPSC and two ESC lines using the Ca
2+

 sensitive dyes Fura Red AM (Fig. 

4.9A, B) and Fluo-4 AM (Fig. 4.9C).  Spontaneous Ca
2+

 transients were observed in many cells 

from all iPSC and ESC lines tested (Fig. 4.9C, H, J).  When cells were exposed to the ionotropic 

glutamate receptor agonist kainate (KA) 78% of cells with neuronal morphology (n=132 cells) 

responded with rapid increases in intracellular Ca
2+

 (Fig. 4.9E, I, K).  When KCl was then used 
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to depolarize cells by shifting the electrochemical equilibrium of the perfusion medium, many 

KA responsive cells again showed Ca
2+

 fluxes (Fig. 4.9G, I, K).  Post-imaging stains of these 

cultures confirmed that many active cells were ISL1
+
 motor neurons.  These data showed that 

iPS-MNs, like ES-MNs, had spontaneous and evocable electrical activity consistent with 

functional neuronal identity.  To further examine the basis for this activity and to ascertain if 

iPS-MNs could fire action potentials, we performed whole cell patch clamp recordings on cells 

with neuronal morphology from an ESC control (HuES3 HB9:GFP, n=9) and iPSC lines (18a, 

n=10; 27b, n=10).  All cells showed fast voltage-activated inward currents followed by slow 

outward currents, consistent with voltage-activated sodium and potassium channels (Fig. 4.10A, 

B).  Inward currents were blocked by TTX, a specific inhibitor of voltage-gated sodium channels 

(Fig. 4.10C).  Finally, current clamp recordings revealed that action potentials could be elicited 

by current injection in both ESC- (n=2) and iPSC-derived neurons (n=2), as well as repetitive 

firing from one neuron derived from iPS line 18a (Fig. 4.10 D).  We concluded from these 

studies that iPSC lines generated electrically active functional neurons similar to ESC lines. 

 Potential sources of iPSC variability and rescue of atypical lines 

Our data demonstrated that iPSC lines were able to generate functional motor neurons with 

coherent (HOX-mutually exclusive) positional identities with equivalent efficiency to ESC lines.  

The variability between iPSC lines was no greater than between ESC lines however our data did 

show significant line-dependent differences in motor neuron differentiation efficiency.  We also 

noted that 3 lines showed a defective phenotype of near complete failure to generate ISL1
+
 motor 

neurons.  We therefore investigated several potential sources of inter-line variability and for this 

defective phenotype: persistent transgene expression, karyotypic instability, the effect of any of 

the demographic or technical variables in our test set, and neural lineage failure. 
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Persistent transgene expression 

We and others have reported some persistent or reactivated expression of viral reprogramming 

transgenes in iPSC lines.  To gauge the extent of this phenomenon in our test set and to see if this 

correlated with variable motor neuron differentiation efficiency we monitored expression of 

endogenous and viral reprogramming genes in undifferentiated and differentiated iPSC cultures 

(Fig. 4.11).  For most cell lines viral transcription was very low, and for SOX2 it was 

undetectable (Fig. 4.11A-C).  Many iPSC lines however expressed varying levels of KLF4 (11b, 

11c, 15b, 18b, 18c, 27b, 27e, and 29e) in both undifferentiated and differentiated cultures (Fig. 

4.11B).  Several lines also expressed viral OCT4 (15b, 18c, and 27b) in both undifferentiated and 

differentiated cultures (Fig. 4.11C).  Notably, transgene expression was stable: present in 

undifferentiated and differentiated cultures from that line, not reactivated on differentiation.  To 

determine if OCT4 protein was expressed in differentiated neurons we double-stained cultures 

for ISL1 and OCT4 and found, surprisingly, that many individual ISL1
+
 neurons in viral OCT4-

expressing lines co-expressed nuclear OCT4.  Despite this inappropriate gene expression, there 

was no correlation between total transgene expression and motor neuron differentiation 

efficiency as measured by %ISL1
+
 cells (R

2
=0.1687).  Furthermore many of the lines showing 

transgene expression were those that had previously been shown to generate electrically active 

motor neurons with normal HOX profiles.  We concluded from these data that although some 

iPS lines maintained transgene expression, it had no detectable effect on the differentiation 

efficiency or quality of motor neurons. 
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Karyotypic instability 

Karyotypic instability is a well described phenomenon in both mouse and human stem cell 

cultures.  We therefore asked if irregular karyotypes might have affected iPSC performance.  The 

majority of iPSC lines tested (9/15) retained normal karyotype at both early and late passage 

whereas 6 lines (29d, 27b, 29e, 11a, 11b, and 15b) showed abnormal karyotypes of varying 

severity (Table 4.4).  Only two (29e, 11b) of the three defective lines showed abnormal 

karyotypes therefore this alone could not explain the defects.  Furthermore line 27e had a normal 

karyotype and showed the same specific defective phenotype as 29e (see below).  Finally, 

excluding defective lines (11b, 27e, 29e) there was no significant difference in ISL1
+
 motor 

neuron differentiation efficiency between lines with normal vs. abnormal karyotype (Table 4.2).  

We concluded that abnormal karyotype could not explain variability or defective lines.  We next 

sought to establish quantitative phenotypes for the 3 failed lines and to investigate the nature of 

their defects.  

Identification and rescue of defective iPSC lines 

Two of three defective lines (27e and 29e) showed a dramatic cystic disaggregated EB 

phenotype at day just after day 10, which first distinguished them from all other stem cell lines 

studied (Fig. 4.12A).  When EBs were dissociated and seeded at the same density we found a 

significant difference in the total number of attached cells at day 32 for both of these lines (Fig. 

4.12B, Table 4.5).  Since these lines were easily identifiable by the qualitative EB and 

quantitative dissociated-cell phenotypes, and since the remaining cells were not positive for TuJ1 

or ISL1, we excluded these lines as outliers from subsequent analyses.  The third defective iPS 

line, 11b, showed a normal EB phenotype throughout differentiation and a normal number of 
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total cells at day 32.  However, when cultures were stained for the neuronal marker TuJ1 we 

observed a significant decrease in the percent of neurons (Fig. 4.13A, B and Table 4.6).  Because 

the first defective phenotype (for 27e and 29e) occurred during the period of consolidation of 

neural identity and the second phenotype (11b) was a reduced percent of neurons, we 

hypothesized that both phenotypes might be underpinned by a defect in neural induction. 

To test whether these abnormal phenotypes were related to failed or low efficiency neural 

induction, we attempted to rescue them using essentially the Accelerated Protocol (described in 

Chapter 3, Fig. 3.3) which forces rapid neural induction using two ALK inhibitors.  We found 

that both defective lines and two ES control lines displayed normal, smooth and round EB 

morphology throughout differentiation and generated robust populations of ISL1
+
 TuJ1

+
 neurons 

(Fig. 4.14A).  All iPSC and ESC lines showed very high neuronal differentiation efficiency (70-

90% TuJ1
+
) (Fig. 4.14B) and comparable percentages of both ISL1

+
 (10-20%) and HB9

+
 (3-6%) 

(Fig. 4.14C, D).  Since strong inducers of neural identity were able to completely rescue both 

defective phenotypes, we concluded that the defects were somewhere in the pathway of neural 

induction.   

Sources of variation 

To understand the line-specific variability observed for %ISL1 efficiency in the 13 of 16 normal 

iPSC lines, we next investigated whether any of the demographic or technical variables which 

we built into the test set had an effect on the outcome.  There was no difference between ALS 

and control or between 3- and 4-factor lines (Fig. 4.15 A, B; Table 4.2).  Similarly there was no 

correlation between donor age and %ISL1 (R
2
=0.0084).  However iPSC lines derived from 

female donors did show a significantly higher percentage of ISL1
+
 cells (Fig. 4.15C, Table 4.7).  
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When ESC lines were included in this comparison the mean difference between male and female 

lines was smaller but still significant (Fig. 4.15D, Table 4.7).  Since our test set was included 

multiple lines from 3 donors, we could assess whether individual genetic background affected 

differentiation efficiency.  Indeed we observed very low variability between lines from the same 

donor and large variability between the means of all lines from one donor compared to another.  

ANOVA revealed that donor genetic background significantly affected differentiation efficiency 

(Fig 4.15E, Table 4.7).  Post hoc pairwise comparisons comparing all individual donors did not 

however identify significant differences between any individual donors.  However, the n for lines 

from the same donor (1-3; Table 4.7) was too low to reasonably expect any pairwise 

comparisons to be statistically significant, and the lack of significant pairwise comparisons 

should not detract from the significant finding in the more powerful ANOVA.    Finally, because 

donor sex is part of donor genetic background we cannot be certain that the sex-specific 

difference does not alone account for the difference between donor genetic backgrounds.  We 

concluded from these data that donor genetic background, including or in addition to sex had 

significant effects on the motor neuron differentiation efficiency of individual lines.   

We next considered an alternative explanation for the low variability in ISL1
+
 performance for 

lines from the same donor.  Since most lines from individual donors were derived from the same 

reprogramming cultures, it was formally possible that cells from an initial clonal transduction 

event had physically moved in culture and were subsequently isolated and mistakenly considered 

to be independent lines.  To directly address this possibility we conducted Southern blots using 

probes for 2 different viral transgenes, SOX2 and OCT4 (Fig. 4.16).  The SOX2 probe showed a 

differential pattern of molecular weight species for all of the lines from donor 29, 18, and 11.  

These data demonstrated that these lines are the result of independent viral insertion events and 
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are not the same line.  We concluded from these data that the low intra-donor variability was not 

the result of the same line being erroneously considered as multiple lines, and therefore that these 

effects on performance were likely the result of donor genetic background and or sex. 

Scorecard predictions match line-specific empirical behaviors 

During the course of our experiments, which showed significant differences between individual 

lines in motor neuron differentiation efficiency, another group was using a subset of this test set 

of iPSC lines to develop comprehensive reference maps of variation among ES and iPS lines 

(Bock, Kiskinis et al. 2011).  Additionally these authors developed a targeted microarray 

approach to predict the differentiation propensities of individual lines based on short-term 

spontaneous EB differentiation: a ―scorecard‖ for pluripotent cell differentiation potential.  For 

each cell line we plotted the neural and ectodermal lineage indices generated by this scorecard 

analysis against the percentage of ISL1
+
 neurons we had measured empirically for that line, and 

we found a strong correlation for both lineages (Fig. 4.17A, B).  As a control for specificity we 

showed that there was not a strong correlation between endoderm and mesoderm lineages and 

ISL1
+
 efficiency (Fig. 4.17C,D).  We concluded that the same result was obtained by both 

methods, thereby cross validating both our empirical and their scorecard approach to estimating 

the intrinsic lineage competence and proclivity for individual lines. 

 

Discussion 

Summary of Findings 
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We have shown that patient derived iPSC lines can generate motor neurons and astrocytes: two 

key cell types affected in ALS.  Next we constructed a large set of iPS lines encompassing 

several demographic variables likely to be encountered when attempting to model disease using 

iPS-derived cells.  We demonstrated that 1 in 5 iPSC lines had a serious defect in neural 

differentiation, but these were easily detectable.  The remaining iPSC lines generated motor 

neurons with positional identities and functional electrophysiological behavior equivalent to 

ESC-derived motor neurons.  Finally, we excluded several of the demographic variables—age, 

disease status, number of reprogramming genes—as sources of variation among iPS-MNs, but 

identified donor genetic background (including and potentially limited to sex) as a significant 

factor.  These studies provide a resource of disease and control cell lines for studying ALS and 

also provide practical guidelines for the derivation and analysis of iPSC lines.  Most importantly 

they provide confidence that iPSC lines can generate differentiated motor neurons with 

comparable functional characteristics to those derived from ESC lines, and set the stage for 

making models of genetic disease. 

iPS-MNs are functional and show in vivo like transcriptional phenotypes comparable to ES-MNs 

iPS-MNs showed spontaneous and evoked electrophysiological activity no different than ES-

MNs.  Since adult-onset diseases like ALS affect cells that are developmentally mature in vivo, 

studying more mature motor neurons in vitro may increase the chances of defining disease 

relevant phenotypes.  Indeed, several hypotheses about the mechanisms of motor neuron 

degeneration in ALS hinge on characteristics that appear only with maturity.  For example 

glutamate excitoxicity has been implicated in ALS, and to adequately address this hypothesis it 

would be useful to test ALS-MNs which have functional glutamate receptors and maturing firing 

properties in response to depolarization.  Our results show both the presence of functional 



191 
 

 

glutamate receptors—in Ca
2+

 imaging experiments—as well as electrophysiological maturity 

capable of sustaining repeated action potential spike trains.  These functional 

electrophysiological characteristics suggest that iPS-MNs may be able to model activity-

dependent aspects of ALS.  In the future it will be important to demonstrate that iPS-MNs can 

achieve the type of mature and motor neuron-typical physiological activity which we have 

described for ES-MNs in Chapter 3.  Other hypothetical ALS mechanisms have pointed to 

relatively unique morphological features of motor neurons to explain their selective 

vulnerability: the giant cell size (mostly axonal) may be linked to the pathology observed in 

axonal dieback and varicosities, ubiquisome overload, protein folding dysfunction and 

aggregation, axonal dieback, axonal transport defects, and energy metabolism and mitochondrial 

dysfunction.  In order to adequately address these hypotheses it will be important to demonstrate 

that iPS-MNs can undergo morphological maturation as we described for ES-MNs in Chapter 3.   

Another aspect of in vivo motor neuron biology that may be leveraged to study ALS in vitro is 

the differential susceptibility shown by specific motor column and motor pool subtypes.  We 

know from studies in mouse and chick that these subtype identities emerge downstream of 

rostrocaudal patterning as articulated by HOX genes.   Because iPS cells can differentiate to 

motor neurons, in our hands and in others‘, shows that they can respond to developmental cues 

(RA and SHH) and assume differentiated identities.  In order to generate specific motor column 

or motor pool subtypes the fidelity of this developmental response must be high enough to 

generate the coherent HOX identities that drive those subtypes.  We show that all iPS lines 

tested, just like ES lines,  generated motor neurons with HOX profiles congruent with natural in 

vivo cervical positional identities (Chapter 2 and 3): they expressed mostly HOXA5 (cervical) 

and some HOXC8 in mutual exclusion.  This is important since HOX cross-repression underpins 
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the diversification of motor pool (HOXA5-C8 and others) and column (HOXC-6, -9, -10) 

subtype identities.  Since our data suggest the functional activity of these HOX mechanisms, it 

predicts that they may be used to generate specific motor neuron subtypes with enhanced utility 

for modeling ALS.  The equivalent ability of iPSC and ESC to follow developmental cues and 

mechanisms in order to make highly-specific neuronal subtype cell-fate choices supports the idea 

that iPSC will be able to follow developmental trajectories to specific cell types relevant to other 

diseases. 

Reproducibility and net equivalence with ES  

By using a large set of iPSC lines and ES lines and a standardized differentiation protocol we 

showed that iPSC lines are no worse and no more variable than ESC lines in generating motor 

neurons.  This result is at odds with the most in-depth previous study of this question (Hu, Weick 

et al. 2010).  One explanation for this discrepancy is that the manual selection protocol used 

previously for motor neuron differentiation (see Chapter 3 for discussion) unintentionally biased 

the results against iPSC lines.  Another explanation might be that the cell bank fibroblasts used 

to make those iPS lines had accumulated cytogenetic problems or mutations during 

indeterminate periods of culture, passage, or cryostorage.  Additionally, the number and variety 

of iPSC and ESC lines which we used was much larger than in the previous study (16 iPSC and 

5 ESC vs. 4 iPSC and 1 ESC), allowing us to test variability within iPSC and ESC categories 

independently and also compare the two statistically.  Additionally, the ESC lines used for motor 

neuron comparison in the previous report (H9) is well known to show better than average 

efficiency for basal neural conversion.  On the other hand the authors show a very clear 

difference in early neural induction between a large set of both iPSC (12) and ESC (4) lines, for 
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which none the above explanations can fully account, except cell bank degradation.  More 

studies will be needed to resolve these issues in the future. 

The performance of individual iPSC lines was remarkably similar between the two different labs 

involved in our study.  This shows that lines retain intrinsic properties across passages, and their 

performance in well defined differentiation protocols (with at least 4 different operators) was 

highly robust.  This finding gives confidence that iPSC are reproducible tools: an important 

criterion required for cellular substrates of disease modeling and drug screening. 

While the majority of iPSC lines (81%) were equivalent to ESC lines, we did identify 3 defective 

lines.  These defective lines were easily detectable and at a rate of just under 1 in 5 lines, we 

conclude that this error rate is an acceptable cost of making iPSC lines.  Although motor neuron 

differentiation in these lines could be rescued with a forced neuralization protocol, for all 

practical purposes we recommend that simple steps be taken to remove lines like these from 

experimental sets.  Since we excluded transgene expression and karyotypic instability as 

sufficient causes for these defects, we hypothesize that random viral integration events are 

responsible for these defects, and therefore newer reprogramming techniques such as synthetic 

RNA, non integrating vectors, or chemicals should avoid this complication altogether.  Indeed, 

whether viral genomic lesions are responsible for causing these particular defects, non-

integrating approaches are clearly a more conservative approach to generating iPSC lines. 

Sources of variation 

Our results showed that donor sex/genetic background significantly affected motor neuron 

differentiation efficiency.  This result could explain some of the variation which others have 

reported among iPSC lines (Hu, Weick et al. 2010).   Other studies have found that ES cells as 
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well show marked differences in differentiation efficiencies for the motor neuron (Di Giorgio, 

Boulting et al. 2008) and other lineages (Osafune, Caron et al. 2008). This finding was made 

possible by the categorically greater capacity of iPS vs. ES cells to sample and study individual 

genetic variation.   This capacity is a double edged sword however: because of the tremendously 

greater natural variation in human populations than in any model system for genetics we predict 

the issue of unexpected variation in differentiation phenotypes will arise repeatedly in years to 

come as more terminal cell types become the subject of directed differentiation studies using iPS 

cells.  This will need to be carefully controlled for in future studies as it could complicate or 

confound disease phenotypes.  On the other hand the abundance of human genetic variant alleles 

may provide a unique opportunity to study gene function in the mechanisms of differentiation in 

vitro (see Chapter 6). 

Because donor sex is part of donor genetic background it is possible that the sex-specific 

difference alone accounts for the difference between donor genetic backgrounds.  Because we 

did not have a balanced number of lines from each donor and across sexes, we could not perform 

a 2-factor ANOVA to directly test this possibility.  However, consistent with this possibility the 

lowest performing lines, from donor 11, were male, while the highest performing lines, from 

donors 18 and 29, were both female.  Based on the large variability between lines from different 

donors, and very small variability between lines from the same donor in our study, a new study 

with 3-4 lines/donor from a 5 male and female donors each could address this question.   

The variable phenotype (%ISL1
+
) which we describe was unlikely to be related to ALS.  

However, ALS is less common in females, therefore it is tempting to speculate that some sex-

linked genetic determinant may link depressed basal rate of in vitro motor neuron differentiation 

to ALS susceptibility.  More intriguingly our measurement of %ISL1
+
 cells could equally well 
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represent a motor neuron survival difference in response to some in vitro stressor (EB 

dissociation for example).  On the other hand the %ISL1
+
 phenotype may be completely 

unrelated to ALS, and the mechanisms and potential linkage of these phenomena were not within 

the scope of our study.   

There is also one technical caveat for the donor-genetic background result, which applies less 

strongly to the sex-difference result.  Because independent lines from the same donor were 

derived from the same specific culture well which subjected to repeated retroviral transductions, 

it is possible that these lines are derivatives of single transduction event.  In this case, the n for 

each donor would be reduced to 1, reducing the power of our statistical inference.  Although we 

could prove by Southern blot that lines were independent, we cannot experimentally prove or 

falsify a lineal relationship between these lines.  However future studies could eliminate this 

possibility simply picking independent clones from the same donor from physically or 

temporally separate reprogramming cultures. 

We chose an unbiased and functional—ability to make a defined cell type—approach to 

characterizing the utility of pluripotent cell lines.  Our collaborators used this same test set and a 

larger set of ES lines to generate an unbiased predictive scorecard, based on several short-term 

experimental differentiations, to evaluate pluripotent cell lines (Bock, Kiskinis et al. 2011).  Our 

empirical results correlated very well with the predictions of this scorecard for the lineage 

represented by our terminal phenotype (ectoderm/neuroectoderm) and were not correlated with 

other lineages tested.  This result confirms the accuracy and utility of their expression profiling 

approach.  Conversely, it validates our empirical approach as well, and suggests that for disease 

models where only one particular cell type is of primary interest immediate differentiation of 

candidate iPSC lines to that terminal cell type of interest will provide as accurate and arguably 
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more directly relevant index of the behavior individual lines which is faster, cheaper, and 

accessible to any lab.   

 

Conclusion and Perspectives 

In summary, our data provide new confidence in the ability of iPSCs to give rise to functional 

differentiated cell types of disease interest with the same efficiency and fidelity as ESCs.  Our 

study provides the first analysis of the rate and nature of the potential pitfalls of defective lines 

and practical recommendations for how to handle them.  We also demonstrate that human 

genetic variation may be an important and previously underappreciated factor to consider when 

constructing iPSC line sets, for interpreting iPSC or ESC phenotypes, and for studying gene 

function.  Together this work establishes a strong empirical foundation and guidelines for 

launching disease-phenotype directed studies of ALS and other genetic diseases using iPSCs. 

The outstanding question for the field is whether iPSC motor neurons will show ALS disease 

phenotypes in vitro.  This was not addressed by our studies and will not be addressed within the 

scope of this thesis.  However, in addition to looking for pan-motor neuron ALS phenotypes, a 

complementary approach is to use the differential response of specific motor column and motor 

pool subtypes to search for disease phenotypes or disease modifying mechanisms.  We showed 

that iPS-MNs, like ES-MNs have dominantly cervical to brachial rostrocaudal identities.  This 

regional identity includes brachial LMC motor neurons which are typically affected first in 

disease.  Studying LMC motor neurons derived from ALS-iPS cells may reveal distinct or 

accelerated disease phenotypes in vitro.  However, two of the most disease resistant motor 

neuron subtypes are caudal to the HOXA5 domain—HOXC9
+
 thoracic PGC motor neurons and 



197 
 

 

HOX10/11
+
 sacral Onuf‘s nucleus motor neurons—and these are unlikely to have been generated 

in significant numbers in our population.   It will thus be critical to ask if more caudal motor 

neuron subtypes can be generated from human ESCs and iPSCs.  The question of caudal 

patterning of human stem-cell derived motor neurons will be the subject of Chapter 5. 



198 
 

 

Figure 4.1   

 

 

Figure 4.1.  iPS cells can be established from patient fibroblasts after biopsy  

(A) Primary dermal fibroblasts (hFib, human fibroblasts) derived from an 82-year old female 

ALS patient, A29. (B) iPS cells produced from patient A29. (C and D) SSEA-4 and NANOG 

protein expression in A29 iPS cells. Scale bars 200 µm. 
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Figure 4.2 

 

 

Figure 4.2. Patient-specific iPS cells are pluripotent  

(A) Schematic illustrating the spontaneous differentiation of iPSC in embryoid bodies (EBs) and 

subsequent adherent culture.  iPSCs were used to seed EBs and grown in suspension for 7-10 

days before attachment to tissue culture plastic and analysis for the production of cell types 

representative of the three embryonic germ layers. (B) Attached EBs contained cells 

characteristic of each of the three germ layers: endoderm (AFP), mesoderm (Desmin, alpha-

SMA), and ectoderm (GFAP).  Scale bars 100 µm.  
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Figure 4.3
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Figure 4.3. ALS iPSC lines can be differentiated to motor neurons  

 (A) Schematic of protocol used to direct the differentiation of patient-specific iPSC to motor 

neurons. EBs derived from iPS cell line A29a were grown for 10 days before treatment with 

retinoic acid (RA) and a small molecule sonic hedgehog (SHH) signaling agonist. After two 

weeks of continued suspension culture in the presence of these inductive molecules, EBs were 

dissociated and cells plated on laminin. (B) The motor neuron identity of HB9
+
 and TuJ1

+
 cells is 

confirmed by the coexpression of HB9 and ISL1 (ISL), scale bar 75 µm (C and D) Neuronal 

identity of HB9
+
 cells is confirmed by (C) high-magnification image of HB9 and TuJ1 

coexpression in dissociated patient-specific motor neuron cultures, Scale bar 100 µm, and (D) 

abundant HB9
+
 cells (green) with extensive neurite outgrowth (TuJ1, red) field width 900 µm.  
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Figure 4.4

 

 

Figure 4.4. ALS iPSC lines generate cells with astrocyte-like phenotypes  

(A) Cells expressing the astrocyte marker GFAP show radial glial morphology after 3 weeks of 

culture, scale bar 100 µm (B-D) after 120 days of continuous culture most cells show astrocytic 

morphology and express combinations of GFAP, the immature astrocyte marker CD44, and the 

glial progenitor marker Vimentin, and are costained for DAPI. (B) 450 µm field width (C and D) 

225 µm field width. 
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Table 4.1. iPSC and ESC lines used for comparative studies 

Sixteen human iPSC lines were used for comparison with each other and with six ESC lines.  

iPSC lines include 14 newly generated three-factor lines from two ALS patients and five 

controls, and two previous four-factor lines from one ALS patient.  This cohort of human stem 

cell lines allows comparisons to be made between ESCs and iPSCs, between three-factor and 

four-factor iPSC lines, between male and female lines, between lines derived from the same 

donor and those derived from another donor, and between cells derived from ALS patients and 

control donors.  
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Figure 4.5   
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Figure 4.5. All test set iPSC lines pass standard assays of pluripotency  

(A) iPSC colonies were morphologically identical to ESC colonies and (B) expressed the 

pluripotency markers NANOG and TRA-1-60, unlike the patient fibroblasts (FB). Scale bars, 

200 μm. (C) iPSC lines‘ cell cycle profiles are similar to those of ESCs and different from 

parental fibroblasts.  T-test, ***P < 0.001, mean ±SD. (D and E) ESCs and iPSC lines generated 

cell types of all 3 embryonic germ layers (endoderm, AFP; mesoderm, α-SMA; ectoderm, TUJ1) 

in vitro from EBs, scale bars 100 μm, and when injected into mouse kidney capsules and allowed 

to form teratomas in vivo (E; scale bars 50 μm).  Representative images of H&E-stained sections 

are shown for lines 11b and 27e. Glands and goblet cells (endoderm), cartilage and muscle 

(mesoderm), pigmented neural epithelium and neural rosettes (ectoderm) are shown in the top 

and bottom panels, respectively, for both lines.  
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Figure 4.6   
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Figure 4.6.  iPSC lines show characteristic motor neuron differentiation efficiencies, but no 

global difference from ESC lines 

 (A) Protocol for directed differentiation of human stem cell lines into motor neurons. Cells were 

differentiated to motor neurons as described previously.  EBs were dissociated and single cells 

plated for adherent culture on day 29. On day 32 cultures were analyzed. (B) Representative 

immunostaining results for iPSC (18c) and ESC (HuES-6) cultures show many ISL1+ TUJ1+ 

motor neurons (scale bars 50 μm). (C) The percentage of all nuclei that were ISL1+ was 

quantified from differentiations performed independently in the Eggan and PALS laboratories. 

Data sets from lines differentiated in both laboratories are highly similar and lines have 

reproducible, characteristic % ISL1+ efficiencies.  29e and 27e did not differentiate efficiently in 

either laboratory.  Hu-13, HuES-13, Hu-3, HuES-3. (D)  Percent ISL1+ data from both 

laboratories were pooled for each iPSC and ESC line, and comparisons between lines showed 

that individual lines had different efficiencies and iPSC lines 11a and 11c were significantly 

different than 18c (p < 0.05). (E) The efficiency of IPSC lines as a group was not significantly 

different than for ESC lines. See Tables 4.2 and 4.3 for statistical analyses. 
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Table 4.2 

 

 

Table 4.2. Statistical analysis of categorical variables on %ISL1 differentiation efficiency 

ANOVAs on %ISL1+ values show no difference between performance in Eggan vs. PALS 

Laboratories, iPSC vs. ESC lines, 3-factor vs. 4-factor vs. 0-factor (ESC) reprogramming, ALS 

vs. control vs. ESC, or normal vs. abnormal karyotype.  Day 32 differentiations were stained, 

imaged, and quantitated for mean % ISL1+ cells ( of all DAPI+ cells) per image field per line, 

and then mean %ISL1+ was compared for n different lines per grouping variable. Mean ±SEM is 

shown for each variable setting. All comparisons showed no significant difference between 

groups.  
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Table 4.3 

 

 

Table 4.3. %ISL1
+
 cells varies by cell line  

Day 32 differentiations were stained, imaged, and quantitated for mean % ISL1+ cells (of total 

DAPI+ cells) per image field per experiment, and then mean % ISL1+ was compared for n 

different experiments per line. Mean +/-SEM is shown for each line. ANOVA revealed that there 

were significant differences based on line, and post hoc pairwise comparisons showed that lines 

11a and 11c were each significantly different than line 18c.  
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Figure 4.7 
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Figure 4.7. iPSC motor neuron cultures show phenotypes consistent with motor neuron 

identity 

 (A) Efficiency of motor neuron differentiation was also measured by the motor neuron marker 

HB9. (B) The percent of HB9+ nuclei were compared for a subset of iPSC lines and HuES-13. 

Although comparisons again suggest donor- and line-specific differences, iPSC lines were 

overall equally capable of generating HB9+ motor neurons as HuES-13 (n experiments shown 

under bars for mean ±SD). (C) Many ISL+ motor neurons were also ChAT+, indicating proper 

maturation toward a cholinergic transmitter phenotype.  (D) ISL1+ motor neurons are not 

dividing since they did not stain for  Ki67, as expected of post-mitotic cells, while PAX6+  neural 

progenitor cells were Ki67+. (E) The expression of motor neuron markers ISL1, ChAT, TUJ1, 

HB9, CHT1, and the motor neuron progenitor gene OLIG2 were assessed by qPCR.  iPS/ES 

represents the average expression level in undifferentiated HuES-3 Hb9:GFP and iPSC line 18c. 

The relative expression of these genes in undifferentiated HuES-3 Hb9:GFP is set as 1. (mean 

±SD).  All scale bars 50μm. 

 

 

 

 

 

 

 

 

 



213 
 

 

Figure 4.8
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Figure 4.8. iPS- and ES-MNs exhibit the same coherent cervical HOX phenotypes 

(A) Day 32 cultures were triple stained for ISL1, HOXA5, and HOXC8.  (B) 41% of IPS- and 

42% of ES- ISL1+ cells expressed HOXA5 (green) and 12% and 13% expressed HOXC8 (red) 

respectively.  The number of HOXA5 HOXC8 coexpressing cells (yellow) was extremely low 

(<5% of all HOXA5 or HOXC8 expressing cells) for iPS- as well as ES-MN.  Left panel, mean 

of 4 experiments on n=1 (RUES1) ESC line, and mean ±SEM of n=7 individual iPS lines tested 

(18a, 18c, 11a, 11b, 11c, 15b, 29A).  Right panel, individual percentages for representative lines 

shown in (A). 
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Figure 4.9 
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Figure 4.9.  iPSC- and ESC-derived neurons are physiologically active  

(A) Fura Red channel image of  iPSC 11a–derived neurons filled with Fura Red AM and Fluo-4 

AM dyes, same field as in (B-G). Activity of labeled cells is represented in (H) and (I). Scale bar, 

100 μm. (B) immunostaining shows ISL1+ (star) and ISL– neurons (arrow). (C) Spontaneous 

electrical activity in cultured iPSC-derived neurons visualized by a ‗subtracted image‘ that shows 

the difference in pixel intensities between two images acquired 1.7 s apart in the Fluo-4 channel. 

Higher gray values represent increased pixel intensity. (D–G) Identically exposed pseudocolored 

averages of ten Fluo-4 AM images taken during the control period (D), after treatment with 100 

μM KA (E), after KA washout (F) and after treatment with 50 μM KCl (G). Warmer colors 

represent increased fluorescence intensity. (H-K) Plots of Fluo-4/Fura Red intensity ratios  in the 

somata of (H) example ISL1+ (*) and ISL1-(arrow) cells show spontaneous activity in the ISL1+ 

cell, (I) both cells are activated by KA and KCl, (J) examples of spontaneous activity in cultures 

of ESC RUES1–, and iPSC 11a–, 18a–, 18c– and 27b–derived neurons as well as one example of 

a nonresponsive (NR), non-active cell for RUES1, and (K) KA and KCl response of cells from 

(J).    
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Figure 4.10 

 

 

 

Figure 4.10. iPSC- and ESC-derived neurons show voltage gated sodium channels and fire 

action potentials 

 (A–D) Sample voltage-clamp traces from ESC (A) and iPSC 18a–derived (B) neurons. (C) 

Blowup of an iPSC 27b–derived neuron recording reveals typical sodium currents (left), which 

are blocked by TTX (right). (D) Current-clamp recordings of single action potentials in ESC and 

iPSC 27b–derived neurons as well as multiple action potentials in an iPSC 18a–derived neuron. 
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Figure 4.11 
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Figure 4.11. Persistent transgene expression in some iPSC lines does not inhibit MN 

differentiation  

(A-C) qPCR measurement of relative levels of transcript from endogenous ‗e‘ (blue) and viral  

―v‖ (red) reprogramming  factors (A) SOX2, (B) KLF4, and (C) OCT4 in undifferentiated iPSCs 

(left) and ESCs, and in day 32 neuron cultures (right). The expressed/silenced status of transgene 

is constant before or after differentiation. Relative levels in undifferentiated HuES-3 were set as 

1. FB, fibroblasts. (D) Day 32 motor neuron cultures were co-stained for ISL1 and OCT4. HuES-

3– and iPSC 17a–derived cultures, which do not express viral OCT4, did not stain for OCT4. 

However, iPSC 15b–derived cultures, which do express viral OCT4, contained many OCT4+ 

ISL1+ motor neurons (arrow) and OCT4+ ISL– cells (arrowhead), scale bars 50 μm. 
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Table 4.4 
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Table 4.4. Some iPSC lines show abnormal karyotypes  

A number of iPSC lines are summarized including the percentage of normal cells as well as 

abnormalities detected. Passage number (p) and lab that cells were grown is indicated for each 

report. Bold fonts indicate normal lines. We have previously reported iPS cell line 29A as having 

a normal karyotype (Dimos, Rodolpha et al. 2008). Abnormalities found in only one of twenty 

metaphase spreads (5% of cells) are considered ―non-clonal‖ variants and were assumed to be 

technical artifacts.  Lines with >75% normal karyotype were considered normal. Of lines able to 

generate ISL1+ neurons under standard differentiation protocol 69% (9/13) had normal 

karyotypes; of ISL1-incompetent lines 33% (1/3) had continuous normal karyotypes: 27e was 

normal, 11b was normal at early and abnormal at later passage, and 29e was abnormal. 
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Figure 4.12
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Figure 4.12.   2 of 16 iPSC lines display a defective EB and total cell number phenotype 

during motor neuron differentiation  

(A) During standard motor neuron differentiation, iPSC lines 27e and 29e showed abnormal 

embryoid body morphology and dissociated cell survival phenotype compared to all other iPSC 

and ESC lines (HuES-3, 29d, 27e shown), phase scale bar 500 μm; DNA scale bar 129 μm. (B) 

Total cell output was quantified for each line at day 32 of differentiation by averaging the total 

number of DAPI
+
 nuclei per image field and taking the mean of n experiments for each line (see 

Table 4.5) ±SEM.  Kruskal-Wallis One Way ANOVA on Ranks  showed a significant difference 

between lines (p=0.027) and Dunn‘s post-hoc tests showed that both 27e and 29e were 

significantly different than line 29d (* p<0.05), see Table 4.5 
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Table 4.5 

 

 

Table 4.5. Statistical analysis of mean total cells numbers per line after dissociated cell 

seeding identifies 2 defective iPS lines 

Kruskal-Wallis One Way ANOVA on Ranks for total cell number shows that the 2 of 16 iPSC 

lines with abnormal EB phenotype have significantly different total cell numbers. Day 32 

differentiations were stained, imaged, and quantitated for mean cells (DAPI
+
) per image field, 

and then compared for n different experiments per line. Mean ±SEM is shown for each line. The 

ANOVA showed a significant effect of line identity. All significant post hoc pairwise 

comparisons are shown. 
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Figure 4.13  
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Figure 4.13.   1 of 14 iPSC lines shows a neuronal defect after standard motor neuron 

differentiation 

 (A) During standard motor neuron differentiation, iPSC line 11b had typical EB morphology 

and normal total cell numbers, but showed drastically reduced neuronal TuJ1 staining compared 

to all other lines (iPSC 11b, HuES-13, and iPSC 18a shown), scale bar 129 μm. (B) The 

percentage of TuJ1
+
 cells was quantified for n experiments (see Table 4.6) and the mean %TuJ1 

of all cells ±SEM is shown.    One Way ANOVA showed line identity significantly affected 

%TuJ1 (p=0.012) and Holm Sidak post-hoc pairwise comparisons showed 11b was significantly 

different than 18a, see Table 4.6. 
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Table 4.6 

 

 

Table 4.6. ANOVA for %TuJ1 showed line 11b had a significantly different phenotype. 

Day 32 differentiations were stained, imaged, and quantitated for mean %TUJ1
+
 cells (of DAPI

+ 

cells) per image field. The mean of n different experiments per line ±SEM is shown. All 

significant post hoc pairwise comparisons are shown. 
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Figure 4.14 

 

 

Figure 4.14. Pharmacological neuralization completely rescues all three defective-

phenotype iPSC lines 

(A) Dual inhibition of TGF-beta type I signaling rescues the defective EB and total cell number 

phenotype of both affected iPSC lines (27e not shown and 29e shown) and also rescues the Tuj1 

phenotype for line 11b, HUES-3 HB9:GFP shown as ES control.  Phase scale bars 500 μm, 

immunostaining scale bars 100 μm.  (B-D) Quantification of immunostaining for defective lines 

(11b, 27e, 29e) and ESC controls shows complete rescue for: (B) %TUJ1
+
 of all cells; (C); 

%ISL1
+
 of all cells; and (D) %HB9

+
 of all cells, n=3 independent experiments, Mean ±SEM 

shown. 
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Figure 4.15 
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Figure 4.15.  Sources of variability in motor neuron differentiation between iPSC lines 

  (A-E) The mean of all experiments per line were averaged and the mean of n lines per category 

±SEM is shown. There was no significant difference (A) between control (Ctrl) and ALS lines or 

(B) between 3- and 4-factor reprogrammed lines.  (C) iPSC lines and (D) all stem cell lines from 

male donors showed a significantly different %ISL1 efficiency from female, (*p<0.05).  (E) lines 

from individual donors showed characteristic efficiencies and ANOVA showed that donor 

identity had a significant effect on %ISL1 (**, p=0.003), however no pairwise post-hoc tests 

reached significance.  See Table 4.2 and 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



231 
 

 

 

 

Table 4.7 

 

 

Table 4.7. ANOVAs on %ISL1 show significant effects of donor identity and sex 

Mean %ISL
+
 of all cells (DAPI

+
 nuclei) per image field were averaged for all experiments per 

line and then the mean ±SEM of n different lines per sex, and n different lines for each donor 

were compared.  ANOVA indicated a significant effect of donor sex and donor identity, but no 

post-hoc pairwise comparisons for donor identity were significant.  
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Figure 4.16
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Figure 4.16. Southern blots show multiple lines from the same donor are independent lines 

(A) 6.5 μg BglII digested genomic DNA was separated by electrophoresis on an agarose gel, (B) 

Southern Blot and hybridization with DIG-labeled probe for SOX2 cDNA transcript showed a 

conserved SOX2+ restriction fragment at ~3800bp in the control ESC line and all iPSC lines, as 

well as a unique pattern of bands for each iPSC line demonstrating unique transgene insertion 

sites and therefore unique line identities. (C) Hybridization with OCT4 cDNA probe showed 

endogenous bands at ~6000bp in ESC control and iPSC lines, as well as unique MW species 

indicative of unique transgene integration sites, confirming unique line identities. 
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Figure 4.17 
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Figure 4.17. Empirical measures of cell-line-specific motor neuron efficiency correlate with 

lineage scorecard predictions for germ layer and neuronal differentiation proclivity. 

Correlation between the lineage scorecard estimates for the neural lineage and three germ layers 

versus the cell-line-specific efficiency of directed differentiation into motor neurons (rp, 

Pearson‘s correlation coefficient; rs, Spearman‘s correlation coefficient). Motor neuron 

efficiencies were measured by the percentage of ISL1
+
 cells at the end point of a 32 day neural 

differentiation protocol.  Further details including biological replicates and standard errors are 

available from Table S7 (Bock, Kiskinis et al. 2011) 
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Chapter 5.  Controlling the rostrocaudal subtype diversity of human stem cell-derived 

motor neurons.  

 

Introduction 

While spinal motor neurons selectively degenerate and die in ALS, their susceptibility is not 

uniform.   Distal muscle-innervating motor neurons of LMC subtype for example are more 

typically the site of onset than proximal thoracic muscle innervating HMC/MMC motor neurons 

(Ravits, Paul et al. 2007).  On the other hand sympathetic chain innervating PGC motor neurons 

may be relatively preserved, and eye and pelvic sphincter innervating motor neurons are almost 

completely spared—oculomotor and Onuf‘s nuclei motor pools (Kanning, Kaplan et al. 2010).  If 

motor neuron subtypes with strong differential responses to ALS could be generated in vitro, 

their comparison could sharpen the resolution of in vitro disease phenotypes or molecular 

changes and allow direct investigation of the mechanisms underlying those differences.  

However as we have shown in Chapters 3 and 4, ES- and iPS-MNs are predominantly cervical, 

and therefore are unlikely to contain a robust cohort of either thoracic PGC or lumbar Onuf‘s 

nuclei motor neurons.  As we have discussed (Chapter 1 Part I) early rostrocaudal patterning 

events control the diversification of motor neurons into these and other subtypes.  In order to 

contemplate generating these more caudal motor neuron subtypes we would have to generate 

motor neurons with more caudal identities.  We therefore asked how more caudal motor neurons 

are generated during development of vertebrate model organisms—chick and mouse—and then 

sought to recapitulate these events in vitro at a timecourse appropriate to human development. 

During early spinal cord development the morphogens Wnt and FGF and later FGF and RA are 

produced from specific anatomic sources and act over two specific embryonic phases.  In the 
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first phase—from the mid-primitive streak stage to the 4-somite stage—Wnt from the paraxial 

mesoderm and FGFs from the primitive streak activate CDX gene expression which encodes 

caudal neural character in prospective hindbrain and spinal cord progenitor cells (Fig. 5.1A) 

(Nordstrom, Maier et al. 2006).  

In the second  phase—from the 4-somite to the 16-somite stage—FGFs secreted from the 

regressing node expose progressively more caudal prospective spinal cord progenitors to higher 

concentrations of FGF for longer durations while RA synthesized by the somites formed lateral 

to the neural tube in the rostral wake of the node exposes more rostral spinal progenitors to 

higher levels of RA (Fig. 5.1C) (Liu, Laufer et al. 2001; Nordstrom, Maier et al. 2006).  Spinal 

progenitor cells exposed to RA, RA and FGF, or FGF alone assume positional identities from 

caudal hindbrain to lumbar spinal cord as marked by the combinatorial expression of HOXB and 

HOXC cluster genes (Bel-Vialar, Itasaki et al. 2002; Nordstrom, Maier et al. 2006).  These 

rostrocaudal domains, with the additional influence of node derived GDFs on the prospective 

lumbar region, give rise to the code of HOXC protein expression which determines motor 

column identities (Liu, Laufer et al. 2001).   

While these patterning morphogens and CDX and HOX caudal identity genes are not described in 

human, a recent study has identified neural marker genes whose temporal expression profiles 

bracket the cognate phases of human embryonic development: late primitive streak to 16 somite 

stage.  PAX6 shows a novel expression pattern in early primate and human embryos, compared 

to mouse and chick, appearing as a selective marker of early neuroectoderm by the neural plate 

stage, day 18 (Zhang, Huang et al. 2010) (Fig. 5.2).  By day 26—the 19 somite stage—PAX6 no 

longer serves as a pan-neural marker, but is restricted to its role as an effector of dorsoventral 

positional identity as it is in mouse and chick.  By this stage SOX1 is expressed in all neural cells 
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in human embryos.  The molecular profile of human spinal neuroectodermal cells in vivo during 

the patterning period we inferred is therefore bracketed at the onset by the initiation of PAX6 

expression and at the end by the pan neural expression of SOX1.  These markers might therefore 

be used to correlate the developmental status of in vitro cultures with in vivo development during 

the time period of caudal patterning. 

If an appropriate time window for inducing more caudal neural pattern can be defined in vitro, 

we could then test the combinations of Wnt, FGF and RA which the vertebrate model predicts 

should determine rostrocaudal identity.  We would use the RA-only condition, which we 

previously described in Chapter 3, as a rostral spinal control and starting point.  The predicted 

outcomes of more caudalizing FGF-containing conditions are motor neuron populations with 

reduced cervical HOXA5
+
-, increased caudal brachial and thoracic HOXC8

+
-, and increased 

thoracic and lumbar HOXD9
+
-motor neuron subtypes.   

 

Results 

Inferring a time window for caudal neural patterning in human 

The events leading to caudal neural patterning and the graded expression of HOX genes in post-

mitotic motor neurons occur in two embryonic phases in chick.  In the first phase (primitive 

streak to 4 -somites) Wnt and FGF demarcate the caudal neural plate (prospective hindbrain and 

spinal cord) from more rostral neural tissues.  While the expression and activity of Wnt and FGF 

are not described in the human system, the human embryo passes through nearly identical stages 

of early embryonic development as the chick.  The human embryo is at mid primitive streak at 
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day 15, and 4 somite stage at day 18; we therefore inferred that Wnt and FGF may be acting in 

the human embryo during this time (Fig. 5.1B).   

In the second phase (4 to 16 somites) RA and FGF gradients lead to the differentiation of caudal 

neural tissues into caudal hindbrain, rostral and caudal spinal cord.  Again, these morphogens are 

not described in the human embryo, but the human embryo reaches 17 somites by day 22 (Fig. 

5.1D).  These comparisons predict that Wnt and FGF act from day 15-18 and that FGF and RA 

act from day 18 -21 of human development to generate spinal positional identities (Fig. 5.1D).  

In order to translate this inferred patterning period to our in vitro system we made two final 

assumptions.  First, we assumed that in vitro development would proceed at an in vivo rate.  

Second, since human ES cells are derived from day 5 blastocysts, we subtracted 5 days of 

development from the inferred period of human in vivo caudal neural patterning to project an in 

vitro timing window of day 10-17. 

Molecular markers of neural lineage induction correlate in vitro timing with in vivo 

To monitor the transition away from pluripotency we quantified expression of the core 

pluripotency gene OCT4 (Nichols, Zevnik et al. 1998).  OCT4 mRNA levels were 95% of day 0 

(maximum) at day 6,  but reduced to 10% of maximal expression at day 10 and completely 

extinguished by day 17; this was confirmed at the protein level by immunostaining (Fig. 5.3A, 

B).  In order to confirm our assumption that the time course of neural differentiation in vitro 

would parallel that observed in vivo, and thereby validate the choice of days 10-17 for caudal 

patterning, we tested the expression of two key markers of neural identity, PAX6 and SOX1, 

whose expression profile in vivo (Zhang, Huang et al. 2010) (Fig 5.2) marks the same period we 

inferred above.  The first neural lineage marker, PAX6, was upregulated at day 10 (18% of 
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maximum) whereas SOX1 expression at the same stage was only 4% above baseline.  Both 

proteins however could be detected at low frequency in some EBs (Fig. 5.3B).  By day 17 

however, both PAX6 and SOX1 had reached peak expression levels.  Subsequently SOX1 

expression decreased slightly (to 80% of maximum), while PAX6 decreased substantially (to 

22% of maximum).    The decline of PAX6 after day 17 fits with its later in vivo function in 

dorsoventral patterning in vertebrates, since the increased concentration of SHH protein at day 

17 should ventralize cultures and inhibit PAX6 expression. We concluded from these data that in 

vitro differentiation matched the time course of in vivo development since days 10-17 in vitro 

showed a similar molecular profile to that observed over the corresponding period (day 15-26) in 

vivo.  Having inferred a patterning window in vivo, and then correlated in vitro marker 

expression with in vivo markers, we designed an experiment to test the effect of the relevant in 

vivo morphogens during this in vitro time window. 

Rostrocaudal patterning with Wnt, FGF, and RA 

The model of vertebrate rostrocaudal positional patterning reviewed above suggests that Wnt and 

FGF first define caudal neural identity, and then combinations of FGF and RA subdivide the 

hindbrain and spinal cord into hindbrain, rostral spinal cord, and caudal spinal cord.  Although 

node-derived GDFs are required for lumbosacral HOXC10 expression in chick (Liu, Laufer et al. 

2001), for simplicity we chose to focus on the initial two periods when caudal identities are 

determined and refined by Wnt, FGF and RA (Nordstrom, Maier et al. 2006) and to collapse 

these two patterning periods together.  We predicted that Wnt+RA, Wnt+RA+FGF, or Wnt+FGF 

if applied during the appropriate time window, would  generate progressively more caudal sets of 

spinal motor neurons, as they had been shown to do in chick explants (Nordstrom, Maier et al. 

2006).  To test this hypothesis we treated EBs with these combinations during the in vitro time 
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window we identified (Fig 5.4).  The endpoint of this analysis was the HOX profile of post-

mitotic motor neurons.   

FGF treatment induces a caudal shift in HOX gene expression 

We first asked if FGF treatment induced a caudal shift in the expression of HOX genes in the 

whole culture (Fig. 5.5).  qPCR analysis of HOX gene mRNA expression showed that when FGF 

was added to RA there was a small decrease in HOXA5 (0.8 fold RA) and an increase in all 

caudal HOX genes tested (HOXC6, 4 fold; HOXC8, 17 fold; HOXD9, 4 fold; and HOXC10, 2 

fold), although this difference only reached significance for HOXC6 (t-test p=0.02) (Fig. 5.5A).   

When FGF was used in the absence of RA we observed a significant decrease in HOXA5 levels 

as compared to RA alone (0.2 fold), a significant decrease in HOXC6 and a large decrease in 

HOXC8, when compared to RA+FGF , suggesting a shift away from cervical through rostral 

thoracic spinal identities.  FGF alone compared to RA+FGF also showed unchanged HOXD9 

and increased HOXC10 suggesting stable caudal thoracic and increased lumbar gene expression.  

We concluded from these data that FGF, when added to RA, generated a more caudal positional 

profile of HOX gene expression, as shown by decreased HOXA5, and increases in all caudal 

HOX genes.  Notably the largest increases were in HOXC6 and HOXC8 which suggested 

brachial to mid-thoracic positional identities, although the increase in HOXD9 and HOXC10 was 

consistent with some mid-thoracic to lumbar gene expression as well.  We also concluded that 

FGF alone induced an even more caudal profile of HOX gene expression, based on the 

significant decrease in HOXA5 from RA and the trend decrease compared RA+FGF, the 

decreases in HOXC6 and HOXC8 compared to RA+FGF, the increase in HOXD9 compared to 

RA, and importantly the increased HOXC10 compared to RA+FGF.   
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We then asked whether HOX proteins were affected by FGF treatment by staining cells for 

HOXA5, HOXC8, and HOXD9 (Fig. 5.5B, C).  We observed a trend decrease in the percent of 

total cells staining for HOXA5 when RA was compared to RA+FGF (11% vs. 5% respectively), 

a trend increase in HOXC8 (1% vs. 7% respectively), and a significant increase in HOXD9 (2% 

vs. 8% respectively, p<0.05).  FGF alone induced significantly fewer HOXA5
+
 cells compared to 

RA (2% vs. 11% respectively, p<0.05), and fewer than RA+FGF.  FGF alone also induced more 

HOXC8
+
 (3%) and HOXD9

+
 (3%) cells.  This was elevated as compared to RA alone but less 

than with the combination of RA+FGF, significantly so in the case of HOXD9 (p<0.05).  We 

concluded from these data that HOX protein expression showed a clear caudal shift in positional 

identity when FGF was added to RA.  When FGF was used alone we saw a stronger and 

significant decrease in HOXA5
+
 cells suggesting a less rostral identity.  The decrease in 

HOXC8
+
 and HOXD9

+
 cells could supports the idea that FGF alone generated even more caudal 

positional identities than RA+FGF, but could also mean that cultures were less spinal in identity.   

FGF leads to a reduction in the number of neurons and motor neurons 

To determine whether FGF treatment affected the efficiency of neuronal or motor neuronal 

differentiation we stained cultures for the neuronal marker TuJ1, and the motor neuron markers 

HB9 and ISL1 (Fig. 5.6A,B,C).  The percent of total cells positive for TuJ1 was slightly but 

significantly decreased when RA was compared to RA+FGF (65% vs. 56%, p<0.05), and was 

further decreased when FGF was used without RA (53%, p<0.05 vs. RA).  We concluded from 

these data that FGF significantly decreased the percentage of differentiated neurons present in 

culture, although the magnitude of this change was relatively small (-9% for RA FGF vs. RA and 

-3% for FGF vs. RA+FGF).  From these data we could not discriminate whether this effect was 
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the result of increases in the numbers of undifferentiated neural progenitor cells or the 

preferential specification of non-neuronal cell types.  

Because FGF reduced the percentage of differentiated neurons, we next wanted to determine 

whether the efficiency of motor neuron induction was decreased and if the pattern of motor 

neuron marker expression was changed.  It was also important to establish that the motor neuron 

markers HB9 and ISL1 were still expressed exclusively by neurons and not by non-neural cells 

which also express these markers in vivo.  We therefore stained cultures for HB9, ISL1, and 

TuJ1 and found that >90% of HB9
+
 or ISL1

+
 cells co-expressed TuJ1, and there was no 

significant difference between conditions (Fig. 5.6A, B).  These data demonstrated that virtually 

all HB9
+
 or ISL1

+
 cells were neurons under all conditions tested.  The percent of cells expressing 

HB9 however was significantly decreased under RA+FGF conditions vs. RA (8% vs. 13% 

respectively, p<0.05), and was significantly decreased with FGF-only compared to RA+FGF or 

RA (4%, p<0.05)  (Fig. 5.7C).  The percent of ISL1
+
 cells was also significantly decreased with 

FGF-only (5%, p<0.05) compared to either RA (11%) or RA+FGF (9%)   (Fig 5.6C).  The 

degree of HB9 and ISL1 coexpression however, was not significantly changed by either 

treatment (Fig. 5.6C).  We concluded from these data that FGF treatment reduced the efficiency 

of neuronal differentiation and of motor neuron differentiation.  However HB9
+
 and ISL1

+
 cells 

generated in these conditions remained predominantly neuronal and their pattern of ISL1/HB9 

co-expression continued to match that described in vivo.  We could therefore use these motor 

neuron markers with confidence in all conditions tested. 
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FGF induced caudal motor neuron subtypes at the expense of rostral 

To determine whether FGF affected the positional identity of motor neurons specifically we 

costained cultures for HB9 or ISL1, and HOXA5, HOXC8, or HOXD9 (Fig. 5.7A).  The percent 

of HB9
+
 cells expressing HOXA5 was significantly decreased from RA (34%) under both 

RA+FGF (18%, p<0.05) and FGF-only (9%, p<0.05) conditions.  The percent of HB9
+
 cells 

expressing HOXC8 or HOXD9 was also increased from RA (13% HOXC8, 7% HOXD9) under 

RA+FGF treatment (34% HOXC8, 24% HOXD9) but this difference was only significant for 

HOXD9 (p<0.05).  When FGF alone was used, the fraction of HOXC8 (37%) and HOXD9 

(29%) of HB9
+
 cells was further increased and significantly different from RA alone (p<0.05) 

(Fig. 5.7B).  When the shift in HOX expression was gated for ISL1
+
 cells, the results were 

virtually identical (not shown).  We concluded from these data that FGF induced a caudal shift in 

ES-MN positional identity.  When FGF was used in the absence of RA, the trend toward even 

lower HOXA5, and higher HOXC8 and HOXD9, compared to RA+FGF suggested an even more 

caudal positional identity.  

ES-MN HOX protein expression is mutually exclusive even in more caudal populations 

Because we now observed substantial numbers of motor neurons expressing more caudal HOX 

proteins we asked whether caudalized ES-MNs would adopt coherent positional identities 

characterized by mutually exclusive HOX protein expression as reported in vivo (Chapter 1) and 

for predominantly rostral ES- and iPS-MNs (Chapter 2 and Chapter 3).  Because of the strongly 

reduced total motor neuron numbers in the FGF-only condition, and the clearly caudalized 

identities observed in the RA+FGF condition, we restricted these analyses to the RA and 

RA+FGF conditions.  When cultures were triple stained for HB9 or ISL1 and either HOXA5 and 
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HOXC8 or HOXA5 and HOXD9 (Fig. 5.8A, B) we found that under rostral or caudal conditions 

fewer than 5% of HB9
+
 cells expressing either HOX protein coexpressed the other (Fig. 5.8C, 

D).  We concluded from these data that ES-MNs were successfully able to interpret competing 

patterning cues, RA and FGF, and resolve coherent, mutually-exclusive HOX identities.  We 

next wanted to ask if the caudal shift in rostrocaudal identity coincided with any change in the 

distribution of columnar subtypes. 

Caudalization does not change motor column subtype distribution 

In order to determine whether the caudal shift in HOX expression would lead to a shift in motor 

column identity, we stained caudalized and control (RA) cultures for markers of LMC (FOXP1) 

and MMC (LHX3) identities (Fig. 5.9A).  We found that the percentage expression profile of 

LHX3 and FOXP1 for HB9
+
 motor neurons was not significantly different in caudal cultures 

(Fig. 5.9A, B, p>0.05).  This result is consistent with the in vivo expression profile for HOXA5
+
, 

HOXC8
+
, and HOXD9

+
 motor column subtypes, because each of these HOX genes is expressed 

by motor neurons in nearly equal proportions of limb and non-limb innervating spinal regions in 

vivo and therefore includes, MMC, HMC, PGC, and LMC columnar subtypes in relatively equal 

proportions.  Therefore taking away motor neurons positive for any one of these HOX genes, and 

adding any another would not be predicted to substantially change the motor column profile.   

HOX and column marker staining more precisely classifies potential subtype identities 

To more precisely classify in vitro-generated ES-MNs using in vivo expression patterns, we 

stained control and caudalized cultures for HB9 or ISL1, a positional marker (HOXA5, HOXC8, 

or HOXD9), and the LMC column marker FOXP1, the marker for LMC/PGC motor column 

identity and quantitated expression profiles for all HB9
+
 and ISL1

+
 cells (Fig. 5.10A).  When 
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these in vitro combinatorial expression patterns were matched to in vivo correlates (Fig. 5.10B) 

the range matched all motor neuron staining profiles found in the spinal cord between cervical 

and mid lumbar levels in vivo (Fig. 5.10C).  Because each marker combination we measured was 

consistent with more than one in vivo motor neuron subtype, in vitro staining combinations 

yielded several potential identities.   We therefore list the possible in vivo identities based on our 

evidence.  We concluded however that the rostrocaudal and columnar range of potential subtypes 

included several with differential responses to ALS in vivo: LMC vs. thoracic HMC/MMC, and 

thoracic PGC. 

 

Testing caudal patterning on accelerated protocol differentiations and iPS cells 

In order to search for motor neuron-intrinsic subtype-selective ALS phenotypes, these specific 

subtypes must be differentiated from stem cells with ALS genotypes.  We showed in Chapter 3 

that iPS cells generate the same range of predominantly cervical motor neuron subtypes in vitro.  

In order to study ALS-refractory thoracic or lumbar subtypes, iPS cells must be competent to 

generate these more caudal subtypes as well.  We therefore next tested whether iPS cells would 

respond similarly to the rational approach for generating caudal motor neurons we developed 

using ES cells.   

As discussed in Chapter 2, recent developments in pharmacological control of neural induction 

led us to establish an Accelerated Protocol (Fig. 3.4A) which more than doubled motor neuron 

differentiation efficiency.  This technical development may prove to be a superior strategy for 

generating motor neurons for disease studies and may be useful for studies of development as 

well.  However since by intention it deviates from some aspects of in vivo neural development, 
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especially temporal, we wanted to ask how amenable it would be to our developmentally based 

patterning approach.   

Accelerated cultures show early expression of neuroectodermal markers 

To target a developmental time window in accelerated cultures that was similar to that used for 

Standard Protocol patterning experiments above, we reasoned that the same early neural lineage 

markers, PAX6 and SOX1 could again be used to define an appropriate patterning window.  

Colleagues in the lab (Mackenzie Amoroso, Andrew Brunswick, Laurent Roybon, unpublished) 

found that by day 10 accelerated cultures showed the same widespread expression of PAX6 and 

SOX1 observed at day 17 under Standard Protocol conditions (not shown) indicating an 

acceleration of at least 7 days.  These result corroborated previously published findings showing 

that neural induction may be largely complete by day 5 under similar conditions (Chambers, 

Fasano et al. 2009), which suggested an acceleration of at least 5 days.  Finally we had observed 

that the onset of HB9-driven GFP expression was accelerated by 10 days (Chapter 2).  This 

suggested that the only acceleration was in the early phase of neural induction and that 

subsequent development proceeded in parallel with Standard Protocol differentiations.  We 

therefore shifted the patterning window for Wnt3a and FGF exposure backwards to day 5-12. 

Accelerated Protocol cultures generate comparable motor neuron populations  

We first wanted to test whether FGF-treated accelerated differentiations would generate a 

comparable spectrum of motor neurons.  Both iPSC lines and ESC control generated abundant 

HB9
+
 and or ISL1

+
 neurons with RA, and slightly fewer motor neurons with FGF treatment 

(28%, 18%, and 17% under RA and 17%, 13%, and 15% HB9
+
or ISL1

+
 of total cells under 

RA+FGF treatment for RUES1-ES,  iPS-29A, and iPS-18c respectively) (Fig. 5.11A, B).  The 
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pattern of HB9 and ISL1 overlap was very similar between iPS lines and RUES1 control, 

although it appeared there was more overlap and fewer HB9
HIGH

-only cells compared to 

Standard Protocol conditions (Fig. 5.11B).  We concluded that using the Accelerated Protocol 

with iPS and ES cells generated motor neurons with similar profiles of pan-motor neuron marker 

expression and at similar efficiencies. 

iPS-MNs respond to caudal patterning similarly to ES-MNs 

We next asked if iPS cells would be competent to respond to FGF and generate caudal motor 

neurons.  When we stained iPS- and ES-MNs for HOXA5 and HOXC8, we observed that for 

iPSC as well as ESC lines, only under caudalizing conditions were many HB9
+
 cells stained with 

HOXC8 (Fig. 5.11C).  Both iPS lines showed a decrease in the percent of HOXA5
+
 motor 

neurons, and an increase in the percent of HOXC8
+
 motor neurons, similar to the RUES1 control 

(Fig. 5.11D).  We concluded from these data that differentiating iPS cells responded to 

developmental mechanisms to generate more caudal motor neuron subtypes in a fashion 

comparable to ES cells.  We also concluded that the Accelerated Protocol, and accelerated 

differentiation approaches more broadly, may be compatible with developmentally based 

patterning approaches. 

  

Discussion 

FGF induces more caudal motor neuron subtypes 

Vertebrate embryos use rostrocaudal patterning as a means to specify a diversity of motor 

neurons which are genetically, functionally and somatotopically matched to their muscle targets. 
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This model of development predicts that controlling rostrocaudal identity is necessary and 

sufficient to generate specific functional motor neuron subtypes at the level of both motor 

column and pool.  In accord with the predictions of this model, we found that FGF, when added 

to RA, or used alone, generated a group of motor neurons with significantly more caudal 

positional identities.  This shows that human spinal neuroepithelial cells can operate by the 

developmental rules defined in model systems.  This finding also supports, though cannot not 

directly test, the idea that human motor neuron diversification in vivo is enacted by the same 

mechanisms as model vertebrates.  Importantly these findings act as a proof of principle that 

complex developmental events defined in model systems can be translated to rational approaches 

for engineering the differentiation of highly specific cellular subtype of intellectual and disease 

relevance from human ES and iPS cells. 

 The profile of motor neurons was most rostral with RA alone, was caudalized by FGF addition 

in the presence of RA, and was the most caudal with FGF in the absence of RA.  Generating 

specific cell types from stem cells is crucial to their use for studies of development and cellular 

function in health and disease.  Therefore our results have broad implications for 

developmentally-based approaches to generating specific and hitherto unavailable cell types 

from human stem cells.  Most specifically our findings render rostral and caudal motor neuron 

subtypes available for functional and disease-related studies.   

A broad diversity of coherent subtypes generated across conditions 

When we used the three HOX genes and two positive markers of motor column identity for 

which we had previously defined in vivo expression patterns we could assign a set of potential 

rostrocaudal and columnar identities to motor neurons generated in vitro.  In aggregate these 



250 
 

 

potential identities spanned each motor column residing in spinal regions from cervical to mid-

lumbar human spinal cord.  However, because the HOX proteins we tested each span limb and 

non-limb-innervating territories, because FOXP1 is expressed by both LMC and PGC cells, and 

because we could not identify a human-reactive antibody for the HMC marker ER81, most of the 

transcription factor expression combinations we identified could potentially be assigned to 

several potential identities.  Resolving these ambiguities is a major unsolved task looking 

forward since motor column-specific disease phenotypes can only be studied if motor column 

identities can be definitively monitored.  

In cases where it was possible to test, we found a striking coherence of cellular identities at the 

level of transcription factor expression.  For example, the mutual exclusion of HOXA5 and 

HOXC8 or HOXD9 matches the pattern found in vivo.  Importantly under caudalizing conditions 

when a large percent of motor neurons expressed HOXC8 or HOXD9, these proteins were still 

expressed exclusively.  This result shows that even in the context of competing positional 

information, differentiating ES cells are able to interpret these cues to resolve coherent identities.  

Furthermore, since the elaboration of motor pool subtype identity at the forelimb level depends 

on cross repressive interactions between many HOX genes, including HOXA5-HOXC8 pair, our 

results suggest that ES- and iPS-derived motor neurons manifest an intact network of functional 

HOX responses which is required for coherent motor pool identities. 

The interpretation of ES-MN identity based on column marker expression was less clear cut.  

The majority of motor neurons in vivo expressed the motor column markers LHX3 (MMC) and 

FOXP1 (LMC/PGC) mutually exclusively (Chapter 2).  This was the case for most in vitro ES-

MNs as well (Chapter 3).  However a subset of cells inappropriately coexpressed these markers.  

As discussed in Chapter 3, one potential interpretation of this expression pattern is that these 
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cells match the novel brachial LMC putative motor pool identified in human fetuses in vivo.  

Alternatively, as seen in mouse ES-MN differentiation LHX3 expressed inappropriately 

according to mouse in vivo expectations, i.e., appears it is coexpressed by some FOXP1
+
 motor 

neurons ((Peljto, Dasen et al. 2010) and Mackenzie Amoroso unpublished observations).  This 

expression pattern may therefore be an in vitro artifact which could be interpreted as cells with 

confused molecular identities.  The shift to dominant FOXP1 expression in matured cultures and 

loss of LHX3 expression, which we describe in Chapter 3, supports the interpretation that this 

cellular confusion is transient, and resolves in favor of clean LMC identities however.  In either 

case this is small subset of cells, but future studies are needed to address its significance.   

iPS cells are similarly responsive to caudal patterning 

Finally we found that iPS cells showed the same response to caudal patterning as ES cells.  

Importantly, this result shows that human iPS cells regain the ability to execute specific 

developmental pathways when they are reprogrammed.  This result is also critical for the larger 

goal of these studies: to generate ALS motor neuron subtypes in vitro which show differential 

disease responses in vivo.  Identifying motor neurons which show unambiguous expression of 

thoracic and rostral lumbar HOX markers puts several of these subtypes in reach.  The full 

rostrocaudal diversity of brachial LMC subtypes is likely represented by these cultures which 

will allow investigation of the mechanisms of heightened sensitivity of distal, limb projecting 

motor neurons to degeneration in comparison with proximal projecting motor neurons.  Thoracic 

motor neurons (HOXC8 or HOXD9) that express no or low-level FOXP1 are consistent with 

either HMC/MMC or PGC identities respectively, and represent disease-delayed and disease-

resistant populations.  It will therefore be of great interest to determine if these motor neuron 

subtypes show differential disease responses in vitro. 
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Conclusions and Perspectives 

Motor neuron functional and subtype-specific ALS phenotypes 

As discussed above, the assignment of subtype identity based on combinatorial expression of the 

markers we validated in vivo lead to a set of several possible in vivo cognate identities for each 

combination.  Disambiguation could be achieved in the future by several means.  First, reagents 

to monitor expression of purely thoracic (HOXC9) or purely limb-level (HOXC6: brachial and 

HOXC10: lumbar) motor neurons would help to eliminate or support specific identities for in 

vitro cells.  Since these genes also play functional roles in limiting and enabling position-specific 

columnar identities it is critical that their expression patterns be defined in human in vivo and in 

vitro.  Their functional roles in determining motor column identity also make them crucial 

candidates to test using gain and loss of function strategies in vitro with motor column identity as 

the endpoint.  Additional markers of subtype identity like RALDH2 (LMC), ER81 (HMC), and 

nNOS and pSMAD (PGC) would greatly add to the certainty of specific assignments.  

Furthermore, markers for individual motor pools are needed to investigate the biology of these 

specific subtypes. 

The ultimate proof of identity however, no matter how precise the assemblage of correctly 

overlapping markers, will be to define functional phenotypes which are specific to motor 

columns and pools.  These phenotypes could consist of column or pool-specific behavior in 

xenotransplantation assays (motor column settling position and axonal pathfinding) or in vitro 

assays which mimic aspects of these or other phenotypes defined in vivo.  In addition, motor 

pools which show defined gene expression and functional responses to exogenous target derived 

factors (pSMAD expression via BMP signaling in PGC motor neurons, and PEA3 expression via 
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GDNF in CM/LD and followed by cell body settling position and endplate arborization for 

CM/LD motor neurons) will be attractive targets to test the functionality of human stem cell-

derived motor neurons. 

Establishing bona fide functional motor column and motor pool identities, and reliable markers 

and functional assays for ES-derived motor neurons are important goals to study the specific 

biology of these cell types in human development.  However these are equally important from a 

translational perspective.  ES- or iPS-MN subtypes must be identifiable and should reproduce 

functional phenotypes in order to increase their relevance to in vivo subtypes and therefore 

increase the chances of success in searching for differential disease phenotypes.  This imperative 

is relevant at the level of both motor column and motor pool.  LMC neurons are typically 

affected first in clinical presentation, whereas thoracic columns are less quickly affected and 

PGC motor neurons may show some resistance.  Oculomotor and Onuf‘s nucleus motor neurons 

show strong resilience even at end stages of disease both clinically and in animal models.  Future 

work to establish unambiguous and functional columnar identities, as well as to generate specific 

affected and resistant motor pools would allow direct investigation of the pathways contributing 

to this selective susceptibility and resistance.  
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Figure 5.1
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Figure 5.1. Comparison of chick and human embryos during the period of caudal neural 

patterning 

(A) In the model of caudal neural patterning defined in chick Wnt and FGF activity from the 

paraxial mesoderm and primitive streak are required from primitive streak to the 4 somite stage, 

HH stages shown.  (B) Human embryos at matched developmental stages, Carnegie stages 

shown, in vivo developmental day, and assumed in vitro cognate (in vivo -5 days) shown.  (C)  

RA and FGF secreted from somites and the node between 4 somite and 16 somite stages refine 

and subdivide caudal neural identity, chick HH stage 12 shown.  (D) Human matched equivalent 

is ~CS 10.5 (CS 11 shown) and in vivo and in vitro days of human development.  Model and 

cartoon adapted from Nordstrom, Maier et al. 2006; and Liu, Laufer et al. 2001; chick embryo 

pictures from Hamburger and Hamilton 1956; human embryo pictures from UNSW embryology 

website.   
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Figure 5.2 

  

 

Figure 5.2. Transition to PAX6 marks the beginning and SOX1 the end of inferred 

patterning window 

PAX6 expression is initiated at low levels in human embryos in the neuroectoderm during late 

primitive streak stage (embryonic day 15), is upregulated as the first selective marker of neural 

plate by day 21, and subsequently serves as a restricted marker of dorsoventral positional identity 

as it does in mouse and chick.  SOX1 is expressed in all neuroectodermal cells of the neural tube 

by embryonic day 26.  Embryonic day -5 = assumed in vitro ES cell day of development are 

shown.  Human protein expression data from Zhang, Huang et al. 2010; human embryo pictures 

are from UNSW embryology website.   
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Figure 5.3 
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Figure 5.3. In vivo markers of human neural plate to neural tube stages define cognate 

developmental stages in vitro 

(A) qPCR for pluripotency gene OCT4 and neuroectodermal markers PAX6 and SOX1 shows 

neural induction initiated around by day 10, and consolidated by day 17.  Mean ±SEM of n=4 

experiments. (B) Immunostaining of representative cryosections of EBs for OCT4, PAX6, and 

SOX1 confirms qPCR data showing transition to definitive neuroectoderm by day 17 in vitro, 

scale bar 50 µm. 
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Figure 5.4 

 

 

Figure 5.4. Design of caudal patterning ES-MN differentiation experiment 

 Motor neuron differentiations were conducted as described previously (Chapter 3 Fig3.1).  The 

in vivo caudal morphogen FGF-4 (100ng/ml) was used alone or in combination with RA during 

the putative patterning window, in vitro day 10-17.  As described previously, all EBs were 

dissociated to single cells at day 31, analyzed for HOX gene mRNA expression, and seeded at a 

fixed density for fixation and immunostaining for HOX markers of positional identity.  Our 

hypothesis was that combinations of RA and FGF-4 would generate progressively more caudal 

motor neuron subtypes as they do in chick in vivo. 
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Figure 5.5 
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Figure 5.5. FGF induces a caudal shift in HOX expression 

 (A) qPCR for HOXA5, HOXC6, HOXC8, HOXD9, and HOXC10 shows a caudal shift in HOX 

gene expression when FGF-4 is added to RA. Mean ±SEM from n experiments (HOXA5, 

HOXC6, and HOXD9: RA n=5; RA+FGF and FGF n=4; HOXC8: n=3; HOXC10: RA n=5; 

RA+FGF n=4; FGF n=1.  HOX gene expression was normalized to GAPDH and expressed as 

fold change from RA control. All significant comparisons from paired 2-tailed t-tests are 

indicated, * p<0.05.  (B) Immunostaining for HOXA5, HOXC8, and HOXD9 proteins confirmed 

a caudal shift in HOX protein expression with FGF. (C) % of total cells expressing HOX 

proteins, mean ±SEM, n=4 experiments. One Way Repeated Measures ANOVA indicated that 

treatments affected HOXA5, HOXC8, and HOXD9 (p= 0.010, 0.042, 0.021 respectively).           

* significant (p<0.05) post-hoc pairwise comparisons are shown. 
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Figure 5.6  
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Figure 5.6. FGF treatment reduces the percent of neurons and motor neurons, without 

affecting their phenotype and MN-marker profile  

(A) Immunostaining of representative fields for TuJ1 and HB9 (left columns), or HB9, ISL1, and 

TuJ1 (right columns). (B) % Tuj1
+
 of total cells (black bars) and % of HB9

+
 cells expressing 

TuJ1 (grey bars), mean ±SEM of n=4 experiments. Significant differences (p<0.05) in paired 

two-tailed t-test, * = RA vs. RA+FGF, and RA vs. FGF.   There were no significant differences 

between %Tuj1 of HB9.  (C) % of total cells expressing only high level HB9 (green), only high 

level ISL1 (red), or both (yellow), mean ±SEM, n=5 experiments. Significant differences 

(p<0.05) in paired two-tailed t-test for ISL1 (black bars at left) or HB9 (black bars at right), * = 

RA vs. RA+FGF or vs. FGF, and  = RA+FGF vs. FGF. 
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Figure 5.7 
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Figure 5.7. FGF induces caudal motor neuron subtypes at the expense of rostral 

(A) Immunostaining for HB9 and HOXA5, HOXC8, or HOXD9 proteins shows a caudal shift in 

motor neuron HOX-subtype with FGF treatments. (B) % of all HB9+ cells coexpressing 

HOXA5, HOXC8, or HOXD9, mean ±SEM, n=5 experiments.  Repeated Measures ANOVA 

showed significant differences between treatments for HOXA5 (p= 0.008), HOXC8 (p= 0.026), 

HOXD9 (p= 0.012).  All pairwise Holm-Sidak post-hoc tests showing significant (p< 0.05) 

differences are shown, *= RA vs. RA+FGF or RA vs. FGF. 
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Figure 5.8 

  

 

Figure 5.8. HOX protein expression is mutually exclusive in caudalized ES-MNs.  

(A, C) Triple immunocytochemistry for HOXA5 (green) and HOXC8 (red, A) or HOXD9 (red, 

C) and HB9 (not shown) shows these HOX pairs are mutually exclusive. (B, D)  Quantitation of 

HOX expression by HB9
+
 MNs shows most ES-MNs expressed HOXA5 (green) and HOXC8 

(red) or HOXD (blue)  mutually exclusively, with less than 5 % of all MNs (yellow (B) or aqua 

(D)) coexpress HOX genes, n=4 experiments, mean ±SEM. 
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Figure 5.9
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Figure 5.9. Motor column diversity preserved in caudal ES-MNs   

(A) immunostaining for HB9 (green) and LHX3 (left, red) or FOXP1(right, red) (B) When HB9 

LHX3 and FOXP1 were stained simultaneously, the %of all HB9+ cells expressing all 

combinations of markers and their putative columnar identities could be assessed: LHX3 

alone(red: MMC), FOXP1 alone (green: LMC), both LHX3 and FOXP1 (yellow: novel brachial 

LMC pool?) or neither (white: HMC).  There was no significant difference between control (RA) 

and caudalizing (RA+FGF) conditions for any scoring category (paired 2-tailed t-tests p>0.05) 

mean ±SEM for n=3 independent experiments. 
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Figure 5.10 
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Figure 5.10. HOX proteins and column markers jointly classify more precise ES-MN 

subtypes 

(A) RA and RA+FGF treated differentiations were stained with FOXP1 and either HB9 or ISL 

and either HOXA5, HOXC8, or HOXD9.  Mean of n=4 experiments ±SEM are shown for cells 

expressing marker combinations.  Black bars show FOXP1- staining combinations, white bars 

show FOXP1 positive expression profiles (B) The set of in vivo human MNs (Chapter 2) which 

matches each of the expression profiles graphed at left. (C) Summary diagram of potential 

human motor neuron subtypes differentiated across control (RA, rostral) and caudalizing 

(RA+FGF) conditions. 
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Figure 5.11 

  

 

 

 

 

 

 



272 
 

 

Figure 5.11. FGF induces more caudal motor neuron subtypes from iPS and ES cells   

(A) iPS cells stain for motor neuron markers HB9 and ISL1 after Accelerated differentiation with 

rostral or caudal patterning treatment. Scale bar 10 um (B) iPS and ES cells generate similar 

distribution of HB9 and ISL1-expressing MNs under Ra or RA+FGF conditions, mean +/-SEM, 

n=3 experiments  (C)  FGF treatment induces HOXC8+ MNs (HB9+ neurons) from iPS lines, 

scale bar 10 um.  (D) FGF treatment (grey box label below) decreased rostral ( %HOXA5+ 

(white bars)) and increased caudal (%HOXC8+ (black bars))  MNs derived from both ES 

(RUES1) and iPS (18c and 29A) cells , mean % HOX+ of HB9+ cells / field, n=1 experiment / 

line. 
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Chapter 6.  General Discussion: Conclusion and Perspectives 

 

ALS is an intractable and fatal neurodegenerative disease with poorly understood causes and 

mechanisms resulting in cell loss.  Principal and most obvious among the human cell types lost 

are the spinal motor neurons which directly innervate muscles, however this human cell type has 

been historically unavailable for direct study.  This has changed since human ES and iPS cells 

have been differentiated to motor neurons.  Recently, attention has become more focused on the 

diversity of responses to ALS among motor neuron subtypes.  Motor neuron subtypes 

innervating specific categories of muscles (motor columns), muscle fiber-types (fast vs. slow), 

and specific individual muscles (eye and pelvic sphincters) show differential vulnerability or 

resistance to degeneration in ALS (Kanning, Kaplan et al. 2010).  It was the aim of this thesis to 

set the stage for modeling ALS in vitro using specific motor neuron subtypes differentiated from 

ALS-patient iPS cells.   

To study human motor neuron subtypes we first needed to translate the rich understanding of 

chick and mouse motor neuron diversity into the human system.  To this end we characterized 

the subtype diversity of human embryonic motor neurons in vivo at the molecular level.  These 

studies defined a set of antibodies that label human spinal motor neurons and their subtypes, and 

established that human motor neuron subtype diversity and organization are overwhelmingly 

similar to vertebrate models.  Practically, they also provide validated tools to identify human 

motor neuron subtypes in vitro.  The similarity of human motor neuron diversity to chick and 

mouse at the molecular level also provides confidence that in vitro directed differentiation 

strategies based on developmental mechanisms in chick and mouse may be highly applicable to 

human stem cells. 
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In order to quantitatively characterize motor neuron subtypes and generate cell preparations 

compatible with high throughput studies of ALS in vitro, we developed robust protocols for the 

differentiation of motor neurons from human ES and iPS cells.  We then used the in vivo 

categories we defined to systematically categorize the diversity of motor neuron subtypes 

generated in vitro from human stem cells for the first time.  First, we showed that the traditional 

in vitro perspective that motor neurons are defined by coexpression of HB9 and ISL1 is 

inadequate to describe the diversity of motor neurons present in vivo or in vitro, and provided a 

detailed profile of their combinatorial expression.  Then we showed that ES and iPS derived 

motor neurons are predominantly cervical and brachial but contain cells matching all motor 

column subtypes.    Because of the broad diversity of motor neuron subtypes in vivo, and their 

differential responses to ALS, it is critical to be able to account for the diversity of stem cell 

derived motor neuron subtypes that would potentially be used for disease modeling and drug 

screening. 

In order to make more relevant models of ALS in vitro we anticipated the need to generate 

mature motor neurons which better match the cells affected in vivo.  We therefore developed 

assays to characterize the rapid morphological and electrophysiological maturation of ES-MNs.  

We showed that ES-MNs rapidly acquired large size and mature morphologies, and that this was 

accompanied by a functional maturation of electrophysiological activity.  Since both cellular size 

and electrical activity are implicated in ALS pathology, defining them in vitro should improve 

the prospects for disease modeling.  The electrical activity we defined also mimicked key 

features of in vivo motor neuron physiology thought to underpin their circuit properties.  These 

findings provide added confidence that ES derived neurons can reach states of maturity and in 
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vivo similarity which makes ES-MNs a favorable tool to model the disease affecting their in vivo 

correlates. 

One of the most promising new approaches to modeling human disease is to derive iPS cells 

from patients with defined familial forms of disease, generate the relevant cell types, and identify 

disease relevant defects and phenotypes that manifest in vitro.  In order to access motor neuron 

subtypes with ALS genotypes we participated in a collaboration to generate a large collection 

iPS cells from ALS patients and unaffected controls.  We then used these cells to demonstrate 

the equivalence of iPS and ES cells for making functional motor neurons, classify their subtypes,  

and establish that they assumed coherent in vivo-like identities.  Since maturation and activity 

may be important for modeling ALS, we also demonstrated that ALS-iPS motor neurons 

achieved functional electrical activity comparable to ES-derived motor neurons. 

Finally, in order to generate thoracic and lumbar motor neuron subtypes that show differential 

susceptibility or resistance to ALS we needed to first control the rostrocaudal identity of 

differentiating ES and iPS cells to generate more caudal motor neurons.  We developed a rational 

approach, based on developmental patterning mechanisms, to recapitulate the rostrocaudal 

patterning which orchestrates motor neuron diversification in vivo.  We then used this approach 

to generate motor neuron populations with more caudal subtype identities in vitro.  The rostral 

and caudal populations we describe collectively span the length of the spinal cord from cervical 

to mid-lumbar (Fig. 5.10).  We generated cells that match the profile of several motor columns 

with potential differential responses to disease (LMC vs. MMC vs. PGC), and defined 

caudalizing conditions that might lead to specification of a key ALS-resistant motor pool (Onuf‘s 

nucleus).  These findings theoretically put several motor neuron subtypes with differential ALS 

responses within experimental reach.  Additionally we demonstrated that ES- and iPS-MNs were 
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able to resolve competing patterning signals (RA and FGF) into coherent positional identities 

characterized by mutually exclusive HOX protein expression as do motor neurons in vivo.  Since 

HOX cross-repression is a fundamental mechanism for resolving motor column and motor pool 

identity this finding suggests that stem cell derived motor neurons are following the in vivo 

developmental path leading to defined columnar and motor pool identities. 

As intended this work moves the field closer to making novel and highly specific models of ALS 

using motor neuron subtypes.  However in the light of what we now know several major 

questions remain to be resolved.  First, how can we more definitively identify specific motor 

neuron subtypes?  Second, can we develop rational means to more precisely control the subtypes 

of motor neurons?  Third, how might these subtypes actually be used to model disease? 

Definitive identification of specific motor neuron subtypes 

While we have generated motor neurons with individual expression profiles matching those in 

vivo from cervical to mid-lumbar spinal cord and including all motor columns, each of these in 

vitro motor neurons could match several in vivo subtypes.  For example, because HOXC8 

expression in vivo straddles brachial LMC and thoracic regions, and because FOXP1 is 

expressed by both PGC and LMC motor neurons, HOXC8
+
 FOXP1

+
 ES-MNs are a 

transcriptional match for both caudal brachial LMC and thoracic PGC motor neurons (Fig. 5.10).   

Although FOXP1 expression levels, especially if coupled with anatomic position, can easily 

distinguish between these identities in vivo, expression level does not translate well as a marker 

of identity in the in vitro setting.   Indeed, like other markers tested in vitro there is a smooth 

continuum of staining intensity and no objective, unambiguous, or most importantly, verifiable 

means to set a threshold intensity to discriminate low from high expression and thus PGC vs. 



277 
 

 

LMC identity.  And while the high level expression of FOXP1 in all ES-MNs we scored as 

positive strongly suggests they are LMC rather than PGC, and while we can easily identify lower 

level FOXP1 expression in HOXC8
+
 or HOXD9

+
 ISL1

+
 cells consistent with PGC identity, we 

have no reliable way to positively identify disease-refractory PGC motor neurons.  In order to 

study the behavior of specific motor column or motor pool subtypes for basic or disease 

modeling purposes it will therefore be crucial to push the resolution and certainty with which we 

can identify these cells at least one step further. 

One approach to resolving this ambiguity would be to generate human reactive antibodies for 

more definitive markers.  HOXC6 vs. HOXC9, if these prove in human spinal cords to match 

chick and mouse expression patterns, would cleanly discriminate between LMC and PGC 

identities.  HOXC10 vs. HOXC9 would resolve the same current ambiguity for HOXD9
+
 

FOXP1
+
 expressing cells in favor of lumbar LMC or thoracic PGC.  These reagents would also 

be extremely useful for determining if the system of HOXC6, C9, and C10 cross repression 

controls limb vs. non limb motor column identities in human as it does in chick and mouse (see 

below).  In addition to resolving ambiguous identities, we noted that almost 40% of ES-MNs did 

not stain for either of the HOX markers we profiled.  It is therefore important that in addition to 

HOXC9 and HOXC10, which should account for some of these unlabeled cells, that antibodies 

be developed and validated for hindbrain and cervical motor neurons HOX1-4, and for HOX 

negative midbrain motor neurons like the disease relevant oculomotor motor neurons.  While 

HOX markers will be crucial for assigning identities to ambiguous or unlabeled cells, there will 

be no substitute for generating more direct markers of motor column identity.  Reagents to detect 

the known markers of LMC (RALDH2), HMC (ER81), and PGC (nNOS) need to be developed 

and validated on human spinal cords and tested in vitro.  
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Another approach would be to identify new markers for these columnar identities.  Laser capture 

microdissection (LCM) on motor columns from new fresh-frozen human spinal cords, or even 

from the current tissue resource described above (Table 2.1) followed by microarray expression 

profiling or deep sequencing, could identify differentially expressed genes, which could then be 

validated on human samples and serve as new specific markers.  Validated markers could be 

used for immunostaining and potentially for MACS or FACS sorting on endogenous surface 

epitopes.  Indeed the LCM-microarray approach has already been used to great effect to isolate 

gene expression profiles for oculomotor and Onuf‘s nucleus motor neurons (Artem Kaplan, 

unpublished findings) which have shed light on novel mechanisms of disease resistance and 

susceptibility, and additionally provided gene expression profiles including candidate marker 

genes which could be screened against human samples in vivo and in vitro.  

If more specific columnar identities can be definitively established in vitro for ES/iPS-MNs, will 

these show functional phenotypes?  The pilot studies we performed suggesting a FOXP1 specific 

outgrowth phenotype are suggestive of an LMC-specific functional phenotype, which can be 

rationalized since LMC cells must extend longer axons to reach peripheral targets.  While this 

study was far from conclusive it is a proof of principle for searching for biologically interesting 

phenotypes for human motor neuron subtypes in our preparations in vitro.  Furthermore, the 

evidence from chick in vivo experiments (Dasen, Liu et al. 2003; Dasen, Tice et al. 2005; Jung, 

Lacombe et al. 2010)  and mouse ES-MN studies suggests that if cells express a coherent profile 

of HOX genes and column markers then functional phenotypes will follow.  When mouse ES-

MNs were specified with LMC (HOXC6
+
 FOXP1

+
) (Peljto, Dasen et al. 2010) or MMC (LHX3

+
 

HOXA5
+
)  (Soundararajan, Miles et al. 2006)  identities and xenotransplanted to chick embryos, 

they demonstrated motor column specific settling position and axonal pathfinding phenotypes. 
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We have shown that xenotransplantation of hES-MNs to chick is feasible and that axons 

extended millimeters into the periphery along endogenous spinal motor nerve paths.  These early 

pilot studies were complicated by the presence of very large quantities of cycling human neural 

progenitors, low motor neuron yields, limited trials, and a transplant technique which was a work 

in progress.  Since we can now generate robust populations of high purity FOXP1
+
 GFP labeled 

human ES-derived motor neurons, in the absence of mitotic progenitors, the question of whether 

these human motor neurons can interpret cell body settling position and axon guidance cues in 

the chick xenotransplantation assay, according to their column identity, is begging to be asked.  

In addition, we predict that the mitotically-inhibited preparation of nearly pure GFP
+
 FOXP1

+
 

human motor neurons that we describe, which contains a balanced mix of HOXA5 and HOXC8 

expressing subtypes, might be able rescue the functional phenotype of the FOXP1 knockout 

mouse (Dasen, De Camilli et al. 2008), at least in the forelimb, if transplanted in utero to the 

spinal cord of these animals. 

Other functional phenotypes can be examined for specific motor columns and motor pools.  For 

example pSMAD marks the PGC motor column and PEA3 marks the CM/LD motor pool.  Since 

these subtype markers depend on peripheral cues (BMP5, Ed Laufer, personal communication, 

and GDNF (Haase, Dessaud et al. 2002; Livet, Sigrist et al. 2002) respectively) their expression 

in hES-MNs in response to these ligands would itself constitute functional column- or pool-

specific phenotypes respectively.  Pilot experiments using BMP5 and GDNF in attempt to elicit 

pSMAD expression in HOXC8
+
 or HOXD9

+
FOXP1

LOW
 putative PGC motor neurons or PEA3 

expression in HOXC8
+
FOXP1

HIGH
 putative brachial LMC motor neurons, either in dissociated 

cultures or in EBs, failed to show any specific staining for either pSMAD or PEA3.  It remains to 

be seen whether the failure is due to inadequate reagents, low abundance of MNs that acquired 
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specific pool or columnar identities, or functional divergence between human and non-human 

spinal motor neurons.   

More precise control of motor neuron subtype identity and purity 

We have shown that we can inflect the distribution of motor neuron rostrocaudal identity from 

largely rostral to largely caudal, however these populations are still each composed of a very 

broad rostrocaudal range of identities.  Furthermore, while we detected lumbar (HOXC10) gene 

expression we did not have reagents to show that ES-MNs expressed this marker.  Because 

Onuf‘s nucleus motor neurons are lumbosacral HOXC10-expressing cells, we need to be able to 

generate higher purity lumbar cultures in an effort to isolate this disease refractory population. 

In order to exert more precise control over rostrocaudal identity and thereby generate more 

focused lumbar MN populations, we suggest a return to the in vivo veritas approach, the success 

of which we report in Chapter 5.  In this case, the aim would be to one, better understand the 

mechanisms of human development in vitro, and two, better mimic in vivo mechanisms in vitro.  

The first approach would be to use genetic gain and loss of function strategies to test the 

sufficiency and requirement of HOXC genes in controlling motor column subtypes as has been 

done so fruitfully in the chick.  Overexpression studies and dominant negative constructs or 

RNAi for HOXC6, HOXC9, and HOXC10 could be transiently transfected into differentiating 

human EBs and motor column identity would serve as the readout.  Understanding whether 

human motor column diversity is controlled by the interaction of these genes will be of basic 

interest but also critical to designing strategies to differentiate, for example, high purity cultures 

of limb level or thoracic motor neurons.  Additionally, recent success in transcription factor 

reprogramming of fibroblasts to nerve cells (Vierbuchen, Ostermeier et al. 2010) suggests that 
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this type of gain of function expression approach could serve as an alternate means to program 

motor neuron columnar or other subtype identities in order to isolate and study those columnar 

subtypes for disease or basic purposes.  Applying this strategy to ES-derived cell types which 

already possess correct lineage, region, and generic cell type identity could only increase the 

chances of success and the potential relevance and in vivo similitude of resulting cells. 

The second approach would be to return again to what is known about embryonic development.  

Our approach in Chapter 5 was to crudely approximate the timing of 3 overlapping positional 

cues.  However for simplicity we made several sacrifices of fidelity to in vivo events.  First, we 

collapsed the earlier developmental phase of Wnt/FGF pan-spinal caudal patterning with the 

subsequent FGF/RA phase which subdivides spinal identity.  Second, we did not account for the 

importance of concentrations of patterning factors.  And third, we could not, in the scope of these 

studies, account for the spatio-temporally dynamic nature of rostrocaudal patterning and motor 

neurogenesis.  The pursuit of more fine grained approximations of developmental events should 

therefore include separating the early period of Wnt/FGF patterning from the subsequent 

RA/FGF patterning period.  Additionally, since FGF is thought to act in a concentration 

dependent manner, the effect of different doses of this and other morphogens should be tested 

with HOX protein expression as endpoints.  In addition, the spinal cord is patterned by FGF and 

RA over a long time period acting on different rostrocaudal regions at different times from initial 

somite stages until 16-17 somite stages when FGFs and GDFs act on the prospective lumbar 

spinal cord.  A series of experiments should therefore be done to present cues in a temporally 

dynamic and combinatorial fashion to better approximate the embryonic events leading to motor 

neuron diversification in vivo.  Finally, node-derived GDFs are necessary for the proper 

elaboration of HOXC10
+
 lumbar motor neurons (Liu, Laufer et al. 2001).  Indeed, one pilot 
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experiment showed that GDF11, when added to FGF treatment, substantially increased HOXC10 

transcription (data not shown).  Therefore future studies should incorporate this cue at a 

developmentally relevant timepoint: that is, towards the end of the patterning period we defined 

here.   

Refining the rostro-caudal patterning of ES-MNs should provide better access to defined 

clinically relevant motor neuron subtypes.  The pools of greatest interest in the context of disease 

resistance, oculomotor and Onuf‘s, are midbrain HOX
-
 and sacral HOX10

+
, respectively.  The 

oculomotor motor neurons are rostral to the region on which we have focused.  Alternative 

differentiation strategies, based on rhombomeric segmentation mechanisms in vivo should 

therefore be designed for this target population.  The targeted strategies we suggest above should 

help to refine differentiation conditions to increase the abundance of these lumbar and midbrain 

regional subtypes.  Pool specific markers can then be validated in vivo and screened in vitro so 

differentiation conditions can be optimized to support their differentiation and survival. 

Differentiation strategies alone however are unlikely to produce target cell types of interest at 

high purity.  It is more likely that the cells will acquire a positionally appropriate range of motor 

neuron subtypes as seen in our experiments and in mouse ES-MNs (Peljto, Dasen et al. 2010).  

Therefore, means to purify cells are clearly needed for subtype-specific disease modeling studies.  

One approach is the identification of endogenous surface markers that could be used for FACS 

or MACS sorting.  Alternatively appropriate marker genes and their regulatory sequences could 

be harnessed to generate transgenic fluorescent and/or surface marker reporter cell lines, which 

would allow sorting of relevant MN populations to purity.  FOXP1, LHX3, or ER81 and nNOS 

genetic elements, if validated in human, could potentially be used to purify LMC, MMC, HMC 

or PGC columnar subtypes for example. 
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Towards disease phenotype assays 

How can the populations we have described, or those achieved by the approaches discussed 

above, be used to model ALS?  While in vitro disease phenotypes do not necessarily have to 

mimic the disease pathology in vivo in order to generate useful insights, the most parsimonious 

approach is to first attempt to recapitulate in vivo pathology in vitro.  Prima facie, the survival of 

motor neurons would then be the most relevant assay.  Since we have generated and cultured a 

population of almost pure FOXP1
+
 presumably limb innervating motor neurons which show high 

sensitivity to ALS in vivo, simply following the survival of ALS and control FOXP1
+
 motor 

neurons might be a useful strategy.  If these could be compared to more resistant non limb 

innervating motor neurons at the level of survival, gene expression changes, morphology, or 

biochemical endpoints this would significantly increase the power, sensitivity and relevance of 

the assays.  Hopefully, more disease refractory populations of human MNs can be generated 

using the approaches discussed above. 

The only clear in vitro phenotype identified in ALS is the motor neuron selective toxicity of ALS 

astrocytes (Di Giorgio, Carrasco et al. 2007; Nagai, Re et al. 2007; Di Giorgio, Boulting et al. 

2008), or organophosphate treated astrocytes (Marine Prisette and Derek Oakley, unpublished).  

Whether control or ALS motor neurons respond differentially to this challenge remains a matter 

of controversy (Di Giorgio, Carrasco et al. 2007; Nagai, Re et al. 2007), raising the possibility 

that the degree of motor neuron degeneration might depend on MN subtype identity.  It is 

therefore our high priority to test human ALS-motor neurons in these assays and to determine 

whether the presence of predominantly FOXP1
+
 LMC-like motor neurons in matured mitotically 

inhibited cultures might reveal ALS dependent differences in motor neuron survival.  Indeed, a 

strong motivation for studying ALS in human cells in the first place is the potential that the 
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human genetic background of the cells may reveal aspects not mimicked by mouse cells or 

animal models. 

In summary much work remains to be done to leverage the specificity of ES-and iPS-derived 

motor neuron subtypes into a useful tool for modeling ALS.  The challenge of defining 

screenable phenotypes for an adult onset disease like ALS is considerable and is outside the 

scope of these studies and discussion.   However the ability to define human motor neuron 

subtypes and control their rostrocaudal identities are first steps towards building more specific 

and targeted models of disease.  It is our hope that in the future these cell types will show 

differential responses to ALS in vitro as they do in vivo.  In turn these differential responses 

should be manipulated into screenable phenotypes which could identify therapeutic compounds 

and illuminate novel mechanisms of disease vulnerability and resistance, leading to new 

therapies and new hope for this untreatable disease. 
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Chapter 7. Experimental Procedures 

Embryos 

Anonymized postmortem embryos from voluntary terminations were obtained with informed 

consent and in accordance with IRB guidelines within 10 minutes after clinical procedures, and 

staged by collaborating physicians using last menstrual period and or crown rump length 

ultrasound.  Post-mortem analysis of embryological features was used to confirm and adjust a 

developmental stage for embryos using Carnegie categories.  Spinal cords were dissected intact 

and then fixed. 

ES and iPS cell culture. 

ES cell lines used: RUES1(James, Noggle et al. 2006), HBG1 (plasmid HB9:GFP motor neuron 

reporter) (Di Giorgio, Carrasco et al. 2007)); HBG47 (BAC-HB9:GFP motor neuron reporter) 

(Placantonakis, Tomishima et al. 2009).  iPS and ES cell lines for used for iPS comparison study:  

see Table 4.1.  All stem cell lines grown under standard pluripotency maintenance conditions: on 

irradiated CF-1 mouse embryonic fibroblast feeder cells (0.015 M cells/cm
2
, Globalstem) on 

gelatinized (Millipore) TC plastic, fed daily with DMEM/F:12 (Invitrogen) with 20% KSR 

(Invitrogen), 110 uM BME (Sigma), L-Glutamine and NEAA (Invitrogen), and 20ng/ml bFGF 

(Invitrogen) added to medium just prior to feeding. Cultures were passaged weekly using dispase 

50 ug/ml for 20 min (Invitrogen) followed by manual trituration.  Parallel passages of ES cells 

were karyotyped at passage number subsequent to passages used for experiments and found 

normal, with the exception of abnormal karyotypes reported for iPS lines (Chapter 4).  ES and 

iPS cells and motor neurons were cryopreserved by gradual dilution (dropwise addition of 1:1 

volume, with gentle agitation, over 1-2 minutes) of single cell suspensions or colonies with ice 

cold 2x freezing medium for ES cells (Millipore), cryotubes were placed in isopropanol freezing 
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chambers, stored overnight at -80ºC, then transferred to liquid nitrogen.  All cells were thawed 

by immersion in 37ºC water bath until only a few crystals remained, then immediate dropwise 

dilution with ES-medium for ES cells, or Neurobasal+B27 for ES/iPS-MNs over the course of 

~2 minutes, with gentle agitation until 10mls was reached.  Cells were pelleted at 400G for MNs, 

or settled for intact ES colonies.  ES colonies were washed 3x with ES-medium, then plated.  ES-

MNs were resuspended in 1ml fresh Neurobasal+B27, then brought to 11mls, underlaid with a 

4% BSA cushion, and spun at 400G for 5 minutes with no brake, to float cell debris. 

Standard Protocol motor neuron differentiation 

After a normal passage, washed ES or iPS cell colonies were incubated for 1 hour in ES medium 

with 10-30 µM ROCK inhibitor (Y-27632, Sigma), then washed with Ca
2+

Mg
2+

-free PBS 

trypsinized (0.5% trypsin with EDTA) to a single cell suspension and seeded in suspension at 0.4 

M cells/ml in human ES medium with 20 ng/ml bFGF, 10 µM ROCK inhibitor, and 300 ng/ml 

recombinant mouse Noggin (R&D) to inhibit non-neural differentiation.  Fresh ROCK inhibitor, 

FGF, and Noggin were added daily for 6 days.  EBs were pelleted at 100 G on day 4 and 

resuspended in Neural Induction Medium (NIM: DMEM/F12 plus N2 supplement(Invitrogen), 

NEAA, L-Glutamine, 2 µg/ml Heparin (Sigma)) with ROCK inhibitor, FGF, and Noggin.  EBs 

were pelleted and fed with fresh medium every other day, and ROCK inhibitor was discontinued 

after day 6.  FGF was discontinued at day10, and 1:100 dilution of Wnt3a-Lcells conditioned 

medium (ATCC, source and protocol), all-trans retinoic acid (RA, 100 nM in DMSO, Sigma), 

Ascorbic Acid (0.4 µg/ml, Sigma), db-cAMP (1 µM, Sigma), and 100 ng/ml active-mutant 

recombinant mouse SHH protein (SHH-C25II, R&D) and 100 ng/ml recombinant human FGF-4 

(R&D) were added.  On Day 18, Wnt3a conditioned medium was removed, SHH increased to 

200 ng/ml, and recombinant human BDNF (10 ng/ml R&D) was added.  At day 25 base medium 
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was switch to Neural Differentiation Medium (Neurobasal with N2 and B27 (Invitrogen), L-

Glutamine, NEAA, Ascorbic Acid, db-cAMP, with 10 ng/ml each recombinant human BDNF, 

GDNF, IGF-1, and CNTF (R&D), 200 ng/ml SHH, and 100 nM RA). 

EB‘s were dissociated using trypsin on day 31, and cryopreserved using 2x freezing medium 

(Millipore, for ES cells) for future analysis.  Separate vials were thawed for electrophysiology 

and immunocytochemistry time series in Neurobasal with B27 and seeded on Poly-

ornithine/laminin coated glass coverslips, in complete day 25 Neural Differentiation medium, as 

above, with the addition of 1 µg/ml mouse laminin (Invitrogen), Beta-Mercaptoethanol (25 µM, 

Sigma), Glutamate (25 uM, Sigma), Forskolin (20 uM, Sigma) IBMX (100 µM, Fisher) at 0.25 

M cells per 35 mm coverslip or 0.046 M cells per 15 mm coverslip and ½ medium was changed 

every 4 days.  For labeling of dividing cells and inhibition of cell division, ClickIt EdU (0.5 µM, 

Invitrogen) was included in culture medium for morphometry studies after seeding, and 

refreshed with media changes.  EdU was processed for immunocytochemistry following 

manufacturer‘s instructions (Invitrogen) 

Accelerated Protocol MN differentiations 

Performed according to Standard Protocol with the following modifications.  ES/iPS colonies 

were not trypsinized at passage, rather trituration with a p1000 tip, 8 passes until colony 

fragments were just below visible size. Then seeded by eye at density comparable to single cell 

motor neuron seeding density (0.4 M cells/ml) in the same medium described above with all 

supplements except noggin, instead LDN-193189, (0.2 µM) and SB-431542 (10 µM) were used.  

FGF and ROCK inhibitor were refreshed at day 2 and more medium was added if medium was 

yellow.  EBs were spun at 100 G for 2 minutes on day two and EBs were replated in NIM with 
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all previous supplements. At day 4 Rock inhibitor was not added nor subsequently. At day 5 

patterning factors were added (Wnt3a-CM 1:10, RA, +/-FGF-4), this was the last day of LDN-

193189/SB-431542 and FGF2 was not added, and 200ng/ml SHH protein was added.  Medium 

was changed every other day and patterning treatments were last added on day 11.  BDNF was 

added at day 13, and on day 15 culture were switched to NDM with all supplements as described 

above. EBs were dissociated at day 21 and fixed for acute analysis at day 23, or cultured longer 

for maturational analyses. 

Trituration 

All triturations were performed in complete trituration wash medium (CTWM: 1xPBS,  

Ca
2+

Mg
2+

-free plus 25mM Glucose, 0.1% dialyzed BSA, MgCl
2
 2mM, EDTA 2mM, 2.5% FBS, 

and N2 and B27 supplements for day 31 or day 23 EB dissociation) with a p1000 tip (12 passes, 

at 1 Hz for EBs, ~6 passes for ES colonies), plus freshly added DNAse (1:50-1:500 from 

100mg/ml stock in 0.1%dialyzed BSA in 1xPBS stock). 

4% dialyzed BSA 

Fraction V BSA was dissolved at 4% weight/volume in  was dissolved in and dialyzed against 

L15 with phenol red, using Pierce Slide-a-lyzer 10,000MW cutoff large volume dialysis 

cassettes, over 4-5 days with stirring at 4 degrees, with daily medium changes, until solution was 

claret colored and pH~7.5, filtered, then frozen for future use. 

Fetal spinal cord astrocytes were purchased from ScienCel Research Laboratories and cultured 

with manufacturers medium and supplements on gelatin, passaged every 5 days at confluence 

and cryopreserved as described above.  For motor neuron co-cultures they were seeded at 0.02 M 

cells/12mm coverslip 3-4 days before seeding ES-MN.  ES-MNs were FACS sorted at low 
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pressure 20PSI using a large 100 µM nozzle under single cell mode with purity mask, at either 

the Herbert Irving Cancer Center Flow Cytometry Facility by Kristi Gordon, or New York Stem 

Cell Foundation by David J Kahler. 

Fixation Cryosectioning and Immunocytochemistry 

Spinal Cords and EBs 

Spinal cords were fixed for 1.25 hrs on ice (for GW7 ), or 2.5hrs at room temperature (for one  

GW8 sample), and 1 hour for EBs in 4% PFA in 1x PBS, washed several times with PBS then 

incubated overnight at 4°C.  Cords were then photographed and divided into sections <6 mm to 

facilitate sectioning. 4%PFA was prepared by dilution of sealed ampules of 32% liquid PFA 

(Electron Microscopy Sciences) with filtered water and 10x PBS, to  8%PFA, 2x PBS stock. 8% 

PFA was stored light protected at 4°C for one week, and dilution to 4% was performed 

immediately before use. 

 Cords and EBs were cyroprotected by equilibration with 30% sucrose, embedded in OCT. and 

serially sectioned at 12µM on a Hacker cryostat. Slides were stored at -80ºC for subsequent 

analysis. 

Fixation of motor neuron cultures 

Culture medium was removed from coverslips and multiwell chambers, replaced with cold 4% 

PFA and incubated for 30 minutes on ice (or 4 ºC), washed 3x in PBS then handled as per Post-

fixation and Immunostaining section below 
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Motor neurons cultures were seeded on Poly-lysine/laminin pre-coated 8-well glass 

chamberslides (Invitrogen) or on German glass (Fisher) coverslips coated with 1mg/ml poly-

ornithine in 0.1M boric acid coated, washed 3x with water, then coated overnight with laminin 

10ug/ml in L-15 with bicarbonate. 

Post-fixation and Immunostaining 

All samples were permeabilized for 15 minutes at room temperature (RT) with Wash 

(PBS+0.1%Triton-X ) + 100mM Glycine, incubated with Block (Wash+10% normal donkey 

serum +0.1%NaAzide for 0.5hr at room temperature, then with primary antibody (diluted in 

Block) for 2 hours at RT, or overnight at 4°C, washed, incubated with  secondary antibodies for 

one hour at RT, washed, counterstained with DAPI and coverslipped using Fluoromount-G.  

Primary antibodies are described in Table 7.1.  All secondary antibodies used were highly cross 

adsorbed Donkey anti-species whole IgG coupled to DyLight 488, 549, or 647 (Jackson 

ImmunoResearch). Samples were counterstained with DAPI (Invitrogen) 

RNA, cDNA, qPCR 

Dissociated day 31 motor neurons, or various timepoints of EBs, or dispase passaged ES 

colonies were lysed in Trizol or Trizol LS (Invitrogen), homogenized and sheared with a 21 

gauge needle, and RNA was purified using RNEasy columns (Qiagen) following manufacturers‘ 

instructions.  Superscript III RT was used to prepare cDNA following manufacturer‘s 

instructions (Invitrogen).  qPCR primers were designed to produce 50-100 bp intron-spanning 

amplicons using Primer3 software, or were used from previous publications.  All thermal cycling 

reactions used the following parameters: 10min, 95; (30sec, 95;1min, 55; 45sec, 72)x45 

;1min, 95; 30sec 55; 30sec, 95.  qPCR reactions were performed with Brilliant II Syber Green 
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2x Master Mix following manufacturer‘s instructions on a MX300 Light Cycler (Stratagene). 

PCR products were checked for single melting curve peaks; where ambiguous, reaction products 

were separated on an agarose gel, evaluated for appropriate size, and sequenced using 

amplification primers, confirming amplification of target sequence.  

Southern Blot 

Genomic DNA was prepared using Qiagen genomic DNA kit, followed by separation on agarose 

gel, denaturation, and neutral capillary transfer.  Easy Hyb DIG labeled probes were synthesized 

and detected as described in (Boulting, Kiskinis et al. 2011). 

Microscopy 

Images were acquired using a Zeiss AxioObserver with14-bit Coolsnap HQ2 grayscale camera at 

10x, 20x, or 40x.  For quantitative experiments, 8-12 randomly placed fields were acquired 

manually per sample at 10x or 20x or by using an automated stage with fixed positions/well and 

autofocus on DAPI. Representative photos were acquired at 4x, 10x, 20x, or 40x, using Apotome 

structured illumination for optical sectioning where indicated.  Image intensity look up tables 

were adjusted to accentuate salient signal to noise details and some images were brightened in 

Photoshop for better signal visibility in print. 

Image analysis 

14bit grayscale images were analyzed in Metamorph (Molecular Devices) using 

Multiwavelength Cell Scoring or Neurite Outgrowth modules.  Threshold fluorescent intensities 

were determined and adjusted for each staining (>~2000-16000 grey levels over local 

background) and then applied to all images from each condition. ~2000 cells were counted per 
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field for day 33 MN phenotype analysis.  Coexpression was automatically scored based on above 

threshold staining intensities for DAPI and up to 3 other stains simultaneously. 

Statistical Analyses 

Statistical analyses were performed using SigmaPlot 11, or Excel as indicated in text and figure 

legends.  Paired 2-tailed T-tests were used where two conditions were compared.  ANOVA was 

used for comparisons of more than 2 groups, or ANOVA on ranks where unequal variance was 

found with appropriate post hoc comparisons as indicated in text.  Population histograms were 

constructed in Excel or Sigmaplot. 

 

Figures were prepared in Adobe InDesign or Powerpoint. 

 

Experiments reported and not performed by myself: 

Electrophysiological studies of GFP human ES-MNs (Chapter 2) were performed by Tomonori 

Takazawa (Amy B. MacDermott laboratory) following standard practices for patch clamp 

recording. 

See methods from (Dimos, Rodolfa et al. 2008; Bock, Kiskinis et al. 2011; Boulting, Kiskinis et 

al. 2011) for experiments not performed by myself, as described in general Statement of 

contributions and those pertaining to each chapter. 

 

 

  



293 
 

 

Table 7.1 Antibodies 
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Table 7.2 qPCR primers.  Primers for qPCR were designed in house for qPCR with the 

exception of PAX6 (Li, Du et al. 2005) 
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