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ABSTRACT 

Part I:  Catalytic Direct C-H Arylation of Pyrazoles 

Part II:  Toward Modulation of Neuroplasticity with Small Molecules 

 
Teresa L. Jacques 

 

 

Part I of this thesis (Chapter 1) describes the development of the first synthetic method 

for intermolecular palladium-catalyzed direct C-H arylation of N-substituted pyrazole 

compounds.   The scope of the reaction and the ability to sequentially and selectively arylate 

specific positions on the azole core to rapidly access highly substituted pyrazoles will be 

discussed. 

Part II of this thesis addresses two separate targets to modulate neuroplasticity. In 

Chapter 2, the TrkB receptor as a potential target for pharmacological modulation is examined.  

Its signaling, role in brain disease, and reported agonists and antagonists are reviewed.   In 

addition, our attempts at establishing an assay to assess TrkB activation, as well as our results 

using the reported agonists and an antagonist in several model cell lines, are discussed.   The 

third chapter of this work features the development of rationally-designed isoquinuclidines that 

induce GDNF production by brain cell models.   In addition to examining the mechanism of 

action of an isoquinuclidine (XL-026) using pharmacological inhibition, the mapping of GDNF 

production and release by C6 rat glioma cells is described and a mechanistic model based on our 

results is presented.  
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Chapter 1 

Palladium-Catalyzed Direct C-H Arylation of Pyrazoles 

 

I.  Introduction 

Nitrogen-containing heteroarenes are frequently found in biologically active compounds, 

including natural products, protein ligands, and pharmaceuticals.1  These azoles constitute crucial 

components of the contemporary medicinal chemistry repertoire.2   Though pyrazoles are rarely 

found in nature, they serve as important core motifs of many pharmaceuticals and 

pharmaceutical leads with a wide range of biological activities2b (e.g., cholesterol lowering,3 

anti-in!ammatory,4 anticancer,5 antidepressant, and antipsychotic agents6; see Figure 1).  They 

are also used in polymer chemistry,7 as ligands for catalysis and coordination chemistry,8 and as 

agrochemicals.9  As a result, there continues to be great interest in the development of versatile 

methods to access highly substituted, complex pyrazoles. Traditionally, pyrazoles have been 

synthesized via condensation reactions of 1,3-dicarbonyls and hydrazines or by cycloadditions of 

diazoalkanes and alkynes.10 Although recent advances have greatly expanded the generality and 

specificity of de novo approaches, each method inevitably has its scope and ef"ciency 

limitations.11    
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Figure 1. Examples of biologically active pyrazoles.12  

 
 

We envisioned a conceptually different and modular approach to the construction of 

arylated pyrazoles based on direct C-H bond arylation (Figure 2).  Our strategy was to directly 

attach new aromatic rings to the existing pyrazole core at desirable positions (“topologically 

obvious synthesis”),13 which would allow rapid assembly of highly functionalized heterocycles 

via an efficient approach to synthesize a diverse series of pyrazole analogs and regioisomers.  
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Figure 2.  A new approach to synthesis of complex pyrazoles via direct C-H arylation. 

 

Direct functionalization of C-H bonds is a highly desirable approach to rapid 

functionalization and generation of complex structures in modern organic chemistry, as it 

circumvents the need to pre-install required coupling components in order to form the bond of 

interest (Figure 3). This approach also avoids the use of metals like tin or zinc, reducing 

potentially toxic by-products of the reaction.  Aryl halides and triflates, while ubiquitously used 

in cross-coupling chemistry, are also utilized as aryl donors in direct C-H arylation reactions.  

This approach is valuable to the field, as it enables chemists to quickly generate diverse libraries 

of compounds from more readily accessible reagents, reducing the time, cost, and loss of 

material associated with additional synthetic steps in a sequence.   The past decade has seen 

tremendous advances in the field, particularly in transition metal-catalyzed direct 

functionalization and arylation of arenes.14 
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Figure 3. Comparison of direct functionalization with traditional cross-coupling approaches. 

 

When we considered applying this approach to the pyrazole core, careful inspection of 

the literature yielded no existing intermolecular, catalytic C-arylation of pyrazoles, so our first 

task was to develop the "rst catalytic method and explore its regioselectivity.  Preliminary results 

allowed us to devise a general approach for the synthesis of mono-, di-, and triarylpyrazoles 

(Scheme 1).  The "rst aryl group can be installed regioselectively in the 4-position of pyrazole by 

bromination followed by Suzuki coupling; other substituents can also be introduced at this 

position due to its high nucleophilicity.  The "rst direct C-H arylation takes place with good 

selectivity at the 5-position, which provides a method to obtain unsymmetrical diarylpyrazoles, 

overcoming a significant drawback of cyclization-condensation approaches.  However, due to 

the low reactivity of the 3-position, arylation only occurs there minimally.   To address this 

problem, we developed a simple one-step protocol to transfer the SEM group from one nitrogen 

to the other.  This converts the unreactive position 3 to the reactive position 5, which enables the 

second C-H arylation to proceed efficiently, generating a protected, trisubstituted pyrazole.  

Subsequent SEM-deprotection produces free N-H triarylpyrazoles15 and the utility of the method 

is increased by regioselective introduction of a nitrogen substituent by the N-alkylation of 

unsymmetrical SEM-pyrazoles (Scheme 1). Thus, this strategy allows for rapid assembly of fully 
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substituted pyrazoles with complete regio-control of all C- and N-substituents. Complex 

pyrazoles with different numbers and positions of aryl rings can be readily synthesized from 

common precursors by choosing the desirable haloarene donor and the order of the arylation and 

alkylation reactions.   

 

Scheme 1.  Sequential C-arylation enabled by SEM group switch provides a rapid access to 
triarylpyrazoles with complete control of regioselectivity. 

 

 
 
 

 

II.   Results & Discussion 

II.1 Development of C-H Arylation Protocol for SEM-Protected Pyrazoles 

As of the time of this work, we had previously reported catalytic protocols for the direct 

C-arylation of indoles, pyrroles, and imidazoles using palladium16 and rhodium17 catalysts and 

carboxylate bases.  Unfortunately, these methods were inef"cient for arylation of pyrazoles, 

calling for the development of new conditions.18,19,20 We rationalized the low reactivity of 

pyrazoles in terms of the relatively high Lewis basicity of these compounds and their ability to 

deactivate the catalyst. We chose to examine SEM-protected pyrazoles as the substrates [SEM = 
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2-(trimethylsilyl)ethoxymethyl] for two reasons: first, due to the stability of this protecting group 

under the catalytic arylation conditions16c, 21  and second, the ability of SEM group to be 

transposed from one nitrogen to another, enabling sequential arylations as outlined above.  

Rigorous and systematic optimization of the reaction parameters (metal catalyst, ligand, base, 

and solvent) for the coupling of 1N-SEM-4-phenylpyrazole (as to avoid potential side reaction at 

the 4-position) and bromobenzene led to a robust method which uses the following conditions: 5 

mol % Pd(OAc)2, 7.5 mol % P(n-Bu)Ad2, and 3 equiv. KOPiv, in DMA as the solvent and 

heating at 140°C under inert atmosphere (Figure 4; this work was performed in collaboration 

with postdoctoral colleague Dr. Roman Goikhman).  Consistent with previous results in our 

group, an objective search for catalytic C-H arylation conditions identi"ed a carboxylate salt as 

the optimal base, validating the importance of carboxylate base in the metalation step of 

heteroarenes.16,17 It is also worth nothing that these conditions are very similar to those 

developed independently by other laboratories, including Fagnou and colleagues’, for arylation 

of benzene aromatics.22  The latter team also showed that potassium pivalate can be generated in 

situ from potassium carbonate and a substoichiometric amount of pivalic acid. Therefore, we 

replaced potassium pivalate with potassium carbonate and a substoichiometric amount of pivalic 

acid, resulting in a more practical procedure; both versions of this protocol (PivOK or 

PivOH/K2CO3) provided comparable yields of arylated SEM-pyrazoles. 
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Figure 4. (A) General reactivity properties of pyrazole. (B) Reactivity profile of pyrazoles 
toward palladium-catalyzed C-H arylation. The C-5 position exhibits the highest reactivity. (a) 
Reaction conditions: Pyrazole, PhBr (1.5 equiv.), Pd(OAc)2 (5 mol %), P(n-Bu)Ad2 (7.5 mol %), 
K2CO3 (3 equiv.), HOPiv (25 mol %), 2.5 M DMA, 140°C for 12 h. Isolated yields are shown 
except for substrate 1, where the substrate conversion and the product ratio was determined by 
1H NMR of the crude mixture. All product ratios were confirmed by 1H NMR of crude mixtures. 
 
 
II.2  Regioselectivity of C-Arylation of SEM-Protected Pyrazoles 

With optimized reaction conditions in hand, our next task was to determine the 

regioselectivity of the method (Figure 4). When the simple parent SEM-pyrazole 1 was 

subjected to the catalytic conditions, the resulting mixture of arylated products indicated higher 

reactivity of the 5-position relative to the 4-position and very low to no reactivity at the 3-

position (Figure 4B). In addition to the monoarylated products, the bis-arylation product 4 was 

also formed in a signi"cant amount. This trend was con"rmed by examining the reaction of 1N-

SEM-3-phenylpyrazole 5, which gave a 5:2 ratio of bisarylated 6 and triarylated 7. In contrast, 
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compound 3, with the 4-position blocked, was arylated at the 5-position with high selectivity to 

provide compound 4 in 80% yield; the regioisomer stemming from arylation at the 3-position 

was not detected, and only a small amount of the bis-arylation product 7 was formed (16:1 ratio, 

4:7). Arylation of compound 2 was also selective, taking place at the 4-position to afford product 

4 as the major product; however, the yield was lower compared to arylation of the 5-position.  

These experiments pointed to inef"cient C-arylation at the 3-position, which is consistent with 

the low reactivity of this site (to both electrophiles and strong bases), while arylation was 

achieved at both C-4 and C-5 positions with preference for the latter. These reactivity trends 

were the basis for the general synthetic strategy shown in Scheme 1, where almost any 

substituted, protected pyrazole may be arylated at desired positions according to their relative 

reactivities.  

II.3 Rationale for the Observed Regioselectivity  

We hoped to gain insight into the mechanism of the reaction through the regioselectivites 

discussed above so that we could use the information to either improve the method or apply 

comparable methods to other azole substrates our laboratory was investigating.  It is well known 

that the 4-postion of pyrazole is the most nucleophilic and readily undergoes electrophilic 

substitution, while the 5-position possesses the most acidic C-H bond, which can be selectively 

deprotonated by strong bases (e.g., lithiation).23  Our previous results suggest that both our 

palladium-acetate16b and the rhodium-pivalate17 catalytic systems, as well as related systems 

developed by others, 24 proceed via an electrophilic-like mechanism (or EMD, electrophilic 

metalation-deprotonation mechanism)25, in the context of indoles, pyrroles, and imidazoles, 

where the metal acts as an electrophile, breaking the aromaticity, and the carboxylate ligand as 

the base, removing the proton. However, Fagnou’s laboratory generated evidence indicating that 
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the palladium-pivalate system, in the context of benzene arenes, selectively targets acidic C-H 

bonds via a “#-deprotonation mechanism”, or a concerted metalation-deprotonation (CMD) 

mechanism, where the metal-carboxylate complex directly engages the C-H bond.22,26 The 

preference of the catalytic system for the acidic C-H bonds explains the C-5 selectivity observed 

in our current case.  It is also reasonable, however, that an electrophilic-like mechanism occurs, 

with the migration of palladium from the most electrophilic site (C-4) to the position adjacent to 

the nitrogen (C-5), analogous to the rationale proposed for C-2 arylations of indoles.16b 

Considering all of the systems mentioned (our previous and current systems combined with those 

of Fagnou), the successful reaction of both electron-de"cient benzenes and electron-rich 

heteroarenes suggests substantial plasticity of the palladium-pivalate catalytic system, which 

may also account for the ability to arylate both C-5 and C-4 positions of the pyrazole system. 

The phosphine ligand modulates the reactivity of this catalytic system; in the context of 

pyrazoles, strong #-donor phosphines also protect the catalyst against the inhibition by the basic 

sp2 nitrogen of the substrate (results not shown).  In order to address these mechanistic questions, 

a colleague in our laboratory, Dr. Rachel Tundel, extensively examined the palladium-

carboxylate catalytic system with a variety of heteroarenes.27  Her experiments support the 

conclusion that the carboxylate co-catalyst is required to provide the carboxylate ligand, which 

plays two crucial roles: 1) It facilitates the C-H activation most likely via the CMD mechanism, 

and 2) it stabilizes the catalyst resting state from decomposition (Scheme 2). 
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Scheme 2. Proposed catalytic cycle on the basis of mechanistic studies performed in the Sames 
group. 

 

 

II.4 Arene Donor Substrate Scope  

Compound 3, 4-phenyl-1N-SEM-pyrazole, was used to examine the reaction scope of the 

arylation method; it is rapidly accessible by bromination of free (NH)-pyrazole at the 4-

position,28 N-alkylation with SEM-Cl, and a Suzuki reaction with phenylboronic acid (see 

Experimental). The arylation reactions may be performed on the benchtop under argon, and the 

conditions tolerate a wide variety of functional groups on the bromoarene donor, including 

ketone, ester, nitro, dimethylamino, and pyridyl groups (Table 1). Electron-de"cient and 

electron-neutral bromoarenes perform best in the reaction, whereas bromoarenes with electron-

donating substituents in the para-position (entry 7, Table 1) or steric bulk in the ortho-position 

give lower yields of desired products. 
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Table 1. Arylation Substrate Scope.a 

a Reaction conditions: Pyrazole, ArBr (1.5 equiv.), Pd(OAc)2 (5 mol %), P(n-Bu)Ad2 (7.5 mol %), K2CO3 (3 equiv.), 
HOPiv (25 mol %), 2.5M DMA, 140°C for 12 h. Isolated yields are an average of at least two separate reactions. 

 
 

II.5 Pyrazole Substrate Scope 

Substitution on the phenyl ring in the 4-position of the pyrazole is also tolerated as 

illustrated by the ortho-tolyl- and para-tri!uoromethylphenyl-substrates, which give the 

corresponding products 16 and 17, respectively, in good yields (Table 1, entries 10 and 11). The 
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conditions are also compatible with functionality beyond aryl groups as demonstrated by 

ef"cient arylation of the substrate containing an electron-withdrawing ester directly attached to 

the pyrazole in the 4-position, affording product 18 in 75% isolated yield (Table 1, entry 12). 

Thus, this method allows for synthesis of 4,5-diaryl-SEM-pyrazoles in one step from readily 

available 4-aryl-SEM-pyrazoles. 

 

II.6 SEM-Group Transposition (SEM-group switch)  

After the installment of the second arene ring at C-5, the subsequent arylation would have 

to take place at the 3-position, which bears the last available C-H bond. However, as shown in 

Figure 4 and discussed previously, the arylation of this site is not feasible due to its low 

reactivity; no reaction or very low yields of the desired product were obtained. To solve this 

problem, we considered switching the SEM group from one nitrogen atom to another, which 

would transform the unreactive position 3 to the reactive position 5 (Scheme 3).  

 

Scheme 3. SEM group transposition (SEM switch). 
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It has been reported that a mixture of unsymmetrical N-protected imidazoles could be 

equilibrated by heating in the presence of certain alkylating agents, leading to formation of the 

thermodynamic product.29  Applying this approach to SEM-pyrazoles, we were able to achieve 

the SEM switch by heating the starting material with 10 mol % of SEM-Cl in acetonitrile. 

Alkylation of the pyrazole nitrogen by SEM-Cl forms a pyrazolium salt, which facilitates the 

equilibration of the two regioisomers, ultimately yielding the less hindered, thermodynamically 

favored product (Scheme 3). The SEM-switch produces an average of !90% conversion, as 

demonstrated with four different substrates (Table 2), with the ~10% accounting for the 

pyrazolium salt remaining from the 10 mol % SEM-Cl in the reaction mixture.   Due to the 

extremely close polarity of the regioisomers, they were frequently dif"cult to separate via !ash 

chromatography; in these cases, reverse-phase HPLC was used to separate and purify these 

compounds.  Separating the two isomers is not necessary when triarylpyrazoles are desired, as 

the “unswitched material” may readily be removed after the subsequent arylation. In one step, 

the SEM-group switch transforms an unreactive compound to a reactive substrate, avoiding the 

need for deprotection and reprotection, and enables the two consecutive C-H arylations. 
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Table 2. SEM switch scope. 

 
a Determined by 1H NMR. b Isolated yield (flash chromatography). c Isolated yield (HPLC). 

 

II.7 The Second C-Arylation and Preparation of 3,4,5-Triarylpyrazoles  

Scheme 4 illustrates the brevity of the sequential arylation scheme for preparation of 

3,4,5-triarylpyrazoles.  The SEM-group transposition was applied to compound 8, which is 

available in one arylation step from starting material 3, to provide compound 20. The second 

arylation with 4-bromotri!uoromethylbenzene proceeded in high yield under the standard 

catalytic conditions to construct SEM-protected triarylpyrazole 23, which after deprotection 

furnished triarylpyrazole 24. Thus, all three arene rings are introduced to the pyrazole core with 

complete regiochemical control; two of the rings are attached directly via C-H bond 

functionalization.  
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Scheme 4. Synthesis of triarylpyrazoles via sequential C-arylation.a 

 
a Conditions: (a) Pyrazole, SEMCl (10 mol %), MeCN, 95°C, 24 h; 84% yield. (b) Pyrazole, ArBr (1.5 equiv.), 
Pd(OAc)2 (5 mol %), P(n-Bu)Ad2 (7.5 mol %), K2CO3 (3 equiv.), HOPiv (25 mol %), 2.5 M DMA, 140°C, 12 h; 
77% yield. (c) 3N HCl, EtOH, reflux, 3 h, 75% yield. In DMSO-d6, compound 24 exists as a mixture of tautomers. 
Yields are an average of at least two separate isolated yields. 

 

The scope of the arylation catalytic method was further examined in bisarylated, 1-SEM-

3,4-diarylpyrazole substrates (Table 3). Good to excellent yields of SEM-protected 

triarylpyrazoles were obtained with a variety of functional groups on both the pyrazole substrate 

and the bromoarene donor. 
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Table 3.  C-Arylation of diarylpyrazoles, substrate scope.a 

 
a Reaction conditions: Pyrazole, ArBr (1.5 equiv.), Pd(OAc)2 (5 mol %), P(n-Bu)Ad2 (7.5 mol %), K2CO3 (3 equiv.), 
HOPiv (25 mol %), 2.5 M DMA, 140°C, 12 h. Yields are an average of at least two separate isolated yields. 
 
 
II.8 Deprotection of SEM-Pyrazoles 

Free (NH)-pyrazoles are readily accessible by the deprotection of the SEM group, which 

is accomplished by the action of hydrochloric acid in ethanol.30 To con"rm the generality of this 

protocol in the context of complex pyrazoles, triarylpyrazoles 23 and 25 (Table 3) as well as 

diarylpyrazoles 4, 8, and 10 (Table 1) were deprotected to afford high yields of the 

corresponding free pyrazoles (Table 4). It is well known that free pyrazoles exist as a mixture of 

tautomers,31,32 which is consistent with 1H NMR observations; while the signal for the NH 
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proton is broad in CDCl3, the two peaks are resolved in DMSO-d6 ($ 13-14.5 ppm); in the case 

of compound 24, both tautomers are present in a 56:44 ratio (see Experimental). 

 

Table 4.  Deprotection of complex pyrazoles.  

 

 

II.9 Regioselective N-Alkylation/C-Arylation Sequence Enabled by the SEM Group 

The sequential arylation mediated by the SEM-group switch, described above, provides a 

rapid access to protected and free triarylpyrazoles and offers an attractive alternative to the de 

novo approaches. However, when N-alkylated products are desired, the N-alkylation of free N-H 

pyrazoles that lack suf"cient steric bias to encourage selective alkylation result in a mixture of 

two regioisomers.  Triarylpyrazole 24 (Scheme 4) is an example substrate that would suffer from 
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this problem.  To address this concern, we considered the idea of using the SEM group to 

selectively introduce the alkyl group at the desired nitrogen of the pyrazole by blocking the 

undesired position.  We tested a number of methylating reagents (dimethyl sulfate, methyl 

iodide, and trimethyloxonium tetra!uoroborate), of which Me3O-BF4 gave best results, yielding 

N-methylated pyrazolium salts at room temperature in dry dichloromethane; facile deprotection 

of the SEM group in acidic conditions yields N-methylated products as a single isomer (Table 5).  

 

Table 5.  N-Methylation of bisarylated, SEM-protected pyrazoles.  

  

 

For example, compound 12 was methylated and deprotected to produce the single desired isomer 

of the alkylated pyrazole 33 (Scheme 5). This two-step procedure not only selectively alkylates 

the nitrogen of choice, but simultaneously serves to change the unreactive 3-position of the 

pyrazole to the reactive 5-position in a similar fashion as the SEM group switch. The N-
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methylpyrazole 33 was then arylated with 3-bromopyridine to afford the highly functionalized 

pyrazole 27.  Consequently, the regioselective N-alkylation was incorporated into the sequential 

arylation scheme to provide the fully substituted pyrazole as a single regioisomer. 

 

Scheme 5. Sequential C-arylation and N-methylation provides a rapid access to 1-methyl-3,4,5-
triarylpyrazoles with complete regioselectivity control.a 

 
a Conditions: (a) Pyrazole, Me3O-BF4 (1.2 equiv.), CH2Cl2, RT, 1 h. (b) 3N HCl, EtOH, reflux, 1 h; 70% yield over 
2 steps. (c) Pyrazole, ArBr (1.5 equiv.), Pd(OAc)2 (5 mol %), P(n-Bu)Ad2 (7.5 mol %), K2CO3 (3 equiv.), HOPiv 
(25 mol %), 2.5 M DMA, 140°C for 12 h; 70% yield. Yields are an average of at least two separate isolated yields. 

 

One obvious limitation of this approach is that other nucleophilic functions present in the 

substrate would also undergo methylation; namely, the pyridyl and dimethylamino groups we 

encountered were not compatible with the methylation reaction conditions.  To introduce N-

alkylation into product that also contains an aniline, this problem can be solved by introducing 

the nitrophenyl ring (Table 1 and Table 3), and reducing the nitro group after the alkylation step. 

Another solution is to perform the alkylation earlier in the sequence and thus introduce the 

alkylation-prone groups by C-arylation after the N-alkylation step as illustrated in Scheme 5. The 

pyridine ring would be attached in the last step of the sequence, combining the utility of the 

regioselective N-alkylation with direct C-H arylation while bypassing substituent 

incompatibility. 

 

 



 

 

20 

III. Conclusions 

Pyrazoles are an important class of heteroarenes frequently found in pharmaceuticals and 

protein ligands, and there has been a growing interest in new synthetic methods for their 

preparation. We have developed a strategically new approach based on the synthetic logic 

enabled by direct C-H bond functionalization, where new substituents are directly attached to 

predetermined positions of the heteroarene nucleus.13 This approach permits functionalization of 

all "ve pyrazole positions with complete regiocontrol and allows for the ef"cient synthesis of 

analog and regioisomeric series from common precursors.  The particular strength of this 

strategy is the ability to utilize the synthesis from either the parent pyrazole or practically any 

pyrazole intermediate. Due to the inherent reactivity preferences of pyrazole in this palladium-

catalyzed system, the sequential C-arylation of free N-H pyrazoles or N-alkylated pyrazoles was 

not possible, and therefore we conceived an innovative strategy based on the SEM-protecting 

group and its transposition. The SEM group ful"lls three major roles: "rst, it protects the 

pyrazole amine group and thus enables the C-arylation, as free pyrazoles are not good substrates; 

second, it facilitates the regioselective sequential C-H arylation via the SEM group switch; and 

third, it allows for regioselective N-methylation which can be coupled to subsequent C-arylation.  

In summary, the catalytic C-H arylation combined with the protecting group transposition 

and N-alkylation provides a rapid route to fully substituted pyrazoles with complete regiocontrol 

of all substituents. Signi"cant advances have recently been reported for the de novo synthesis of 

pyrazoles, both in terms of regiocontrol and scope.11 Also, major improvements have been 

achieved in the area of Suzuki coupling of pyrazoles; many of the problems associated with 

inef"cient preparation of azolyl boronate esters and the low yielding coupling process have 

recently been addressed.15,33 Our approach is complementary to these methods, and together they 
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enable the design and synthesis of a wide variety of complex pyrazole compounds.  This work 

was successfully published34 and has been a significant contribution to the field, evidenced by its 

citation in 50 unique papers as of this writing (not including those from our laboratory), several 

of which are comprehensive reviews of recent advances in pyrazole synthesis (both de novo and 

more modular, direct functionalizations related to those presented here).35   Our group has 

successfully extended this catalytic palladium-carboxylate C-H arylation system to further 

heteroarenes, namely imidazoles,25a electron-deficient pyridines,25b and even 1,2,4-triazoles.36  

The SEM group switch approach established in this work was successfully applied to the 

imidazole and triazole methods.  These extensions of the methods presented here testify to the 

generality of the palladium-carboxylate catalytic system for direct C-H arylation of heteroarenes 

and the practicality of the SEM switch approach to selectively functionalize specific positions on 

these pharmacologically relevant heteroarene rings.  
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IV. Experimental Section 

IV.1 General Information 

All manipulations of air and/or water sensitive compounds were performed using standard 

Schlenk techniques under an atmosphere of argon passed through Drierite.  Arylation reactions 

were carried out in capped glass vials (VWR, 8 mL) equipped with a magnetic stir bar and 

Teflon-lined cap and heated in a 34-well reaction block (Chemglass).  All solvents were passed 

through a column of alumina under an argon atmosphere and used without further purification, 

with the exception of 1,4-dioxane, which was used as received (Aldrich, anhydrous).  All 

chemicals were purchased from Sigma-Aldrich, Acros, or Strem (palladium complexes and 

phosphines) and used as received unless otherwise noted. Phosphines were stored under Ar in a 

glovebox between uses.  Flash chromatography was carried out on SILICYCLE silica gel (230-

400 mesh).  Nuclear Magnetic Resonance spectra were recorded at 300 K on Bruker Advance 

DPX 300 or 400 Fourier transform NMR spectrometers in CDCl3 and proton spectra referenced 

to TMS or the solvent residual peak ($ 7.26) and the solvent residual peak ($ 77.0) in 13C NMR.  

Some spectra were recorded in DMSO-d6 and were referenced to the solvent residual peak 

(! 2.50) in proton spectra.  Mass spectra were recorded on a JEOL LCmate (Ionization mode: 

APCI+). HPLC was performed on a Waters Millennium32 Analytical system with a 996 

photodiode array detector using an Xterra RP18 5µm column (4.6 x 150mm) with a Waters 600 

Controller; fractions were detected at 254 nm with a Waters 2487 Dual % Absorbance Detector 

and data was analyzed using OpenLynx software.  All HPLC methods were conducted using 

80% acetonitrile / water (with 0.1% trifluoroacetic acid) for 35 minutes, unless otherwise noted.   
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IV.2 Synthesis of Starting Materials 

1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (1) was synthesized from the commercially 

available pyrazole (Aldrich) according to literature procedure.37 

 

3-Phenyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (5) and 5-Phenyl-1-((2- 

(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (2):  3-Phenylpyrazole was used as purchased 

from Acros Organics. The compound (2.88 g, 20 mmol) was dissolved in 30 mL THF and cooled 

to 0 ºC under an argon atmosphere.  NaH (0.72 g, 30 mmol, 1.5 eq.) was added slowly at 0 ºC 

and the resulting mixture was allowed to stir for 30 minutes, or until hydrogen evolution was 

complete.  SEMCl (3.7 mL, 3.5 g, 21 mmol, 1.05 eq.) was added slowly and the reaction allowed 

to warm to room temperature and stirred for an additional 12 hours.  The reaction was quenched 

with 5 mL deionized water, extracted with ether, washed with brine, dried with MgSO4 and the 

solvent removed.  After workup, the resulting crude mixture was separated via column 

chromatography with 10% diethyl ether in hexanes, to produce 1.92 g (35%) of 5, and 3.12 g 

(57%) of 2.   

 

5-Phenyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (2): 1H NMR (400 

MHz, CDCl3):  7.62 (m, 2H), 7.56 (d, J = 1.8 Hz, 1H), 7.37 – 7.48 (m, 3H),  6.40 

(d, J = 1.8 Hz, 1H), 5.43 (s, 2H), 3.74 (t, J = 8.2 Hz, 2H), 0.95 (t, J = 8.2 Hz, 2H), -0.01 (s, 9H).  

13C NMR (75 MHz, CDCl3):  ! 144.4, 139.3, 130.3, 128.9, 128.8, 128.5, 106.7, 77.9, 66.7, 17.9, 

-1.45.  MS (LR-APCI): calculated for C15H22N2OSi: 274.2, measured 275.5 (M+H)+. 

 

N N
SEM
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3-Phenyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (5): 1H NMR 

(400 MHz, CDCl3):  7.83 (m, 2H), 7.59 (d, J = 2.4 Hz, 1H), 7.41 (m, 2H),  

7.31 (m, 1H) , 6.64 (d, J = 2.4 Hz, 1H), 5.47 (s, 2H), 3.64 (t, J = 8.2 Hz, 2H), 0.94 (t, J = 8.2 Hz, 

2H), -0.01 (s, 9H).  13C NMR (75 MHz, CDCl3):  ! 152.0, 133.3, 130.8, 128.6, 127.7, 125.8, 

104.1, 80.2, 66.7, 17.7, -1.45.  MS (LR-APCI): calculated for C15H22N2OSi: 274.2, measured 

275.6 (M+H)+. 

 

4-Bromo-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole: 4-Bromopyrazole 

was used as purchased or synthesized according to the literature. 38  4-

Bromopyrazole (5.50 g, 37.4 mmol) was dissolved in 50 mL THF and cooled to 0 

ºC under an argon atmosphere.  NaH (1.35 g, 56.3 mmol, 1.5 eq.) was added slowly at 0 ºC and 

the resulting mixture was allowed to stir for 30 minutes, or until hydrogen evolution was 

complete.  SEMCl (6.93 mL, 6.55 g, 39.3 mmol, 1.05 eq.) was added slowly and the reaction 

allowed to warm to room temperature and stirred for an additional 12 hours.  The reaction was 

quenched with 10 mL deionized water, extracted with ether, washed with brine, dried with 

MgSO4 and the solvent removed.  After workup, the resulting crude mixture was distilled under 

high vacuum to produce a colorless, clear liquid (9.30 g, 90%).  Characterization of this 

compound was identical to that found in the literature.38 

 

4-Phenyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (3):   4-Bromo-1-((2-

trimethylsilyl)ethoxy)methyl-1H-pyrazole (3.39 g, 12.2 mmol), phenylboronic acid 

(2.00 g, 16.5 mmol, 1.35 eq.), palladium (II) acetate (0.137 g, 0.61 mmol, 5 mol 

%), tricyclohexylphosphine (0.340 g, 1.2 mmol, 10 mol %), and cesium carbonate (7.76 g, 23.8 

N N
SEM

N N

Br

SEM

N N
SEM
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mmol, 2 eq.) were weighed in air and added to a round-bottom flask, evacuated and backfilled 

with Ar three times.  Dioxane (70 mL) was added via syringe and the reaction mixture refluxed 

at an oil bath temperature of 105 ºC for 6-12 hours.  Deionized water (10 mL) and ethyl acetate 

(100 mL) were added to the reaction mixture and separated, the aqueous fraction extracted with 

ethyl acetate, the organic fractions combined, dried over MgSO4, and the solvent removed.  The 

crude, brown, viscous material was purified via column chromatography with a 100% hexanes to 

10% EtOAc:hexanes gradient, after which it was necessary to distill the remaining starting 

material out of the column purified product under vacuum to produce 2.72 g (81% isolated, 90% 

by 1H NMR of the crude product) of viscous, yellow oil.  1H NMR (400 MHz, CDCl3):  ! 7.83 

(s, 1H), 7.82 (s, 1H), 7.50 (d, J = 7.8 Hz, 2H), 7.38 (t, J = 7.8 Hz, 2H), 7.26 (m, 1H) , 5.46 (s, 

2H), 3.60 (t, J = 8.2 Hz, 2H), 0.93 (t, J = 8.2 Hz, 2H), -0.02 (s, 9H).  13C NMR (75 MHz, 

CDCl3):  ! 137.5, 132.4, 129.0, 126.7, 126.2, 125.7, 124.3, 80.5, 66.9, 17.9,       -1.4.  MS (LR-

APCI): calculated for C15H22N2OSi: 274.2, measured 275.3 (M+H)+. 

 

4-(4-(Trifluoromethyl)phenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H- 

pyrazole:  4-Bromo-1-SEM-1H-pyrazole (1.4 g, 5 mmol), 4-(trifluoromethyl) 

phenylboronic acid (1.3 g, 6.8 mmol, 1.35 eq.), Pd(PPh3)4 (0.29 g, 0.25 mmol, 5 

mol%), cesium carbonate (2.8 g, 8.5 mmol, 1.7 eq.) and dioxane (10 mL) were added 

to a 20 mL vial under an argon atmosphere, and the reaction mixture was heated at 105ºC for 12 

hours.  Deionized water (10 mL) and ethyl acetate (100 mL) were added to the reaction mixture, 

the product extracted with ethyl acetate, the organic fractions dried with MgSO4, and the solvent 

removed.  The crude, brown, viscous material was purified via column chromatography with 

10% EtOAc in hexanes to produce 1.25 g (73%) of colorless liquid.  Alternatively, 5 mol% 
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Pd(OAc)2 and 10% PCy3 may be used as the catalyst system to afford a 78% yield. 1H NMR (400 

MHz, CDCl3):  !  7.87 (s, 1H), 7.86 (s, 1H), 7.60 (AB q, J = 8.8 Hz, 4H), 5.47 (s, 2H), 3.62 (t, J 

= 8.2 Hz, 2H), 0.94 (t, J = 8.2 Hz, 2H), -0.02 (s, 9H).  13C NMR (75 MHz, CDCl3):  ! 137.5, 

135.9, 128.8, 126.7, 125.9, 125.85, 125.6, 123.0, 80.5, 67.0, 17.8, -1.46.  MS (LR-APCI): 

calculated for C16H21F3N2OSi: 342.1, measured 343.3 (M+H)+. 

 

4-o-Tolyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole:   4-Bromo-1-SEM-

1H-pyrazole (0.7 g, 2.5 mmol), 2-methylphenylboronic acid (0.46 g, 3.4 mmol, 1.35 

eq.), Pd(PPh3)4 (0.145 g, 0.125 mmol, 5 mol%), cesium carbonate (1.4 g, 4.25 

mmol, 1.7 eq.) and 1,4-dioxane (10 mL) were added to a 20 mL vial under an argon atmosphere, 

and the reaction mixture was heated at 105ºC for 12 hours.  Deionized water (10 mL) and ethyl 

acetate (100 mL) were added to the reaction mixture, the product extracted with ethyl acetate, 

dried over MgSO4, and the solvent removed.  The crude, viscous material was purified via 

column chromatography with 5% EtOAc in hexanes to product 0.4 g (55%) of colorless oil.   1H 

NMR (400 MHz, CDCl3):  !  7.68 (s, 1H), 7.66 (s, 1H), 7.33 – 7.35 (m, 1H), 7.20 – 7.27 (m, 

3H), 5.47 (s, 2H), 3.62 (t, J = 8.2 Hz, 2H), 2.40 (s, 3H), 0.93 (t, J = 8.2 Hz, 2H), -0.02 (s, 9H).    

13C NMR (75 MHz, CDCl3):  ! 139.6, 135.3, 131.9, 130.6, 129.1, 128.1, 126.9, 126.0, 123.2, 

80.3, 66.7, 21.2, 17.8, -1.49. MS (LR-APCI): calculated for C16H24N2OSi: 288.2, measured 

289.4 (M+H)+. 

 

 4-Ethoxycarbonyl-1-((2-(trimethylsilyl)ethoxy)methyl-1H-pyrazole:   

4-Ethoxycarbonyl-1H-pyrazole (1 g, 7.1 mmol) was dissolved in 20 mL THF.  NaH 

(0.25 g, 10.4 mmol, 1.5 eq.) was added to the solution, and the resulting mixture 
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was allowed to stir for 30 min. at room temperature.  SEMCl (1.4 mL, 1.3 g, 7.8 mmol, 1.1 eq.) 

was added slowly and the reaction stirred for an additional 12 hours.  The reaction was quenched 

with 10 mL dionized water, extracted with ether, dried with MgSO4 and the solvent removed.  

After workup, the resulting crude mixture was purified via column chromatography with 10% 

EtOAc in hexanes to produce a colorless, clear liquid (1.6 g, 83%).  1H NMR (300 MHz, 

CDCl3):  !  8.05 (s, 1H), 7.93 (s, 1H), 5.43 (s, 2H), 4.30 (q, J = 7.2 Hz, 2H), 3.57 (t, J = 8.2 Hz, 

2H), 1.35 (t, J = 7.2 Hz, 3H), 0.91 (t, J = 8.2 Hz, 2H), -0.01 (s, 9H).  13C NMR (75 MHz, 

CDCl3):  !  162.9, 141.2, 132.8, 116.3, 80.6, 67.2, 60.3, 17.7, 14.3, -1.50.  (LR-APCI): calculated 

for C12H22N2O3Si: 270.1, measured 271.4 (M+H)+. 

IV.3 Procedure for Pyrazole Arylation 

These reactions were performed from 0.25 to 3 mmol scales.  To a vial equipped with a stir bar, 

the susbstrate (1 equiv.), Pd(OAc)2 (5 mol%), P(nBu)Ad2 (7.5 mol%), K2CO3 (3 equiv.) and 

pivalic acid (25 mol%) were added.  Reagents were weighed in air, and all were stored on the 

benchtop with the exception of the phosphine, which was stored under Ar in a glovebox between 

uses, and Pd(OAc)2, which was either stored in the glovebox or in a desiccator. The vial was 

sealed with a Teflon-capped septum and evacuated and backfilled with Ar three times.  DMA 

(2.5M) and the aryl bromide (1.5 equiv.) were added via syringe. (If solid, the aryl bromide was 

added with the solids.) The septum was quickly replaced with a Teflon-lined cap under an Ar 

stream and the reaction mixture heated to 140 ºC for 12 hours.  After cooling to room 

temperature, the dark brown mixture was diluted with 10 mL water and 100 mL ethyl acetate, the 

layers separated, and the aqueous fraction back-extracted with EtOAc (30 mL x 3).  The organic 
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fractions were combined and dried with MgSO4, the solvent removed, and the material purified 

via flash chromatography using the eluents specified.  

 

4,5-Diphenyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (4):  

 Procedure described above.  Produced a yellow, dense oil in 80% yield, 5% 

compound 7.  1H NMR (400 MHz, CDCl3):   ! 7.78 (s, 1H), 7.42 (m, 5H), 7.19 – 

7.23 (m, 5H), 5.34 (s, 2H), 3.69 (t, J = 8.2 Hz, 2H), 0.93 (t, J = 8.2 Hz, 2H), -0.01 (s, 9H).  13C 

NMR (75 MHz, CDCl3): ! 140.5, 138.7, 132.4, 130.5, 129.9, 128.8, 128.7, 128.4, 127.7, 126.3, 

121.8, 77.9, 67.1, 18.0, -1.1.  MS (LR-APCI): calculated for C21H26N2OSi: 350.2, measured 

351.5 (M+H)+. 

 

3,5-Diphenyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (6):  

 1H NMR (400 MHz, CDCl3):   ! 7.87 (m, 2H), 7.68 (m, 2H), 7.40 – 7.50 

(m, 5H), 7.34 (m, 1H), 6.72 (s, 1H), 5.48 (s, 2H), 3.82 (t, J = 8.2 Hz, 2H), 

0.98 (t, J = 8.2 Hz, 2H), 0.01 (s, 9H).  13C NMR (75 MHz, CDCl3):  ! 151.1, 145.9, 133.3, 130.3, 

128.9, 128.7, 128.6, 128.6, 127.8, 125.8, 104.1, 77.8, 66.7, 17.9, -1.41. MS (LR-APCI): 

calculated for C21H26N2OSi: 350.2, measured 351.4 (M+H)+. 

 

3,4,5-Triphenyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (7):  

1H NMR (400 MHz, CDCl3):   ! 7.49 (m, 2H), 7.36 (m, 5H), 7.28 (m, 3H), 

7.19 (m, 3H),  7.07 (m, 2H), 5.43 (s, 2H), 3.77 (t, J = 8.2 Hz, 2H), 0.96 (t, J 
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= 8.2 Hz, 2H), 0.0 (s, 9H).  13C NMR (75 MHz, CDCl3): !  149.4, 142.7, 133.3, 133.2, 130.5, 

130.4, 129.6, 128.5 (br.), 128.3 (br.), 128.1, 127.5, 126.5, 120.1, 77.9, 66.8, 17.9, -1.40. MS (LR-

APCI): calculated for C27H30N2OSi: 426.3, measured 427.1 (M+H)+.  

 

4-Phenyl-5-(3-pyridyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole  

(8):   Pale yellow, dense oil; 65% yield (15% 4-phenyl-3,5-di-(3-pyridyl)-1-

(SEM)-1H-pyrazole, 8b), isolated via flash chromatography with a gradient from 

100% hexanes, to 1:3 EtOAc:hexanes, to 2:3 EtOAc:hexanes as the eluent. 1H NMR (400 MHz, 

CDCl3):  8.66 (d, J = 2.0 Hz, 1H), 8.65 (bs, 1H), 7.81 (dt, J1 = 7.6 Hz, J2 = 2.0 Hz, 1H), 7.78 (s, 

1H), 7.37 (ddd, J1 = 13.2 Hz, J2 = 5.0 Hz, J3 = 1.0 Hz, 1H), 7.15-7.28 (overlapped m, 5H), 5.34 

(s, 2H), 3.71 (t, J = 8.4 Hz, 2H), 0.94 (t, J = 8.4 Hz, 2H), 0.0 (s, 9H).  Aromatic protons on the 

pyridine ring assigned with COSY 2-D NMR.  13C NMR (75 MHz, CDCl3):  ! 151.0, 149.9, 

138.9, 137.8, 136.9, 132.2, 128.7, 127.8, 126.7, 126.1, 123.4, 123.1, 78.1, 66.9, 17.9, -1.5.  MS 

(LR-APCI): calculated for C20H25N3OSi: 351.2, measured 352.5 (M+H)+. 

 

4-Phenyl-3,5-di-(3-pyridyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H- 

pyrazole (8b):  White solid, 15% yield under arylation and isolation 

conditions. 1H NMR (400 MHz, CDCl3):  ! 8.74 (m, 1H), 8.59 (m, 2H), 

8.50 (dd, J1 = 4.8 Hz, J2 = 1.6 Hz, 1H), 7.73 (dm, J = 8.0 Hz, 2H), 7.28 (ddd, J1 = 8.0 Hz, J2 = 

6.4 Hz, J3 = 0.8 Hz, 1H), 7.17 – 7.20 (m, 3H), 7.18 (ddd, J1 = 8.0 Hz, J2 = 6.4 Hz, J3 = 0.8 Hz, 

1H), 7.05 (m, 2H), 5.42 (s, 2H), 3.79 (t, J = 8.4 Hz, 2H), 0.97 (t, J = 8.4 Hz, 2H), -0.01 (s, 9H).  

13C NMR (75 MHz, CDCl3):  ! 150.8, 149.7, 149.2, 148.7, 146.5, 139.5, 137.6, 135.2, 131.9, 
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130.3, 128.9, 128.7, 127.4, 125.5, 123.2, 123.0, 121.6, 78.2, 67.1, 17.9, -1.4.  MS (LR-APCI): 

calculated for C25H28N4OSi: 428.2, measured 429.2 (M+H)+.  

 

5-(3-Ethoxycarbonylphenyl)-4-phenyl-1-((2-(trimethylsilyl)ethoxy) 

methyl)-1H-pyrazole  (9):  Yellow, viscous oil; 82% yield,  isolated with 

flash chromatography with a gradient of 0% to 10% EtOAc in hexanes. 1H 

NMR (300 MHz, CDCl3):  !  8.16 (t, J = 1.5 Hz, 1H), 8.10 (dt, J1 = 7.8 Hz, J2 = 1.5 Hz, 1H),  

7.79 (s, 1H), 7.57 (dt, J1 = 7.8 Hz, J2 = 1.5 Hz, 1H), 7.48 (td, J1 = 7.5 Hz, J2 = 0.3 Hz, 1H), 7.15 

– 7.23 (m, 5 H), 5.33 (s, 2H), 4.36 (q, J = 7.0 Hz, 2H), 3.67 (t, J = 8.2 Hz, 2H), 1.36 (t, J = 7.0 

Hz, 3H), 0.94 (t, J = 8.2 Hz, 2H), -0.01 (s, 9H).  13C NMR (75 MHz, CDCl3):  ! 166.0, 139.4, 

138.7, 134.8, 132.5, 131.5, 131.1, 130.2, 130.0, 128.5, 127.7, 126.5, 122.3, 78.0, 66.7, 61.2, 17.9, 

14.2, -1.5.   MS (LR-APCI): calculated for C24H30N2O3Si: 422.2, measured 423.6 (M+H)+. 

 

4-Phenyl-5-(4-(trifluoromethyl)phenyl)-1-((2-(trimethylsilyl)ethoxy) 

methyl)-1H-pyrazole (10):  Pale yellow, viscous oil; 74 % yield, isolated 

via flash chromatography with a gradient from 100% hexanes to 10% EtOAc 

in hexanes as the eluent.  1H NMR (400 MHz, CDCl3):  !   7.77 (s, 1H), 7.66 (d, J = 8.2 Hz, 

2H), 7.58 (d, J = 8.2 Hz, 2H), 7.16 – 7.26 (m, 5H), 5.34 (s, 2H), 3.74 (t, J = 8.2 Hz, 2H), 0.95 (t, 

J = 8.2 Hz, 2H), 0.00 (s, 9H).    13C NMR (75 MHz, CDCl3):   ! 138.9, 133.5, 132.3, 130.8, 

128.6, 127.9, 126.7, 125.7, 125.6, 122.7, 78.1, 67.0, 18.0, -1.4. MS (LR-APCI): calculated for 

C22H25F3N2OSi: 418.2, measured 419.7 (M+H)+. 
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5-(4-Nitrophenyl)-4-phenyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H- 

pyrazole (11):  Dense, yellow oil; 58% yield.  Flash chromatography on 

silica with 10% EtOAc in hexanes as the eluent provided material of 60-90% 

purity.  For characterization, this material was further purified by preparative RP-HPLC using 

the conditions previously described, retention time 13.12 min.   1H NMR (400 MHz, CDCl3):  !  

8.26 (d, J = 9.0 Hz, 2H), 7.76 (s, 1H), 7.66 (d, J = 9.0 Hz, 2H), 7.23 – 7.27 (m, 3H), 7.14 – 7.17 

(m, 2H), 5.36 (s, 2H), 3.77 (t, J = 8.3 Hz, 2H), 0.97 (t, J = 8.3 Hz, 2H), 0.01 (s, 9H).   13C NMR 

(75 MHz, CDCl3):   ! 147.8, 139.0, 138.0, 136.3, 132.0, 131.4, 128.7, 128.0, 127.0, 123.9, 123.4, 

78.2, 67.2, 18.0, -1.4.   MS (LR-APCI): calculated for C21H25N3O3Si: 395.2, measured 396.4 

(M+H)+. 

 

5-(3-Methoxyphenyl)-4-phenyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H- 

pyrazole (12):   Yellow, viscous oil; 76% yield.  Isolated via flash 

chromatography with 5% EtOAc in hexanes as the eluent. 1H NMR (400 

MHz, CDCl3):  ! 7.81 (s, 1H), 7.33 (m, 2H), 7.29 (m, 1H), 7.22 – 7.26 (m, 3H), 6.98 – 7.05 (m, 

3H), 5.39 (s, 2H), 3.78 (s, 3H), 3.72 (t, J = 8.3 Hz, 2H), 0.98 (t, J = 8.3 Hz, 2H), 0.03 (s, 9H).  

13C NMR (75 MHz, CDCl3):  !  159.6, 140.2, 138.6, 132.7, 130.9, 129.7, 128.4, 127.6, 126.3, 

122.7, 121.7, 115.6, 114.7, 77.8, 66.7, 55.1, 17.9, -1.5.  MS (LR-APCI): calculated for 

C22H28N2O2Si: 380.2, measured 381.2 (M+H)+. 

 

5-(4-Methoxyphenyl)-4-phenyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-

pyrazole (13):  35% yield.  Flash chromatography on silica with 5% EtOAc 

in hexanes as the eluent provided material of ~80% purity.  For 
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characterization, this material was further purified by RP-HPLC using conditions previously 

described. 1H NMR (400 MHz, CDCl3):  !  7.76 (s, 1H), 7.35 (d, J = 8.8 Hz, 2H), 7.22 – 7.34 

(m, 5H), 6.94 (d, J = 8.8 Hz, 2H), 5.32 (s, 2H), 3.85 (s, 3H), 3.70 (t, J = 8.2 Hz, 2H), 0.94 (t, J = 

8.2 Hz, 2H), 0.00 (s, 9H).  13C NMR (75 MHz, CDCl3):  ! 159.9, 140.3, 138.6, 133.0, 131.7, 

128.4, 127.6, 126.2, 121.9, 121.5, 114.2, 77.8, 66.7, 55.3, 18.0, -1.4.  MS (LR-APCI): calculated 

for C22H28N2O2Si: 380.2, measured 381.2 (M+H)+. 

 

5-(3-Dimethylaminophenyl)-4-phenyl-1-((2-(trimethylsilyl)ethoxy)  

methyl) -1H-pyrazole (14):  Light yellow, viscous oil; 74% yield,  isolated 

via flash chromatography with a gradient from 50:50 hexanes:CH2Cl2 to 

100% CH2Cl2 to 1% MeOH in CH2Cl2 as the eluent. 1H NMR (400 MHz, CDCl3):  ! 7.79 (s, 

1H), 7.16 – 7.28 (m, 6H), 6.73 – 6.78 (m, 3H), 5.36 (s, 2H), 3.69 (t, J = 8.4 Hz, 2H), 2.90 (s, 

6H), 0.93 (t, J = 8.4 Hz, 2H), 0.00 (s, 9H).  13C NMR (75 MHz, CDCl3):  ! 150.4, 141.4, 138.6, 

133.0, 130.3, 129.3, 128.3, 127.6, 126.1, 121.3, 118.3, 114.4, 112.6, 77.8, 66.7, 40.4, 18.0, -1.5.   

MS (LR-APCI): calculated for C23H31N3OSi: 393.2, measured 394.4 (M+H)+. 

 

4-Phenyl-5-(4-phenyl ethanone)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-

pyrazole (15):  58% yield; isolated via flash chromatography with 10% 

EtOAc in hexanes as the eluent.  1H NMR (400 MHz, CDCl3):  ! 7.99 (d, J = 

8.4 Hz, 2H), 7.77 (s, 1H), 7.55 (d, J = 8.4 Hz, 2H), 7.16 – 7.26 (m, 5H), 5.34 (s, 2H), 3.73 (t, J = 

8.4 Hz, 2H), 2.63 (s, 3H), 0.95 (t, J = 8.4 Hz, 2H), -0.00 (s, 9H).    13C NMR (75 MHz, CDCl3):  

!  197.5, 139.2, 138.9, 137.0, 134.5, 132.4, 130.7, 128.6, 127.8, 126.6, 122.6, 78.1, 67.0, 26.6, 

17.9, -1.43.    
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5-(3-pyridyl)-4-(o-tolyl)-1--((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole 

 (16):  79% colorless oil; isolated by flash chromatography with 4% EtOAc in 

hexanes as the eluent.   1H NMR (400 MHz, CDCl3):  !  8.54 (d, J = Hz, 2H), 

7.71 (dt, J1 = 8.0 Hz, J2 = 1.8 Hz, 1H), 7.26 (s, 1H), 7.24 (dd, J1 = 7.8 Hz, J2 = 5.0 Hz, 1H), 7.14 

– 7.15 (m, 2H), 7.04 – 7.10 (m, 2H), 5.40 (s, 2H), 3.76 (t, J = 8.2 Hz, 2H), 2.03 (s, 3H), 0.95 (t, J 

= 8.2 Hz, 2H), -0.01 (s, 9H).  13C NMR (100 MHz, CDCl3):  ! 150.2, 149.3, 139.9, 137.8, 136.8, 

136.5, 131.6, 130.8, 130.2, 127.5, 126.0, 125.7, 123.2, 122.4, 78.2, 66.9, 20.2, 17.8, -1.51.  MS 

(LR-APCI): calculated for C22H28N2OSi: 365.2, measured 366.0 (M+H)+.    

 

5-Phenyl-4-(4-(trifluoromethyl)phenyl)-1-((2- 

(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (17):  69 % yield.  Isolated by 

flash chromatography using 5% EtOAc:hexanes as the eluent.  1H NMR (400 

MHz, CDCl3):  !  7.81 (s, 1H), 7.38 – 7.46 (m, 7H), 7.27 (d, J = 8.1 Hz, 2H), 

5.33 (s, 2H), 3.69 (t, J = 8.4 Hz, 2H), 0.93 (t, J = 8.4 Hz, 2H), -0.01 (s, 9H).  13C NMR (75 MHz, 

CDCl3):  ! 141.1, 138.6, 136.6, 130.4, 128.3, 129.2, 128.9, 127.6, 125.4, 125.36, 120.5, 77.9, 

66.9, 17.9, -1.44.  MS (LR-APCI): calculated for C22H25F3N2OSi: 418.2, measured 419.5 

(M+H)+.   

 

4-Ethoxycarbonyl-5-phenyl-1-((2-(trimethylsilyl)ethoxy)methyl-1H- 

pyrazole (18):   75% yield of colorless oil; isolated by flash chromatography 

with 10% EtOAc in hexanes as the eluent.  1H NMR (400 MHz, CDCl3):  

!  8.03 (s, 1H), 7.44 – 7.52 (m, 5H), 5.27 (s, 2H), 4.17 (q, J = 7.2 Hz, 2H), 3.65 (t, J = 8.2 Hz, 
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2H), 1.18 (t, J = 7.2 Hz, 3H), 0.89 (t, J = 8.2 Hz, 2H), -0.02 (s, 9H).  13C NMR (75 MHz, 

CDCl3):  !  162.9, 147.0, 141.7, 130.4, 129.5, 128.3, 128.0, 113.5, 77.9, 67.2, 60.0, 17.9, 14.1, -

1.46.   MS (LR-APCI): calculated for C18H26N2O3Si: 346.2, measured 347.4 (M+H)+. 

 

IV.4 Triarylated Pyrazoles 

 

5-(4-(Trifluoromethyl)phenyl)-4-phenyl-3-(3-pyridyl)-1-((2- 

(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (23):  White solid, 77% 

yield, isolated via flash chromatography with a gradient of 10% to 25% 

EtOAc in hexanes.  1H NMR (400 MHz, CDCl3):  !  8.75 (m, 1H),  8.50 (m, 1H),  7.73 (dt, J1 = 

8.0 Hz, J2 = 1.8 Hz, 1H),  7.60 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.23 (m, 3H), 7.19 

(dd, J1 = 7.6 Hz, J2 = 5.2 Hz, 1H),  7.05 (m, 2H),  5.42 (s, 2H), 3.82 (t, J = 8.4 Hz, 2H), 0.98 (t, J 

= 8.4 Hz, 2H), -0.01 (s, 9H). 13C NMR:  ! 149.2, 148.7, 146.5, 141.4, 135.2, 132.9, 132.0, 130.6, 

130.6 (q, J= 32.5 Hz), 130.3, 129.0, 128.7, 127.3, 125.4, 123.0, 121.1, 78.2, 67.2, 17.9, -1.5. MS 

(LR-APCI): calculated for C27H28F3N3OSi: 495.2, measured 496.2 (M+H)+. 

 

5-(3-Ethoxycarbonylphenyl)-3-(3-pyridyl)-4-phenyl-1-((2- 

(trimethylsilyl)ethoxy) methyl)-1H-pyrazole (25):  88% yield.  1H 

NMR (400 MHz, CDCl3):  ! 8.75 (m, 1H),  8.50 (m, 1H), 8.11 (s, 1H), 

8.03 (d, J  = 8.0 Hz, 1H),   7.75 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H),  7.41 (t, J = 8.0 Hz, 

1H),  7.19 (m, 4H), 7.05 (m, 2H),  5.42 (s, 2H), 4.34 (q, J = 7.2 Hz, 2H), 3.76 (t, J = 8.2 Hz, 2H), 

1.35 (t, J = 7.2 Hz, 3H), 0.98 (t, J = 8.2 Hz, 2H), -0.01 (s, 9H).   
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13C NMR: ! 165.9, 149.3, 148.6, 146.4, 142.0, 135.3, 134.6, 132.2, 131.4, 130.9, 130.4, 129.8, 

129.6, 129.1, 128.5, 127.1, 123.0, 121.0, 78.2, 77.0, 61.1, 17.9, 14.2, -1.45.  MS (LR-APCI): 

calculated for C29H33N3O3Si: 498.2, measured 499.4 (M+H)+. 

 

5-(3-Ethoxycarbonylphenyl)-3,4-di-phenyl-1-((2-trimethylsilyl) 

ethoxy)  methyl)-1H-pyrazole (26):  Yellow-white solid; 64% yield, 

isolated via flash chromatography with 20% EtOAc in hexanes as the 

eluent. 1H NMR (400 MHz, CDCl3):  !  8.11 (t, J = 1.6 Hz, 1H), 8.01 (dt, J1 = 8.0 Hz, J2 = 1.6 

Hz, 1H), 7.37 – 7.49 (m, 5H), 7.26 (m, 2H), 7.18 (m, 3H), 7.05 (m, 2H), 5.41 (s, 2H), 4.33 (q, J 

= 7.2 Hz, 2H), 3.74 (t, J =  8.4 Hz, 2H), 1.36 (t, J = 7.2 Hz, 3H), 0.96 (t, J = 8.4 Hz, 2H), -0.01 

(s, 9H).  13C NMR (75 MHz, CDCl3):  ! 166.0, 149.4, 141.7, 134.7, 133.2, 132.9, 131.5, 130.8, 

130.5, 130.0, 129.6, 128.5, 128.3, 128.2, 128.1, 127.6, 126.7, 120.6, 78.1, 66.8, 61.1, 17.9, 14.3, 

-1.4.     MS (LR-APCI): calculated for C30H34N2O3Si:  497.2, measured 498.4 (M+H)+. 

 

 3-(3-Methoxyphenyl)-1-methyl-4-phenyl-1H-pyrazole (27):  White 

solid; 75% yield, isolated via flash chromatography with a gradient of 

0% to 1% MeOH:CH2Cl2, and further purified by recrystallization from 

methanol.  1H NMR (400 MHz, CDCl3):  ! 8.59 (dd, J1 = 3.3 Hz, J2 = 1.5 Hz, 1H), 8.56 (d, J = 

1.5, 1H), 7.52 (dt, J1 = 7.8 Hz, J2 = 1.8 Hz, 1H), 7.27 (m, 1H), 7.17 (m, 1H), 7.03 (m, 3H), 6.99 

(s, 1H), 6.79 (d, J = 8.1 Hz, 1H), 3.90 (s, 3H), 3.64 (s, 3H).  13C NMR (75 MHz, CDCl3):   ! 

159.4, 150.6, 149.6, 148.5, 138.8, 137.4, 134.3, 132.8, 130.5, 129.2, 128.4, 126.9, 126.3, 123.3, 

120.4, 120.3, 114.1, 112.7, 55.0, 37.5. MS (LR-APCI): calculated for C22H19N3O: 341.2, 

measured 342.2 (M+H)+. 
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1-Methyl-3,4-di-phenyl-5-(3-pyridyl)-1H-pyrazole (28):  67% yield, 

isolated via flash chromatography with a gradient from 5% to 20% EtOAc 

in hexanes as the eluent. 1H NMR (300 MHz, CDCl3):  ! 8.58 (d, J = 9.3 

Hz, 2H), 7.53 (dt, J = 7.8 Hz, 1H), 7.45 – 7.48 (m, 2H), 7.26 – 7.29 (m, 4H), 7.18 – 7.20 (m, 

3H), 7.03 – 7.06 (m, 2H), 3.91 (s, 3H).   13C NMR (75 MHz, CDCl3):  !   150.6, 149.6, 148.7, 

138.8, 137.4, 133.0, 132.7, 130.4, 128.4, 128.2, 128.0, 127.5, 126.8, 126.4, 123.3, 120.2, 37.5.   

MS (LR-APCI): calculated for C21H17N3: 310.2, measured 311.7 (M+H)+. 

 

3-(3-Ethoxycarbonylphenyl)-1-methyl-4-phenyl-5-(3-pyridyl)-1H-

pyrazole (29):  53 % yield, isolated via flash chromatography with a 

gradient from 10% to 80% EtOAc in hexanes as the eluent.  1H NMR 

(400 MHz, CDCl3):  ! 8.60 (d, J = 8.0 Hz, 1H), 8.18 (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.59 (d, J 

= Hz, 1H), 4.29 (q, J = 7.0 Hz, 2H), 3.90 (s, 3H), 1.30 (t, J = 7.0 Hz, 3H).   13C NMR (75 MHz, 

CDCl3):  ! 166.4, 150.6, 149.7, 147.8, 139.0, 137.4, 133.4, 132.4, 132.2, 130.7, 130.4, 129.0, 

128.6, 128.5, 128.2, 127.0, 123.4, 120.5, 60.8, 37.6, 14.2.   MS (LR-APCI): calculated for 

C24H21N3O2: 383.2, measured 384.3 (M+H)+. 

 

1-Methyl-3-(4-methoxycarbonylphenyl)-4-phenyl-5-(3-pyridyl)- 

1H-pyrazole (30):   54% yield, isolated via flash chromatography 

with a gradient from 100% hexanes to 30% EtOAc:hexanes to remove 

impurities, then a gradient from 50% to 100% EtOAc:hexanes to elute the compound.  1H NMR 

(400 MHz, CDCl3):  ! 8.62 (d, J = 3.6 Hz, 1H), 8.56 (s, 1H), 8.56 (d, J = 6.8 Hz, 2H), 7.53 (m, 
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3H), 7.31 (dd, J1 = 8.0 Hz, J2 = 5.2 Hz, 1H), 7.21 (m, 3H), 7.02 (m 2H), 3.93 (s, 3H), 3.89 (t, 

3H).  13C NMR (75 MHz, CDCl3):   ! 167.0, 150.6, 149.8, 147.6, 139.2, 137.6, 137.5, 132.4, 

130.3, 129.6, 129.0, 128.6, 127.8, 127.1, 126.1, 123.4, 120.8, 52.0, 37.7.  MS (LR-APCI): 

calculated for C23H19N3O2: 369.2, measured 370.3 (M+H)+. 

 

 1-Methyl-5-(4-nitrophenyl)-4-phenyl-3-(4- 

(trifluoromethyl)phenyl)-1H-pyrazole (31):  Pale yellow-white 

solid; 43% yield, isolated via flash chromatography with 10% 

EtOAc in hexanes as the eluent.  1H NMR (400 MHz, CDCl3):  ! 8.24 (d, J = 7.0 Hz, 2H), 7.57 

(d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 7.0 Hz, 2H), 7.24 – 7.26 (m, 3H), 7.01 

– 7.04 (m, 2H), 3.94 (s, 3H).  13C NMR (75 MHz, CDCl3):  !   147.7, 147.3, 140.2, 136.4, 136.2, 

132.1, 131.0, 130.3, 128.7, 128.0, 127.4, 125.2, 125.18, 123.8, 120.7, 115.6, 37.8.  MS (LR-

APCI): calculated for C23H16F3N3O2: 423.1, measured 423.7 (M+H)+. 

 

IV.5 Procedure for SEM-switch 

The substrate (17, 69.3 mg, 0.20 mmol) was weighed into an oven-dried vial and placed under 

argon, capped with a Teflon septum cap, and dissolved by stirring in  0.15 mL acetonitrile 

(approximately 100 µL per 50 mg) injected through the septum.  SEMCl (3.5 µL, 10 mol%) was 

added via syringe and the mixture stirred under Ar for 5 minutes before sealing the vial with a 

Teflon coated cap and heating to 95 ºC for 24 hours.  After 24 hours, the solvent was removed in 

vacuo and the crude material analyzed by 1H NMR, which showed a 90% conversion between 

the starting material and the SEM-switched material.  Flash chromatography of this mixture with 
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20% EtOAc:hexanes, with 2-3 times the amount of silica normally used for flash 

chromatography,39 produced a pale yellow, viscous oil (58.2 mg, 84%).  

 

3,4-Diphenyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (19):   

85% conversion by 1H NMR.   Inseparable by flash chromatography and 

HPLC.   1H NMR (400 MHz, CDCl3):   ! 7.68 (s, 1H), 7.49 – 7.52 (m, 2H), 

7.42 (s, 1H), 7.29 – 7.35 (m, 7H), 5.49 (s, 2H), 3.70 (t, J = 8.2 Hz, 2H), 0.96 (t, J = 8.2 Hz, 2H), -

0.00 (s, 9H).  

 

4-Phenyl-3-(3-pyridyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole  

(20):  Synthesis and isolation described above, 84% yield.  1H NMR (400 

MHz, CDCl3):  !  8.76 (d, J = 1.6 Hz, 1H),  8.53 (dd, J1 = 4.8 Hz, J2 = 1.6 Hz, 

1H), 7.79 (dt, J1 = 8.0 Hz, J2 = 2 Hz, 1H), 7.69 (s, 1H), 7.21 – 7.35 (m, 6H), 5.50 (s, 2H), 3.71 

(t, J = 8.2 Hz, 2H), 0.97 (t, J = 8.2 Hz, 2H), 0.01 (s, 9H).   13C NMR (75 MHz, CDCl3):  ! 149.3, 

148.7, 146.3, 135.4, 132.4, 129.7, 129.3, 128.7, 128.6, 127.1, 123.1, 122.5, 80.5, 67.1, 17.8, -

1.43.   MS (LR-APCI): calculated for C20H25N3OSi: 351.2, measured 352.8 (M+H)+.
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4-phenyl-3-(4-(trifluoromethyl)phenyl)-1-((2-(trimethylsilyl)  

ethoxy)methyl)-1H-pyrazole (21):  91% conversion by 1H NMR, 

isolated 80%. 1H NMR (400 MHz, CDCl3): ! 7.68 (s, 1H), 7.63 (d, J = 

8.2 Hz, 2H), 7.55 (d, J = 8.2 Hz, 2H), 7.26 - 7.34 (m, 5H), 5.50 (s, 2H), 3.71 (t, J = 8.2 Hz, 2H), 

0.97 (t, J = 8.2 Hz, 2H), 0.01 (s, 9H).   13C NMR (75 MHz, CDCl3):  ! 147.8, 136.9, 132.6, 

129.8, 128.7, 128.6, 128.4, 127.1, 125.2, 125.16, 122.4, 80.5, 67.1, 17.8, -1.4. MS (LR-APCI): 

calculated for C22H25F3N2OSi: 418.2, measured 419.3 (M+H)+. 

 

3-(3-Ethoxycarbonylphenyl)-4-phenyl-1-((2-(trimethylsilyl)ethoxy) 

methyl)-1H-pyrazole (22):  90% conversion by 1H NMR.  Inseparable 

by several attempts using flash chromatography and HPLC.  1H NMR 

(400 MHz, CDCl3):  ! 8.23 (s, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.66 (s, 1H), 7.62 (d, J  = 7.6 Hz, 

1H), 7.34 (t, J = 7.6 Hz, 1H), 7.27 – 7.35 (m, 5H), 5.48 (s, 2H), 4.31 (q, J = 7.2 Hz, 2H), 3.69 (t, 

J = 8.2 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H), 0.96 (t, J = 8.2 Hz, 2H), -0.01 (s, 9H).  
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IV.6 General Procedure for Formation of Pyrazolium Salts40 

The pyrazole (0.2 to 2 mmol) was weighed into an oven-dried flask or vial, a stir bar added, and 

then evacuated and flushed with Ar three times before dissolving in dry CH2Cl2 (0.25M), added 

via syringe.  To this solution, trimethyloxonium tetrafluoroborate (1.2 equivalents) was rapidly 

added under an Ar stream after weighing in air, and the reaction mixture stirred for at least 1 

hour.  The solvent was removed and the crude material dried via high vacuum before verifying 

the presence of the product with 1H NMR.  Several of the salts are fluorescent under UV and are 

relatively unstable if not used within a day; store under vacuum or Ar at -2 to -8 ºC if unable to 

proceed with the deprotection immediately.  

 

3-(3-Methoxyphenyl)-1-methyl-4-phenyl-2-((2-(trimethylsilyl)ethoxy) 

methyl)-1H-pyrazolium tetrafluoroborate (39): crude 1H NMR (400 

MHz, CDCl3):  !  8.57 (s, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.26 – 7.29 (m, 

3H), 7.17 (dd, J1 = 8.4 Hz, J2 = 1.8 Hz, 1H), 7.01 - 7.03 (m, 3H), 5.71 (s, 2H), 4.37 (s, 3H), 3.85 

(s, 3H), 3.37 (t, J = 8.2 Hz, 2H), 0.82 (t, J = 8.2 Hz, 2H), -0.02 (s, 9H).  

 Deprotection of SEM group from SEM-protected pyrazoles and pyrazolium salts41 

The pyrazole, 23, (30.7 mg, 0.062 mmol) was dissolved in 95% ethanol (4 mL) and 3 N HCl (1 

mL) was added.  The reaction mixture was refluxed for 3 hours.  To quench, 10% aqueous (by 

weight) NaOH solution was added until the mixture was neutralized as measured with pH paper, 

5 mL deionized water and 50 mL ethyl acetate added, and the layers were separated.  

(Alternatively, a basic work-up with saturated aqueous sodium bicarbonate added until pH is 
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neutral is also sufficient.)  After back-extraction from the aqueous layer with EtOAc (15 mL x 

3), the organic fractions were combined, dried with Na2SO4, and the solvent removed.  The crude 

material was purified via flash chromatography on silica gel with a gradient from 100% hexanes 

to 50:50 EtOAc:hexanes to produce a pale white solid (17.0 mg, 75%). 

   

Scheme S1.  Free (NH)-pyrazole tautomerism 

 

 

 

 

IV.7 Determination of the Tautomer Ratio for Selected Free (NH)-Pyrazoles in DMSO-d6 

Free (NH)-pyrazoles exist in solution as mixtures of tautomers (Scheme S1).  In DMSO-d6 the 

two NH signals are resolved in 1H NMR (! 13-14.5), enabling determination of the tautomer 

ratio.  The assignment of these peaks to individual tautomers has not been carried out here.  

However, according to literature,42 the major tautomer for the diarylpyrazoles is 3,4-diaryl-1H-

pyrazole (e.g., S3a) 

 

4,5-Diphenyl-1H-pyrazole (32):   1H NMR (400 MHz, CDCl3):  !  11.52 (bs, 

1H), 7.63 (s, 1H), 7.46 – 7.48 (m, 2H), 7.24 – 7.34 (m, 8H).   1H NMR (400 

MHz, DMSO-d6 at 298 K):  ! 13.19 (bs, ~40% Pz N-H tautomer), 13.05 (bs, 

~60% Pz N-H tautomer), 7.40 (bm, 3H), 7.22 – 7.33 (m, 7H). 13C NMR (75MHz, CDCl3): ! 

135.1, 133.1, 131.3, 128.6, 128.5, 128.4, 128.2, 128.0, 127.9, 126.6.   MS (LR-APCI): calculated 

for C15H12N2: 220.1, measured 221.0 (M+H)+. 
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4-Phenyl-5-(3-pyridyl)-1H-pyrazole (33):   1H NMR (400 MHz, CDCl3):  

!  12.93 (bs, 1H), 8.80 (bs, 1H), 8.56 (bs, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.68 (s, 

1H), 7.21 – 7.34 (m, 5H).  13C NMR (75 MHz, CDCl3):  ! 148.9, 148.8, 143.0, 

135.6, 132.5, 132.3, 128.7, 128.5, 127.0, 123.3, 120.9.  MS (LR-APCI): calculated for C14H11N3: 

221.1, measured 222.1 (M+H)+. 

 

4-Phenyl-5-(4--(trifluoromethyl)phenyl)-1H-pyrazole (34):  

1H NMR (400 MHz, CDCl3):  !  12.2 (s, 1H), 7.65 (s, 1H), 7.56 (d, J = 8.7 

Hz, 2H), 7.52 (d, J = 8.7 Hz, 2H), 7.24 – 7.35 (m, 5H).  1H NMR (400 MHz, 

DMSO-d6 at 298 K):  ! 13.43 (bs, 29% Pz N-H tautomer), 13.26 (71% Pz N-H tautomer), 8.01 

(s, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 8.0 Hz, 2H), 7.33 – 7.37 (m, 2H), 7.26 – 7.29 (m, 

3H).    13C NMR (75 MHz, CDCl3):  ! 135.6, 132.5, 130.1, 129.8, 128.7, 128.6, 128.3, 127.1, 

125.5, 125.46, 122.7, 120.9.  MS (LR-APCI): calculated for C16H11F3N2: 288.1, measured 288.8 

(M+H)+. 

 

4-Phenyl-5-(4-(trifluoromethyl)phenyl)-3-(3-pyridyl)-1H-pyrazole  

(24): 75% yield.  1H NMR (400 MHz, CDCl3):   ! 8.70 (bs, 1H), 8.52 

(bs, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.52 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 

8.4, 2H), 7.31 (d, J = 3.0 Hz, 4H), 7.11 – 7.21 (m, 5H).  1H NMR (500 MHz, DMSO-d6):   !  

13.82 (bs, ~56% Pz N-H tautomer), 13.80 (~44% Pz N-H tautomer), 8.45 – 8.52 (m, 2H), 7.64 – 

7.45 (m, 3H), 7.52 – 7.59 (m, 2H), 7.33 – 7.47 (m, 4H), 7.21 – 7.25 (m, 2H).  13C NMR (75 

MHz, CDCl3):   ! 149.0, 148.6, 135.1, 134.4, 132.1, 130.5, 129.0, 128.8, 128.6, 127.9, 127.8, 



 

 

43 

125.8, 125.6, 125.5, 123.4, 119.0.   MS (LR-APCI): calculated for C21H14F3N3: 365.1, measured 

366.4 (M+H)+.  

 

5-(3-Ethoxycarbonylphenyl)-4-phenyl-5-(3-pyridyl)-1H-pyrazole  

(35):  1H NMR (300 MHz, CDCl3):  !  8.72 (s, 1H), 8.51 (d, J = 3.3 Hz, 

1H), 8.12 (s, 1H), 7.95 (d, J = 7.5 Hz, 1H), 7.65 (d, J = 7.8 Hz, 1H),  

7.45 (d, J = 7.8 Hz, 1H), 7.30 – 7.32 (m, 4H), 7.16 – 7.20 (m, 3H), 4.31 (q, J = 7.2 Hz, 2H), 1.32 

(t, J = 7.2 Hz, 3H).  No Pz N-H visible in CDCl3. 1H NMR (400 MHz, DMSO-d6 at 298 K):  

! 14.25 (bs, ~61% N-H Pz tautomer), 14.03 (bs, ~39% N-H Pz tautomer), 8.93 – 8.95 (d,  J = 2.0 

Hz, 1H), 8.86 – 8.89 (d, J = 4.0 Hz, 1H), 8.40 – 8.70 (bs, 1H), 8.21 – 8.28 (d, J = 7.6 Hz, 1H),  

8.13 (d, J = 8.0 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.23 – 7.82 (m, 4H), 7.58 – 7.65 (m, 3H), 4.65 

(q, J = 7.2 Hz, 2H), 1.67 (t, J = 7.2 Hz, 3H).   13C NMR (75 MHz, CDCl3): ! 166.1, 148.9, 148.7, 

135.1, 132.3, 131.9, 131.2, 130.7, 130.5, 129.3, 128.9, 128.8, 128.5, 127.6, 61.2, 14.3.  MS (LR-

APCI): calculated for C23H19N3O2: 369.2, measured 370.4 (M+H)+.   

 

3-(3-Methoxyphenyl)-1-methyl-4-phenyl-1H-pyrazole (33): Synthesized 

using the procedure described above, only at room temperature in 1 hour. 

75% yield over 2 steps, isolated with a gradient from 100% CH2Cl2 to 1% 

MeOH:CH2Cl2.  1H NMR (300 MHz, CDCl3):  ! 7.44 (s, 1H), 7.16 – 7.29 (m, 6H), 7.04 – 7.08 

(m, 2H), 6.80 – 6.84 (ddd, J1 = 8.1 Hz, J2 = 2.7 Hz, J3 = 0.9 Hz, 1H), 3.96 (s, 3H), 3.68 (s, 3H).  

13C NMR (75 MHz, CDCl3):  ! 159.4, 148.6, 134.8, 133.3, 130.2, 129.2, 128.7, 128.4, 126.5, 

120.9, 120.7, 113.9, 113.0, 55.1, 39.0.   MS (LR-APCI): calculated for C17H16N2O: 264.1, 

measured 265.3 (M+H)+. 
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1-Methyl-3,4-diphenyl-1H-pyrazole (36):  Same procedure as 33; 82% yield 

over two steps.  1H NMR (300 MHz, CDCl3):  ! 7.48 - 7.50 (m, 2H), 7.47 (s, 

1H), 7.26 – 7.30 (m, 8H), 3.98 (s, 3H).  13C NMR (75 MHz, CDCl3):   ! 

133.5, 133.3, 130.9, 130.2, 128.5, 128.4, 128.2, 127.5, 126.5, 39.0.   MS (LR-APCI): calculated 

for C16H14N2: 234.1, measured 234.8 (M+1).   

 

1-Methyl-4-phenyl-3-(4-(trifluoromethyl)phenyl)-1H-pyrazole (37):  

1H NMR (400 MHz, CDCl3):  !  7.61 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.4 

Hz, 2H), 7.48 (s, 1H), 7.24 – 7.33 (m, 5H), 4.00 (s, 3H). 13C NMR (75 

MHz, CDCl3):   ! 147.2, 137.1, 132.8, 130.6, 128.7, 128.6, 128.2, 126.9, 125.2, 125.16, 122.5, 

121.4, 39.1.   MS (LR-APCI): calculated for C17H13F3N2: 302.1, measured 302.9 (M+H)+. 

 

1-Methyl-3-(3-ethoxycarbonylphenyl)-4-phenyl-1H-pyrazole (38):  

1H NMR (400 MHz, CDCl3):  !  8.21 (s, 1H), 7.95 (dt, J1 = 7.8 Hz, J2 = 

1.3 Hz, 1H), 7.62 (dt, J1 = 7.8 Hz, J2 = 1.3 Hz, 1H), 7.46 (s, 1H), 7.33 (t, 

J = 7.8 Hz, 1H), 7.24 – 7.30 (m, 5H), 4.31 (q, J = 7.2 Hz, 2H), 3.98 (s, 3H), 1.32 (t, J = 7.2 Hz, 

3H).   13C NMR (75 MHz, CDCl3):  ! 166.7, 147.8, 133.8, 133.0, 132.5, 130.7, 130.3, 129.2, 

128.6, 128.5, 128.2, 126.7, 121.1, 60.8, 39.1, 14.3, -0.018.  MS (LR-APCI): calculated for 

C17H13F3N2: 306.1, measured 307.3 (M+H)+.   
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IV.8 1H and 13C NMR Spectra 
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Chapter 2 
 

Toward Pharmacological Modulation of Neuroplasticity:   

The Neurotrophin Receptor TrkB as a Potential Target 
 
 
I.1  Introduction 
 

Neuroplasticity is a broad term that describes the ability of the nervous system to change 

itself in terms of both connectivity structure and functional parameters as neuronal and 

neurotransmission signaling.  The pathophysiology of many psychiatric and neurodegenerative 

diseases has been linked to deficiencies or abnormalities in neuronal wiring or neuronal signaling 

proteins, and neuroplasticity may offer the opportunity to correct these deficiencies.  Elucidation 

and modulation of these abnormalities is an active area of research, as better treatments for 

psychiatric and neurodegenerative illness that take advantage of the brain’s plasticity require a 

better understanding of the cellular mechanisms underlying their causes and manifestations.  

 Our group has had a long-standing interest in neuronal transmission1 and recently became 

interested in developing pharmacological approaches for neuronal rescue and repair.  The idea 

that a small molecule could be capable of acutely influencing signaling pathways, and potentially 

resetting relevant dysfunctional circuits in the brain, was extremely intriguing to us.   One study 

in particular that inspired us to enter this field of research was a study of deep-brain stimulation 

in which Brodmann’s Area 25 (BA25, subgenual area 25), a region in the cingulate gyrus of the 

cerebral cortex of six treatment-resistant depressed patients, was stimulated by electrodes 

implanted in the subgenual cingulate white matter, resulting in rapid reversal of symptoms in 

four of the six cases. 2  While this may prove a powerful therapy for treatment-resistant 

depression, a pharmacological agent that could deliver a similar outcome, without the several-
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week induction period for current pharmacological antidepressant efficacy, would be highly 

advantageous and would represent a major breakthrough.  

The mechanisms of action of many current pharmacological treatments for psychiatric 

conditions, including schizophrenia, addiction, bi- and unipolar depression, are still poorly 

understood despite decades of research due to the complexity of brain disorders.   With 

psychiatric and neurodegenerative conditions on the rise, closing the gaps in our knowledge is 

becoming all the more urgent.   Many physiological phenomena, such as changes in neuronal or 

glial cell density, protein expression and signaling, or neurotransmitter release and 

neurotransmitter receptor signaling, are tentatively connected to one or more central nervous 

system (CNS) disorders.  Certain specific brain structures also show discernable changes in 

volume which may be either casually linked to a disease or a consequence of it.  An interesting 

example is the trend that hippocampal volume appears reduced in patients with depression and 

post-traumatic stress disorder, and antidepressants reverse and prevent this volume reduction,3 

either by repairing the damage caused by stress or by inducing hippocampal neurogenesis,4 

which refers to the growth of new neurons from progenitor or neural stem cells.   Also, synaptic 

and glial atrophy have been observed in the prefrontal cortex in depression.5  The neurotrophic 

hypothesis of depression and mood disorders has recently been proposed to account for some of 

these observations.6  

The neurotrophic hypothesis suggests that decreased expression of neurotrophins and 

possibly other growth factors contributes to depression, and that antidepressants reverse this 

effect.3 When studying which potential target could produce such a reparative or protective 

effect, the neurotrophic hypothesis led us to examine protein receptors and signaling pathways 

implicated in neurogenesis.   Growth factors, which are secreted signaling proteins that induce 
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the growth, proliferation and differentiation of cells during development and protect mature 

neurons throughout life, are linked to antidepressant action and increasing growth factor receptor 

signaling represents an approach to potential treatment for neurodegenerative diseases.  A 

growth factor that protects neurons from death is considered a neurotrophic factor, which is by 

definition tied to the development, function and survival of neurons.   The two families of 

proteins that are considered neurotrophic factors include the neurotrophins and the glial cell-

derived neurotrophic factor (GDNF) family of ligands (GFLs).   Of these proteins, the 

neurotrophins in particular are crucial for hippocampal neurogenesis and are heavily implicated 

in mood disorder neurobiology,7 Alzheimer’s disease,8 and other brain disorders.   Proteins, and 

even peptide mimetics, however, are not often suitable drugs, as they may be metabolized too 

quickly or not cross the blood-brain barrier,9 and so the development of effective delivery 

systems10 and neurotrophic small molecule that can mimic neurotrophin action or induce 

neurotrophin gene expression11 are important areas of research.  

 

I.2 BDNF/TrkB Signaling 

The neurotrophin family consists of the secreted proteins nerve growth factor (NGF), 

brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4, 

also NT-4/5 or NT-5).  Each protein functions as a relatively selective, high-affinity ligand for 

one of the neurotrophin receptors: NGF for TrkA (also referred to as the nerve growth factor 

receptor), BDNF and NT-4 for TrkB (tropomyosin receptor kinase B), and NT-3 for TrkC, which 

are receptor tyrosine kinases (RTKs), phosphorylation of which is capable of inducing a variety 

of intracellular signaling pathways (Figure 1).12  The proteins also function as low-affinity 

ligands for the neurotrophin receptor p75NTR, which is part of the TNF-α family of receptors.  
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BDNF, like the other neurotrophins, is synthesized in a precursor pro-form, which must be 

proteolytically cleaved into its mature form.13  Pro-BDNF does not share the same function as 

mature BDNF, and demonstrates a higher affinity for p75NTR; p75NTR at times serves to 

support and increase the specificity of Trk receptors for their respective ligands, even at times 

potentiating Trk signaling, but ligand binding to p75NTR in the absence of Trk signaling can 

also result in activation of apoptotic pathways, earning p75NTR the nickname of ‘death 

receptor’.14  Mature BDNF is functional as a noncovalent dimer (thus any reference to BDNF 

from this point will be referring to the active, dimerized form of the protein), which upon binding 

induces dimerization and activation of its receptor TrkB. 

 

 

Figure 1.  The neurotrophin receptors and their main cognate ligands.   

 

TrkB is a membrane-bound receptor enzyme containing an extracellular domain, a single-

pass membrane domain, and an intracellular, catalytic kinase domain.  As a tyrosine kinase, it is 

capable of transferring a phosphate group from adenosine triphosphate (ATP) to tyrosine 

residues on target proteins, but it itself also requires tyrosine phosphorylation to be activated.   

Typical of receptor tyrosine kinases (RTKs), it exists primarily as a monomer, and may dimerize 

spontaneously in conditions of high receptor density or form functional heterodimers with one of 

the other Trk receptors.  It occurs in an immature form, a mature, glycosylated form (145 kDa), 

and a truncated form T1 (90 kDa) that lacks the intracellular domain (ICD) where 
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phosphorylation occurs. 15  In response to BDNF-induced dimerization, TrkB may be 

phosphorylated at multiple sites, each of which may activate different signaling cascades leading 

to cellular differentiation, survival, and/or synaptic plasticity.  Tyr-670, Tyr-674, and Tyr-675 

are major sites of autophophorylation in the kinase domain, and other residues include Tyr-

706/707; these are all phosphorylated following neurotrophin binding leading to activation of the 

kinase, though the signaling cascades are activated following phosphorylation of other specific 

residues.16 

   The primary signaling cascades activated by TrkB are the phosphoinositide-3 

kinase/Akt (PI3K/Akt), the mitogen activated protein kinase (MAPK) pathway involving 

Ras/MAPK/ERK (extracellular related kinase), and phospholipase C-γ1/protein kinase C 

(PLCγ/PKC) pathways (Figure 2).   Phosphorylation creates docking sites for adaptor proteins 

that lead to activation of one or more of these pathways.  For example, phosphorylation of 

tyrosine 515 (Y515, commonly referred to as Y490, the corresponding residue in TrkA) creates a 

binding site for the protein Shc, which results in MAPK signaling and subsequent neurite 

outgrowth.  Phosphorylation of tyrosine 816 (Y816, which is often referred to as Y785, the 

corresponding residue in TrkA) recruits and activates PLCγ,17 resulting in activation of PI3K 

followed by Akt (also called protein kinase B, PKB), a major signaling protein for neuronal 

survival.  PLCγ activation may also Ca2+ release and consequent protein kinase C (PKC) 

activation, which results in plasticity.16     
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Figure 2.  TrkB-activated signaling pathways. 

 

I.3 BDNF/TrkB in Psychiatric and Neurodegenerative Disease  

BDNF is a neurotrophin of interest in psychiatric and neurodegenerative disease.  A 

landmark study that demonstrated the antidepressant capacity of BDNF showed that in two 

animal models of depression, infusion of BDNF into the midbrain of rats was antidepressant and 

also protective.18  Abnormal expression of BDNF and potential roles of BDNF-TrkB signaling 

have been observed in mood and mental disorders, including schizophrenia,19 major unipolar and 

bipolar depressive disorders,7 Rett syndrome (an autism spectrum disorder)20 and obesity.21  

Antidepressants have been shown to regulate BDNF expression22 and elicit TrkB activation 

independently from their serotonergic effects.23 TrkB activation is required for behavioral 

effects24 and antidepressant-induced neurogenesis.25   Also, other activities and treatments 

TrkB 
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known to be antidepressant, such as electroconvulsive therapy, exercise26 and vagal nerve 

stimulation,27 have also been shown to increase BDNF or lead to TrkB activation.  A process 

likely involved in memory and learning, long term potentiation (LTP), is also dependent on 

normal BDNF-TrkB function.28   Modulation of pain has also been a putative role of the 

neurotrophin.29  BDNF and TrkB have also been heavily implicated in neurodegenerative 

diseases, 30  including Parkinson’s disease, 31  Alzheimer’s, 32  Huntington’s, 33  and amyotrophic 

lateral sclerosis (ALS).34    

A BDNF gene polymorphism Val66Met has been linked to many conditions as well, 

providing additional support for a role of BDNF in post-traumatic stress disorder,35 mood 

disorders and schizophrenia,36 bipolar disorder,37 and others, though not all studies support the 

connection.38   This, along with the large body of evidence referenced above, motivated us to 

consider the BDNF/TrkB signaling pathway as a potential target for the development of small 

molecules capable of neuronal repair or rescue.   

With TrkB and its signaling being so important in CNS function, neurodegeneration, and 

other disease, we examined the literature for TrkB agonists and antagonists/inhibitors and 

considered the potential therapeutic value of activating or inhibiting TrkB in the brain.  The 

following sections describe the known TrkB-selective agonists and antagonists/inhibitors, which 

we considered as prospective starting points for our own search for small molecule TrkB 

signaling modulators.  

 

I.4  TrkB Agonism 

There are three major approaches for increasing neurotrophic activity via the 

BDNF/TrkB signaling system.  First, induction of BDNF synthesis and/or release;11 second, 
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direct agonists including monoclonal antibodies to activate TrkB,39 BDNF peptide mimetics,40 

RNA aptamers,41 and direct small molecule agonists;11,42 third, transactivation of the receptor via 

activation of G-protein coupled receptors (GPCRs) or other RTKs.   Antibodies and peptides are 

not as desirable as small molecules for development of research tools and therapeutics due to 

their metabolic instability and frequent inability to cross the blood-brain barrier.  

We originally set out to establish a cell-based ELISA (enzyme linked immunosorbent 

assay) to measure the release of BDNF into the medium from a model cell line.  There are a 

growing number of small-molecule pharmacological agents known to increase BDNF synthesis 

or release, including 4-methylcatechol, 43  resveratrol, 44  gangliosides, 45  and many others.11 

Unfortunately, our efforts to establish a release assay using a variety of cell lines did not yield 

robust release of BDNF into the medium of any of the cell lines tested (differentiated SH-SY5Y, 

Neuro2a, and SK-N-AS neuroblastomas, primary human hippocampal astrocytes, and C6 rat 

glioma); only primary human cortical astrocytes and SMS-KCN neuroblastoma cells released 

enough BDNF to be detected by an in situ enzyme-linked immunosorbent assay (ELISA).46  

While it was possible that our detection of BDNF release was prevented by the lack of a reliable 

positive control, preventing us from detecting any BDNF release beyond the basal levels that 

were below the quoted detection limit of the ELISA kit, we opted to focus future studies on 

developing molecules that interact with TrkB directly, as opposed to increasing signaling by 

inducing neurotrophin release.  Recent advances in the development of small molecule 

neurotrophin mimetics has yielded only a small handful of reported TrkB agonists (Figure 3) and 

the elucidation of several transactivation pathways that induce TrkB activation. 
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Figure 3. Chemical structures of several putative TrkB agonists. 

 

I.4.1 Amitriptyline 

The tricyclic antidepressant amitriptyline (Figure 3) has been in clinical use since the 

1960’s and has traditionally been thought to elicit its effects via its serotonin-norepinephrine 

reuptake activity, although it is known to bind to a number of CNS receptors.  Interestingly, it 

was reported in 2009 to be a direct TrkA and TrkB agonist, inducing the homo- and hetero-

dimerization of both receptors.47   The authors found that a low, physiologically relevant 

concentration of amitriptyline (500 nM, whereas 5-7 µΜ is the estimated therapeutic 

concentration in the brain48), but not its tricyclic relatives imipramine or clomipramine, induced 

neurite outgrowth in PC12 cells, which is a common assay for neurotrophic activity.  

Amitriptyline also protected rat hippocampal neurons from apoptosis by an oxygen-glucose 

deprivation test, and activated TrkA and TrkB, but not TrkC, heterologously expressed in human 

embryonic kidney (HEK) cells.  The authors used an in vitro binding assay, in which 
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amitriptyline bound to the ECD, but not ICD, of TrkA (Kd ~ 3µM) and TrkB (Kd ~ 14µM); 

however, binding was not competitive with NGF or BDNF, respectively.  The compound also 

activated TrkA and B in mouse brain, along with Akt and ERK1/2 over the same time course.  

These results indicate that amitriptyline is neurotrophic and protective in both in vitro and in vivo 

systems, and though it is active against TrkB, greater experimental emphasis is placed on its 

TrkA activity.    

 

I.4.2 LM22A-4 

Massa and colleagues identified LM22A-4 (Figure 3) from a small set of TrkB agonist 

leads via an extensive in silico screen of >1,000,000 compounds based on a model of the likely 

BDNF binding region.49  Fourteen compounds were selected from the hits and seven were 

screened for neurotrophic activity using E16 mouse hippocampal neurons; four were chosen for 

further examination and found to activate TrkB selectively using TrkA, B, or C transfected 

mouse embryonic fibroblast NIH-3T3 cells.  LM22A-4, the simplest compound structurally and 

most amenable to chemical modification, bound selectively to TrkB-ECD, competed for BDNF 

binding (IC50 ~ 47 nM), and at 10 µM did not bind strongly to other receptors in a commercial 

binding screen of 57 CNS receptors.  The compound also activated TrkB, Akt, and ERK at 60 

minutes from 0.01 – 500 nM in cultured E16 mouse hippocampal neurons and in adult mouse 

hippocampus and striatum after 7-day treatment (10 mg/kg).  The compound was also protective 

in in vitro models of Alzheimer, Huntington, and Parkinson diseases.  The authors speculate that 

though the molecule is small and would not be able to induce dimerization of the receptor by 

binding two discrete Trk monomers simultaneously, it may bind to a ‘hot spot’ and induce a 
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conformational change that activates the receptor.  In all, the authors deduced that LM22A-4 has 

selective, partial agonist activity at TrkB.  

A recent study found that LM22A-4, when administered three days after induced stroke 

in mice trained to perform motor tasks, led to decreased recovery time and increased 

neurogenesis in the region adjacent to the stroke.50   The compound also proved to be therapeutic 

in an animal model of Rett syndrome, returning TrkB phosphorylation to wild-type levels after 

four weeks of administration and regulating abnormal breathing.51   Though the efficacy of the 

small molecule remains to be validated in a completely independent laboratory at this time, the in 

vitro and in vivo evidence is accumulating in support of LM22A-4 as a potent, effective TrkB 

agonist capable of inducing neurogenesis and cell survival signaling.  

 

I.4.3 7,8-Dihydroxyflavone (7,8-DHF) 

The same laboratory that reported amitriptyline as a TrkA/TrkB agonist reported another 

selective TrkB agonist, 7,8-DHF, in 2010.52  The compound was identified from a survival 

screen in T48 cells, which are TrkB-transfected murine basal forebrain SN56 cells, in which 

apoptosis was induced using staurosporine.  Sixty-six compounds that enhanced survival in T48 

but not SN56 were identified as potential TrkB agonists; five of these were flavone compounds.  

7,8-DHF, cianidanol, pinocembrin, and diosmetin protected primary hippocampal neurons from 

glutamate toxicity with EC50 values of 35, 100, 100, and 500 nM, respectively.  7,8-DHF also 

protected the cells from oxygen-glucose deprivation and even protected primary human neurons 

from H2O2-induced apoptosis.   It induces homodimerization of the TrkB receptor and activation 

of TrkB, Akt, and ERK1/2 in primary hippocampal neurons but does not induce signaling in 

cells with kinase-dead TrkB (TrkB-KD).  [3H]-7,8-DHF binding was observed at the TrkB-ECD 
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(Kd = 320 nM), but not TrkB-ICD, and not at TrkA or p75NTR.  In models of neuronal injury, 

the compound also proved active; it decreased kainic acid-induced apoptosis in mouse brain and 

decreased toxicity induced by MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, the 

neurotoxic precursor to the neurotoxin MPP+), a known model of Parkinson’s disease.  

Examination of the structure-activity relationship (SAR) of the active and inactive 

flavones from the original screen indicates that the only required substituent is the 8-position 

hydroxyl group (Figure 3).  A further, more thorough SAR study identified a more potent 

flavone analog, 4’-dimethylamino-7,8-dihydroxyflavone, which exhibits stronger anti-apoptotic 

activity compared to 7,8-DHF and more potent antidepressant activity.53  Concerns about the 

metabolic stability of this compound led to further optimization, where potential metabolism of 

the dimethylamino group was addressed by replacing it with pyrrolidino, and full metabolic 

profiling of the best lead led to the compound 2-methyl-8-(4-(pyrrolidin-1-

yl)phenyl)chromeno[7,8-d]imidazol-6(1H)-one as an optimized, drug-like TrkB agonist ready for 

further preclinical development.54 

The identification of 7,8-DHF as a TrkB agonist has been an important breakthrough in 

the field, and the compound has been applied to a number of disease models.  It has been shown 

to improve neuromuscular transmission,55  activate TrkB in mouse amygdala and improve 

emotional memory,56 restore BDNF-TrkB signaling integrity in an animal model related to post-

traumatic stress,57 and reduces disease symptoms in Rett syndrome mice.58  Excitingly, the 

compound successfully reverses memory deficits in a mouse model of Alzheimer’s, 5XFAD.59  

In this mouse model, hippocampal BDNF decreases over time, as does the activation and 

expression of TrkB receptors, while expression of β-secretase enzyme (BACE-1), the enzyme 

responsible for cleaving amyloid precursor protein (APP) into the amyloid fragments that form 
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toxic plaques Aβ40 and Aβ42, increases.  Administration of 7,8-DHF for 10 days (5 mg/kg, i.p.) 

restored BDNF-TrkB signaling, blocked BACE-1 elevations, and lowered levels of APP, Aβ40 

and Aβ42. Another recent pair of studies supports the utility of the compound in hippocampal 

age-related synaptic dysfunction, as 7,8-DHF led to the rescue of long-term synaptic plasticity 

and signaling deficits in the hippocampus60 as well as other brain regions, including the 

amygdala.61 These studies are a testament to the potency and efficacy of 7,8-DHF as a TrkB 

agonist, especially in vivo, across disease models.  However, it is likely that the compound exerts 

neuroprotective action on cells via its antioxidant activity in addition to TrkB activation, as 7,8-

DHF protects mouse hippocampal neuronal HT-22 cells against glutamate-induced toxicity.62  

 

I.4.4 Deoxygedunin 

The Ye lab discovered another TrkB agonist in their screening for neuroprotective 

compounds, deoxygedunin.63  Screening revealed four gedunin family compounds as possible 

TrkB agonists, with deoxygedunin providing the strongest protective effect against glutamate-

induced toxicity.  The compound binds weakly to the ECD of TrkB, but not TrkA, with Kd ~ 1.4 

µM, and induces receptor dimerization but does not displace neurotrophin binding.  In TrkA, B, 

and C-transfected HEK293 cells, it activated TrkB selectively.  Immunohistochemistry 

demonstrates TrkB activation in primary hippocampal neurons.  In cultured rat cortical neurons, 

it dose-dependently phosphorylated TrkB and also induced phosphorylation of Akt and ERK, 

with maximal activation at 30 minutes and 500 nM.  To determine if the neuroprotective effect 

was TrkB dependent, the authors used TrkB-F616A knock-in mouse cortical neurons to 

demonstrate that activation by deoxygedunin can be prevented by 1NMPP1, a TrkB-F616A 

inhibitor, as in their other TrkB agonist studies.  TrkB, ERK, and Akt were also activated, though 
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with different kinetics than in the cultured cell models, in mouse brain.  In vivo behavioral 

characterization also supported the activity of the compound: in the forced swim test, a classic 

paradigm to test antidepressant efficacy, deoxygedunin proved to have an anti-depressant effect, 

and the compound also enhanced acquisition of conditioned fear, a process which requires 

BDNF-dependent TrkB activation. 

 

I.4.5 N-Acetylserotonin 

N-Acetylserotonin (NAS), a serotonin metabolite and direct precursor to melatonin 

(Scheme 1), was also discovered by the Ye lab to activate TrkB.64 The authors examined several 

serotonin metabolites in primary mouse hippocampal neurons to determine if they activate TrkB, 

at 100 nM after 30 minutes since serotonin and BDNF are known to cooperate to regulate 

neuronal survival and plasticity, and they found that only NAS activates TrkB, and in a BDNF- 

and melatonin (MT3 subtype) receptor-independent manner.  Phosphorylation of TrkB peaked at 

30 minutes.  TrkB was also phosphorylated in a time-dependent manner correlating to the 

circadian rhythm in mice with normal arylalkylamine N-acetyltransferase (AANAT), the enzyme 

responsible for converting serotonin to NAS, but not in mice with the mutated enzyme.  NAS 

was protective against kainite-induced apoptosis in TrkB 616A mice, and this effect was 

ameliorated by pretreatment with 1NMPP1, which suggests that the protection is TrkB-

dependent.  The authors also found that NAS, but not melatonin, demonstrated antidepressant 

activity in the forced swim test. 
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Scheme 1.  Production of melatonin from serotonin via N-acetylserotonin.   

	
  

 

(AANAT = arylalkylamine N-acetyltransferase; ASMT = acetylserotonin o-methyltransferase) 

 

Despite the in vitro and in vivo evidence suggesting that NAS is a TrkB agonist, binding 

studies did not provide evidence for interaction between the compound and the receptor, which 

the authors attributed to rapid kinetics of binding and dissociation.  Nonetheless, the finding that 

NAS activates TrkB is interesting in the context of antidepressant research, as the antidepressant 

fluoxetine is known to induce increased expression of AANAT65 and melatonin and disruption in 

circadian rhythms have been connected to the pathophysiology of depressive disorders.66   

Fortunately, the authors sought a more stable derivative of NAS that would have a longer 

biological half-life and found that the derivative N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-2-

oxopiperidine-3-carboxamide (HIOC, Figure 4) activates TrkB and protects retinas from light-

induced retinal degeneration.67 

 

 
 

Figure 4.   Reported TrkB agonist N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-2-oxopiperidine-3-
carboxamide (HIOC).  
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I.4.6 L-783,281 (Demethylasterriquinone B1, DAQ B1) 

L-783,281 (Figure 5) is a fungal metabolite originally discovered to activate the insulin 

receptor at micromolar concentrations.68   Further exploring the activity of the compound, the 

authors found that L-783,281, but not its closely related structural isomer L-767,827, activates 

TrkA, TrkB, and TrkC by 41% of NGF-induced activation, 37% of BDNF, and 14% of NT-3, 

respectively, by Western blotting, with maximal Trk phosphorylation occurring at 3 minutes.69   

The compound also induced pTrk in rat and human cortical neuronal cultures and in rat dorsal 

root ganglion cultures.  However, though the compound activated ERK signaling in these lines, it 

also activated ERK in nontransfected CHO cells, signifying that the molecule acts on an 

additional target other than the Trk or insulin receptors.   

 

 

Figure 5.  Structure of L-783,281.69    

 

Also, no binding studies or pharmacological inhibition of Trk receptors were reported.  

Intriguingly, the authors used PDGF-Trk receptor chimeras to determine which part of the 

receptor is required for signaling, and found that the molecule acts at the kinase domain and not 

the ECD.  While the compound does not necessarily activate Trk directly, or if so, does not 

activate Trk specifically, it is an example of a small molecule that activates relevant and 

important neurotrophic signaling and the activation of Trk is very likely due to intracellular 
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transactivation from other receptor or target.  It is important to note that this study, as well as the 

previous studies discussed, does not report a quantitative measure of TrkB activation by a small 

molecule agonist. 

 

I.4.7 Transactivation 

Transactivation is a common phenomenon in which the activation of one receptor signals 

to activate a second receptor, the classic example of which is G-protein coupled receptor (GPCR) 

transactivation to receptor tyrosine kinases.70 Specifically, several transactivation pathways have 

been demonstrated for TrkB via very different mechanisms.  Activation of the D1 receptor, a 

GPCR, using the benzapine SKF38393, a D1 agonist, activates TrkB and results in 

phosphorylation of PLCγ, Akt, and MAPK proteins in striatal neurons, which can be blocked by 

K252a, a Trk and serine/threonine kinase inhibitor, and by a D1 antagonist.71  Adenosine and 

adenosine 2A (A2A) receptor agonists (i.e. CGS 21680) are also capable of activating TrkB via 

the A2A receptor.72   Acetylcholinesterase inhibitors donepezil and galantamine lead to rapid 

transactivation of both TrkA and TrkB in mouse hippocampus and phosphorylation of Akt and 

CREB, but not ERK1/2.73  Endocannabinoids acting through the CB1 cannabinoid receptor 

(CB1R) activate TrkB and induce association of CB1 with TrkB in PC12-TrkB cells transfected 

with CB1R; rat cortical interneurons also exhibited TrkB activation following treatment with a 

CB1R agonist.74  Pituitary adenylate cyclase activating protein (PACAP), a neuromodulating 

peptide which signals through its GPCR receptor VPAC-1, induces TrkB activity in rat 

hippocampal neurons.75 

In addition to the GPCR receptors, at least one intracellular receptor, the glucocorticoid 

receptor, can activate TrkB, as dexamethasone induces TrkB phosphorylation in rat brain.76  
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Another receptor tyrosine kinase, Ret, has also been shown to activate TrkB in SH-SY5Y and 

LAN-5 neuroblastoma cell lines, which has been linked to their differentiation by retinoic acid.77 

Two metal ions have also been shown to activate TrkB: copper in mouse embryonic cortical 

neurons,78 and zinc in rat cortical neurons,79 both through metalloproteinase and Src-dependent 

mechanisms.   It is possible that other potential transactivation mechanisms may exist that induce 

TrkB signaling as well. 

 
 
I.5 TrkB Antagonism  

There is a clear connection between the induction of TrkB signaling and the positive 

outcomes described above; however, activating a growth factor receptor pathway may have 

negative consequences.  Overexpression of TrkB has been observed in epilepsy,80 drug abuse,81 

neuropathic pain,82 and cancer,83 implying that increasing TrkB signaling may contribute to the 

pathogenesis of these conditions, and inhibiting or antagonizing signaling may prove effective 

for treatment of these conditions.  In some parts of the brain, like the ventral midbrain-nucleus 

accumbens pathway, infusion of BDNF is actually pro-depressive.84  Of particular interest is the 

involvement of BDNF/TrkB signaling in reward circuitry in the brain; for example, self-

administration of cocaine is increased by infusion of BDNF into rat nucleus accumbens85 and 

after a single, acute injection of cocaine, TrkB is required for sensitization and conditioned place 

preference.86 

 Due to the differential effect of BDNF signaling in different brain regions, global 

administration of an agonist or antagonist/inhibitor poses a concern, which may be addressed 

with the development of positive or negative modulators of TrkB signaling.  A very limited 

number of TrkB inhibitors are known; K252a, a staurosporine analog, is commonly used as a 
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supposed selective Trk family inhibitor, though it is known to inhibit PKC and other kinases as 

well.87  Only two low molecular weight, specific negative modulators of TrkB are known and 

were only recently reported: cyclotraxin B and ANA-12.  

 

I.5.1 Cyclotraxin B 

A peptidomimetic approach facilitated the development of cyclotraxin B (CTX-B, 

CNPMGYTKEGC, cyclized at the terminal cysteine residues) as a potent, allosteric, partial TrkB 

antagonist.88  By proteolytically digesting mature BDNF to create fragments and screening them 

for TrkB inhibition in a TrkB-inducible cell line, TetOn-rhTrkB CHO, the authors were able to 

use the active fragment sequence and a model of the binding site to design CTX-B.  As the 

compound does not inhibit BDNF binding, the authors postulated that its inhibitory activity is 

derived from allosteric modulation of the extracellular domain of TrkB, thus preventing both its 

basal activation and its activation by its endogenous ligand BDNF or even its transactivation by a 

glucocorticoid, dexamethasone.76 The potency of inhibition of BDNF-induced TrkB activation 

differed in the exogenously TrkB-expressing CHO cells (-34.8 ± 8.0%, IC50 = 0.28 ± 0.08 nM) 

versus primary mouse cortical neurons (-53.0 ± 5.8%, IC50 = 65.7 ± 21.7 pm), presumably due to 

the presence of both endogenous TrkB and p75NTR in cortical neurons.  This inhibition was also 

selective up to 1 µM over TrkA and TrkC, as assessed in nnr5 PC12-TrkA and –TrkC cells, and 

the compound was not toxic even at 10 µM after 72 hours. CTX-B inhibits activation at two 

tyrosine residues that initiates downstream signaling, Y515, which binds Shc and induces MAPK 

signaling and neurite outgrowth, and Y816, which recruits and activates PLCγ. 
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The compound was also shown to be biologically active when administered by systemic 

injection, enabled by fusing CTX-B to the transduction domain of a protein, tat, from HIV type I.  

It was not antidepressant as determined by the forced swim test, but in two models of 

anxiety/social defeat stress, specifically the open field and elevated-plus maze tests, the 

compound proved to be anxiolytic.  These results are promising, as the inhibitor is only a partial 

inhibitor of the receptor.  This may be an advantageous feature for pharmacological, systemic 

use, as global and complete inhibition of TrkB in the brain could have deleterious effects from 

long-term usage.   Since the initial publication of the inhibitor, CTX-B has been used to examine 

the roles of BDNF in an animal model of neuropathic pain89 and in amphibian melanotrope 

growth in response to dark environments.90 

 

I.5.2 ANA-12 

The second selective TrkB inhibitor to be reported is ANA-12 (Figure 6), a small 

molecule developed from in silico screening hits based on the “specificity patch”, a binding 

pocket speculated to control the selectivity of BDNF for TrkB.91 From 22 virtual hits, 12 were 

assessed in a KIRA-ELISA assay using the same cells as in the CTX-B study to determine TrkB 

activation, and two of those hits fully inhibited phosphorylation of TrkB by BDNF.   However, 

one of the two compounds did not inhibit TrkB in primary neurons, and the one that did was not 

very potent, so further screening of the core was performed to arrive on ANA-12, the only of the 

fourteen second-round hits that was effective in the KIRA-ELISA assay at submicromolar 

concentrations in the transfected cells.  Attaching BODIPY via a linker to ANA-12 allowed the 

authors to use fluorescence spectroscopy to assess the compound’s binding to recombinant TrkB-

ECD, assuming that the BODIPY did not interfere with the binding interaction between ANA-12 
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and TrkB; a low affinity (Kd = 12 µM) and a high affinity (Kd ~ 10 nM) binding site were 

identified, and the compound was modeled in the specificity patch of the protein. 

 The only way, however, that the researchers assessed the compound’s ability to inhibit 

downstream signaling and its specificity for TrkB versus the other Trks was via the PC12 neurite 

outgrowth assay using nnr5 PC12-Trk cell lines, which are NGF nonresponding mutant PC12 

cells stably transfected with TrkA, TrkB or TrkC cDNA.   ANA-12 inhibited neurite outgrowth 

from 10 – 100 µM and was nontoxic by visual inspection. 

 

 

Figure 6.  Structure of ANA-12.91   

 
 

In the adult mouse brain, the ability of ANA-12 to inhibit TrkB in various brain structures 

after administration was determined, and it was found that after two hours, TrkB inhibition in the 

striatum was more robust than in the cortex and hippocampus, but after four hours inhibition was 

fairly equal across brain regions.  When mice were subjected to the elevated plus maze task and 

the novelty-suppressed feeding paradigm tests for anxiety, and either the forced swim test or the 

tail suspension test for depression, administration of ANA-12 (0.5 mg/kg) was effective in each 

behavioral model. 

ANA-12 has been used in multiple studies since its initial publication to examine the role 

of TrkB in several disease models.  For example, in a rat model of hypertension and vascular 
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dementia, 28 days of treatment with telmisartan, an angiotensin II receptor blocker and PPAR-γ 

(peroxisome proliferator-activated receptor γ) agonist, upregulated BDNF expression in the 

hippocampus and provided a protective effect against cognitive decline that was dependent on 

TrkB signaling as evidenced by attenuation using ANA-12.92  Another intriguing study found 

that the male offspring of cocaine-addicted rats demonstrated a delayed acquisition of cocaine-

self administration, which was reversed by administration of ANA-12, suggesting that the 

increase in BDNF mRNA, protein expression, and signaling in the medial prefrontal cortex may 

dampen the reinforcing effect of cocaine in the offspring (contrary to epidemiological studies in 

humans).93  Finally, the administration of BDNF or leptin into the medial nucleus tractus 

solitaries reduced food intake in rats, a phenomenon that was prevented via administration of 

ANA-12, signifying a probable inverse relationship between TrkB-mediated signaling in the 

brain region and food intake.94  The antagonist will likely be utilized in many more studies of 

BDNF/TrkB-dependent CNS processes in the near future.  

 
 
II. Establishing an Assay for Assessment of TrkB Activation 

 
To begin exploring currently published TrkB agonists and antagonists, we chose to use 

western blotting as the primary tool for semi-quantitatively assessing TrkB phosphorylation.  We 

reasoned that cell line with exogenously expressed TrkB would be a good model system to 

initiate our studies, and the activity of any promising small molecule candidates would then be 

confirmed in a cell line that endogenously expresses TrkB.   Though we considered designing or 

purchasing a TrkB assay that could be adapted to a 96-well plate format, for preliminary work 

we opted to develop western blotting expertise before committing to a more expensive system. 
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II.1 NIH-3T3-Trk and HEK-TrkB Cells 
 

A former post doctoral colleague, Dr. Shu Li, obtained and began work with NIH-3T3-

TrkA, -B, and -C cells.  They are Swiss embryonic mouse fibroblast NIH-3T3 cells that have 

been stably transfected with Trk receptors.  Dr. Li found high levels of basal auto 

phosphorylation in NIH-3T3-TrkB, without a reproducible difference between background 

phospho-TrkB and BDNF-induced phospho-TrkB (pTrkB).  Data presented in the literature 

using this line did not reflect this high level of autophosphorylation,49 so we learned about the 

phenomenon in hopes of finding a way to circumvent it.  There are two types of 

autophosphorylation:  cis autophosphorylation occurs when a protein kinase activates itself, 

whereas trans autophosphorylation occurs when the partner from the dimer or complex activates 

the other member of the complex.  Both types of phosphorylation rely on the ICD of the receptor 

being accessible to ATP in order to accept a phosphate group.   After lysis and denaturation, the 

conformation of the ICD is no longer as prohibitive toward phosphorylation and free ATP can 

more easily access the tyrosine residues.  Chelation of Mg2+ or Mn2+, which stabilizes ATP, via 

ethylenediamine tetraacetic acid (EDTA) is one way that this process is prevented.  It has been 

reported that TrkB autophosphorylation is dependent on time, concentration of ATP, and density 

of the TrkB receptor, where autophosphorylation increases as receptor density increases.95  This 

has obvious implications for cell lines overexpressing TrkB, as in the case of NIH-3T3-TrkB.  

In my hands, basal TrkB activation was also extremely high, despite efforts to reduce 

receptor autophosphorylation by working with cell lysates exclusively at 4°C to slow enzymatic 

activity and by using a tenfold excess of EDTA.  Initially, we presumed that the observed basal 

activation was intrinsic to the activity of Trk receptors, since they are known to be easily 

phosphorylated, as described in the quotation below:96  
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“… high local membrane density of Trk proteins may promote spontaneous activation in 
the absence of neurotrophins.  Although such spontaneous activation has been observed 
for many receptor tyrosine kinases under scenarios of overexpression, the Trk proteins 
are especially prone to this behavior.  Indeed, this tendency to undergo spontaneous 
activation represented a difficult impediment to pioneering studies aiming to prove that 
TrkA was an NGF receptor by demonstrating NGF-dependent activation of TrkA in 
transfected cell lines (Dr. Moses Chao, personal communication).  Although the apparent 
hair-trigger behavior of Trk activation has been a continual annoyance for investigators 
studying Trk signaling mechanisms, it may be argued that leaving Trk proteins delicately 
poised at the brink of activation represents an essential feature of Trk function, as it 
allows diverse forms of modulation of the cellular environment to impinge on Trk 
activation.”96   

      
However, after attempts to reduce the apparent basal pTrkB with cautious handling of lysates, 

loading various concentrations of protein in the western, serum deprivation prior to the 

experiment, different degrees of confluency, and experimenting with several phospho-specific 

antibodies (selective for Y490, Y816, and Y706) at various dilutions without success, we 

decided to consult with members of Prof. Moses Chao's laboratory at the NYU medical center.  

From these discussions, we determined that the over-activity of the receptor was likely due to 

high constitutive activity of the specific NIH-3T3-TrkB line, and that our BDNF (Aldrich) was 

potentially not as active as the BDNF their group routinely uses (Peprotech); the group 

generously donated a new exogenously transfected secondary cell line, HEK-TrkB cells, to our 

group.   

Human embryonic kidney (HEK) cells are a commonly used system for the heterologous 

expression of recombinant receptors and proteins.97  We found these cells to have low basal 

TrkB activity, and Peprotech BDNF to be more potent than that from Aldrich, thus establishing 

an effective system for us to test human TrkB activity with a reliable positive control (Figure 7).   

 

 



	
  

	
  

160 

 

Figure 7.  Activation of TrkB in HEK-TrkB by BDNF.  HEK-TrkB cells were incubated for 10 
minutes in the presence or absence of 50 ng/mL human BDNF. Lysates were analyzed by 
western blotting using a phospho-specific Trk antibody, followed by stripping and reprobing the 
membrane for total TrkB.  pTrkB/TrkB indicates quantification of the relative ratio of 
phosphorylated TrkB induced by BDNF to the control, from densitometry analysis by ImageJ.  
Representative image of at least five separate experiments.  

 

Comparing pTrkB or activated downstream signaling enzymes like ERK1/2, with 

nontransfected HEK cells would allow us to determine if activation is due to the presence of 

TrkB.  To determine specificity of the molecules we work with, activation of Trks A and C can 

be determined with the respective NIH-3T3 transfected lines and compared to nontransfected 

3T3.  In my hands, NIH-3T3-TrkA cells were functional and selectively activated by NGF but 

not BDNF, independently of confluence (Figure 8). 
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Figure 8.  Activation of TrkA in NIH-3T3-TrkA cells by NGF.  NIH-3T3-TrkA cells were 
incubated for 10 minutes in the presence or absence of 50 ng/mL human NGF. Lysates were 
analyzed by western blotting using a phospho-specific Trk antibody, followed by stripping and 
reprobing the membrane for total Trk.  pTrk/Trk indicates quantification of the relative ratio of 
phosphorylated Trk induced by NGF to the control, from densitometry analysis by ImageJ.  
Representative image of three separate experiments. 

 
 
II.2 Efforts to Establish Small Molecule Controls: HEK-TrkB  

With functional cell lines with easily distinguishable receptor activation and reliable 

neurotrophin positive controls, we sought to confirm the activity of the previously discussed 

published agonists (I.4) and antagonists (I.5) in hopes of determining a lead compound for 

further development.   In contrast to our expectations, we found that amitriptyline, LM224-A 

(the triamide), and 7,8-DHF did not activate TrkB in HEK-TrkB cells at the published incubation 

times and concentrations (Figure 9).  We reasoned that perhaps in this particular cell line, Y490 

was not activated, but despite probing for multiple tyrosine-phosphorylated Trk receptors, we did 

not observe reproducible activation of the receptor using western blotting.   To address the 

possibility that tyrosine residue(s) other than Y490 or Y816 were phosphorylated, despite most 

reports reporting activation at those specific residues including by the putative agonists, we 

developed immunopreciptation protocols for isolation of TrkB from HEK-TrkB and of TrkA 
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from NIH-3T3-TrkA, but we still did not observe pTrk despite probing the blots for any 

phospho-tyrosines.     

 

 

Figure 9.  Published TrkB agonists do not activate TrkB in HEK-TrkB cells.  HEK-TrkB cells 
were incubated in the presence of BDNF (50 ng/mL) for 10 minutes, amitriptyline (500 nM) for 
30 minutes, Triamide LM22A-4 (500 nM) for 60 minutes, and 7,8-DHF (500 nM) for 30 
minutes. Lysates were analyzed by western blotting using a phospho-specific Trk antibody, 
followed by stripping and reprobing the membrane for total TrkB.  The data indicate that the 
small molecules do not activate TrkB, despite robust activation by the positive control, BDNF. 
Representative image of at least two separate experiments. 

 

 While it was clear that TrkB was not activated by these small molecules in our system, to 

be thorough we considered probing other downstream signaling proteins that are known to be 

phosphorylated following TrkB activation.  We chose to detect ERK1/2 in the event that either 

the phospho-specific Trk antibodies were not picking up on a low level of activation, as signaling 

to ERK1/2 may be amplified, or that another target was possibly activated instead of TrkB that 

would lead to subsequent ERK1/2 activation.  We found that only BDNF activated ERK1/2 as 

expected, but not the triamide, amitriptyline, 7,8-DHF, or NAS at the published concentrations or 

incubation times (Figure 10).  Also, ANA-12 was not very effective at inhibiting BDNF-induced 

ERK1/2 activation after 30 minutes of pre-incubation compared to K252a, a compound that is 

selective for Trk receptors at low concentrations,98 in HEK-TrkB cells.  
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Figure 10.  Inhibition of BDNF-induced ERK1/2 activation by Trk inhibitors in HEK-TrkB. 
HEK-TrkB cells were pre-treated with the Trk inhibitors ANA12 (10 µM) or K252a (100 nM) 
for 1 hour followed by incubation with BDNF (50 ng/mL) for 10 minutes.  The cells were also 
treated with triamide LM22A-4 (500 nM) for 1 hour. Lysates were analyzed by western blotting 
using a phospho-specific ERK1/2 antibody, followed by stripping and reprobing the membrane 
for total ERK1/2.  The data indicate that ANA12 does not inhibit ERK1/2 activation as well as 
K252a, and the triamide compound does not activate ERK1/2.  Representative image of two 
separate experiments. 

	
  
 
II.3 Efforts to Establish Small Molecule Controls: SH-SY5Y  

We surmise that the cause of these negative results may be inherent to the recombinant 

system or due to species differences.   Each molecule had proven effective in more than one 

system, often in a transfected cell line and in primary culture or even in vivo, but in our hands 

none of molecules achieved TrkB activation or inhibition in HEK-TrkB cells.  It is known that 

endogenous Trk receptor signaling is mediated by the presence of p75NTR,99 so we opted to try 

a cell line that contains both endogenous TrkB and p75NTR, human neuroblastoma SH-

SY5Y,77,100 to determine if the experimental molecules were not functioning as expected due to a 

lack of inadequate signaling partners in the recombinant-expressed systems. In this line, TrkB 

expression is induced by differentiation by retinoic acid.  In retinoic acid-differentiated SH-

SY5Y cells, 10 µM of 7,8-DHF, NAS, or LM224-A did not activate ERK1/2 at any time points 
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tested between 1 minute and 3 hours.  We chose to use a large excess of compound in the event 

that the low concentration did not induce a detectable change in ERK1/2 phosphorylation.  

Though the agonists tested do not produce increased ERK1/2 activation, ANA-12 inhibits 

BDNF-induced ERK1/2 activation reproducibly by approximately 50%, which is consistent with 

the magnitude of inhibition reported for cyclotraxin B.88   It should be noted, however, that dose-

response studies were not successful due to insolubility of the compound in the aqueous 

experimental medium at concentrations higher than 10-20 µM.  

 

 
 

Figure 11.  Inhibition of BDNF-induced ERK1/2 activation by ANA-12. SH-SY5Y 
neuroblastoma cells were differentiated for 72 hours in the presence of 10 µM retinoic acid 
followed by overnight incubation in low serum (1% FBS) medium, then pretreated with ANA12 
(10 µM) for 1 hour before incubation with BDNF (50 ng/mL) for 10 minutes.  Lysates were 
analyzed by western blotting using a phospho-specific ERK1/2 antibody, followed by stripping 
and reprobing the membrane for total ERK1/2. Representative image of at least four separate 
experiments.	
  

 
 

 Despite our lack of success with published TrkB agonists, both in recombinant cell lines 

and in SH-SY5Y, we may conclude that ANA-12 may be an adequate lead for partial antagonism 

of the TrkB receptor based on these western results.  
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II.4 Development of High-Throughput Screening Assays for TrkB Agonists 

Since we were unable to establish a small molecule positive control for TrkB agonism, 

we decided to pursue higher-throughput assays in hopes of developing a system to test and 

discover small molecule TrkB modulators.  Dr. Yves Meyer, a postdoctoral researcher in our 

group, has established a cell-based ERK1/2 activation assay using HEK-TrkB cells and the 

Phospho-ERK1 (T202/Y204)/ERK2 (T185/Y187) Cell-Based ELISA kit from R&D Systems.  

This immunohistochemical assay uses a fluorescent readout to detect both phosphorylated and 

total ERK in fixed cells.  He found that though BDNF induced a rapid phosphorylation of 

ERK1/2 with a maximum at five min, none of the small molecules tested did after 60 minutes 

(Figure 12).  Interestingly, gedunin, the precursor to deoxygedunin, did induce a small increase 

in ERK1/2 phosphorylation after 30 minutes.  However, ANA-12 did not inhibit ERK1/2 

activation by BDNF in this assay (data not shown).  

 

	
  

Figure 12.  ERK phosphorylation time-course by treatment with BDNF and small molecules in 
HEK-TrkB cells.  HEK-TrkB cells were cultured in collagen (rat tail)-coated 96-well plates and 
incubated with the indicated treatments for various times (x-axis), followed by fixation and 
immunohistochemical detection of phospho- and total ERK1/2 using the Phospho-ERK1 
(T202/Y204)/ERK2 (T185/Y187) Cell-Based ELISA kit from R&D Systems, according to the 
manufacturer’s instructions.  Data is representative of three independent experiments; courtesy of 
Dr. Yves Meyer.  
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Dr. Meyer is also attempting to assess TrkB activation using a cell line with a β-

lactamase reporter, CellSensor® TrkB-NFAT-bla CHO-K1 Cell Line from Invitrogen.  In this 

line, after TrkB activation, signaling via the PLCγ/PKC/Ca2+ pathway activates the transcription 

factor NFAT (Nuclear Factor of Activated T-Cells), which then translocates into the nucleus 

where it binds to DNA response elements driving β-lactamase expression.  Cleavage of a small 

molecule organic reporter substrate allows quantification of β-lactamase induction, measured 

five hours after the beginning of incubation of the cells with the experimental treatment.  The 

assay is amenable to high-throughput screening in 384-well plates.101  

 

	
  
 

 

 

 

 

 

 

 

	
  
	
  
 
Figure 13.  (a) NFAT activation induced by TrkB activation.  (Graphical model adapted from 
reference 101.)  (b) BDNF, NT-3 dose-responses, with concentrations from 0.05 ng/ml to 400 
ng/mL. Data is representative of three independent experiments. (c) Reported small-molecule 
agonists dose-responses; this experiment has been performed once in duplicate.  hTrkB-NFAT 
CHO K1 cells were cultured in 384-well plates and incubated with NT proteins or compounds at 
different concentrations for 5 h at 37°C, followed by addition of a β-lactamase activatable 
fluorescent substrate  (CCF4-AM, Invitrogen) for 2 h at room temperature, according to the 
manufacturer’s instructions. Compound concentrations are from 0.1 to 100 µM. [BLA = β-
lactamase] Courtesy of Dr. Yves Meyer.  
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 This assay is a viable option for high-throughput TrkB agonist screening, though care 

must be taken with hits due to the variety of sources of PKC activation and/or Ca2+ release.    

 

 
III. Conclusions and Future Directions 

TrkB signaling is crucial for CNS development and maintenance and identification of 

small molecule ligands is an important area of research.  In our hands, there was no suitable cell 

line that released significant amounts of BDNF into the culture medium, so we sought to activate 

TrkB directly.  Unfortunately, none of the small molecule agonists described in the literature 

activated TrkB in our hands as determined by western blotting in two separate cell lines, one 

with heterologously expressed and the other with endogenously expressed TrkB, nor was a 

change in ERK1/2 activation detectable in a cell-based ERK1/2 assay.   We speculate that this 

may be due to species differences, as the TrkB that has been transfected into the NIH-3T3 and 

HEK293 cells is a human protein, whereas the primary cultures and in vivo studies have been 

rodent-based.  Also, it is highly possible that the activation of TrkB requires a co-receptor or 

other signaling partner that is not present in the model cell lines but is present in primary culture.  

Furthermore, the primary target of the reported compounds may be a different receptor that 

transactivates TrkB, but experimentally appears to be a direct agonist. 

However, the antagonist ANA-12 did inhibit ERK1/2 activation induced by BDNF, 

reproducibly in SH-SY5Y as determined by western blotting.   ANA-12 may then serve as an 

adequate lead for a partial TrkB antagonist, and we are pursuing structural modifications which 

may increase its potency and solubility.   Also, we intend to continue development of a high-

throughput screening assay to discover more leads for TrkB agonism or antagonism, in hopes of 

developing a small, drug-like molecule capable of modulating endogenous TrkB activity to 
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protect and repair neurons in disease states, the impact of which would be considerable.   We are 

not convinced of the validity of TrkB as the true target of the published agonists, and high-

throughput screening may offer us a chance to find a true, selective TrkB agonist or antagonist. 
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IV. Experimental 

 

Materials 

SH-SY5Y cells were purchased from American Type Culture Collection (#CRL-2266; 

Rockville, MD) and routinely grown in a 5% CO2 atmosphere at 37°C in DMEM (high glucose 

with GlutaMax, #10569; Life Technologies Corp., Grand Island, NY) supplemented with 10% 

FBS (Premium Select, Atlanta Biologicals; Atlanta, GA) and 100 U/mL penicillin and 100 

µg/mL streptomycin (#15140, Life Technologies).  NIH-3T3-TrkB cells were generously 

provided by Dr. David Kaplan (Hospital for Sick Kids, Toronto, ON, Canada) and NIH-3T3-

TrkA cells were a kind gift from Dr. William Mobley (Department of Neurosciences, University 

of California, San Diego) and grown in DMEM supplemented with 10% FBS, 100 U/mL 

penicillin, 100 µg/mL streptomycin, and 200 mg/mL G418 (Life Technologies). HEK-TrkB cells 

were a generous gift from Dr. Moses Chao (NYU School of Medicine, New York, NY), and 

were grown in the same medium as NIH-3T3-TrkB cells.  100 mm polystyrene tissue culture 

plates were purchased from Corning (#430169; Corning, NY), and 6-well plates (#657165) were 

from Greiner Bio-One (Monroe, NC).  Protein assays were performed using Costar 96-well 

plates (3370, Corning).  

BDNF (#450-02) and β-NGF (#450-01) were purchased from Peprotech (Rocky Hill, 

NJ).  N-acetyl-5-hydroxytryptamine (N-acetylserotonin, NAS) was purchased from Sigma-

Aldrich (Saint Louis, MO).  7,8-Dihydroxyflavone was obtained from TCI (Portland, OR).  

N,N′,N′′-Tris(2-hydroxyethyl)-1,3,5-benzen- etricarboxamide (LM22A-4, #CHS0233913) was 

purchased from  ChemBridge Corp (San Diego, CA) but was also synthesized in our laboratory. 

N2-(2-{[(2-oxoazepan-3-yl)amino]carbonyl}phenyl)benzo[b]thiophene-2-carboxamide (ANA-
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12; #BTB06525) was obtained from Maybridge (Cambridge, UK) but also synthesized in our 

laboratory.  Protease inhibitor cocktail (#P8340), phosphatase inhibitor cocktails 2 (#P5726) and 

3 (#P0044), and bovine serum albumin (BSA) were also purchased from Sigma-Aldrich.  

ERK1/2 rabbit polyclonal antibody (#9102), phospho-ERK1/2 (Thr202/Tyr204) XP™ rabbit 

monoclonal antibody (#4370), phospho-Trk (Tyr490) polyclonal rabbit (#9141), phospho-

TrkA/TrkB (Tyr706/707) rabbit monoclonal (#4621), phospho-TrkA/TrkB (Tyr816) rabbit 

monoclonal (#4168), TrkB (80E3) rabbit monoclonal (#4603), TrkA rabbit polyclonal (#2505), 

and anti-rabbit HRP-linked (#7074) antibodies were acquired from Cell Signaling Technology 

(Beverly, MA).  Anti Trk (C14) (sc-11) was obtained from Santa Cruz Biotechnology (Santa 

Cruz, CA).  Pierce RIPA buffer, Pierce ECL 2 Western Blotting Substrate, and Pierce BCA 

Protein Assay kit were purchased from Thermo Scientific (Rockford, IL).  

 

Trk and ERK1/2 activation  

 Cells were grown until confluence and subcultured into 6-well plates at 1 million 

cells/well and grown for 24 hours in 2 to 3 mL of complete medium.  For experiments with SH-

SY5Y cells, the wells were washed and the medium was replaced with experimental medium 

containing 1% FBS and incubated overnight.  On the day of the experiment, a small volume was 

removed from the well and replaced with an equal volume (100 - 1000 mL) of a concentrated 

solution of the experimental compound or control condition in the culture medium at the 

appropriate time.  Compounds were diluted from 1000x concentrated stock solutions in DMSO 

or sterile water.  For time course experiments, a control well was run for every time point, since 

basal ERK1/2 phosphorylation rises approximately 10 – 15 minutes after a treatment is added.  

To stop the experiment, the medium was removed and the plates were rinsed twice with cold 



	
  

	
  

171 

PBS while on ice.  150 to 200 mL of lysis buffer (Pierce RIPA buffer + 1:100 protease inhibitor 

cocktail, phosphatase inhibitor 2 and 3 cocktails, and 0.5M EDTA solution) was immediately 

added to the wells and incubated over ice for 15 minutes to an hour, after which cells were 

scraped and the lysates were transferred into microcentrifigue tubes.  After homogenizing the 

samples with a sonicator, the tubes were centrifuged at 14,000 rpm for 10 minutes, the 

supernatant was transferred to fresh tubes, and the protein content was measured using the Pierce 

BCA assay.   Equal quantities of protein were added to each well of a 10% bis-tris acrylamide 

gel and were blotted onto Immobilon P PVDF transfer membranes.  Blots were blocked in 3% 

BSA in TBS for at least 1 hour, followed by overnight incubation with the primary antibody with 

rocking at 4°C.  The next day, the blots were washed 3 x 5 minutes with TBST (0.05% Tween 

20), incubated for 1 hour with secondary antibody (typically 1:1000) in the buffer indicated on 

the antibody’s corresponding data sheet, then washed again for 3 x 5 minutes prior to 

development with the ECL kit.  Chemiluminescence was visualized with a Kodak Image Station 

440CF imager.  Membranes were stripped and reprobed following the same detection procedure. 

Data were routinely quantified using densitometry by the gel analysis tools in ImageJ (NIH, 

Bethesda, MD).  
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Chapter 3 

Isoquinuclidine-Induced GDNF Release in C6 Glioma Cells: 

Studies Toward the Mechanism of Action 

 

I.1 GDNF in the CNS 

Glial-derived neurotrophic factor (GDNF) is a neurotrophic protein with important roles 

in the development and maintenance of the central nervous system (CNS).  As discussed in 

Chapter 2, neurotrophic factors are crucial for protection and plasticity of the adult CNS.  GDNF 

was first isolated from the rat glial cell line B49 and identified as a trophic molecule for 

dopaminergic neurons.1  It is critical for normal neural development,2 and in the adult brain it is 

located mainly in the midbrain, where it is transported to dopaminergic neurons from the 

striatum.       

Roles for GDNF and/or its receptor, rearranged during transfection receptor (Ret), have 

been demonstrated or suggested in psychostimulant, opioid, and alcohol addiction,3 neuropathic 

pain,4 cancer,5 epilepsy,6 and Hirschspring’s disease.7  Briefly, alcohol addiction is a chronic 

neuropsychiatric disorder with limited pharmacological means of treatment, and GDNF has been 

shown reduce alcohol self-administration and withdrawal in mice.3b,c In addition to alcohol, 

GDNF also counteracts behavioral and biochemical adaptations in mice chronically treated with 

cocaine and morphine, showing that GDNF plays a beneficial role in reversing the biochemical 

and behavioral adaptations associated with chronic drug use.8   GDNF is protective after stroke,9 

and since GDNF protects dopaminergic neurons, GDNF is implicated in the pathophysiology of 

Parkinson’s disease as well.10 
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I.2 GDNF/Ret Signaling 
 

GDNF exists as a disulfide-linked, glycosylated homodimer of 33-45 kDa and is a 

member of the GDNF-family of ligands (GFL), which also includes neurturin,11 and persephin,12 

artemin.13  These proteins are synthesized in a preproGFL form, and once secreted from a cell, 

are cleaved to the proGFL form, which is finally proteolytically cleaved to the active, mature 

GDNF.  They signal through the single-pass transmembrane receptor tyrosine kinase Ret, and 

each is selective for a particular glycophosphatidylinositol (GPI)-anchored GFRα co-receptor; 

primarily, GDNF for GFRα1, neurturin for GFRα2, artemin for GFRα3 and persephin for 

GFRα4 (Figure 1).  Neurturin and artemin may also weakly cross-activate GFRα1, and GDNF 

GFRα2 and GFRα3.4   

 

Figure 1.  Ret co-receptors and their cognate GDNF-family ligands.  Graphic adapted from 
Reference 4. 
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The exact sequence of events in the assembly of the receptor complex is not known, but 

homodimeric GDNF induces the dimerization of Ret with two GFRα1 units; cis signaling occurs 

when Ret couples to membrane-bound GFRα1, since both co-receptor units approach each other 

from the same membrane, and trans signaling occurs via association of Ret with soluble 

GFRα1.14  The formation of this complex results in the auto-phosphorylation of the intracellular 

tyrosine kinase domain of Ret, which constitutes the activated GFRα1/Ret complex, triggering 

the intracellular signaling. 15   Alternatively, signaling may occur independently of Ret, 16 

including via the neural cell adhesion molecule (NCAM).17   

There are several known sites of phosphorylation that lead to docking of specific adaptor 

proteins: Y905 docks Grb7/10, Y1015 for PLCγ, Y981 for s-Src, Y1096 for Grb2, and most 

importantly, Y1062, which docks Shc, IRS1/2, FRS2, DOK1/4/5, and Enigma.  Ret induces the 

same major signaling pathways as TrkB, namely MEK/ERK1/2 and PI3K/Akt from Y1062 

phosphorylation, and PLCγ/PKC from Y1015.18 

 

I.3 Ibogaine and GDNF 
 
 Derived from the root bark of the West African shrub Tabernathe iboga, the natural 

product ibogaine (12-methoxyibogamine, Figure 2) has attracted the attention of medicinal 

chemists and pharmacologists owing to anecdotal reports of experiments in humans. Rigorous 

animal studies also showed that ibogaine suppresses self-administration for a broad range of 

drugs of abuse.19  However, high doses are required for the desired effects described above, 

which cause ataxia, brachycardia, and hallucinations, likely due to its molecular promiscuity in 

the brain.  Pharmacological profiling of the compound shows that it is active at multiple CNS 

receptors, including α1 adrenergic, nicotinic acetylcholine (nAChR), kappa opioid (κOR), 5HT2, 
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5HT3, and N-methyl-D-aspartate glutamate (NMDAR) receptors, as well as dopamine transporter 

(DAT), vesicular monoamine transporter (VMAT), and serotonin transporter (SERT) proteins; 

however, it binds to these molecules with weak (µm) affinities.20  Of particular interest is its 

interaction with the sigma receptors σ1R and σ2R, as will be demonstrated in this chapter; 

ibogaine demonstrates a higher affinity for σ2R (σ2R Ki ~ 200 nM; σ1R Ki ~ 8500 nM).21   It is 

metabolized by cytochrome P4502D6 to 12-hydroxyibogamine (noribogaine), which also shows 

anti-addictive properties.22  Despite its highly desired affect on addiction, ibogaine is currently a 

Schedule I controlled substance in the United States, which includes substance with high abuse 

potential, no accepted medical use, and poor safety standards.  Thus, the design and synthesis of 

ibogaine analog or derivatives is a logical route to harness the desirable properties of the 

molecule and increase its specificity for particular target(s) and increasing potency at these 

targets, while removing the undesirable side effects, namely hallucinations.  18-

Methoxycoronaridine (18-MC) is one example of a structurally related compound that retains the 

ability to reduce self-administration of a number of drugs of abuse23 but does not retain the 

negative side effects, presumably because it functions via a different mechanism, as a nAChR 

antagonist.24  

 

                 

Figure 2.  Chemical structures of ibogaine, noribogaine, and 18-MC. 
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 An intriguing effect of ibogaine is the induction of GDNF synthesis in vitro and in vivo, 

which has been linked to its anti-addictive effects by the Ron laboratory.25,26  Ron’s group 

proposed that the induction of GDNF expression in the ventral tegmental area (VTA) leads to 

activation of an autocrine loop, in which GDNF signaling through its receptors Ret/GFRα1 

results in increased synthesis and release of GDNF.26   Such an autocrine loop would explain the 

long-term effects of acute doses of ibogaine on drug self-administration, craving and relapse.  

GDNF in turn was shown to reset the firing pattern of VTA dopaminergic neurons and thus 

presumably repair the function of the mesolimbic dopamine system involved in motivational 

processes.  Based on these studies and unpublished preliminary results, the authors believe that 

ibogaine may act as a direct agonist of GFRα1/Ret, which initially triggers the loop (Figure 3).   

The use of a small molecule to mimic the action of a neurotrophic factor is, as described in 

Chapter 2, highly attractive to us as medicinal chemists interested in neurotrophic small 

molecules for neuroprotection and repair. 
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Figure 3.  Mechanism of ibogaine-induced GDNF expression proposed by the Ron group 
(UCSF).  Preliminary results indicated that ibogaine directly activates the GFRα1/Ret complex, 
leading to activation of the MAP kinase pathway and expression of GDNF. GDNF positively 
regulates its own production and modulates the reward circuits, which underlies the decrease of 
alcohol self- administration and relapse in rodents. GDNF, Glial cell line-Derived Neurotrophic 
Factor; GFRα1, GDNF Family Receptor α1; Ret, receptor tyrosine kinase Ret; VTA, Ventral 
Tegmental Area (of midbrain).  

 

Considering the trophic and repair effects of GDNF on dopamine and motor neurons, the 

development of methods to increase the release or synthesis of GDNF in the brain may provide 

treatments for neurological disorders, most notably Parkinson’s disease and addiction.   As 

GDNF is a protein, it has a poor pharmacokinetic profile and is not suitable as a direct 

treatment,27 so similar approaches to those discussed in Chapter 2 to increase BDNF/TrkB 

signaling also apply to increase GDNF expression and GDNF/Ret signaling.  Small molecules 

can increase expression or release of GDNF,28 small molecules or peptide mimetics may be 

direct agonists of the Ret/GFRα1 receptor complex,29 or transactivation may occur from another 
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target.30  The molecular design, profiling, and systematic examination of the mechanism of a 

small library of novel potential pharmacological agents to induce GDNF synthesis and release 

from neurons or astrocytes will be described.  

 

II. Development & Pharmacological Profiling of Isoquinuclidine Ibogaine Analogs 

II.1 Development of GDNF Release Assay & Identification of Lead Compounds 

Measurement of GDNF release from model cell lines into the culture medium is a facile, 

widely used way to examine the effect of experimental treatments on GDNF induction and is 

biologically relevant.  We selected an enzyme-linked immunosorbent assay (ELISA) to measure 

the GDNF content of the medium, since this 96-well microplate assay enables moderate 

throughput evaluation of compounds in comparison to western blotting or northern blotting for 

protein or mRNA expression, respectively.  To establish this assay, post doctoral researcher Dr. 

Shu Li screened cell lines known to express GDNF against small molecule positive controls from 

the respective reports:  Neuro2A,29 SH-SY5Y,31, SK-N-AS,40b or primary human cortical 

astrocytes did not secrete more than 15 pg/mL of GDNF as measured by ELISA assay 

(Promega), but rat C6 glioma cells released a basal level of approximately 100-200 pg/mL as 

measured by conventional ELISA.  In the conventional ELISA, GDNF in the growth medium is 

detected in a separate plate (using an ELISA kit from Promega; see Experimental section), 

whereas in the in situ adaptation of the assay, the cells are grown on the ELISA plate coated with 

GDNF primary monoclonal antibody so that any GDNF released is instantly captured on the 

surface.  We primarily use the conventional ELISA, as GDNF release concentrations after 48 

hours are higher when measured this way, as opposed to the in situ version; we reasoned that the 
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in situ assay does not allow for possible activation of the autoregulatory loop, and thus we prefer 

to measure free GDNF in the medium.  

C6 cells express both Ret and GFRα1, with higher expression than human glioma cell 

lines; the C6 line is reported to contain 2,837 ± 813 pg GDNF/g of cells32 and basal GDNF 

release varies between reports (6 to 81 pg/mL)33 and between experiments in our laboratory.  

Receptor and growth factor expression is relatively well-characterized in this cell line, which is 

commonly used as a model for glioblastoma growth and invasion as well as a model of glia 

cells.34  C6 cells have been used extensively to measure GDNF mRNA and protein expression as 

well as protein release.  For example, NMDA antagonists amantadine and memantine induce the 

expression of the glial cell line-derived neurotrophic factor in C6 glioma cells.35  Riluzole, a 

neuroprotective small molecule, has been reported to increase GDNF synthesis and release from 

the same cell line.36  The antipsychotic haloperidol (5–25 µΜ) and atypical antipsychotics 

quetiapine and clozapine induce secretion of GDNF from C6 cells,37 and different classes of 

antidepressants, including the tricyclics amitriptyline and clozapine (10–25 µM), tetracyclic 

mianserin, and selective serotonin reuptake inhibitors (SSRIs) fluoxetine and paroxetine, but not 

antipsychotics haloperidol (10–1000 nM), diazepam or diphenhydramine (1–25 µM) induced 

GDNF synthesis and release from the same cell line as well.38  Another study of antidepressants 

found that the synthesis and release may be linked to a β-arrestin, CREB-interactive pathway.39  

Lastly, one particular report by Verity characterized GDNF release from C6 cells after 24-hour 

treatment with a variety of growth factors and cytokines.40a   This cell line is therefore a well-

characterized, established line to use for GDNF release.   Dr. Li in the Sames group measured 

increases in GDNF release from C6 cells using clozapine as a positive control, and then 
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proceeded to screen the ibogaine analog library developed by our group in the GDNF release 

assay.  These results served as the fundamental basis for the work described in this chapter.   

II.2 Structural Design 
 
 We used ibogaine as a starting point for the design of analogs.  Pursuing the original goal 

of developing selective GFRα1/Ret agonists using ibogaine as the structural lead, the first order 

requirement was to eliminate or diminish binding to as many CNS off-target receptors as 

possible, most notably nAChRs. Considering the structural features common to both ibogaine 

and nicotine - the heteroarene attached to the saturated cyclic amine - we decided to remove this 

bond and explore N-indolylethyl-isoquinuclidines (Scheme 1).   

 

Scheme 1.  Structural design of N-indolylethyl-isoquinuclidines.  

 

Following this structural design hypothesis, postdoctoral researcher Dr. Xiaoguang Li 

synthesized several compounds in a racemic form; compounds 1-5 are shown (Table 1).  These 

compounds induce the release of GDNF from C6 cells (see Section II.1).  We submitted these 

compounds to PDSP (Psychoactive Drug Screening Program of NIMH) for screening against 50 

common CNS targets.  Compound 1, XL-167, shows no binding to nAChR receptors (7 forms 

tested), NMDA (PCP binding site), and SERT receptors (performed by PDSP). Thus, the 

structural changes (disconnection of the indole and isoquinuclidine ring and removal of the 
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indole methoxy substituent) led to compounds with favorable pharmacological profile (low off-

target receptor binding). 
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 Compounds 3 (XL-008) and 4 (XL-026) were prepared to examine the indole substitution 

and its effect on GDNF release and PDSP profile. Both compounds are relatively strong inducers 

of GDNF release, whereas ibogaine was not (Table 1). Compound XL-008, containing the 5-

fluoroindole ring, shows no binding to nAChR or NMDA but does bind σ-1 and σ-2 receptors; it 

binds very weakly to DAT (>10 µM), but shows relatively strong binding to SERT (0.23 µM). 

XL-026, containing benzofuran in place of indole, shows no binding to DAT or SERT, but it 

binds to κ- and µ-opioid receptors (0.69 and 0.63 µM). These preliminary results demonstrate 

that the aromatic ring substitution is very important for both potency and binding selectivity at 

CNS receptors.  The stereoisomer of 4, 5 (compound ACK-I-090), induces less GDNF as 

measured at 10 µM (Figure 4), but this is not mirrored in σ receptor affinity as compared to XL-

026 or XL-008.   We also prepared the saturated analog of XL-167 (where the alkene is 

saturated), which has similar activity to XL-167 in the GDNF release assay, while the compound 

with a deleted ethyl group is inactive (not shown), demonstrating the importance of a substituent 

in the 7-position of the isoquinuclidine (see Scheme 1).  
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Figure 4.  GDNF release from C6 cells (passage number 41) treated with compounds (10 µM) 
for 48 hours. GDNF protein concentrations (pg/mL) in the conditioned medium were measured 
using ELISA. Data represent ± SEM of biological duplicates within one experiment, 
representative of > 4 independent experiments. * p < 0.05, *** p < 0.001 indicate statistical 
significance compared to control as calculated by one-way ANOVA followed by Tukey’s post-
hoc test.  

 
 

  

Figure 5.  Representative dose-response curves of XL-008 and XL-026-induced GDNF release.  
GDNF release (pg/mL, measured by ELISA) from C6 (cell passage numbers 45 and 47) treated 
with compounds at various concentrations for 48 hours. Data represent ± SEM of biological 
duplicates within one experiment, representative of 3 independent experiments. Data and 
graphics provided by Rich Karpowicz. 

 

 One challenge associated with the use of C6 cells relates to the known phenotypic 

instability of this cell line.  Specifically, we found that GDNF release from C6 cells in response 

to small molecules and growth factors decreases over time with increasing passage numbers, 

which is consistent with the literature,40a but poses a problem when performing statistical 
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analyses on averages across several sets of data.  We also observe variability in release across 

distinct cell batches acquired from the American Type Culture Collection (ATCC) as well as 

within our own laboratory thawed from identical batches of cryopreserved cells.  For example, 

the C6 cells that Dr. Li performed her initial screening with happened to release GDNF 

constitutively, with average basal levels ~200 pg/mL for several passages.  Since the basal was 

high and decreased with passage number, we were able to utilize the cells for GDNF release 

experiments until a relatively high passage number, 46 – 47.  A new batch of C6 cells we have 

acquired since then, however, do not release such high amounts of GDNF under basal 

conditions, and this basal release is highly variable, between 0 pg/mL and 100 pg/mL.  Due to 

the lower basal release, the cells only produce a statistically significant amount of GDNF in 

response to stimulus for two to three passages only, so we are restricted to using passage 41 and 

42 in experiments with these lines (see Experimental section for details).  Quantification of 

results, therefore, may only be performed on an intra-assay basis; any standard deviation or error 

calculated from the biological replicates within each experiment is all that we may use to 

calculate statistical significance, and any graphical representation found in this work is a single 

representative experiment.  We consider an experiment demonstrating a change in GDNF release 

as representative if it has been repeated at least three times.  Negative results are considered 

reproducible after two experiments yield similar results.  Importantly, we consider an increase or 

decrease of GDNF release statistically significant overall only if we observe statistical 

significance within each experiment.  We find that biological duplicates within each experiment, 

and each sample being measured three times in the ELISA plate, provides sufficiently small 

standard error of the mean (SEM) when error is measured from biological replicates. 

 An interesting aspect of release by the isoquinuclidines is that release of GDNF cannot be 
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measured after 24 hours.  However, if the cells are incubated with the compound for 24 hours, 

and then washed out and the medium replaced, GDNF release is still induced.  This implies that 

whatever process is responsible for inducing GDNF is triggered within the initial 24-hour period.   

 

 

Figure 6.  GDNF release from C6 cells (passage number 41) treated with compounds (10 µM) 
for 48 or 24 hours followed by washing indicates that a 24-hour pulse of the compounds (10 µM) 
leads to similar release as normal 48-hour incubation. GDNF protein concentrations (pg/mL) in 
the conditioned medium were measured using ELISA. Data represent ± SEM of biological 
duplicates within one experiment, representative of 3 independent experiments. * p < 0.05, ** p 
< 0.01 indicate statistical significance compared to control as calculated by one-way ANOVA 
followed by Tukey’s post-hoc test. 

  

 We questioned why release would take over 24 hours to appear, and tested if GDNF 

release is synthesis-dependent (or merely activity-dependent, not requiring synthesis of new 

GDNF).  Use of cycloheximide, an inhibitor of translational elongation and thus a protein 

synthesis inhibitor, enabled us to conclude that the mechanism of GDNF release requires protein 

synthesis, as it reduced GDNF release by XL-026 down to the level of the control (Figure 7).  

This is in agreement with the necessary incubation period for release to occur.  
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Figure 7. Structure of cycloheximide and its abolishment of GDNF release by XL-026. GDNF 
release from C6 cells (passage number 44) treated with XL-026 (10 µM) for 24 hours after 1-
hour preincubation with cycloheximide (1 µg/mL, 3.6 µM). GDNF protein concentrations 
(pg/mL) in the conditioned medium were measured using ELISA. Data represent ± SEM of 
biological duplicates within one experiment, representative of 2 independent experiments. **** 
p < 0.0001 indicates statistical significance compared to the control as calculated by one-way 
ANOVA followed by Tukey’s post-hoc test. 

 

 As we characterized GDNF release from C6 cells, Rich Karpowicz also performed 

extensive cytotoxicity and morphology experiments to understand the link between cytotoxicity 

and GDNF release, which we routinely measure using a colorimetric assay for lactate 

dehydrogenase (LDH) release.  LDH is a stable cytoplasmic enzyme that is released upon 

membrane lysis (see Experimental), and we performed the LDH assay for every experiment 

alongside GDNF detection.   GDNF release tends to parallel small increases in LDH release that 

typically are in the range of 4 – 10%, and do not rise above 20% of an intracellular control in 

response to any given treatment.  

 The morphology of C6 is fibroblastic (Figure 8A), but may change in response to 

treatments.   Interestingly, 48-hour treatment of C6 with one of our early small molecule ‘hits,’ 

XL-008, at various concentrations induces morphological changes at concentrations as low as 10 

µM (Figure 8B).  The cells become rounder and begin to display spindly processes, which are 
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dramatically evident at 40 µM (Figure 8C).   We reason that the mechanism of GDNF release 

may be intricately tied to the mechanism of this phenotypic change. 

 
A.            B.         C.  

 

Figure 8.  Brightfield images (400X) of C6 morphology in response to 48-hour treatment with 
XL-008 at (A) 0.1% DMSO control, showing normal, flat, fibroblastic morphology, (B) 10 µM, 
and (C) 40 µM.  An example process induced by XL-008 is indicated with an arrow.  Images 
courtesy of Rich Karpowicz.  

 
 Thus, we have characterized the time- and protein synthesis-dependent GDNF release 

induced by our compounds.  We know that more than 24 hours is required for GDNF synthesis 

and release to occur, but the signaling cascade is activated within a 24-hour period.  Treatment 

with the compounds induces dose-dependent GDNF release (Figure 5).  C6 cell morphology 

changes dose-dependently after 48-hour treatment with the compounds.  This information will 

aid us as we seek to elucidate the mechanism of action of these neurotrophin-releasing 

compounds.  

 

III. Hypotheses for the Mechanism of Action of Isoquinuclidines 

Preliminary results in the C6 cell release assay, combined with a thorough examination of 

the literature on receptor expression and GDNF production in these cells led us to utilize 

pharmacological tools for examining the signaling pathways involved in isoquinuclidine-induced 
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GDNF release from C6 cells and further characterizing GDNF release from this cell line.40 We 

also utilized western blotting to examine phosphorylation of Ret and extracellular signal-

regulated kinase (ERK) in the presence of the compounds to determine if Ret might be involved 

in induction of a GDNF autoregulatory loop as hypothesized by the Ron group about ibogaine.  

As we accumulated information about the signaling involved in GDNF synthesis and release by 

our compounds, we addressed the following potential hypotheses to structure our approach to the 

elucidation of the mechanism:  1. Transactivation from a G-protein coupled receptor (GPCR) to 

a receptor tyrosine kinase (RTK); 2. Sigma receptor involvement; 3. Lysosomal or endoplasmic 

reticulum (ER) stress; 4. GDNF release as a secondary effect of receptor up-regulation or 

protein release.   
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III.1 Transactivation or Direct Signaling Through Receptor Tyrosine Kinase(s) 

 

 

Figure 9. Transactivation from a G-protein coupled receptor (GPCR) to the epidermal growth 
factor receptor (EGFR).43a Ligand activation of a GPCR induces signaling via mediators, which 
activate a metalloproteinase (MP) to release heparin-bound epidermal growth factor (HB-EGF) 
to activate EGFR.   [P = phosphate.] 

 
 Transactivation, as briefly mentioned in Chapter 2, occurs when ligand binding to its 

cognate receptor induces not only activation of this receptor, but also the indirect activation of 

additional receptors as well.   The classic system that exemplifies transactivation is from GPCRs 

to the epidermal growth factor receptor (EGFR)41 or another RTK (Figure 9).42  In this model, 

GPCR activation leads to second messenger signaling, which varies depending on the cell type, 

that activates a metalloproteinase to release heparin-bound EGF (HB-EGF), the endogenous 

cognate ligand for EGFR.  Upon this proteolytic cleavage from the pro-form to the free ligand, 

EGFR is activated, resulting in ERK1/2 phosphorylation.43 

 RTKs may be transactivated by intracellular mechanisms, also, independently of RTK 

ligand binding.  Second messenger mediators may directly activate the RTK at the kinase 
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domain via the intracellular tyrosine kinases Src (or Src family kinases), protein tyrosine kinase 

2 (Pyk2), reactive oxygen species (ROS), or other modes of signaling.43   For example, it was 

reported that treatment of C6 cells with serotonin leads to an increase in GDNF release,44a and 

the release occurs through an increase of GDNF mRNA caused by transactivation through the 

fibroblast growth factor receptor 2 (FGFR2) which may be mediated by Src family kinases and is 

not dependent on release of FGF.44b   Due to its ubiquitious appearance in nature, transactivation 

is a reasonable mechanistic possibility for the action of our isoquinuclidines, as we have 

observed clear evidence of RTK involvement based on extensive use of pharmacological 

inhibitors (Section IV.4).   

We have not ruled out the possibility that these small molecules are direct agonists of any 

given RTK; for example, it is possible that the isoquinuclidines are agonists of the Ret/GFRα1 

complex, as ibogaine was hypothesized to be.25 There is literature precedent for the direct 

agonism of RTKs by small molecules45; in addition to the TrkB agonists discussed in Chapter 

2,46 small molecules have been developed as mimetics for insulin,47 human granulanocyte 

colony-stimulating factor,48 p75NTR,49 and TrkA.50  Thus, this possibility must be considered 

alongside other potential direct receptor agonism51 that may result in transactivation. 

III.2 Sigma Receptor Involvement 

Pharmacological profiling of our compounds (XL-008 and XL-026) revealed high 

selectivity and high affinity for the σ-receptors (Section II.2). Both types, σ1R and σ2R, are 

expressed by C6 cells,52 though at least one report suggests that only σ2R is present due to lack 

of binding by 1 µM pentazocine, a σ1R-selective ligand (Figure 10). 53   Using known 

pharmacological agonists and antagonists for σ1R and σ2R also supports sigma receptor 

involvement in isoquinuclidine-induced GDNF release from C6 cells.  
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The σ1R is a transmembrane protein chaperone anchored on the endoplasmic reticulum 

(ER) that translocates to nuclear or plasma membrane upon activation, though whether or not it 

induces intracellular signaling is highly dependent on cell type.54  It is also thought to associate 

with another molecular chaperone, BiP (binding immunoglobin protein, a heat shock protein) 

and stabilize the insositol triphosphate (IP3) receptor (IP3R) at the ER.55  In fact, the ability to 

dissociate BiP from σ1R forms the basis of the first definition of an agonist of the receptor, 

whereas an antagonist inhibits the dissociation in the presence of an agonist.56  Calcium, IP3, and 

PKC signaling have been associated with σ1R, and as a molecular chaperone, it may also 

translocate other proteins to the plasma membrane, such as protein kinase C (PKC).57  In primary 

mixed cortical and hippocampal neurons, σ1R agonists PRE-084 and 4-PPBP activated ERK1/2, 

but not p38 MAPK or JNK,58 which is relevant because of ERK1/2-dependence of GDNF 

release by our isoquinuclidines (Section IV.2). Also pertinent is a report demonstrating that in 

vivo, the σ1R-selective agonist PRE-084 (Figure 10) increases GDNF and BiP expression after 

rat root avulsion injury, and the protective effect is antagonized by a σ1R antagonist.59  The 

agonist cutamesine (SA4503, Figure 10) dissociates the σ1R receptor from BiP, and this effect 

lasts for two days; it also potentiates the post-translational processing and release of BDNF from 

rat B104 neuroblastoma cells60 and increases BDNF protein expression in rat hippocampus.61 

Perhaps it is possible, then, that σ1R could also have the same effect on GDNF expression and 

release.  σ1R is closely tied to disorders that include schizophrenia, depression, anxiety, memory 

deficits and pain, and many antipsychotics, antidepressants, and neurosteroids are known to bind 

with high affinity to this receptor.56   
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Figure 10.  Structures of selected σ1R ligands. 

 

σ2R, however, is not well characterized.  Ligands of this receptor subtype are often 

associated with cell proliferation and viability, with selective ligands inducing cell death.62  It has 

recently been suggested that σ2R is identical to the progesterone receptor membrane component 

1 (Pgrmc1).63  Pgrmc1 has been shown to be upregulated in many types of tumor and is known 

to associate with EGFR and increase EGFR plasma membrane levels.64  Pgrmc1 signaling by 

progesterone also leads to the PKC-dependent activation of VEGF gene expression and protein 

synthesis in porcine retinal glial cells.65  This receptor is expressed in C6 cells, as progesterone-

treated C6 cells, which express membrane-associated progesterone receptors (PR), including 

Prgmc1, but not classical nuclear PR, release BDNF in an ERK5- and Prgmc1-dependent 

manner.66  Thus, σ2R, as Pgrmc1, has been known to increase RTK expression and neurotrophin 

release from C6 cells, making it a target of interest. 

Another aspect of sigma receptor signaling that is critical to our hypothesis (i.e. that 

sigma receptors are involved in the mechanism of GDNF release by our compounds) is its ability 

to potentiate signaling at other receptors.  For example, the σ1R ligands (+)-pentazocine, 

imipramine, and fluvoxamine, the latter two being antidepressants, potentiate nerve growth 

factor (NGF)-induced neurite outgrowth in PC12 rat pheochromacytoma cells and increase the 

expression of σ1R.67  Our experimental observations and implications of the phenomenon based 

on the literature will be discussed in depth in Section V. 
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III.3 GDNF Release as a Response to Stress 

Cellular response to stress is mediated by a number of signaling pathways.  Small 

molecules may induce stress in specific ways; two examples potentially relevant to us involve 

ER stress and collapse of lysosomal pH gradient or permeabilization of the lysosomal membrane.  

There are two known pathways a cell may activate to respond to ER stress, caused by the 

accumulation of unfolded proteins:  the unfolding protein response (UPR), which triggers several 

specific signaling and transcription events, and the ER-overloaded response (EOR), which 

activates the transcription factor NF-κB, may require Ca2+, and produces reactive oxygen species 

(ROS).68   UPR is linked to the pathophysiology of depression, stroke, Alzheimer’s, and 

amyotrophic lateral sclerosis, and σ1 regulates protein folding and degradation, which further 

strengthens the connection between σ1 and these conditions.60   The connection prompted the 

development of this hypothesis as a potential mechanism for GDNF release by our compounds.  

Also of interest is that C6 cells have been shown to synthesize VEGF mRNA in response to 

glucose and oxygen deprivation, both of which can result in ER stress,69 and breast cancer cells 

can secrete vascular endothelial growth factor (VEGF) in response to ER stress, 70 raising the 

question of which other growth factors may be secreted as well.   

σ2R ligands, on the other hand, have been shown to induce oxidative stress71 and some 

σ2R ligands act as lysosomotropic detergents in several cancer cell lines.72  Lysosomes are 

organelles in cells that serve to digest and turnover intracellular macromolecules and organelles 

in an acidic environment, which is maintained by vacuolar H+-ATPase (V-type ATPase), a 

membrane enzyme that maintains the pH gradient between the organelle’s lumen and the 

cytoplasm.  Disruption of this gradient leads to loss of lysosome function, which causes 

oxidative stress and release of destructive enzymes into the cell.  Siramesine, a σ2R selective 
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ligand, as well as the σ2R selective rimcazole and σ1/σ2R nonselective ligand haloperidol also 

induced alkalinization of lysosomes, whereas (+)-pentazocine did not.   However, this rise only 

persisted for 16 hours in the case of siramesine, and rimcazole and haloperidol only induced a 

rise in pH for four hours.72   

                        

Figure 11. Chemical structures of σ2R ligands siramesine and rimcazole, and nonselective σ 
ligand haloperidol. 

 
Regardless, it has been confirmed that σ2R ligands lead to stress and lysosomal 

membrane permeabilization in cancer cells.73 This process is known to induce GDNF release 

from C6, human glioblastomas U87MG and T98G, and primary human astrocyte cultures, as 

inhibitors of vacuolar H+-ATP-ase, concanamycin A and bafilomycinA1, induce GDNF release 

in these lines.33 The release of GDNF in response to lysososmal permeabilization caused by 

collapse of the pH gradient in response to σ2 ligands and V-type ATPase inhibitors may result in 

triggering a protective mechanism. 

 

III.4 GDNF Release as a Secondary Effect 

The hypothesis that GDNF release may be the result of a prerequisite change in receptor 

expression or stability, or even a prerequisite protein release that induces GDNF synthesis, is 
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based on the fact that there is a 24-hour induction period before GDNF is detectable in the 

conditioned medium in response to XL-008 or XL-026.  Does GDNF signaling lead to up-

regulation of any growth factor receptors, or release of a growth factor, that could account for 

activation of some kind of autoregulatory loop as in the case of GDNF/Ret/GFRα1?  It is 

possible that GDNF release is caused by a factor in the growth medium, and isoquinuclidines 

prime the cell for potentiated, endogenous signaling by up-regulating, stabilizing, or shuttling 

receptor proteins to the surface (possibly via σ1R).  Also, it is equally possible that the small 

molecules lead to release of a different protein first, which then leads to GDNF synthesis and 

release.  Pharmacological inhibition studies will provide us with clues as to which receptor 

systems may be implicated in the mechanism of release, and using that information we will be 

able to determine if receptor-mediated GDNF release is dependent on previous growth factor 

expression and secretion. 

 

IV. Results & Discussion 

Our search for the molecular target of the isoquinuclidines that triggers signaling 

pathways responsible for GDNF induction in C6 cells began with Ret/GFRα1.  One major 

method used in our studies has been western blotting, to examine activation of relevant signaling 

proteins.  We assessed Ret and downstream ERK1/2 activation in C6 cells and in human 

neuroblastoma SH-SY5Y cells, which also contains a functional Ret/GFRα1 system.30  Since our 

isoquinuclidines are similar in structure to ibogaine, which was suggested to be a direct 

Ret/GFRa1 agonist, and since Ret is known to transactivate TrkB in SH-SY5Y cells,30 we also 

questioned if TrkB is activated by treatment with several isoquinuclidines in HEK-TrkB cells.  

ERK1/2 phosphorylation became our primary route to examine the activity of the compounds 
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once we were convinced of MEK/ERK involvement in the mechanism of GDNF release on the 

basis of pharmacological inhibition studies in C6 cells.  

Our second major approach to examining the signaling pathway(s) responsible for GDNF 

induction in C6 cells rested on pharmacological modulation of relevant receptors and 

intracellular signaling proteins.  While inhibition and/or antagonism alone do not provide 

conclusive evidence for the involvement of any given species, we used chemical biological and 

pharmacological tools with the intention of identifying probable pathways that could then be 

probed further with other techniques.  Early experiments focused on ERK1/2, as it is activated by 

many receptor proteins, to determine if its activation is required for GDNF release; we also 

considered the known mechanisms leading to GDNF release in C6 cells, which include serotonin 

receptors (5HTRs),44 and the fibroblast growth factor receptors (FGFRs).44 To probe receptor 

involvement, we used a two-pronged approach by utilizing an agonist of the receptor to 

determine if it was capable of inducing GDNF release, and an antagonist or inhibitor for the 

receptor or intracellular signaling module to modulate XL-026-induced release.  We applied this 

approach to most of the potential targets we considered, each of which we selected based on their 

connection to GDNF synthesis or release in C6 cells or primary astrocytes, expression in C6, 

and/or ability to trigger ERK1/2 activation, as reported in the literature.   Below, each potential 

target is briefly described with a rationale and the results.  First, those we deemed the most 

probable receptor targets will be addressed, followed by the remaining receptors in alphabetical 

order grouped by receptor type (GPCRs, nuclear hormone receptors, and RTKs).  Lastly, 

intracellular signaling components are also considered, which we hoped would help elucidate or 

rule out potential pathways in the context of the receptor results.  These studies address the 

receptor activation/transactivation, sigma involvement, and preliminarily address the idea that 
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isoquinuclidine-induced GDNF release may be reliant on secretion of either growth factors or 

cytokines.  Proposed future work to address each hypothesis will be summarized in Section VII. 

IV.1 Ret Activation 

Our initial hypothesis was strongly driven by both published and unpublished preliminary 

results generated in Ron group (UCSF), postulates that ibogaine is a direct Ret/GFRα1 

modulator.  Therefore, we sought to confirm Ret activation by ibogaine in SH-SY5Y, the cell 

line used by the Ron group.25 After optimization of antibodies for use in western blotting 

experiments, we spent a great deal of time trying to observe activation of Ret in response to 

ibogaine, to no avail, despite seeing robust activation of Ret by GDNF as a positive control 

(Figure 12). 

 

 

Figure 12.  Ibogaine (10 µM) does not activate Ret in differentiated SH-SY5Y cells.  Positive 
controls GDNF and BDNF give strong activation.  SH-SY5Y cells were differentiated for 72 
hours in the presence of 10 µM retinoic acid followed by overnight incubation with low serum 
medium.  The cells were incubated with ibogaine (10 µM) or DMSO (0.1%) control for the 
indicated times, and separate wells were incubated with BDNF (50 ng/mL), GDNF (50 ng/mL), 
or medium only (basal) as a control for 10 minutes.  Lysates were analyzed by western blotting 
using a phospho-specific Ret antibody, followed by stripping and reprobing the membrane for 
total Ret.  Representative image of three separate experiments. 

 
Though one-hour activation of Ret was reported in the literature,25 we also examined Ret 

phosphorylation at 3 hours to determine if one hour was not long enough to induce activation of 
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the receptor.  However, we did not observe Ret or downstream ERK1/2 activation even at 3 

hours in the presence of ibogaine (Figure 13).     

 

        A. 

 

 

 

 

       B. 

 

 

 

 

 

Ret is difficult to detect in C6 cells 

C6 cells express both Ret and GFRα1 proteins,74 so we considered that ibogaine might 

phosphorylate Ret in this cell line.  However, we noticed that regardless of the antibody used or 

amount of protein loaded on the gel, we could not clearly detect bands corresponding to the Ret 

Figure 13.  Ibogaine does not activate Ret (A) or ERK1/2 (B) in SH-SY5Y cells from 30 
minutes to 3 hours as determined by western blotting.  SH-SY5Y cells were differentiated for 72 
hours in the presence of 10 µM retinoic acid followed by overnight incubation in low serum 
medium.  The cells were incubated with ibogaine (10 µM) or DMSO (0.1%) control for the 
indicated times, and separate wells were incubated with BDNF (50 ng/mL), GDNF (50 ng/mL), 
NGF (50 ng/mL), or medium only (basal) as a control for 10 minutes.  Lysates were analyzed by 
western blotting using a phospho-specific ERK1/2 antibody, followed by stripping and reprobing 
the membrane for total ERK1/2.  Representative image of two separate experiments with 
ibogaine, and of at least six with the neurotrophins. 
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receptor despite extensive optimization by more than one group member.  Deeper searching of 

the literature revealed that there had only been one example of Ret detection by western in this 

line,74a so we abandoned our efforts to determine if ibogaine or our isoquinuclidines activated 

Ret in C6.  Our results suggest that Ret protein expression is very low. It is also plausible that the 

receptor may be inactive due to the presence of NCAM,75 which may occupy GFRα1 monomers 

and thwart binding to Ret.   In summary, our results do not support Ron’s hypothesis that 

ibogaine activates Ret and ERK1/2 at the reported concentration (10 µM).  

IV.2 ERK1/2 involvement 

ERK1/2 are downstream signaling proteins that are activated in response to countless 

receptor proteins and signaling events, from RTKs to GPCRs and as a hub between various 

signaling pathways.43a  ERK kinases are activated by phosphorylation, which is catalyzed by the 

upstream kinases MEK1/2.  Since ERK1/2 is downstream from Ret, we wanted to know early on 

in our investigations if GDNF release by our compounds was ERK1/2-dependent.  

Pharmacological inhibition with the two most commonly used MEK1/2 inhibitors, PD98059 and 

U0126, confirmed that MEK/ERK signaling is very likely to be involved, as both inhibitors 

dose-dependently inhibited GDNF release (Figure 14, Figure 15).   However, some reports argue 

that at the concentrations necessary for MEK1/2 inhibition by these compounds result in cross-

inhibition of MEK1/2 versus MEK5, a closely related kinase.76  To resolve this ambiguity, we 

used the MEK inhibitor PD184352, which is less potent at MEK5,77 at a low concentration (2 

µM) that is reported to be selective.78  BIX02189, a MEK5 inhibitor at 10 µM, also completely 

inhibits GDNF release by XL-026.  These results indicate that ERK1/2 plays a crucial role in 

induction of GDNF release by XL-026 in C6 cells; they also indicate that ERK5 may be involved 

as well (Figure 16).  
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Figure 14.  PD98059, the MEK1/2 inhibitor, dose-dependently inhibits GDNF release from C6 
cells (passage number 42) induced by XL-026 (10 µM).  GDNF protein concentrations (pg/mL) 
in the conditioned medium were measured using ELISA after 48 hours. Data represent ± SEM of 
biological replicates within one experiment, representative of 2 independent experiments. * p < 
0.05, *** p < 0.001, and **** p < 0.0001 indicate statistical significance compared to the control 
as calculated by one-way ANOVA followed by Tukey’s post-hoc test. 

 
 

 

Figure 15. U0126, the MEK1/2 inhibitor, dose-dependently inhibits GDNF release from C6 cells 
(passage number 42) induced by XL-026 (10 µM). GDNF protein concentrations (pg/mL) in the 
conditioned medium were measured using ELISA after 48 hours. Data represent ± SEM of 
biological replicates within one experiment, representative of 2 independent experiments. *** p 
< 0.001 and **** p < 0.0001 indicates statistical significance compared to the control as 
calculated by one-way ANOVA followed by Tukey’s post-hoc test. 
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Figure 16.  MEK inhibitors implicate MEK1/2 signaling in GDNF release from C6 cells 
(passage number 42) induced by XL-026 (10 µM).  GDNF protein concentrations (pg/mL) in the 
conditioned medium were measured using ELISA after 48 hours. Data represent ± SEM of 
biological replicates within one experiment, representative of 2 independent experiments. **** p 
< 0.0001 indicates statistical significance compared to the control as calculated by one-way 
ANOVA followed by Tukey’s post-hoc test. 

  

IV.3 GPCR Involvement 

IV.3.1 Serotonin (5HT) Receptors 
 

C6 cells express 5HT2A receptors and it has been reported that this receptor transactivates 

FGFR-2, which activates ERK1/2, resulting in induction of GDNF release.44   Since our 

isoquinuclidines showed affinities for 5-HT receptors, we first wanted to confirm the ability of 

this receptor to induce GDNF release.  Treatment with 5-HT (10 µM) did not elicit GDNF 

release (5.4 pg/mL vs 6.7 pg/mL in the control of a representative experiment), likely due to 
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receptor agonist 2,5-dimethoxy-4-iodoamphetamine, (±)-DOI (Figure 17), which is known to 

bind to C6 cells (displaces 3H-5-HT binding with IC50 = 750 nM),79 induced a statistically 

significant increase in GDNF release.  However, the use of 5HT2 receptor antagonist, 

cyproheptadine, which was used by Tsuchioka44b to demonstrate that 5HT-induced ERK1/2 

activation and subsequent GDNF release was initiated by 5HT2 receptors in C6 cells, had no 

effect on XL-026-induced GDNF release (Figure 18).   These data suggest that 5HT2A is not 

involved in the mechanism of XL-026-induced release.  

 

 

Figure 17.  (A) Chemical structure of serotonin and 5HT2 agonist (±)-DOI.  (B) (±)-DOI (10 
µM) induces GDNF release from C6 cells (passage number 42). GDNF protein concentrations 
(pg/mL) in the conditioned medium were measured using ELISA after 48 hours. Data represent 
± SEM of biological replicates within one experiment, representative of 4 independent 
experiments. ** p < 0.01, *** p < 0.001 indicates statistical significance compared to the control 
as calculated by one-way ANOVA followed by Tukey’s post-hoc test. 
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Figure 18.  5HT2 antagonist cyproheptadine.  Cyproheptadine (1 µM, 30 minutes pretreatment) 
does not attenuate XL-026-induced GDNF release from C6 (passage 41).  GDNF protein 
concentrations (pg/mL) in the conditioned medium were measured using ELISA after 48 hours. 
Data represent ± SEM of biological replicates within one experiment, representative of 2 
independent experiments. ** p < 0.01 indicates statistical significance compared to the control as 
calculated by one-way ANOVA followed by Tukey’s post-hoc test. 

 

IV.3.2 Opioid Receptors 

The κOR and µOR receptors are expressed in C6 cells80 and both activate ERK1/2, 

though µOR activates ERK1/2 through transactivation of FGFR1.81 This makes these receptors 

of particular interest, especially in light of the fact that sigma antagonists potentiate opioid-

induced analgesia in rats.82  To probe the potential involvement of this receptor in GDNF release, 

we utilized the selective κOR pharmacological agonist U50,488, endogenous µOR agonist 

endomorphin-1, the nonselective antagonist naltrexone, and κOR-specific antagonist 

norbinaltorphimine (norBNI).  Both agonists tended to increase GDNF release, but this increase 

was not statistically significant in every experiment (endomorphin-1 induced 17.5 ± 4.8 pg/mL 

and U50,488 induced 92.4 ± 7.1 pg/mL vs. 6.7 ± 1.7 pg/mL from the control in a representative 

experiment).  Also, neither antagonist had an effect on GDNF release by XL-026 (Figure 19), 

leading us to conclude that opioid receptors are likely not involved. 
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Figure 19.  Structures of pan-opioid antagonist naltrexone, κOR antagonist norBNI, and their 
effect on XL-026-induced GDNF release from C6 cells (passage number 41) pretreated with 1 
µM of each antagonist prior to addition of XL-026 (10 µM, 48 hours).  GDNF protein 
concentrations (pg/mL) in the conditioned medium were measured using ELISA after 48 hours. 
Data represent ± SEM of biological replicates within one experiment, representative of 2 
independent experiments. ** p < 0.01 indicates statistical significance compared to the control as 
calculated by one-way ANOVA followed by Tukey’s post-hoc test. 

 

IV.3.3 Adenosine Receptors 

Adenosine receptors (A1, A2, and A3) are present in C6 cells83 and are of interest because 

they promote GDNF transcription and increase GDNF release in primary cultures of rat 

astrocytes through activation of A2B receptors.84  Also, FGF has been reported to act as a co-
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in GDNF release in our assay (3.3 pg/mL vs. 3.2 pg/mL control in a representative experiment), 
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Figure 20.  Structures of adenosine, the A2A agonist CGS 21680, and the absence of GDNF 
release by CGS 21680 (10 µM) from C6 cells (passage number 47). XL-008 (10 µM) was used 
as a positive control.  GDNF protein concentrations (pg/mL) in the conditioned medium were 
measured using ELISA after 48 hours. Data represent ± SEM of biological replicates within one 
experiment, representative of 2 independent experiments. * p < 0.05 indicates statistical 
significance compared to the control as calculated by one-way ANOVA followed by Tukey’s 
post-hoc test. 
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Figure 21.  Structure of α1 antagonist prazosin and potential cooperative increase in XL-026-
induced GDNF release from C6 cells (passage number 41).  GDNF protein concentrations 
(pg/mL) in the conditioned medium were measured using ELISA after 48 hours of XL-026 (10 
µM) treatment. Data represent ± SEM of biological replicates within one experiment, 
representative of three independent experiments. * p < 0.05 indicates statistical significance 
compared to the control as calculated by one-way ANOVA followed by Tukey’s post-hoc test. 

               

Unexpectedly, isoproterenol (isoprenaline), a nonselective β receptor agonist, appears to 

reduce basal GDNF release (Figure 22).  Meanwhile, pretreatment and co-incubation with the 

antagonist propranolol yielded conflicting results.  The experiment was repeated four times; 

twice, the antagonist alone induced no release on its own but potentiated the release by XL-026, 

while twice, it induced an increase on its own as well (Figure 23).  While this must be examined 

further before any conclusions may be drawn, the increase in XL-026-induced GDNF release in 

the presence of propranolol is reproducible.  Since this antagonist was used at a high 

concentration (10 µM), and it is known to bind to other receptors, this result should be 

interpreted with caution.  With this caveat in mind, the results suggest that adrenergic receptors 

may be involved in modulating GDNF release and XL-026-induced GDNF release, either via 

constitutive receptor activity or via adrenergic receptor agonists secreted by C6 cells. 
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Figure 22.  Structure of β-adrenoreceptor agonist isoproterenol and effect on GDNF release in 
C6 cells at 10 µΜ (passage number 45) compared to positive control XL-008 (10 µM). GDNF 
protein concentrations (pg/mL) in the conditioned medium were measured using ELISA after 48 
hours. Data represent ± SEM of biological replicates within one experiment, representative of 
three independent experiments. * p < 0.05, ** p < 0.01 indicates statistical significance 
compared to the control as calculated by one-way ANOVA followed by Tukey’s post-hoc test. 

 
 

 
Figure 23.  Structure of β-adrenoreceptor antagonist propranolol and its effect on XL-026-
induced GDNF release from C6 cells in two separate experiments (passage number 42 in both 
experiments).  GDNF protein concentrations (pg/mL) in the conditioned medium were measured 
using ELISA after 48 hours of treatment with XL-026 (10 µM). Data represent ± SEM of 
biological replicates within separate experiments, each representative of two independent 
experiments as described in the text. ** p < 0.01, *** p < 0.001, **** p < 0.0001 indicates 
statistical significance compared to the control as calculated by one-way ANOVA followed by 
Tukey’s post-hoc test. 
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reduced implanted C6 tumor growth in rats.   We chose to examine the potential role of AT1 in 

the mechanism of our compounds due to its ability to induce transactivation of both EGFR and 

platelet-derived growth factor receptor (PDGFR) in rat astrocytes.89  In the report, transactivation 

was found to occur via the canonical pathway involving reactive oxygen species (ROS), Src 

kinases, and Pyk2 activation, and phosphorylation of EGFR, PDGFR, and ERK1/2 was detected.  

As will be discussed later, the transactivation of multiple receptors is intriguing, as it is possible 

that multiple RTK receptors mediate GDNF release in our system.  However, the use of the AT1 

antagonist losartan resulted in no significant modulation of XL-026-induced GDNF release, 

though there may be a slight reduction (Figure 24).  

 

 
Figure 24. Structure of AT1 antagonist losartan and its effect on XL-026-induced (10 µM, 48 
hours) GDNF release from C6 cells (passage number 41) at 10 µM. GDNF protein 
concentrations (pg/mL) in the conditioned medium were measured using ELISA after 48 hours. 
Data represent ± SEM of biological replicates within one experiment, representative of three 
independent experiments. *** p < 0.001 indicates statistical significance compared to the control 
as calculated by one-way ANOVA followed by Tukey’s post-hoc test. 

 
 

IV.3.6 Endothelin (ETA & ETB) Receptors 

Endothelin-1 (ET-1) is a peptide that causes constriction of blood vessels and are strongly 

expressed in the heart, brain, and circulate in blood.  It binds to C6 cells and stimulates insositol 

lipid turnover90 and subsequently a rise in cytosolic Ca2+ via the GPCR ETA and ETB receptors 
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in this cell line.91  Of particular interest, ET-1 activated ERK in C6 cells via a PKC and PKA 

independent, but PLC, Ca2+, and Src-family kinase-dependent pathway.92  Most importantly, ET-

1 induces GDNF expression in cultured rat astrocytes.93  We found, however, that ET-1 

treatment (50 ng/mL) did not induce a statistically significant increase in GDNF release from C6 

cells, though it did provoke a slight, reproducible increase (25.6 ± 8.8 pg/mL vs. 5.9 ± 3.1 pg/mL 

by the control in a representative experiment).   If the receptors’ cognate ligand does not elicit 

GDNF release, we conclude that ETA or ETB receptors are unlikely to be involved in 

isoquinuclidine-induced release.  

 

IV.3.7 GABAA Receptors 

There is conflicting evidence in the literature for the expression of GABAA receptors in 

C6 cells.  One report claims that transcripts of GABAA subunits were detected in C6 cells by RT-

PCR, but functional GABAA was not present in C6.94  A conflicting report suggests that GABA 

and benzodiazepine receptors exist on C6 according to binding and functional studies on 

membrane preparations.95  Despite the lack of consistent evidence for the presence of the 

receptor, we decided to use a pharmacological agonist and antagonist to rule out its involvement, 

as it can be modulated by σ1 receptors96 and can mediate neurogenesis in the hippocampus of 

adult mice.97  

Treatment with the agonist isoguvacine (10 µM) does not induce a change in basal 

GDNF release from C6 cells (12.6 ± 5.9 pg/mL vs. 12.4 ± 6.8 pg/mL from the control in a 

representative experiment).   However, pretreatment and co-incubation with the antagonist 

bicuculline results in a small reproducible increase in release, which is statistically significant 

from XL-026 alone in one of the three experiments performed (Figure 25).   
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Figure 25.  Structures of GABAA agonist isoguvacine and antagonist bicuculline and the effect 
of the antagonist (10 µM) on GDNF release by XL-026 (10 µM, 48 hours) in C6 cells (passage 
number 41).   GDNF protein concentrations (pg/mL) in the conditioned medium were measured 
using ELISA after 48 hours. Data represent ± SEM of biological replicates within one 
experiment, representative of three independent experiments. * p < 0.05 indicates statistical 
significance compared to the control as calculated by one-way ANOVA followed by Tukey’s 
post-hoc test.  

 

IV.3.8 Histamine Receptors 

C6 cells express H1 histamine receptors that lead to intracellular Ca2+ release when 

activated.98  We initially used histamine (10 µM) to determine if H1 receptors can induce GDNF 

release, and found it had no statistically significant effect compared to basal release (11.5 pg/mL 

vs. 2.3 pg/mL control in a representative experiment, Figure 26).  In case histamine was too 

rapidly metabolized or carried into the cell via organic ion transporters, we also tried a 

pharmacological agonist, N-methylhistaprodifen (10 µM).  This H1 agonist stimulated 

statistically significant GDNF release from C6 cells (Figure 26).  

GDNF release from C6 P41 (T39)
Bicuculline (10µM)

DMSO

XL-02
6

Bicu
cu

llin
e

Bic+
02

6
0

200

400

600

800

[G
D

N
F]

 p
g/

m
l *



 221 

  

Figure 26.  Chemical structures of histamine and the H1 agonist N-methylhistaprodifen, and the 
H1 agonist-induced (10 µM) GDNF release from C6 cells (passage number 41) showing XL-026 
(10 µM, 48 hours) as a positive control.  GDNF protein concentrations (pg/mL) in the 
conditioned medium were measured using ELISA after 48 hours. Data represent ± SEM of 
biological replicates within one experiment, representative of three independent experiments. ** 
p < 0.01, indicates statistical significance compared to the control as calculated by one-way 
ANOVA followed by Tukey’s post-hoc test. 

 
 

Pretreatment and co-incubation of XL-026 with the H1 antagonist mepyramine 

(pyrilamine, 10 µM), which behaves as an inverse agonist, resulted in no significant difference in 

release (Figure 27).    

 

 
Figure 27. Chemical structure of H1 receptor antagonist mepyramine, and its effect at 10 µM on 
GDNF release by XL-026 (10 µM) in C6 cells (passage number 41).  GDNF protein 
concentrations (pg/mL) in the conditioned medium were measured using ELISA after 48 hours. 
Data represent ± SEM of biological replicates within one experiment, representative of three 
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independent experiments. * p < 0.05, indicates statistical significance compared to the control as 
calculated by one-way ANOVA followed by Tukey’s post-hoc test. 

 

IV.3.9 Glutamate Receptors 

C6 cells express group I metabotropic glutamate receptors (mGluR1/5), and activation of 

mGluR5 leads to BDNF mRNA production.99  Another report demonstrates expression of 

receptor proteins for group II mGluR2 and mGluR3, and group III mGluR4/6/7, while 

expressing mRNA for group II mGluR3 and group III mGluR4/6/7/8, and activation of glutamate 

receptors confers neuroprotection to C6 cells.100  GDNF mRNA and protein is increased in 

response to a pharmacological mGlu2/3 agonist, LY379268, in mouse brain101 and GDNF as 

well as other neurotrophins are secreted from cultured rat Muller cells in response to glutamate 

treatment.102 We selected group II glutamate receptors to examine, using the agonist LY-354740 

(eglumegad) and antagonist (RS)-APICA.  LY-354740 (10 µM) does not induce a significant 

increase in GDNF release from C6 cells (31.7 ± 13.5 pg/mL vs. 8.9 ± 6.3 pg/mL from the control 

in a representative experiment).  Pre- and co-incubation with (RS)-APICA result in a 

reproducible decrease in XL-026-induced GDNF release; however, while in one experiment it 

completely abolished GDNF release down to basal levels, in a second experiment (Figure 28) it 

reduced release by approximately 50%.  It is worth further examining this attenuation, possibly 

using mGluR2 and mGluR3 specific antagonists to determine which subtype is involved if the 

result with (RS)-APICA is indeed reproducible.  
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Figure 28. mGluR2/3 agonist LY-354740 and antagonist (RS)-APICA.  (RS)-APICA (10 µM) 
attenuates GDNF release by XL-026 (10 µM, 48 hours) from C6 cells (passage number 41). 
GDNF protein concentrations (pg/mL) in the conditioned medium were measured using ELISA 
after 48 hours. Data represent ± SEM of biological replicates within one experiment, 
representative of three independent experiments. * p < 0.05, ** p < 0.01, indicates statistical 
significance compared to the control as calculated by one-way ANOVA followed by Tukey’s 
post-hoc test. 

 

IV.3.10 Melatonin Receptors 

MT1 and MT2 melatonin receptors are expressed in C6 cells, and treatment of the cells 

with melatonin induces GDNF mRNA expression 103  and protects them from glutamate 

excitotoxicity and oxidative stress.104  Also, treatment of C6 cells with valproic acid, a mood 

stabilizer, causes an increase in MT1 mRNA and protein expression as well as significant 

increases in GDNF and BDNF mRNAs,105 and treatment of rat striatum with melatonin results in 

increased GDNF mRNA production.106  This demonstrates the ability of a small molecule to 

induce protein expression of a receptor that also causes an increase in GDNF expression.  We 

found that melatonin (10 µM) does not induce GDNF release in C6 cells (2.0 ± 0.1 pg/mL vs. 2.3 

± 1.6 pg/mL from the control in a representative experiment), possibly due to rapid metabolism 

or transport into the cells.  Further study using a pharmacological agonist and/or antagonist is 

necessary to draw definitive conclusions about the involvement of these receptors in XL-026-

induced release. 
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IV.3.11 Muscarinic Receptors 

M3 subtype muscarinic receptors have been detected in C6107 and activation of M3 

induces ERK1/2 activation in M3-transfected Chinese hamster ovary (CHO) cells108a and SK-N-

BE(2) human neuroblastoma cells,108b which prompted us to consider their role in GDNF release 

from C6 cells.  Carbachol (carbamylcholine), a muscarinic agonist, did not elicit a response in 

our assay at 10 µM (7.7 ± 2.7 pg/mL vs. 2.4 ± 1.6 pg/mL from the control in a representative 

experiment).  In the event that carbachol suffered the same potential fate as serotonin, which 

presumably is rapidly metabolized or otherwise processed by the cell, we also utilized the 

antagonist scopolamine (10 µM) to probe potential M3 involvement in GDNF release.  Two of 

three replicate experiments resulted in a slight, but non-significant increase of GDNF release by 

XL-026 in the presence of the antagonist; however, in the third experiment, scopolamine 

drastically potentiated the release by XL-026, so this experiment must be repeated at least once 

more to confirm the results (Figure 29). 
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Figure 29.  Structures of muscarinic receptor agonist carbachol, antagonist scopolamine, and 
antagonist (10 µM) modulation of GDNF release by XL-026 (10 µM, 48 hours) in C6 cells 
(passage number 41).  GDNF protein concentrations (pg/mL) in the conditioned medium were 
measured using ELISA after 48 hours. Data represent ± SEM of biological replicates within one 
experiment, representative of three independent experiments. No statistical significance 
compared to the control was calculated by one-way ANOVA followed by Tukey’s post-hoc test 
in the specific experiment shown, but the other two experiments demonstrate statistically 
significant GDNF release induced by XL-026 and XL-026 plus scopolamine.  

 

IV.3.12 Prostanoid Receptors 

Prostaglandin E2 (PGE2) is a lipid hormone synthesized and released by C6 cells109 in 

response to various stimuli, like angiotensin II,109a and signal through the receptor EP2, leading to 

PKA and PI3K activation.110  This eicosanoid molecule is interesting as it increases NGF mRNA 

in C6 cells,111 though Verity found that treatment of C6 cells with PGE2 (10 µM) for 24 hours 

negatively modulated GDNF release.40a Despite its negative modulation of GDNF release in the 

report, we chose to examine GDNF release after 48 hour treatment with PGE2 in our assay since 

release after 24 hours does not necessarily reflect release after 48 hours.  PGE2 (10 µM) did not 

have an effect on the basal GDNF release (2.1 ± 2.3 pg/mL vs. 0.6 ± 0.6 pg/mL from the control 

in a representative experiment), signifying that if PGE2 was released in response to XL-026 (10 

µM) or if XL-026 interacted with the receptor, no signaling to activate GDNF synthesis and 

release occurs.   
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Figure 30. Structure of prostaglandin E2 (PGE2). 

 

IV.3.13 Sphingosine-1-phosphate (S1P) Receptors 

S1P is a bioactive phospholipid that is known to be produced in response to RTK 

activation and transactivate RTKs, in turn activating signal transduction.112  C6 cells express S1P 

receptors on the cell surface and S1P activates ERK1/2113; also, TNF-α induces S1P release from 

C6 cells,114 which is intriguing, as we observe GDNF release in response to TNF- α in our assay 

(see Section IV.5.3).  We postulated that perhaps RTK activation by XL-026 induces S1P 

release, which leads to further signaling to elicit GDNF synthesis and release.   S1P (10 µM), 

however, does not induce GDNF release on its own in C6 cells (6.3 ± 7.1 pg/mL vs. 4.1 ± 4.1 

pg/mL from the control in a representative experiment).  

 

 

Figure 31.  Structure of S1P.112 
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IV.3.14 PTX-sensitive receptors 

Pertussis toxin (PTX), the exotoxin is produced by the bacterium Bordetella pertussis, is 

routinely used in research to sequester Gi/o protein subunits, preventing their functional coupling 

to receptors.  The result of this is inhibition of any GPCR that signals through Gi/o.  PTX was 

used to show that κOR agonist U69,593-induced ERK1/2 activation requires Gi/o signaling, 

signifying that κOR is coupled to Gi/o.80a  In our system, PTX (100 ng/mL) enhances GDNF 

release by XL-026 (10 µM, Figure 32).  Though the boost in release is reproducible between 

experiments, the degree of the increase varies.  We may conclude that Gi/o proteins are not 

coupled to the unknown target receptor of isoquinuclidines, but perhaps inactivating the proteins 

turns off an inhibitory pathway that dampens GDNF release under normal conditions by XL-026. 

 

 

Figure 32.  PTX-induced (100 ng/mL) augmentation of GDNF release by XL-026 (10 µΜ) from 
C6 cells (passage number 44).  GDNF protein concentrations (pg/mL) in the conditioned 
medium were measured using ELISA after 48 hours. Data represent ± SEM of biological 
replicates within one experiment, representative of two independent experiments. * p < 0.05, *** 
p < 0.001, indicates statistical significance compared to the control as calculated by one-way 
ANOVA followed by Tukey’s post-hoc test. 
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IV.3.15 Adenylate Cyclase Involvement 

Another approach to probe GPCR involvement is to inhibit adenylate (adenylyl) cyclase, 

an enzyme responsible for converting adenosine triphosphate (ATP) to 3’,5’-cyclic adenosine 

monophosphate (cAMP).  GPCRs coupled to Gs stimulate the enzyme, leading to an increase in 

cAMP and subsequent PKA activation, while those coupled to Gi inhibit it.  An inhibitor of 

adenylate cyclase, SQ 22,536, does not statistically significantly attenuate GDNF release by XL-

026 (Figure 33), therefore Gs-coupled receptors and subsequent induction of cAMP are likely not 

involved in the mechanism of release. 

   

Figure 33.  Structure of adenylate cyclase inhibitor SQ 22,536 and its lack of effect at 10 µM on 
GDNF release by XL-026 (10 µM) from C6 cells (passage number 42). GDNF protein 
concentrations (pg/mL) in the conditioned medium were measured using ELISA after 48 hours. 
Data represent ± SEM of biological replicates within one experiment, representative of three 
independent experiments. ** p < 0.01, *** p < 0.001, indicates statistical significance compared 
to the control as calculated by one-way ANOVA followed by Tukey’s post-hoc test. 

 

IV.4 RTK and Other Growth Factor Receptor Involvement 

While investigating Ret and/or TrkB as potential targets of isoquinuclines, we screened 

pharmacological inhibitors for other major RTKs expressed on C6 cells.  It should be noted that 

true specificity of RTK inhibition is virtually impossible, as the kinase domain within RTK 

families is highly conserved, and commonly used inhibitors are often efficacious against more 

than one target since they all compete with ATP.  Keeping this in mind, the implications of the 
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results will be discussed, and future work to narrow down the specific receptor(s) involved in 

GDNF release by isoquinuclidines will be discussed in Section IV.4 of this chapter. 

Early on in our pharmacological inhibition studies we used the tyrosine kinase inhibitor 

genistein to determine if tyrosine kinases were involved in GDNF release, and not surprisingly, 

50 µM of genistein completely prevented GDNF release by XL-026 (Figure 34).    

 

 

Figure 34.  Structure of broad-spectrum tyrosine kinase inhibitor genistein and its reduction of 
GDNF release induced by XL-026 (10 µM) at 50 µM from C6 cells (passage number 41). GDNF 
protein concentrations (pg/mL) in the conditioned medium were measured using ELISA after 48 
hours. Data represent ± SEM of biological replicates within one experiment, representative of 
three independent experiments.  ** p < 0.01 indicates statistical significance compared to the 
control as calculated by one-way ANOVA followed by Tukey’s post-hoc test. 

 
With this knowledge, we screened a small set of RTK inhibitors with various selectivities 

for receptors expressed in C6 cells.  Also, several growth factor receptors were examined by the 

exogenous application of their cognate protein ligands. The most pertinent receptor targets are 

addressed first (see discussion above), followed by the other RTKs.  

IV.4.1 Ret 

Though Ret activation was not detected via western blot assays in SH-SY5Y (Section 
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rule out its potential involvement mechanism in C6 cells.  Because the ELISA assay detects 

GDNF, we could not assess Ret/GFRα1 involvement by treating with GDNF, so we needed 

other means to address this hypothesis.  We considered that we might be able to take advantage 

of the cross-activation between GFLs and GFRα1 co-receptors, and so tested the GFLs neurturin 

(NTN) and artemin (ART), with persephin (PSN) as a negative protein control, in the assay at 50 

ng/mL.  None of these treatments led to induction of GDNF release (Figure 35).   

 

 

Figure 35.  GDNF release from C6 cells after 48 hours (passage number 41) induced by 
persephin, neurturin, and artemin (all 50 ng/mL) with XL-026 (10 µM) as a positive control. 
GDNF protein concentrations (pg/mL) in the conditioned medium were measured using ELISA. 
Data represent ± SEM of biological replicates within one experiment, representative of three 
independent experiments.  * p < 0.05 indicates statistical significance compared to the control as 
calculated by one-way ANOVA followed by Tukey’s post-hoc test. 

 
Unfortunately, no selective pharmacological Ret inhibitors exist, so we utilized two 

compounds that are known to inhibit Ret activity, SU5416 (Semaxinib)115 and RPI-1.116  SU5416 

is primarily a VEGFR inhibitor,117 but has also been reported to be active against Ret (IC50 = 5 

µM),115 the HGF (hepatocyte growth factor) receptor c-Met (IC50 = 4 µM against Met 

phosphorylation),118 Flt-3 and c-Kit receptors.117   We initially used the compound at 25 µM 

based on literature precedent. Because it completely eliminated XL-026-dependent GDNF 
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release at 25 µM (Figure 36), we then performed dose-response experiments to determine 

potency in our assay. The experimental IC50 for GDNF release is approximately 63 – 116 nM 

(Figure 37).  As it is quite potent in our system, yet not very potent against Ret and c-Met, we 

may tentatively conclude that we are not inhibiting Ret activity, which agrees with the lack of 

GDNF release by Ret ligands (Figure 35). Its activity against VEGFR and PDGFR will be 

discussed in Section IV.4.5. 

	
  

Figure 36. Structure of VEGFR/Ret inhibitor SU5416 and its prevention of GDNF release by 
XL-026 (10 µM) from C6 cells (passage number 41) at 25 µM. GDNF protein concentrations 
(pg/mL) in the conditioned medium were measured using ELISA after 48 hours. Data represent 
± SEM of biological replicates within one experiment, representative of five independent 
experiments.  *** p < 0.001 indicates statistical significance compared to the control as 
calculated by one-way ANOVA followed by Tukey’s post-hoc test. 
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Figure 37.  Representative dose-dependence of inhibition of GDNF release from C6 cells by 
XL-026 (10 µM, 48 hours) (passage number 41) by SU5416 (0.1 nM – 25 µM). GDNF protein 
concentrations (pg/mL) in the conditioned medium were measured using ELISA after 48 hours. 
Data represent ± SEM of biological replicates within one experiment, representative of three 
independent experiments.   

 

RPI-1 is structurally similar to SU5416, as both have the same indolinone core, and it 

inhibits purified Ret at a relatively high concentration (IC50 = 104 µM) though it does inhibit 

phosphorylation of Ret in cells at 25 µM in response to GDNF and inhibits growth of Ret-

transfected NIH-3T3-transfected cells with IC50 = 0.97 µM.119  20 µM was used in another report 

in cells to completely inhibit Ret phosphorylation.120 It also inhibits c-Met phosphorylation (IC50 

~ 7.5 µΜ).121   Further characterization of the compound’s pharmacology has yet to be 

published, so we may not assume it is selective for Ret.   We found that at 10 µM, it inhibited 

GDNF release by XL-026 by 81 ± 8%.  The concentration-dependence of this inhibition has not 

been determined in our assay. 
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Figure 38. Structure of RTK inhibitor RPI-1 and its inhibition of XL-026 (10 µM)-induced 
GDNF release in C6 cells (passage number 42) at 10 µM.  GDNF protein concentrations 
(pg/mL) in the conditioned medium were measured using ELISA after 48 hours. Data represent 
± SEM of biological replicates within one experiment, representative of two independent 
experiments.  **** p < 0.0001 indicates statistical significance compared to the control as 
calculated by one-way ANOVA followed by Tukey’s post-hoc test. 

 

IV.4.2 FGFR 

As mentioned previously, fibroblast growth factor receptors, specifically FGFR1 and 

FGFR2, are expressed in C6 cells and their activation leads to GDNF synthesis and release.44,40a   

Riluzole, a small neuroprotective molecule used in the treatment of amyotrophic lateral sclerosis, 

was reported to induce GDNF mRNA synthesis and GDNF release122a from C6 cells via FGFR at 

25 µM via activation of the MEK/ERK pathway and CREB.122b  Direct activation of the receptor 

by FGF-β (basic FGF, FGF-2) induces a dramatic, statistically significant increase in GDNF 

mRNA production123 and protein release from C6 cells as well. 40a GDNF release from C6 cells 

by FGF-β was characterized, and is dependent on PI3K/Akt signaling;124 GDNF gene expression 

is regulated not only by ERK1/2 activation, but ERK5 activation as well.124b FGF receptors are 

important in the CNS, as they are dysregulated in major depression125 and FGF-β has an 

antidepressant-like effect in rats.126  Amitriptyline, a tricyclic antidepressant, was also reported to 

induce FGFR signaling in C6 cells.127 Further, antidepressants induce an increase in FGF-β 
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immunoreactivity in neurons of the cerebral cortex and in astrocytes and neurons of the 

hippocampus,128 making FGFRs important potential targets to consider.     

To confirm the ability of FGF-β to induce GDNF release in C6 cells at 48 hours, as 

Verity reported release after 24 hours,40a we used 50 ng/mL FGF-β and observed robust, 

statistically significant, reproducible GDNF release which is completely abolished by the use of 

the FGFR inhibitor PD173074.129  PD173074 (Figure 39) is an ATP-competitive inhibitor of 

FGFR1 (IC50 = 25 nM in a kinase assay, and IC50 of FGFR1 phosphorylation in cells is 1-5 nM) 

and also inhibits PDGFR2 (IC50 = 18 µM in a kinase assay, and IC50 of PDGFR2 

phosphorylation in cells is 100 – 200 nM).130  The initial concentration of PD173074 we chose to 

use (1 µM) was based on literature precedent,44,122 and produced an approximately 50% average 

decrease in XL-026 and XL-008-induced GDNF release (Figure 39).  We sought to establish 

exactly how potently it inhibited GDNF release by XL-026 by performing dose-response studies.   

 

 

Figure 39.  Structure of FGFR inhibitor PD173074 and its effect (1 µM) on GDNF release by 
FGF-β (50 ng/mL, 48 hours) and XL-026 (10 µM, 48 hours). GDNF protein concentrations 
(pg/mL) in the conditioned medium were measured using ELISA after 48 hours. Data represent 
± SEM of biological replicates within one experiment, representative of two independent 
experiments.  * p < 0.05, *** p < 0.001 indicates statistical significance compared to the control 
as calculated by one-way ANOVA followed by Tukey’s post-hoc test. 
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Though it was clear from inhibition of XL-026-induced GDNF release that the release 

was not completely dependent on FGFR action, we hoped that examining the dose-dependence 

of the inhibitor and comparing its IC50 (the concentration at which 50% inhibition of the 

biological response in question occurs in a specific assay) with known values from the literature 

would shed light on whether or not we are seeing FGFR-dependent attenuation of release or 

merely cross-reactivity at other RTKs.   Unfortunately, due to the biological variability of GDNF 

release from C6 cells, we were unable to average GDNF release values across multiple 

repetitions of the experiment, but the IC50 values calculated were within the same order of 

magnitude across three distinct experiments.   Though the IC50 was calculated to be 

approximately 100 nM, this value should be interpreted with caution since the inhibitor never 

completely abolishes GDNF release induced by XL-026; however, though PD173074 never 

inhibits release 100%, even at 10 µM, it does achieve half-maximal inhibition at a concentration 

that corresponds to the published IC50 for PDGFR2 phosphorylation in a cell-based assay.130   

This is interesting, since functional cross talk between PDGF and FGF receptors is known.131  In 

one report, PDGF-BB induced the release of FGF-β and increased FGFR-1 phosphorylation in 

human smooth muscle cells and both these effects were found to be mediated by PDGFR, PI3K, 

and PKC, but not MEK or protein transcription.132  Interpretation of RTK inhibition studies, 

therefore, is made more complex as it is difficult to differentiate cross-reactivity of an inhibitor 

from an intrinsic interaction between receptors in a given system.  

The potential involvement of FGF receptors, even if partially, raises the question of 

whether the receptor is directly activated by isoquinuclidines, transactivated by another receptor, 

or activated by induced release of FGF from C6 cells.  It has been reported that C6 cells do not 



 236 

release detectable FGF-β, and the authors speculate that it is possible that FGF-β does not have 

to be secreted in order to serve as a mitogenic factor, though they found that exogenous 

application of FGF-β (1 – 50 ng/mL) does not induce proliferation of C6 cells.133  However, we 

believe that the lack of detectable FGF-β immunoreactivity in conditioned C6 cell medium may 

be a consequence of its sequestration by FGF-binding protein (FBP), as binding to the protein 

may prevent its detection by antibodies.  FBP is a secreted protein that serves as a chaperone for 

FGF-β, reducing its affinity for heparin, thus releasing active FGF-β from extracellular matrix 

heparin sulfate proteoglycans and facilitating FGFR-dependent proliferation and ERK2 

activation.134 Antidepressants also increased the expression of FGF binding protein (FBP, also 

HPp17).128     

 

IV.4.3 Trk Receptors 

C6 cells transcribe TrkA, TrkB, and p75NTR mRNA,135 and the TrkA/p75NTR system 

appears functional in mediating growth.136 Though C6 cells do not express high levels of Trk 

receptors, we wanted to rule out their involvement due to their known interaction with Ret 

receptors30 through utilizing putative pharmacological agonists46 (the inefficacy of which were 

discussed extensively in Chapter 2 of this work), endogenous ligands, and the use of the Trk 

inhibitor K252a.  

In our assay, BDNF, NGF, NT-3, and NT-4 were used at 50 ng/mL and none of the 

treatments resulted in changes of basal GDNF release (Figure 40).  NT-3 was included despite 

the lack of evidence for TrkC receptors in the event that TrkA or TrkB ligands led to GDNF 

release so that it could function as a negative protein control.  Our results are consistent with 

Verity’s results for BDNF (0.76 ± 0.48 fold/control) and NGF (1.24 ± 0.37 fold/control), though 
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only 24-hour incubation was attempted.40a   Treatment with putative TrkB agonists 7,8-

dihydroxyflavone (7,8-DHF),46b N-acetylserotonin (NAS), 46e and LM224-A (triamide) 46c at 10 

µM result in no effect on GDNF release in our assay, in agreement with the results from the 

protein ligands of Trk receptors.   

 

 
 

Figure 40.  Effect of BDNF, NGF, NT-3, and NT-4 (all 50 ng/mL) and TrkB agonists 7,8-DHF, 
NAS, and LM22A-4 (triamide; all 10 µM) on GDNF release from C6 cells (passage number 46), 
showing XL-008 (10 µM) as a positive control.  GDNF protein concentrations (pg/mL) in the 
conditioned medium were measured using ELISA after 48 hours. Data represent ± SEM of 
biological replicates within one experiment, representative of three independent experiments.  
*** p < 0.001 indicates statistical significance compared to the control as calculated by one-way 
ANOVA followed by Tukey’s post-hoc test. 

  

IV.4.4 PDGFR 

Platelet-derived growth factor (PDGF) is a monomeric secreted protein ligand for the 

RTK PDGFR, and functional PDGF is dimerized either in homodimers of a specific chain, like 

PDGF-BB, or heterodimers, like PDGF-AB.  A low level of PDGFRβ (PDGFR1) was detected 

in C6 cells by western blot, PDGF induces an autocrine loop in the cell line,137 and a high level 

of autophosphorylation of PDGFRβ has also been observed.138  At least one RT-PCR study 

found PDGFRα (PDGFR2, but not PDGFRβ) in C6 cells as well as PDGF-A but not PDGF-B 
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transcripts.135b  Thus it appears that PDGFR receptors are expressed in C6 cells, and PDGFR, as 

an RTK, activates ERK.138 Autocrine signaling leading to GDNF synthesis and release could 

explain the amplification of GDNF release between 24- and 48-hour treatments.  

PDGFR is an RTK that is commonly transactivated by GPCR receptors.  For example, 

angiotensin II stimulates rat astrocyte mitogen-activated protein kinase activity and growth 

through EGF and PDGF receptor transactivation, which is interesting as more than one receptor 

is simultaneously transactivated.89   Not only may transactivation occur through the canonical 

GPCR-RTK pathway, but also it has been shown that growth factors other than PDGF, including 

FGF, produce ROS that can transactivate PDGFRα.139  On the other hand, cross-talk between 

PDGF and FGF receptors is known,131 and PDGF can induce FGF-β release and subsequent 

activation of FGFR, which is PI3K and PKC but not MEK/ERK-dependent, as demonstrated in 

muscle cells.132 

 To examine the potential role of PDGFR in isoquinuclidine-mediated GDNF release, we 

tested PDGF-AB and PDGF-BB to determine their ability to induce release, and utilized the 

inhibitor AG1296.  PDGF-AB and PDGF-BB (50 ng/mL) both induce a statistically significant 

increase in GDNF release the majority of the time either is used (Figure 41).   
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Figure 41.  PDGF-AB, PDGF-BB, and VEGF-induced GDNF release from C6 cells (passage 
number 42) at 50 ng/mL.  GDNF protein concentrations (pg/mL) in the conditioned medium 
were measured using ELISA after 48 hours. Data represent ± SEM of biological replicates within 
one experiment, representative of at least four independent experiments.  * p < 0.05, ** p < 0.01 
indicates statistical significance compared to the control as calculated by one-way ANOVA 
followed by Tukey’s post-hoc test. 

 

AG1296 is relatively selective for PDGFR.  It inhibits PDGFR phosphorylation in cells 

(IC50 = 300 – 500 nM), and is not active at EGFR or VEGFR (IC50 >10 µM).140 It is also active 

against Flt-3 and c-Kit at concentrations similar to those active against PDGFR, yet it is not 

effective against Src, PKB/Akt, or IGF-IR, and the lack of activity against EGFR and VEGFR 

was independently confirmed.141  We performed dose-response studies to understand its potency 

and determine the lowest effective concentration to connect an experimental IC50 of GDNF 

release with IC50 values in the literature for the compound in functional assays as we did with 

SU5416 (Section IV.4.1).  Using concentrations from 0.1 nM to 25 µM, the IC50 for inhibition of 

GDNF release is calculated to be ~ 100 nM (Figure 43).  This is consistent with the known 

potency of the compound against PDGFR. 
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Figure 42. Structure of AG1296 and inhibition of GDNF release by XL-026 (10 µM) by 
AG1296 (25 µM) in C6 cells (passage number 41). GDNF protein concentrations (pg/mL) in the 
conditioned medium were measured using ELISA after 48 hours. Data represent ± SEM of 
biological replicates within one experiment, representative of five independent experiments.  *** 
p < 0.001 indicates statistical significance compared to the control as calculated by one-way 
ANOVA followed by Tukey’s post-hoc test. 

 

 

Figure 43. Dose-dependent inhibition of GDNF release induced by XL-026 (10 µM, 48 hours) 
by AG1296 (0.1 nM - 25 µM) in C6 cells (passage number 41).  GDNF protein concentrations 
(pg/mL) in the conditioned medium were measured using ELISA after 48 hours. Data represent 
± SEM of biological replicates within one experiment, representative of three independent 
experiments.   

 
 As we did not know if the compound non-selectively inhibits FGFR, we sought to 

determine if the inhibition of isoquinuclidine-induced GDNF by AG1296 was due to off-target 

effects by attempting to inhibit FGF-β-induced GDNF release with the compound.   The 
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inhibitor appears to attenuate FGF-β only slightly between experiments, whereas it inhibits 

PDGF-AB-induced release completely.  In light of the discussion earlier in this section, it is 

known that FGF can activate PDGFR,139 and PDGFR activation can lead to FGF release,131,132 so 

using a PDGFR inhibitor may reasonably affect FGF-induced release because part of the FGF-

induced release could actually be due to PDGFR cross-talk with FGFR, and not because the 

inhibitor is non-specific.  

 

                         

Figure 44.  (Left) Inhibition of PDGF-AB (100 ng/mL)-induced GDNF release from C6 cells 
(passage number 42) by AG1296 (AG, 1 µM), KRN633 (KRN, 1 µM), and MEK inhibitor 
U0126 (10 µM) and (right) inhibition of FGF-β induced GDNF release by the same treatments.  
GDNF protein concentrations (pg/mL) in the conditioned medium were measured using ELISA 
after 48 hours. Data represent ± SEM of biological replicates within one experiment, 
representative of three independent experiments.  * p < 0.05, ** p < 0.01, and *** p < 0.001 
indicates statistical significance compared to the control as calculated by one-way ANOVA 
followed by Tukey’s post-hoc test. 

  

 Overall, the results from the use of this inhibitor are very promising, as they strongly 

implicate PDGFR in the mechanism of GDNF release by isoquinuclidines.  The only caveat is 

that the release by PDGF-AB and PDGF-BB on their own is relatively low compared to the 

release by isoquinuclidines in any given experiment, but PDGF-induced FGF-β release could 

explain the difference in magnitude of release.    
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IV.4.5 VEGFR 

Vascular endothelial growth factor (VEGF) is a secreted, 46 kDa dimeric protein that acts 

as an angiogenic growth factor and mitogen for epithelial cells, and VEGFR2 is expressed by C6 

cells.142  The receptor is relevant to our hypothesis that stress caused by our compounds may 

induce EOR or be involved in Pgrmc1 signaling, since progesterone induces VEGF synthesis via 

Pgrmc165 and ER stress leads to upregulation of the VEGF gene.69,70   Treatment of C6 cells with 

VEGF (50 ng/mL) does not induce release (Figure 41).  However, the inhibitor KRN633,143 

which is marketed as a selective VEGFR inhibitor, potently abolishes GDNF release by XL-026 

at 1 µM (Figure 45).  To determine if this is due to non-selective inhibition of another RTK, we 

performed dose-response studies for this inhibitor as well (Figure 46).   

 

 

Figure 45. Structure of VEGFR inhibitor KRN633 and its complete inhibition at 1 µM of XL-
026 (10 µM)-induced GDNF release from C6 cells (passage number 41). GDNF protein 
concentrations (pg/mL) in the conditioned medium were measured using ELISA after 48 hours. 
Data represent ± SEM of biological replicates within one experiment, representative of at least 
five independent experiments. *** p < 0.001 indicates statistical significance compared to the 
control as calculated by one-way ANOVA followed by Tukey’s post-hoc test. 
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Figure 46. Dose-dependent inhibition of GDNF release by VEGFR inhibitor KRN633 (0.1 nM - 
5 µM).  GDNF protein concentrations (pg/mL) in the conditioned medium were measured using 
ELISA after 48 hours. Data represent ± SEM of biological replicates within one experiment, 
representative of three independent experiments.   

 

IC50 values for inhibition of XL-026-induced GDNF release by KRN633 were calculated 

to be roughly between 1 and 42 nM, demonstrating a high level of potency by this compound.  It 

was reported to inhibit phosphorylation in cells of the following receptors: VEGFR2 (IC50 = 1.16 

nM), VEGFR1 (11.7 nM), c-Kit (8.01 nM), and PDGFR-1 (130 nM), while IC50 values were 

greater than 10 µM for FGFR-1, EGFR, and c-Met.143  According to a kinase assay in the same 

report, PDGFR-2 has IC50 = 965 nM, and IGFR-1, Abl, erbB4, Flt-3, INSR, Janus kinase 2, focal 

adhesion kinase, Wee1, and Src all were not inhibited below 10 µM.  Thus, the potency of the 

compound falls within the range of VEGFR, c-Kit, and PDGFR-1 activity.  Since AG1296 is not 

active toward VEGFR, that means that both AG1296 and KRN633 are indicating potential 

activity against c-Kit and PDGFR and a lack of activity against INS-R1 and EGFR.  

Another inhibitor we examined with activity toward PDGFR is SU5416, reported to be a 

VEGFR (Flk-1, VEGFR2 subtype, the most common subtype in C6 cells) inhibitor with IC50 ~ 

250 – 1000 nM, though it is active against other RTKs as well (Section IV.4.1).  Due to the lack 

of specificity of the compound, we can only use these results to rule out receptors that it is 
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definitely not active against, mainly FGFR, EGFR, and INS-1R,117 or at the very least, speculate 

that it mediates GDNF release via a receptor target that is not one of those RTKs.  As mentioned 

previously, it is likely not active against Ret or c-Met at the low concentrations at which we see 

inhibition of GDNF release. 

IV.4.6 EGFR 

C6 cells do not contain a functional EGFR system, as EGFR is not phosphorylated in 

response to 100 ng/mL EGF,92 but they do express the receptor.92,135 Treatment of C6 cells with 

50 ng/mL EGF in the GDNF release assay results in no induction of GDNF (53.5 ± 3.9 pg/mL 

vs. 65.5 ± 16.5 pg/mL of the control in a representative experiment), which is consistent with 

Verity’s 24-hour data (1.1 ± 0.85 fold/control).40a  We used AG1478 to rule out its involvement 

in our mechanism in the event it is transactivated via an intracellular mechanism.  AG1478 has 

Ki = 16 nM144 and IC50 = 3 nM, with IC50 values for HER2-Neu and PDGFR > 100 µM.145  Use 

of 10 µM AG1478 resulted in virtually complete prevention of GDNF release by XL-026 (Figure 

47).  The inhibitor dose-dependently inhibits release, but is not very potent (IC50 values ~ 

between 600 and 3500 nM, not shown).  The lack of potency in the low nanomolar 

concentrations indicates that we are likely observing off-target effects. 
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Figure 47. Structure of EGFR inhibitor AG1478 and its almost complete inhibition at 10 µM of 
XL-026 (10 µM)-induced GDNF release from C6 cells (passage number 41). GDNF protein 
concentrations (pg/mL) in the conditioned medium were measured using ELISA after 48 hours. 
Data represent ± SEM of biological replicates within one experiment, representative of three 
independent experiments. *** p < 0.001 indicates statistical significance compared to the control 
as calculated by one-way ANOVA followed by Tukey’s post-hoc test. 

 

IV.4.7 TGFβ−R 

Transforming growth factor beta (TGF-β) is a growth factor with roles in development, 

differentiation, and maintenance of the immune system, and its receptor is a single-pass 

serine/threonine kinase.146  In C6 cells, the presence of the TGF-β receptor mRNA, but not 

TGF−β, was detected.135b   This growth factor system is interesting because TGF-β is known to 

induce VEGF and PDGF expression147 and even more so because GDNF responsiveness in 

neurons is increased in response to TGF-β via recruitment of GFRα1 to the plasma membrane.148 

In the latter study, the authors found that pre-treatment, with TGF-β was required for GDNF-

induced survival of primary chick neurons, and when incubated together, they dramatically 

potentiated the survival independently of Ret and GFRα1 expression.  TGF-β, however, only 

produced slight GDNF releases in our assay at 50 ng/mL in each of five experiments, all of 

which demonstrated a trend in GDNF increase by the protein but not all of which were 

statistically significant (Figure 48).  
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Figure 48.  Increase in GDNF release by TGF-β (50 ng/mL, 48 hours) showing NGF as a 
negative control (50 ng/mL).  GDNF protein concentrations (pg/mL) in the conditioned medium 
were measured using ELISA after 48 hours. Data represent ± SEM of biological replicates within 
one experiment, representative of at least independent experiments. * p < 0.05 indicates 
statistical significance compared to the control as calculated by one-way ANOVA followed by 
Tukey’s post-hoc test. 

 

Pharmacological inhibition was performed to address the receptors’ involvement in 

GDNF release by isoquinuclidines using the TGF-β receptor kinase inhibitor SD-208.149  This 

compound is relatively selective for TGF-βRI, 50 times more selective over TGF-βRII in a 

kinase assay.  At 5 µM, it also inhibits EGFR by 68%, MEK2 by 87%, and PKD by 70%, with 

marginal to no effects on p38 MAPK, c-JNK, ERK2, PKA and PKC in a kinase assay.149  

Though the published MEK inhibition is disturbing, we observed no significant effect on GDNF 

release upon treatment with 10 µM of SD-208 (Figure 49).   
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Figure 49.  TGFβ-RI inhibitor SD-208 and its lack of effect at 10 µM on GDNF release by XL-
026 (10 µM, 48 hours) in C6 (passage number 42).  GDNF protein concentrations (pg/mL) in the 
conditioned medium were measured using ELISA after 48 hours. Data represent ± SEM of 
biological replicates within one experiment, representative of three independent experiments. ** 
p < 0.01 indicates statistical significance compared to the control as calculated by one-way 
ANOVA followed by Tukey’s post-hoc test.  XL-026 was not statistically significant in the 
specific experiment shown, likely a consequence of the large SEM bars shown.  

 
 Also of note is the fact that FGF-β induces TGF-β  release in glioma cells.150  Since it is 

well established that FGF-β induces GDNF release in gliomas, we thought it might be possible 

that FGF-β could lead to TGF-β release, which perhaps would be an intermediary on the way to 

GDNF synthesis and release; however, since exogenous TGF-β did not induce strong release, 

and no significant increases in TGF-β were detected by ELISA (not shown), we may conclude 

that TGF- β receptors are not a likely direct or indirect target of XL-026.  

 

IV.4.8 Other Growth Factor and Cytokine Receptors 

To rule out other growth factor receptors, and investigate various other cytokines and 

signaling proteins that activate ERK1/2, we assembled a panel of growth factors and cytokines 

based on their receptor expression in C6 cells. The proteins included ciliary neurotrophic factor 

(CNTF),139b hepatocyte growth factor (HGF, the ligand for c-Met), 139b heregulin (also 

neuregulin-1, Her, related to EGF and a ligand for the erbB family of RTKs), insulin-like growth 
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factors –I and –II (IGF-I, IGF-2), and stem cell factor (SCF, ligand for the RTK c-Kit). 139b  The 

GPCR agonist neuromedin B,151 which is a ligand for bombesin-like receptors, and the cytokines 

IL-6 and leukemia inhibitory factor (LIF) were also included (Figure 50).   The results showed 

slight, irreproducible increases in some cases, but overall no treatment conditions induced robust 

GDNF release.  

 

Figure 50.  Ligand screen (all at 50 ng/mL) with NGF (50 ng/mL) as a negative control and 
PDGF-BB (50 ng/mL) as a positive control.  GDNF protein concentrations (pg/mL) in the 
conditioned medium were measured using ELISA after 48 hours. Data represent ± SEM of 
biological replicates within one experiment, representative of three independent experiments. 
Only PDGF-BB induced statistically significant release in this experiment.  [NGF = nerve 
growth factor; CNTF = ciliary neurotrophic factor; Her = heregulin; HGF = hepatocyte growth 
factor; IGF = insulin-like growth factor; IL-6 = interleukin 6; LIF = leukemia inhibitory factor; 
SCF = stem cell factor; PDGF-BB = platelet-derived growth factor BB.]  

 
 

IV.5 Nuclear and Cytokine Receptor Involvement 

IV.5.1 Glucocorticoid (GR) Receptors 

C6 cells express type I (mineralocorticoid, high affinity glucocorticoid) and type II 

(classical glucocorticoid) corticosteroid receptors, which are nuclear receptors.152   Mifepristone 

(RU486) is a glucocorticoid153 and progesterone receptor antagonist, and its pre- and co-

GDNF release from C6 (P42)

[G
D

N
F]

 p
g/

m
l

DMSO
NGF

CNTF
Her

HGF
IG

F-1
IG

F-II IL-6 LIF

Neu
ro

med
in

SCF

PDGF-B
B

0

50

100

150

200

250



 249 

incubation with XL-026 (10 µM) results in reproducible, statistically significant potentiation of 

GDNF release by the isoquinuclidine (Figure 51).  This is extremely intriguing considering that 

this compound also acts as an antagonist at the progesterone receptor.  This could be a 

consequence of σ1R activity, since progesterone and other neuroactive steroids bind to σ1R.56,96  

It should be noted that these results are preliminary, as 10 µM is a high concentration relative to 

the affinity of the antagonist for the receptors (Ki = 1 nM at progesterone and glucocorticoid 

receptors154), so it could be an off-target effect. 

  

 

Figure 51. Structure of glucocorticoid and progesterone receptor antagonist mifepristone 
(RU486) and its potentiation of XL-026 (10 µM)-induced GDNF release at 10 
µM in C6 cells (passage number 41).  GDNF protein concentrations (pg/mL) in the conditioned 
medium were measured using ELISA after 48 hours. Data represent ± SEM of biological 
replicates within one experiment, representative of three independent experiments. * p < 0.05 
and *** p < 0.001 indicate statistical significance compared to the control as calculated by one-
way ANOVA followed by Tukey’s post-hoc test.   

 

IV.5.2 Estrogen Receptors 

Estrogen receptors are also nuclear receptors and act as transcription factors upon 

activation and translocation to the nucleus.  We utilized the agonist β-estradiol and antagonist 

fulvestrant to determine if antagonism of the receptor affects GDNF release in our assay.  β-
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Estradiol (10 µM) induced no significant GDNF release (3.0 ± 1.2 pg/mL vs. 1.6 ± 1.6 pg/mL 

from the control in a representative experiment), whereas the antagonist elicited a strong, 

reproducible and statistically significant increase in GDNF release in the presence of XL-026 

(Figure 52).  Like with mifepristone, it is possible that this potentiation is occurring through σ1 

or σ2R receptors, but that makes it all the more interesting because on their own, the antagonists 

do not lead to GDNF release.  

 

 

Figure 52. Structure of the ER antagonist fulvestrant and its affect on GDNF release by XL-026 
(10 µM) at 10 µM in C6 cells (passage number 42).  GDNF protein concentrations (pg/mL) in 
the conditioned medium were measured using ELISA after 48 hours. Data represent ± SEM of 
biological replicates within one experiment, representative of three independent experiments. 
**** p < 0.0001 indicates statistical significance compared to the control as calculated by one-
way ANOVA followed by Tukey’s post-hoc test.   

 

IV.5.3 TNF-α  Receptors 

Tumor necrosis factor alpha (TNF-α) is a inflammatory cytokine that induces signaling 

through its receptors TNF-α type I receptor (TNF-R1) and TNF-α type II receptor (TNF-R2), 

which in turn leads to activation of the JNK pathway and NF-κB.   TNF-α type I (TNF-R1) and 

TNF-α type II (TNF-R2) mRNA was induced in C6 cells after treatment with exogenous TNF-

α.155  The cytokine may have some neuroprotective effects, as it induces up-regulation of BDNF 
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in astrocytes.156  Its connection to GDNF lies in its co-induction of expression with GDNF in 

response to Leu-Ile, a dipeptide investigated as a therapeutic agent for drug dependence.157   

Also, exogenous and endogenous TNF-α induces GDNF expression in cultured astrocytes.158  

Thus, it is well established that TNF-α induces GDNF production in astrocytes, and Verity 

reported significant release (1.69 ± 0.33 fold/control) in C6 cells in response to 10 ng/mL at 24 

hours.40a Therefore we treated C6 cells with TNF-α to determine if GDNF is released after 48 

hours.   Indeed, TNF-α (50 ng/mL) induces a statistically significant, highly reproducible release 

of GDNF from the cells.   

 

 

Figure 53.  TNF-α (50 ng/mL, 48 hours) induces GDNF release from C6 cells (passage number 
42).  XL-026 (10 µM) is included as a positive control, and VEGF (50 ng/mL) as a negative 
control.  GDNF protein concentrations (pg/mL) in the conditioned medium were measured using 
ELISA after 48 hours. Data represent ± SEM of biological replicates within one experiment, 
representative of three independent experiments. **** p < 0.0001 indicates statistical 
significance compared to the control as calculated by one-way ANOVA followed by Tukey’s 
post-hoc test.   

 

Thalidomide is known to reduce production of inflammatory cytokines, and its use (10 

µM) in conjunction with XL-026 treatment (10 µM) in our GDNF release assay results in no 

attenuation or potentiation of release, suggesting that though TNF-α is capable of inducing 
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robust GDNF release in response to exogenous application, it likely does not play a role in the 

release by isoquinuclidines.  Further support for this conclusion comes from the fact that the 

5HT2AR agonist (±)-DOI is a picomolar inhibitor of TNF-α,159 and co-incubation of DOI (albeit 

at 10 µM, not shown) with XL-026 (10 µM) results in no attenuation of signal.  

 
 

 
 

Figure 54. Structure of TNF-α production inhibitor thalidomide and its effect (10 µM) on XL-
026 (10 µM)-induced GDNF release in C6 cells (passage number 41).  GDNF protein 
concentrations (pg/mL) in the conditioned medium were measured using ELISA after 48 hours. 
Data represent ± SEM of biological replicates within one experiment, representative of three 
independent experiments. ** p < 0.01 indicates statistical significance compared to the control as 
calculated by one-way ANOVA followed by Tukey’s post-hoc test.   

 
 
 Thus far, based on treatment with small molecule, protein and cytokine ligands, we have 

found that treatment with (±)-DOI, a 5HT2AR agonist, N-methylhistaprodifen, an H1 agonist, 

FGF-β, PDGF-AB or PDGF-BB, and TNF-α lead to significant and reproducible GDNF release 

from the cells, and of the receptors for these ligands, pharmacological inhibition experiments 

implicate FGFR and PDGFR in the mechanism of release.   Based on receptor antagonist work, 

potentiation of XL-026-induced GDNF release appears to be occurring with antagonists of 

nuclear receptors, and adrenergic/serotonergic antagonist propranolol, and PTX.  These results 

reveal the complexity of the signaling pathways, in this case in the context of GDNF synthesis 
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and release.  How our compound achieves this is not currently clear, but a more extensive 

discussion of isoquinuclidine-induced potentiation in of FGF-β, PDGF ligands, and TNF-α can 

be found later in Section V. 

 

IV.6 Sigma Receptor Involvement 

We sought to examine σ receptor involvement in our mechanism as PDSP screening data 

indicated that XL-026 and related isoquinuclidines bind to sigma with high potency and 

selectivity.   A variety of ligands reported as ‘agonists’ and ‘antagonists’ of both σ1R and σ2R 

were chosen to test at the high concentration of 10 µΜ.  We observed that compounds defined as 

σ1R agonists, namely (+)-SKF-10047 and PRE-084 (structures are shown in Figure 10) did not 

elicit GDNF release from C6 cells, whereas the σ2R agonist PB28 induced a robust release.   

Interestingly, the non-selective σR ligand 1,3-di-o-tolylguanidine (DTG), did not affect basal 

release.  However, rimcazole, a sigma ligand that appears to act as an antagonist at low 

concentrations, but as a partial agonist at higher concentrations (and also shows binding affinity 

toward 5-HT2 and opioid receptors),160 induces a strong response in GDNF release (Figure 56).   

 

 

Figure 55. Chemical structures of σ2R agonist PB28 and nonselective σR ligand DTG (1,3-di-o-
tolylguanidine). 
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Figure 56. Effect of sigma ligands (all treatments at 10 µM) on GDNF release from C6 cells 
(passage number 42).  GDNF protein concentrations (pg/mL) in the conditioned medium were 
measured using ELISA after 48 hours. Data represent ± SEM of biological replicates within one 
experiment, representative of at least three independent experiments for each treatment. *** p < 
0.001 and **** p < 0.0001 indicate statistical significance compared to the control as calculated 
by one-way ANOVA followed by Tukey’s post-hoc test.   

 

Since it appeared that σ receptors, or a mechanism related to σ receptors, might be 

inducing GDNF release, we sought to modulate the release by using the σ1R antagonist 

BD1047161 and the σ2R antagonist SM-21.162  We were surprised to find that the antagonists 

induced GDNF release on their own, with apparently similar efficacy as XL-026. Also, 

concomitant treatment with either antagonist with XL-026 did not induce further increase in 

release.  This implies that either the antagonists induce release by an unknown mechanism, yet 

also inhibit the XL-026-induced release, or that both small molecules are functioning through the 

same pathway, and that pathway can only reach a maximal induction leading to GDNF release.  

Also, it is impossible to determine if ‘antagonists’ are functioning through σ1R or σ2R 

exclusively, as they are not selective at the concentration we used, 10 µΜ.  To examine the dose-

dependence of their release, we incubated XL-026 (10 µΜ) and XL-008 (10 µΜ, Rich 

GDNF release from C6 (P42)

DMSO

XL-02
6

PB28

PRE08
4

0

100

200

300

[G
D

N
F]

 p
g/

m
l

***

***

GDNF release from C6 (P42)

DMSO

XL-00
8

(+)
-S

KF-10
04

7
DTG

Rim
ca

zo
le

0

500

1000

1500

[G
D

N
F]

 p
g/

m
l ****

****



 255 

Karpowicz) with varying concentrations of BD1047 (Figure 58) and SM21 (Figure 59).   We 

found that the antagonists are practically inactive at 1 µΜ, similar to our isoquinuclidines.   

 

 

Figure 57.  Structures of σ1R antagonist BD1047 and σ2R antagonist SM21. 
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A.  

 

B. 

 

Figure 58.  Modulation of XL-026 (A) and XL-008 (B) induced GDNF release in C6 cells 
(passage number 41) by varying concentrations of BD1047 (10 nM to 10 µM).  XL-026 and XL-
008 were both used at 10 µM.  GDNF protein concentrations (pg/mL) in the conditioned medium 
were measured using ELISA after 48 hours. Data represent ± SEM of biological replicates within 
one experiment, representative of three independent experiments for each treatment. * p < 0.05 
and *** p < 0.001 indicate statistical significance compared to the control as calculated by one-
way ANOVA followed by Tukey’s post-hoc test. This representative experiment was performed 
by Rich Karpowicz.  

 
In Figure 58, note that the magnitude of release by XL-008 is unchanged by the presence 

of BD1047, but in the case of XL-026, BD1047 does contribute a small, additional increase in 
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release.  We postulate that this phenomenon is caused by maximal activation of a particular 

receptor or pathway, and since XL-026 is not as potent as XL-008, it alone has not reached the 

maximum threshold for induced release.   

A.  

 

B. 

 

Figure 59. Modulation of XL-026 (A) and XL-008 (B) induced GDNF release in C6 cells 
(passage number 41) by varying concentrations of SM21 (10 nM to 10 µM).  XL-026 and XL-
008 were both used at 10 µM.  GDNF protein concentrations (pg/mL) in the conditioned medium 
were measured using ELISA after 48 hours. Data represent ± SEM of biological replicates within 
one experiment, representative of three independent experiments for each treatment. * p < 0.05 
and *** p < 0.001 indicate statistical significance compared to the control as calculated by one-
way ANOVA followed by Tukey’s post-hoc test. This representative experiment was performed 
by Rich Karpowicz. 
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To confirm that selected sigma antagonists induce GDNF release, we examined the σ1R 

antagonist NE-100 used frequently by many laboratories163 and a structural analog of BD1047, 

BD1063.   As expected, they induced release on their own as well, and there was a small increase 

in GDNF release in the presence of XL-026 (10 µM), suggesting an additive effect up to the 

maximum release achievable by C6 cells (Figure 60). 

 

 

 

 

       A.        B.  

 

 

 

 

 

 

 

 

 

Figure 60.  (A) σ1R antagonist NE100 and its induction of GDNF release from C6 cells (passage 
number 41).  (B) σ1R antagonist BD1063 and its effect on GDNF release from C6 cells.  All 
compounds were used at 10 µM. GDNF protein concentrations (pg/mL) in the conditioned medium 
were measured using ELISA after 48 hours. Data represent ± SEM of biological replicates within one 
experiment, representative of three independent experiments for each treatment. ** p < 0.01 and *** p 
< 0.001 indicate statistical significance compared to the control as calculated by one-way ANOVA 
followed by Tukey’s post-hoc test. 
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When considering why a compound like PB28, which is supposedly a σ2R agonist, 

would induce release, but nonselective sigma antagonists do as well, we need to keep in mind 

that the definition of sigma agonist versus antagonist is tentative and unclear and the assignment 

of agonist versus antagonist may be different when determined by different assays.164 For 

example, BD1047 has even been reported as either an antagonist or a partial agonist of σ1R.165 

Furthermore, the concentrations at which these σR ligands induce GDNF release are much 

higher than the reported binding affinities and functional potencies (< 1 µM). It is highly 

possible that PB28 behaves like rimcazole, which is why they are both such strong releasers.  

As mentioned earlier in this chapter, Prgmc1 is the putative σ2R, so we were curious 

what the effect of Prgmc1 modulation would be in our assay.  Progesterone, neither at 10 µM or 

10 nM, does not result in GDNF release, though it was reported to lead to BDNF release from C6 

cells.66  

On the other hand, the molecule AG205, a Prgmc1 antagonist,166 induces release on its 

own at 10 µΜ.   The results of pre- and then co-incubation of AG205 with XL-026 does not 

block or attenuate XL-026-induced GDNF release (Figure 61).  
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Figure 61.  Structure of Pgrmc1 inhibitor AG205 and its effect at 10 µM on GDNF release by 
XL-026 (10 µM, 48 hours) in C6 cells (passage number 41). GDNF protein concentrations 
(pg/mL) in the conditioned medium were measured using ELISA after 48 hours. Data represent 
± SEM of biological replicates within one experiment, representative of three independent 
experiments for each treatment. ** p < 0.01 and *** p < 0.001 indicate statistical significance 
compared to the control as calculated by one-way ANOVA followed by Tukey’s post-hoc test 

 
 

V. Potentiation of Growth Factor-Induced GDNF Release 

The hypothesis that XL-026 can act as a direct agonist at the RTKs suggested by the 

inhibition experiments or as a potentiator of growth factors (that may be secreted) prompted us to 

examine the effect of co-incubation XL-026 with FGF-β and PDGF.    Surprisingly, we found 

that GDNF release was enhanced by co-incubation, which called for a more detailed 

investigation.  

V.1 FGFR-Induced GDNF Release is Potentiated by XL-026 

Co-treatment of C6 cells with highly active concentrations of both XL-026 (10 µM) and 

FGF-β (50 ng/mL) resulted in a statistically significant increase in GDNF release, and we 

discovered that this potentiation is concentration-dependent, where as low as 1 µM XL-026 

produced statistically significant release (Figure 62).  Comparing the release for FGF-β alone 
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with that co-incubated with 1 µM XL-026, the release is more than doubled, whereas there is 

only a trace of an increase in XL-026-induced GDNF release at this concentration.   This effect is 

magnified at 5 and 10 µΜ XL-026.   At each of these concentrations (1, 5 and 10 µM XL-026) 

the magnitude of release induced by coincubation of XL-026 and FGF-

β is greater than the sum of those induced by individual treatment.  

 

 

Figure 62.  XL-026-induced potentiation of FGF-β-induced GDNF release is dose-dependent. 
Various concentrations of XL-026 and FGF-β were incubated with C6 cells (passage number 41) 
and GDNF protein concentrations (pg/mL) in the conditioned medium were measured using 
ELISA after 48 hours. Data represent ± SEM of biological replicates within one experiment, 
representative of three independent experiments for each treatment. * p < 0.05 and **** p < 
0.0001 indicate statistical significance compared to the control as calculated by one-way 
ANOVA followed by Tukey’s post-hoc test. 

 
Knowing that the potentiation is dependent on the concentration of XL-026, we next 

performed a dose-response study to determine the affect of varying the concentration of  FGF-β.  

Using concentrations from 0.1 ng/mL to 100 ng/mL FGF-β, we found XL-026-induced GDNF 

release is potentiated with FGF-β with EC50 ~ 2 ng/mL (Figure 63, preliminary results).   
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Figure 63. XL-026 induces potentiation of FGF-β-induced GDNF release potently.  Various 
concentrations of XL-026 with and without FGF-β were incubated with C6 cells (passage 
number 41) and GDNF protein concentrations (pg/mL) in the conditioned medium were 
measured using ELISA after 48 hours. Data represent ± SEM of biological replicates within one 
experiment, preliminary results.   

 

The concept of potentiating an FGF-β-induced response has been noted in the literature, as 

a small molecule pyrimidine compound MS-818 is known to enhance the neurotrophic effects of 

FGF-β.167   

V.2 PDGFR-Induced GDNF Release is Potentiated by XL-026 

Concomitant treatment of C6 cells with PDGF-AB and XL-026 results in a potentiation in 

PDGF-AB-induced release, albeit to a lesser extent than that for FGF-β, and the potentiation is 

dose-dependent on XL-026 as well.  As the release is lower for PDGF-treated cells (causing us to 

use 100 ng/mL in this experiment), error bars are at times larger, but the SEM in the 

representative experiment shown does not obscure the fact that the release caused by PDGF-AB 

and XL-026 (10 µM) together is more than double the release due to XL-026 alone and more 

than addition of the values obtained with each agent.  Though the error in this particular 

experiment is large and interferes with statistical analyses, it is clear that potentiation begins at 5 
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µM XL-026 (whereas in the case of FGF-β, potentiation was observable at 1 µM XL-026; Figure 

64).   

 

 

Figure 64.  PDGF-AB-induced GDNF release is potentiated in a dose-dependent manner by XL-
026.  Various concentrations of XL-026 and PDGF-ΑΒ were incubated with C6 cells (passage 
number 41) and GDNF protein concentrations (pg/mL) in the conditioned medium were 
measured using ELISA after 48 hours. Data represent ± SEM of biological replicates within one 
experiment, representative of three independent experiments for each treatment. ** p < 0.05,  
indicates statistical significance compared to the control as calculated by one-way ANOVA 
followed by Tukey’s post-hoc test. 

 

V.3 TNF-α-R-Induced GDNF Release is Potentiated by XL-026 

The potentiation of GDNF release by TNF-α is strongly potentiated by XL-026 at 5 and 10 

µM; no potentiation on GDNF release is observed at 1 µM (Figure 65). 

 

GDNF release from C6 P41 (T39)
PDGF-AB (100ng/ml) + XL-026 potentiation

DMSO

XL-02
6 1

uM

XL-02
6 5

uM

XL-02
6 1

0u
M

PDGF

PDGF + 
1u

M 02
6

PDGF + 
5u

M 02
6

PDGF + 
10

uM 02
6

0

100

200

300

400
[G

D
N

F]
 p

g/
m

l

XL-026 only

**



 264 

 
Figure 65. XL-026-induced potentiation of TNF-α-induced GDNF release is dose-dependent. 
Various concentrations of XL-026 and TNF-α were incubated with C6 cells (passage number 41) 
and GDNF protein concentrations (pg/mL) in the conditioned medium were measured using 
ELISA after 48 hours. Data represent ± SEM of biological replicates within one experiment, 
representative of three independent experiments for each treatment. * p < 0.05 and **** p < 
0.0001 indicate statistical significance compared to the control as calculated by one-way 
ANOVA followed by Tukey’s post-hoc test. 

 

V.4 Other RTKs Are Not Potentiated by Co-treatment With XL-026 

Once the potentiation of GDNF release by XL-026 and FGF-β was discovered, we 

immediately screened the major growth factors in our ligand panel to determine if the 

phenomenon was applicable to other growth factors.  The results below suggest that potentiation 

does not occur if the growth factor itself does not induce release, though we intend to continue 

testing other cytokines to confirm this conclusion.  Potentiation in a similar scenario has been 

observed with Trk receptors, as small molecules have been reported that potentiate the activity of 

NT-3.168  BDNF, EGF, NGF, TGF-β, and VEGF had no effect on XL-026-induced GDNF 

release (Figure 66).  
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V.5 RTK Signaling Potentiation: Precedent 

As discussed previously, sigma receptors have been reported to lead to expression of 

neurotrophins and growth factors, and potentiate NGF-induced neurite outgrowth from PC12 

cells.  Several sigma ligands are capable of doing so, including donepezil (but not an 

acetylcholinesterase (AChE) inhibitor that does not bind to σ1R),169 SA4503 and other σ1R 

Figure 66.  (A) BDNF, (B) EGF, (C) NGF, (D) TGF-β, and (E) VEGF do not potentiate GDNF 
release in the presence of XL-026.  XL-026 (10 µM) was incubated with C6 cells (passage 
number 42) in the presence and absence of a growth factor and GDNF protein concentrations 
(pg/mL) in the conditioned medium were measured using ELISA after 48 hours. Data represent ± 
SEM of biological replicates within one experiment, representative of three independent 
experiments for each treatment. * p < 0.05 and ** p < 0.01 indicate statistical significance 
compared to the control as calculated by one-way ANOVA followed by Tukey’s post-hoc test.  
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agonists such as fluvoxamine,170 ifenprodil,171 and papaverine.172 In each case, the authors 

demonstrated σ1R-dependence by using NE100, the σ1R antagonist, and since upon activation, 

σ1R separates from IP3R on the ER that induces its activation, they used the IP3 receptor 

inhibitor Xestospongin C.  The cells were incubated with the treatments for 4-5 days, so the 

treatment may be considered chronic, as in our 48-hour assay.  Ketamine also potentiates NGF-

induced neurite outgrowth in a σ1R-dependent manner.173   Another study utilizing chronic 

treatment discovered that fluoxetine and olanzapine increase FGF-β mRNA and protein 

expression in rat prefrontal cortex, hippocampus, and striatum when co-administered, but 

independently do not lead to an increase in expression.174   This phenomenon also occurred in a 

study where alone, (+)-PTZ has no effect on neurite sprouting, but in the presence of NGF, it 

potentiates sprouting and shifts the dose curve to the left, but only until the maximum induction 

at 20 ng/mL NGF is reached.67   It appears in the study that there is a maximal effect that any 

combination of σ1R ligand and NGF may have; this maximal effect on neurite sprouting also 

manifests itself the presence of 15% serum in the experimental medium, as opposed to 0.5% 

serum used in their other experiments.  This is intriguing for us, as we also see what appears to 

be a maximal threshold for GDNF release by our compounds with/without σ1R antagonist 

ligands.  It would be interesting to see if GDNF release is dependent on serum proteins, as we 

use 0.5% serum in our experimental medium. σ2R ligands are also capable of various processes; 

for example, they potentiate conventional chemotherapies and improve survival in models of 

pancreatic adenocarcinoma.175   

 Other examples include σR-mediated potentiation of the PLC-γ pathway by 

antidepressants.  BDNF is known to activate the PLC-γ/IP3/Ca2+ signaling pathway (Chapter 2) 

and chronic 48 hour pretreatment with the antidepressants imipramine and fluvoxamine 



 267 

potentiate activation of PLC-γ and glutamate release by BDNF.176  Both of these effects were 

PLC-γ and IP3-dependent, while Akt and ERK1/2 were not potentiated and the protein 

expression of PLC-γ, TrkB, or BDNF was not changed by pretreatment with imipramine.  

Imipramine also enhanced the interaction of TrkB and PLC-γ.   Thus, there is a significant 

literature precedent for σ receptors inducing potentiation of signaling.   

 

VI. Conclusions and Mechanistic Models 

GDNF is an important neurotrophic factor and therefore its induction and release by 

small molecules may represent a promising experimental approach to treating a number of brain 

disorders.  On the basis of the natural product ibogaine that shows remarkable effects in animals 

and in humans, we generated several derivatives that show high efficacy of GDNF release and 

modest potency (~ 5 µM), such as compounds XL-026, which was the focus of the present 

investigation.   

We have systematically mapped the C6 glioma cell line, the frequently used cell model of 

glia cells, with respect to potential molecular targets and their signaling involved in XL-026-

induced release of GDNF, including an exhaustive list of GPCR receptors, RTK receptors, 

cytokine receptors and nuclear receptors.  We selected these molecular targets on the basis of the 

following criteria:  1) Precedent for involvement in induction of GDNF expression and/or 

release; 2) evidence for expression in C6 cells; and 3) ability to activate ERK1/2; and used 

pharmacological approaches to assess their potential involvement.  In parallel, we submitted XL-

026 (as well as other related analogs) to a broad CNS receptor screen (PDSP, 50 common CNS 

targets).  On the basis of extensive data acquired by this study and the literature precedent, there 
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are four key molecular targets that are likely involved directly in the mechanism of XL-026 

action: σ receptors (σ1R or σ2R), PDGFR (1 or 2), FGFR (1 or 2), and ERK1/2/5.  

VI.1 Mechanistic Model for Potentiation of FGF-β  and PDGF-Induced GDNF Release 

We propose that XL-026 binds to σ1R and/or σ2R, which then potentiates the MAPK 

signaling pathway turned on by the corresponding RTK receptor, which in turn activates 

ERK1/2/5 and leads to GDNF expression, synthesis and release (Figure 67).  The exact 

mechanism is not known, but σRs are protein chaperones that may interact and thus modulate the 

RTK receptor complex or any downstream signaling proteins.  The use of several inhibitors of 

different structures confirm the ERK kinases as the signaling hub and the central target that 

regulates GDNF induction in C6 cells.  
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Figure 67.  Proposed mechanism for isoquinuclidine-induced GDNF synthesis and release.  
Isoquinuclidine enters the cell and binds to σR (either σ1R or σ2R) in ER and/or in the plasma 
membrane, possibly inducing its translocation from the ER.  σRs either directly associate and 
modulate the RTK or they associate and modulate the downstream signaling proteins.   
Isoquinuclidines either potentiate RTK-induced signaling or activates MAPK signaling directly 
from σRs. 

 

VI.2 Mechanistic Model for XL-026-Induced GDNF Release: σRs as Key Players 

We also propose that σ1R or σ2R (Pgrmc1) is the primary molecular target for XL-026 as 

supported by the binding assays (Ki (σ1R) = 2.3 nM, Ki (σ2R) = 2.1 nM).  Interaction of XL-026 

with a σR induces activation of the MAPK signaling pathway, most likely via PDGFR (or a 

related RTK), ultimately leading to ERK1/2/5 activation and GDNF up-regulation.  As a 

variation of this model, XL-026 through its interaction with σRs induces release of growth 

factors that in an autocrine manner induce subsequent up-regulation and release of GDNF.  For 
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example, XL-026 may induce FGF-β release, which would then lead to FGFR activation, 

activation of the MAPK signaling pathway, and finally synthesis and release of GDNF.   

 

VI.3 Alternate Mechanistic Models: Stress-Induced GDNF Release 

Cellular stress, as described earlier, leads to activation of protective signaling, including 

generation of ROS.  ER stress may be a consequence of isoquinuclidine penetration into the cell, 

which could then either induce ROS or other second messenger signaling to activate RTKs, 

which then induce the MAPK pathway to turn on GDNF synthesis and release.  

 

VII.   Future studies 

To confirm the involvement of the selected targets, most notably the σ1 and σ2Rs, we will 

perform the knock-down experiments with silencing RNA.  If induction of release by XL-026, 

XL-008, and possibly even σ ligands we have been working with is dampened or eradicated by 

receptor knockdown, then we will have confirmation that the σ receptor is involved in the 

induction mechanism.  We could also attempt to support these experiments by trying 

progesterone as a sigma inhibitor,177 since progesterone on its own does not induce release 

whereas the sigma antagonists do.   

To determine if our compounds, like siramesine and other sigma ligands, are lysosomal 

detergents, our compounds will be compared to the published compounds in the same lysosomal 

pH detection assay using LysoTracker Red that the authors use,72 as well as possibly amiodarone 

and imipramine.178 GDNF release in response to this stress would be an appropriate protective 

response by the cell.   
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To determine if ER stress is the culprit of triggering GDNF release in response to stress, 

we may be able to identify up-regulation of ER stress proteins, like GRP78  (BiP),70 GRP94, and 

calreticulin,179 as well as COX-2, another protein induced by ER stress.180  Western blotting 

should detect increased expression of these ER proteins.   We can also use pharmacology to 

induce or probe ER stress, like using the Ca2+ ionophore A23187 to release calcium from ER 

stores, brefeldin A to inhibit ER-to-Golgi vescicle transport, and tunicamycin to prevent protein 

glycosylation at the ER, which induces stress.  

If receptor up-regulation is leading to the potentiation of GDNF release, we can easily 

probe for the expression of the protein of interest.  In the near future, we would like to consider 

the possibility that FGFR, PDGFR, and TNFα-R are induced by isoquinuclidine treatment, since 

the synthesis-dependent release could be a direct product of the up-regulation of these three 

receptors.  Since the receptors are already known to induce GDNF release following activation 

by their cognate ligands, increasing receptor expression could further sensitize them to their 

ligand and produce a non-linear increase in GDNF release.  

Also, we need to know if the potentiation is dependent on endogenous ligand secretion.  If, 

for example, treatment with XL-026 induces FGF-β release from C6 cells, the ligand will go on 

to induce GDNF synthesis and release in an autocrine or paracrine manner; further increasing the 

concentration of the growth factor by exogenous application could provide the boost in GDNF 

synthesis and release that we observe.   

An alternate mechanism for a potentiation of GDNF release could be from two distinct 

signaling pathways; if the isoquinuclidines induce a particular signaling cascade that leads to 

GDNF synthesis and release, whereas the protein ligands FGF-β, PDGF-AB, or TNF-α induce a 

separate pathways that converges with the first at a specific point, the consequence is 
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coincidence detection by the protein(s) that function as the convergence point and modulate the 

input from the two separate pathways.181  In this case, that modulation might be synergistic, since 

the result is greater than if the two separate GDNF releases were added together.  
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VIII.    Experimental 

Materials 

C6 cells were purchased from American Type Culture Collection (#CCL-107; Rockville, 

MD) at passage 37 and routinely grown in a 5% CO2 atmosphere at 37°C, in DMEM (high 

glucose with GlutaMax, #10569; Life Technologies Corp., Grand Island, NY) supplemented 

with 5% FBS (Premium Select, Atlanta Biologicals; Atlanta, GA), 100 U/mL penicillin, and 100 

µg/mL streptomycin (#15140, Life Technologies).  SH-SY5Y cells (CRL-2266) were obtained 

from ATCC and grown in DMEM supplemented with 10% FBS, 100 U/mL penicillin and 100 

µg/mL streptomycin.  100 mm polystyrene tissue culture plates were purchased from Corning 

(#430169; Corning, NY), and 6-well (#657165) and 12-well plates (#665180) were purchased 

from Greiner Bio-One (Monroe, NC).  For ELISA assays, Nunc Immulon 4 HBX flat well plates 

were used (#3855; Thermo Scientific, Pittsburgh, PA), and other assays were performed using 

Costar 96-well plates (#3370, Corning).  

Protein ligands, cytokines and small molecules were obtained from the following: 

Recombinant artemin (540-17), BDNF (450-02), CNTF (450-50), EGF (400-25), FGF-β (100-

18B), GDNF (450-10), HGF (100-39), heregulin-β1 (100-03), IGF-I (100-11), IGF-II (100-12), 

β-NGF (450-01), neurturin (450-11), persephin (450-12), PDGF-AB (100-00AB), PDGF-BB 

(100-14B), SCF (400-22), TGF-β1 (100-21), TNF-α (400-14), VEGF165 (400-31) were 

purchased from Peprotech (Rocky Hill, NJ).   Recombinant rat LIF (LIF3005) was purchased 

from Millipore (Temecula, CA). Neuromedin B was obtained from American Peptide Company 

(Sunnyvale, CA).  NT-3, NT-4, N-acetyl-5-hydroxytryptamine (N-acetylserotonin, NAS), 

adenosine, BD1047 hydrochloride, (±)-DOI hydrochloride, β-estradiol, endothelin-1, fulvestrant, 

histamine hydrochloride, (-)-isoproterenol hydrochloride, K252a, LY-354740, N-
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dimethylhisaprodifen dioxalate, melatonin, mifepristone, naltrexone hydrochloride, nor-

binaltorphimine dihydrochloride (norBNI), PB28 dihydrochloride, PD184352, PRE-084, (±) 

propranolol hydrochloride, and RPI-1 were purchased from Sigma-Aldrich (Saint Louis, MO).   

DTG and U0126 were purchased from Alfa Aesar (Ward Hall, MA), AG1478 was purchased 

from Alexis Biochemicals (San Diego, CA), scopolamine was purchased from TCI (Portland, 

OR), and PD 173074 was purchased from TSZ Chem (Framingham, MA). Ibogaine (I-001) was 

purchased from Cerilliant Corporation (Round Rock, TX).  (RS)-APICA, endomorphin-1, 

mepyramine maleate, NE 100 hydrochloride, rimcazole dihydrochloride, (+)-SKF-10047 

hydrochloride, SM-21 maleate, CGS 21680 hydrochloride, and (-)-U50488 hydrochloride, were 

purchased from Tocris (Minneapolis, MN). (+)-Bicuculline, genistein, isoguvacine, 

prostaglandin E2, and SQ 22536 were purchased from Enzo Life Sciences (Farmingdale, NY).  

BIX02189, KRN633, and PD98059 were acquired from Selleck Chemicals (Houston, TX).  

Losartan, LY294002, sphingosine-1-phosphate, and Tyrphostin AG1296 were purchased from 

Cayman Chemicals (Ann Arbor, MI). KN-93 (water-soluble) and pertussis toxin were from 

Calbiochem/EMD Biosciences (San Diego, CA).  Carbachol and cycloheximide were purchased 

from Acros Organics (via Fisher Scientific, Pittsburgh, PA), and cyproheptadine hydrochloride, 

prazosin hydrochloride, and thalidomide were purchased from MP Biomedicals (Santa Ana, 

CA). 

Materials for western blotting experiments were obtained from the following:  Protease 

inhibitor cocktail (P8340), phosphatase inhibitor cocktails 2 (P5726) and 3 (P0044), and bovine 

serum albumin (BSA) were from Sigma-Aldrich.  ERK1/2 rabbit polyclonal antibody (#9102), 

phospho-ERK1/2 (Thr202/Tyr204) XP™ rabbit monoclonal antibody (#4370), phospho-Ret 

(Tyr905) polyclonal rabbit (#3221), anti-mouse HRP-linked (#7076) and anti-rabbit HRP-linked 
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(#7074) antibodies were purchased from Cell Signaling Technology (Beverly, MA).  Ret (H-

300) rabbit polyclonal antibody (#sc-13104) was purchased from Santa Cruz Biotechnology 

(Santa Cruz, CA).  Pierce RIPA buffer, Pierce ECL 2 Western Blotting Substrate, and Pierce 

BCA Protein Assay kit were purchased from Thermo Scientific (Rockford, IL).  

 

GDNF ELISA 

C6 cells were thawed into two 100 mm culture plates in complete growth medium, grown 

to 95% confluency, and sub-cultured into 100 mm culture dishes and grown to confluency before 

cryopreserving at passage 39.  Before most experiments, one vial was thawed into two 100 mm 

culture dishes and grown to confluency before plating into 12-well plates at 300,000 

cells/well.  24 hours later, the cells were washed in PBS and the medium replaced with 0.5 

mL/well of low serum (0.5% FBS) DMEM.  24 hours later, the experiment was started by adding 

0.5 mL/well of 2x concentrated treatment medium to each well.  Each treatment was performed 

in duplicate.  48 hours after addition of agonists or experimental compounds, the experiment was 

stopped by transferring the culture medium into microcentrifuge tubes, washing the cells twice 

with cold PBS, and storing the monolayers and supernatants at -80°C until assaying.  

To measure GDNF release from C6 cells, the GDNF Emax ImmunoAssay kit from 

Promega (Madison, WI) was used according to the manufacturer’s instructions.  Briefly, a 96-

well ELISA plate was coated overnight with 100 uL/well of 1:1000 monoclonal GDNF antibody 

in carbonate coating buffer at 4°C.  The next day, the plate was blocked with 200 µL/well of 1X 

Block & Sample Buffer for 1 hour at room temperature while the samples thawed.  The samples 

were homogenized before distributing into the assay plate.  The standard curve was generated 

according to the instructions in the kit and the samples were assayed in triplicate wells, 100 
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uL/well, and incubated for 6 hours at room temperature while shaking.  The plate was washed 5 

times with TBST with a manual plate washer and incubated with 100 µL/well of 1:500 

polyclonal GDNF antibody in 1X Block & Sample Buffer overnight at 4°C.  On the following 

day the plate was washed as before and incubated for two hours with 1:200 secondary antibody 

in 1X Block & Sample Buffer at room temperature with shaking, while the TMB One 

development solution was equilibrated to room temperature.  After washing the plate, 100 

µL/well TMB One was added per well and incubated for several minutes until the aqua blue 

color in the standard curve was prominent.  The reaction was stopped by 100 mL/well of 1N 

aqueous HCl and the absorbance was measured at 450 nM in a Bio-Tek H1MF plate reader 

(Burlington, VT).  LDH release into the medium was detected using the CytoTox 96 

NonRadioactive Cytotoxicity assay (Promega) according to the manufacturer’s instructions. 

 

Ret and ERK1/2 activation  

 SH-SY5Y or C6 cells were grown until confluence and subcultured into 6-well plates at 1 

million cells/well and grown for 24 hours in 2 to 3 mL of medium.  For C6 experiments, cells 

were washed with sterile PBS and the medium replaced with 0.5% FBS low serum medium; for 

SH-SY5Y experiments, cells were washed and the medium was replaced with 1% FBS low 

serum medium.  On the day of the experiment, a small volume was removed from the well (100 

µL) and replaced with an equal volume of a concentrated solution of experimental compound or 

control at the appropriate time.  Compounds were diluted from 1000x concentrated stock 

solutions in DMSO or sterile water.  For time course experiments, a control well was run for 

every time point, since basal ERK1/2 phosphorylation rises approximately 10 – 15 minutes after 

a treatment is added.  To stop the experiment, the medium was removed and the plates rinsed 
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twice with cold PBS while on ice.  150 to 200 µL of lysis buffer (Pierce RIPA buffer + 1:100 

protease inhibitor cocktail, phosphatase 2 and 3 inhibitor cocktails, and 0.5M EDTA solution) 

was immediately added to the wells and incubated over ice for 15 minutes to an hour, after which 

cells were scraped and the lysate transferred into microcentrifigue tubes.  After homogenizing 

the samples with a sonicator, the tubes were centrifuged at 14,000 rpm for 10 minutes, the 

supernatant was transferred to fresh tubes, and the protein content was measured using the Pierce 

BCA assay.   Equal quantities of protein (~10 µg for ERK blots, > 20 µg for Ret blots) were 

added to each well of a 10% bis-tris acrylamide gel and were blotted onto Immobilon P PVDF 

transfer membranes.  Blots were blocked in 3% BSA in TBS for at least 1 hour, followed by 

overnight incubation with the primary antibody with rocking at 4°C.  The next day, the blots 

were washed 3 x 5 minutes with TBST (0.05% Tween 20), incubated for 1 hour with secondary 

antibody (typically 1:1000) in the buffer indicated on the antibody’s corresponding data sheet, 

then washed again for 3 x 5 minutes prior to development with the ECL kit. Chemiluminescence 

was visualized with a Kodak Image Station 440CF imager. 

 

Data Analysis 

 Bands from Western blots were routinely quantified using densitometry by the gel 

analysis tools in ImageJ (NIH, Bethesda, MD).  For GDNF release experiments, data were 

initially processed in Microsoft Excel to calculate GDNF concentrations using a standard curve, 

then transferred into GraphPad Prism (6) to create graphs and perform statistical analyses.  

Multiple comparisons were analyzed by one-way ANOVA followed by Tukey’s post-test, and 

statistical significance was considered p > 0.05.  

 
 



 278 

 
 

IX.    References 

                                                
1 Lin, L. F.; Doherty, D. H.; Lile, J. D.; Bektesh, S.; Collins, F. GDNF: a glial cell line- derived 

neurotrophic factor for midbrain dopaminergic neurons. Science 1993, 260, 1130–1132. 
 
2 (a) Enomoto, H. Regulation of neural development by glial cell line-derived neurotrophic factor 

family ligands. Anat. Sci. Int. 2005, 80, 42–52.  (b) de Graaff, E.; Srinivas, S.; Kilkenny, C.; 
D’Agati, V.; Mankoo, B. S.; Costantini, F.; Pachnis, V. Differential activities of the RET 
tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev.  2001, 15, 
2433–2444. 

3 (a) Carnicella, S.; Ron, D. GDNF—A potential target to treat addiction. Pharmacol. Ther. 
2009, 122, 9–18.  (b) Carnicella, S.; Ahmadiantehrani, S.; Janak, P. H.; Ron, D. GDNF is an 
endogenous negative regulator of ethanol-mediated reward and of ethanol consumption after a 
period of abstinence. Alcohol. Clin. Exp. Res. 2009, 33, 1012–1024.  (c) Carnicella, S.; 
Amamoto, R.; Ron, D. Excessive alcohol consumption is blocked by glial cell line-derived 
neurotrophic factor. Alcohol 2009, 43, 35–43.  (d) Leggio, L.; Cardone, S.; Ferrulli, A.; Kenna, 
G. A.; Diana, M.; Swift, R. M.; Addolorato, G. Turning the clock ahead: potential preclinical 
and clinical neuropharmacological targets for alcohol dependence. Curr. Pharm. Des. 2010, 
16(19), 2159–2218.  (e) Ghitza, U. E.; Zhai, H.; Wu, P.; Airavaara, M.; Shaham, Y.; Lu, L. 
Role of BDNF and GDNF in drug reward and relapse: A review. Neurosci. Biobehav. Rev. 
2010, 35, 157–171. 

4  Airaksinen, M. S.; Saarma, M. The GDNF family: Signalling, biological functions and 
therapeutic value. Nature Rev. Neurosci. 2002, 3, 383–394. 

5 Arighi, E.; Borrello, M. G.; Sariola, H. RET tyrosine kinase signaling in development and 
cancer. Cytokine Growth Factor Rev. 2005, 16, 441–467. 

6 Nanobashvili, A.; Airaksinen, M. S.; Kokaia, M.; Rossi, J.; Asztély, F.; Olofsdotter, K.; 
Mohapel, P.; Saarma, M.; Lindvall, O.; Kokaia, Z.   Development and persistence of kindling 
epilepsy are impaired in mice lacking glial cell line-derived neurotrophic factor family receptor 
α2. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 12312-12317. 

7 Asai, N.; Jijiwa, M.; Enomoto, A.; Kawai, K.; Maeda, K.; Ichiahara, M.; Murakumo, Y.; 
Takahashi, M. RET receptor signaling: Dysfunction in thyroid cancer and Hirschsprung’s 
disease. Pathol. Int. 2006, 56, 164–172. 

8 Messer, C. J.; Eisch, A. J.; Carlezon, W. A.; Whisler, K.; Shen, L.; Wolf, D. H.; Westphal, H.; 
Collins, F.; Russell, D. S.; Nestler, E. J. Role for GDNF in biochemical and behavioral 
adaptations to drugs of abuse. Neuron 2000, 26, 247–257. 



 279 

                                                                                                                                                       
9 (a) Kitagawa, H.; Hayashi, T.; Mitsumoto, Y.; Koga, N.; Itoyama, Y.; Abe, K. Reduction of 

ischemic brain injury by topical application of glial cell line derived neurotrophic factor after 
permanent middle cerebral artery occlusion. Stroke 1998, 29, 1417–1422. (b) Wang, Y.; Lin, 
S.-Z.; Chiou, A.-L.; Williams, L. R.; Hoffer, B. J. Glial cell line-derived neurotrophic factor 
protects against ischemia-induced injury in the cerebral cortex. J. Neurosci. 1997, 17, 4341–
4348.  (c) Arvidsson, A.; Kokaia, Z.; Airaksinen, M. S.; Saarma, M.; Lindvall, O. Stroke 
induces widespread changes of gene expression for glial cell line-derived neurotrophic factor 
family receptors in the adult rat brain. Neurosci. 2001, 106, 27–41.  

10 (a) Åkerud, P.; Canals, J. M.; Snyder, E. Y.; Arenas, E.  Neuroprotection through delivery of 
glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s 
disease.  J. Neurosci. 2001, 21, 8108–8118. (b) Zurn, A. D.; Widmer, H. R.; Aebischer, P.  
Sustained delivery of GDNF: towards a treatment for Parkinson’s disease. Brain Res. Rev. 
2001, 36, 222–229.  (c) Rangasamy, S. B.; Soderstrom, K.; Bakay, R. A.E.; Kordower, J. H. 
Neurotrophic factor therapy for Parkinson’s disease. Prog. Brain Res. 2010, 184, 237–264.  

 
11 Kotzbauer, P. T.; Lampe, P. A.; Heuckeroth, R. O.; Golden, J. P.; Creedon, D. J.; Johnson Jr., 

E. M.; Milbrandt, J. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 
1996, 384, 467–470. 

 
12 Milbrandt, J.; de Sauvage, F. J.; Fahrner, T. J.; Baloh, R. H.; Leitner, M. L.; Tansey, M. G.; 

Lampe, P. A.; Heuckeroth, R. O.; Kotzbauer, P. T.; Simburger, K. S.; Golden, J. P.; Davies, J. 
A.; Vejsada, R.; Kato, A. C.; Hynes, M.; Sherman, D.; Nishimura, M.; Wang, L-.C.; Vandlen, 
R.; Moffat, B.; Klein, R. D.; Poulsen, K.; Gray, C.; Garces, A.; Johnson Jr., E. M.  Persephin, a 
novel neurotrophic factor related to GDNF and neurturin. Neuron 1998, 20, 245–253. 

 
13 Baloh, R. H.; Tansey, M. G.; Lampe, P. A.; Fahrner, T. J.; Enomoto, H.; Simburger, K. S.; 

Leitner, M. L.; Araki, T.; Johnson Jr., E. M.; Milbrandt, J.  Artemin, a novel member of the 
GDNF ligand family, supports peripheral and central neurons and signals through the GFRα3-
RET receptor complex. Neuron 1998, 21, 1291– 1302. 

14 Paratcha, G.; Ledda, F.; Baars, L.; Coulpier, M.; Besset, V.; Anders, J.; Scott, R.; Ibáñez, C. F. 
Released GFRalpha1 potentiates downstream signaling, neuronal survival, and differentiation 
via a novel mechanism of recruitment of c-Ret to lipid rafts. Neuron 2001, 29, 171–184. 

15 Jing, S.; Wen, D.; Yu, Y.; Holst, P. L.; Luo, Y.; Fang, M.; Tamir, R.; Antonio, L.; Hu, Z.; 
Cupples, R.; Louis, J.-C.; Hu, S.; Altrock, B. W.; Fox, G. M. GDNF-induced activation of the 
Ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 
1996, 85, 1113–1124. 

16 Sariola, H.; Saarma, M. Novel functions and signalling pathways for GDNF. J. Cell Sci. 2003, 
116, 3855–3862. 

 
17 Paratcha, G.; Ledda, F.; Ibáñez, C. F. The neural cell adhesion molecule NCAM is an 

alternative signaling receptor for GDNF family ligands. Cell 2003, 113, 867-879,  



 280 

                                                                                                                                                       

18 Santoro, M.; Melillo, R. M.; Carlomagno, F.; Vecchio, G.; Fusco, A. Minireview: RET: 
normal and abnormal functions. Endocrinology 2004, 145, 5448–5451. 

19 Glick, S. D.; Maisonneuve, I. M.; Szumlinski, K. K. 18-Methoxycoronaridine (18-MC) and 
ibogaine: Comparison of antiaddictive efficacy, toxicity, and mechanisms of action.  Ann. N.Y. 
Acad. Sci. 2000, 914, 369–386. 

20 (a) Popik, P.; Layer, R. T.; Skolnick, P. 100 Years of ibogaine:  Neurochemical and 
pharmacological actions of a putative anti-addictive drug.  Pharm. Rev. 1995, 47(2), 235–253. 
(b) Sershen, H.; Hashim, A; Lajtha, A. Chapter 6. Characterization of multiple sites of action 
of ibogaine. In The Alkaloids: Chemistry and Biology 2001, 56, 115–133. (c) Alper, K. R. 
Chapter 1. Ibogaine: A review. In The Alkaloids: Chemistry and Biology 2001, 56, 1–38. 

21 (a) Bowen, W. D.; Vilner, B. J.; Williams, W.; Bertha, C. M.; Kuehne, M. E.; Jacobson, A. E. 
Ibogaine and its congeners are sigma 2 receptor-selective ligands with moderate affinity. Eur. 
J. Pharmacol. 1995, 279, R1–R3. (b) Bowden, W. D. Chapter 9. Sigma Receptors And Iboga 
Alkaloids.  The Alkaloids: Chemistry and Biology. 2001, 56, 173–191. 

 
22 Obach, R. S.; Pablo, J.; Mash, D. C. Cytochrome P4502D6 catalyzes the O-demethylation of 

the psychoactive alkaloid ibogaine to 12-hydroxyibogamine. Drug. Metab. Dispos. 1998, 26, 
764–768. 

 
23 (a) Glick, S. D.; Maisonneuve, I. M.; Hough, L. B.; Kuehne, M. E.; Bandarage, U. K.  (±)-18-

Methoxycoronaridine: A novel Iboga alkaloid congener having potential anti-addictive 
efficacy. CNS Drug Rev. 1999, 5(1), 27–42.  (b) Maisonneuve, I. M.; Glick, S. D. Anti-
addictive actions of an iboga alkaloid congener: a novel mechanism for a novel treatment.  
Pharmacol. Biochem. Behav. 2003, 75(3), 607–618.  (c) Glick, S. D.; Keuhne, M. E.; 
Maisonneuve, I. M.; Bandarage, U. K.; Molinari, H. H. 18-Methoxycoronaridine, a non-toxic 
iboga alkaloid congener: effects on morphine and cocaine self-administration and on 
mesolimbic dopamine release in rats.  Brain Res. 1996, 719(1-2), 29–35. 

24 Carnicella, S.; He, D.-Y.; Yowell, Q. V; Glick, S. D.; Ron, D. Noribogaine, but not 18-MC, 
exhibits similar actions as ibogaine on GDNF expression and ethanol self-administration. 
Addict. Biol. 2010, 15, 424–433. 

25 He, D.-Y.; McGough, N. N. H.; Ravindranathan, A.; Jeanblanc, J.; Logrip, M. L.; Phamluong, 
K.; Janak, P. H.; Ron, D. Glial cell line-derived neurotrophic factor mediates the desirable 
actions of the anti-addiction drug ibogaine against alcohol consumption. J. Neurosci. 2005, 25, 
619–628. 

26 He, D.-Y.; Ron, D. Autoregulation of glial cell line-derived neurotrophic factor expression: 
implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB J. 2006, 
20, E1820–E1827. 



 281 

                                                                                                                                                       
27 Sherer, T. B.; Fiske, B. K.; Svendsen, C. N.; Lang, A. E.; Langston, J. W. Crossroads in 

GDNF therapy for Parkinson’s disease. Mov. Disord. 2006, 21, 136–141. 

28 Saavedra, A.; Baltazar, G.; Duarte, E. P. Driving GDNF expression: The green and the red 
traffic lights. Prog. Neurobio. 2008, 86, 186–215. 

29 Tokugawa, K.; Yamamoto, K.; Nishiguchi, M.; Sekine, T.; Sakai, M.; Ueki, T.; Chaki, S.; 
Okuyama, S. XIB4035, a novel nonpeptidyl small molecule agonist for GFRalpha-1. 
Neurochem. Int. 2003, 42, 81–86. 

30 Esposito, C. L.; D’Alessio, A.; de Franciscis, V.; Cerchia, L. A cross-talk between TrkB and 
Ret tyrosine kinases receptors mediates neuroblastoma cells differentiation. PloS One 2008, 3, 
e1643. 

31 Maruyama, W.; Nitta, A.; Shamoto-Nagai, M.; Hirata, Y.; Akao, Y.; Yodim, M.; Furukawa, 
S.; Nabeshima, T.; Naoi, M.  N-Propargyl-1 (R)-aminoindane, rasagiline, increases glial cell 
line-derived neurotrophic factor (GDNF) in neuroblastoma SH-SY5Y cells through activation 
of NF-κB transcription factor.  Neurochem. Int., 2004, 44, 393–400. 

32 Wiesenhofer, B.; Stockhammer, G.; Kostron, H.; Maier, H.; Hinterhuber, H.; Humpel, C. Glial 
cell line-derived neurotrophic factor (GDNF) and its receptor (GFR-α1) are strongly expressed 
in human gliomas. Acta Neuropathol. 2000, 99, 131–137. 

33 Nishiguchi, M.; Tokugawa, K.; Yamamoto, K.; Akama, T.; Nozawa, Y.; Chaki, S.; Ueki, T.; 
Kameo, K.; Okuyama, S. Increase in secretion of glial cell line-derived neurotrophic factor 
from glial cell lines by inhibitors of vacuolar ATPase. Neurochem. Int. 2003, 42, 493–498.  

 
34 Grobben, B.; De Deyn, P. P.; Slegers, H. Rat C6 glioma as experimental model system for the 

study of glioblastoma growth and invasion. Cell Tissue Res. 2002, 310, 257–270.  

35 Caumont, A.-S.; Octave, J.-N.; Hermans, E. Amantadine and memantine induce the expression 
of the glial cell line-derived neurotrophic factor in C6 glioma cells. Neurosci. Lett. 2006, 394, 
196–201. 

36 Caumont, A.-S.; Octave, J.-N.; Hermans, E. Specific regulation of rat glial cell line-derived 
neurotrophic factor gene expression by riluzole in C6 glioma cells. J. Neurochem. 2006, 97, 
128–139. 

37 Shao, Z.; Dyck, L. E.; Wang, H.; Li, X.-M. Antipsychotic drugs cause glial cell line-derived 
neurotrophic factor secretion from C6 glioma cells. J. Psychiatry Neurosci. 2006, 31, 32–37. 

38 Hisaoka, K.; Nishida, A; Koda, T.; Miyata, M.; Zensho, H.; Morinobu, S.; Ohta, M.; 
Yamawaki, S. Antidepressant drug treatments induce glial cell line-derived neurotrophic factor 
(GDNF) synthesis and release in rat C6 glioblastoma cells. J. Neurochem. 2001, 79, 25–34. 



 282 

                                                                                                                                                       
39 Golan, M.; Schreiber, G.; Avissar, S. Antidepressants elevate GDNF expression and release 

from C6 glioma cells in a β-arrestin1-dependent, CREB interactive pathway. Int. J. 
Neuropsychopharmacol. 2011, 14, 1289–1300. 

40 (a) Verity, A. N.; Wyatt, T. L.; Hajos, B.; Eglen, R. M.; Baecker, P. A.; Johnson, R. M. 
Regulation of glial cell line-derived neurotrophic factor release from rat C6 glioblastoma cells. 
J. Neurochem. 1998, 70, 531–539. (b) Verity, A. N.; Wyatt, T. L.; Lee, W.; Hajos, B.; Baecker, 
P. A.; Eglen, R. M.; Johnson, R. M. Differential regulation of glial cell line-derived 
neurotrophic factor (GDNF) expression in human neuroblastoma and glioblastoma cell lines. J. 
Neurosci. Res. 1999, 55, 187–197. 

41 (a) Daub, H.; Wallasch, C.; Lankenau, A; Herrlich, A.; Ullrich, A. Signal characteristics of G 
protein-transactivated EGF receptor. EMBO J. 1997, 16, 7032–7044. (b) Fisher, O. M.; Hart, 
S.; Ullrich, A. Dissecting the epidermal growth factor receptor signal transactivation pathway.  
Methods Mol. Biol. 2006, 327, 85–97. 

42 Malarkey, K.; Belham, C. M.; Paul, A; Graham, A; McLees, A; Scott, P. H.; Plevin, R. The 
regulation of tyrosine kinase signalling pathways by growth factor and G-protein-coupled 
receptors. Biochem. J. 1995, 309, 361–375.  (b) Lee, F. S.; Rajagopal, R.; Chao, M. V 
Distinctive features of Trk neurotrophin receptor transactivation by G protein-coupled 
receptors. Cytokine Growth Factor Rev. 2002, 13, 11–17.  (c) Shah, B. H.; Catt, K. J. GPCR-
mediated transactivation of RTKs in the CNS: mechanisms and consequences. Trends 
Neurosci. 2004, 27, 48–53.  (d) Piiper, A; Zeuzem, S. Receptor tyrosine kinases are signaling 
intermediates of G protein-coupled receptors. Curr. Pharm. Des. 2004, 10, 3539–3545. 

43 (a) Wetzker, R.; Böhmer, F.-D. Transactivation joins multiple tracks to the ERK/MAPK 
cascade.  Nat. Rev. Mol. Cell. Biol. 2003, 4, 651–657. (b) Werry, T. D.; Sexton, P. M.; 
Christopoulos, A. ‘Ins and outs’ of seven-transmembrane receptor signalling to ERK. Trends 
Endocrin. Met. 2005, 16, 26–33. 

44 (a)  Hisoaka, K.; Nishida, A.; Takebayashi, M.; Koda, T.; Yamawaki, S.; Nakata, Y. Serotonin 
increases glial cell line-derived neurotrophic factor release in rat C6 glioblastoma cells.  Brain 
Res. 2004, 1002, 167–170.  (b) Tsuchioka, M.; Takebayashi, M.; Hisaoka, K.; Maeda, N.; 
Nakata, Y. Serotonin (5-HT) induces glial cell line-derived neurotrophic factor (GDNF) 
mRNA expression via the transactivation of fibroblast growth factor receptor 2 (FGFR2) in rat 
C6 glioma cells. J. Neurochem. 2008, 106, 244–257. 

45 Whitty, A.; Borysenko, C. W. Small molecule cytokine mimetics. Chem. Biol. 1999, 6, R107–
R118. 

46 (a) Jang, S.-W.; Liu, X.; Chan, C.-B.; Weinshenker, D.; Hall, R. A; Xiao, G.; Ye, K. 
Amitriptyline is a TrkA and TrkB receptor agonist that promotes TrkA/TrkB 
heterodimerization and has potent neurotrophic activity. Chem. Biol. 2009, 16, 644–656. (b) 
Jang, S.-W.; Liu, X.; Yepes, M.; Shepherd, K. R.; Miller, G. W.; Liu, Y.; Wilson, W. D.; Xiao, 
G.; Blanchi, B.; Sun, Y. E.; Ye, K. A selective TrkB agonist with potent neurotrophic activities 



 283 

                                                                                                                                                       
by 7,8-dihydroxyflavone. Proc. Nat. Acad. Sci. U.S.A.  2010, 107, 2687–2692. (c) Massa, S. 
M.; Yang, T.; Xie, Y.; Shi, J.; Bilgen, M.; Joyce, J. N.; Nehama, D.; Rajadas, J.; Longo, F. M. 
Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in 
rodents. J. Clin. Invest. 2010, 120(5), 1774–1785.  (d) Jang, S.-W.; Liu, X.; Chan, C. B.; 
France, S. A; Sayeed, I.; Tang, W.; Lin, X.; Xiao, G.; Andero, R.; Chang, Q.; Ressler, K. J.; 
Ye, K. Deoxygedunin, a natural product with potent neurotrophic activity in mice. PloS One 
2010, 5, e11528. (e) Jang, S.-W.; Liu, X.; Pradoldej, S.; Tosini, G.; Chang, Q.; Iuvone, P. M.; 
Ye, K. N-acetylserotonin activates TrkB receptor in a circadian rhythm. Proc. Nat. Acad. Sci. 
U.S.A 2010, 107, 3876–3881. 

47 (a) Pirrung, M. C.; Deng, L.; Lin, B.; Webster, N. J. G. Quinone replacements for small 
molecule insulin mimics. ChemBioChem 2008, 9, 360–362.  (b) Lin, B.; Li, Z.; Park, K.; Deng, 
L.; Pai, A.; Zhong, L.; Pirrung, M. C.; Webster, N. J. G. Identification of novel orally available 
small molecule insulin mimetics. J. Pharmacol. Exp. Ther. 2007, 323(2), 579–585.   

48 (a) Tian, S.-S.; Lamb, P.; King, A. G.; Miller, S. G.; Kessler, L.; Luengo, J. I.; Averill, L.; 
Johnson, R. K.; Gleason, J. G.; Pelus, L. M.; Dillon, S. B.; Rosen, J.  A small, nonpeptidyl 
mimic of granulocyte-colony-stimulating factor. Science 1998, 281, 257–259. (b) Kusano, K.; 
Ebara, S.; Tachibana, K.; Nishimura, T.; Sato, S.; Kuwaki, T.; Taniyama, T. A potential 
therapeutic role for small nonpeptidyl compounds that mimic human granulocyte colony-
stimulating factor. Blood 2004, 103, 836–842. 

49 Massa, S. M.; Xie, Y.; Yang, T.; Harrington, A. W.; Kim, M. L.; Yoon, S. O.; Kraemer, R.; 
Moore, L. A; Hempstead, B. L.; Longo, F. M. Small, nonpeptide p75NTR ligands induce 
survival signaling and inhibit proNGF-induced death. J. Neurosci. 2006, 26, 5288–5300. 

50 Lin, B.; Pirrung, M.; Deng, L.; Li, Z. Neuroprotection by small molecule activators of the 
nerve growth factor receptor. J. Pharmacol. Exp. Ther. 2007, 322, 59–69. 

51 Freidinger, R. M. Nonpeptidic ligands for peptide and protein receptors. Curr. Opin. Chem. 
Biol. 1999, 3, 395–406. 

52 Vilner, B. J.; John, C. S.; Bowen, W. D. Sigma-1 and sigma-2 receptors are expressed in a 
wide variety of human and rodent tumor cell lines.  Cancer Res. 1995, 55, 408–413. 

53 Barg, J.; Thomas, G. E.; Bem, W. T.; Parnes, M. D.; Ho, A. M.; Belcheva, M. M.; McHale, R. 
J.; McLachlan, J. A.; Tolman, K. C.; Johnson, F. E. In vitro and in vivo expression of opioid 
and sigma receptors in rat C6 glioma and mouse N18TG2 neuroblastoma cells. J. Neurochem. 
1994, 63, 570–574. 

54 Guitart, X.; Codony, X.; Monroy, X. Sigma receptors: biology and therapeutic potential. 
Psychopharmacology 2004, 174, 301–319. 

55 Hayashi, T.; Su, T.-P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate 
Ca(2+) signaling and cell survival. Cell 2007, 131, 596–610. 



 284 

                                                                                                                                                       
56 (a) Snyder, S. H.; Largent, B. L. Receptor mechanisms in antipsychotic drug action: focus on 
σ receptors. J Neuropsychiatry 1989, 1, 7–15.  (b) Ishikawa, M.; Hashimoto, K. The role of 
sigma-1 receptors in the pathophysiology of neuropsychiatric diseases. J. Receptor Ligand 
Channel Res. 2010, 3, 25–36.  (b) Kourrich, S.; Su, T.-P.; Fujimoto, M.; Bonci, A. The sigma-1 
receptor: roles in neuronal plasticity and disease. Trends Neurosci. 2012, 1–10.     

57 Morin-Surun, M. P.; Collin, T.; Denavit-Saubié, M.; Baulieu, E. E.; Monnet, F. P. Intracellular 
sigma1 receptor modulates phospholipase C and protein kinase C activities in the brainstem. 
Proc. Nat. Acad. Sci. U.S.A 1999, 96, 8196–8199. 

58 Tan, F.; Guio-Aguilar, P. L.; Downes, C.; Zhang, M.; O’Donovan, L.; Callaway, J. K.; Crack, 
P. J. The σ 1 receptor agonist 4-PPBP elicits ERK1/2 phosphorylation in primary neurons: a 
possible mechanism of neuroprotective action. Neuropharmacology 2010, 59, 416–424. 

59 Penas, C.; Pascual-Font, A.; Mancuso, R.; Forés, J.; Casas, C.; Navarro, X. Sigma receptor 
agonist 2-(4-morpholinethyl)1 phenylcyclohexanecarboxylate (Pre084) increases GDNF and 
BiP expression and promotes neuroprotection after root avulsion injury. J. Neurotrauma 2011, 
28, 831–840. 

60 Fujimoto, M.; Hayashi, T.; Urfer, R.; Mita, S.; Su, T.-P. Sigma-1 receptor chaperones regulate 
the secretion of brain-derived neurotrophic factor. Synapse 2012, 66, 630–639. 

61 Kikuchi-Utsumi, K.; Nakaki, T. Chronic treatment with a selective ligand for the sigma-1 
receptor chaperone, SA4503, up-regulates BDNF protein levels in the rat hippocampus.  
Neurosci. Lett. 2008, 440, 19–22.  

62 (a) Vilner, B. J.; Bowen, W. D. Sigma receptor-active neuroleptics are cytotoxic to C6 glioma 
cells in culture. Eur. J. Pharm. 1993, 244, 199–201.  (b) Vilner, B. J.; de Costa, B. R.; Bowen, 
W. D. Cytotoxic effects of sigma ligands: sigma receptor-mediated alterations in cellular 
morphology and viability. J. Neurosci. 1995, 15, 117–134. (c) Colabufo, N. A.; Berardi, F.; 
Contino, M.; Niso, M.; Abate, C.; Perrone, R.; Tortorella, V. Antiproliferative and cytotoxic 
effects of some sigma2 agonists and sigma1 antagonists in tumour cell lines. Naunyn-
Schmiedebergs Arch. Pharmacol. 2004, 370, 106–113.  (d) Zeng, C.; Rothfuss, J.; Zhang, J.; 
Chu, W.; Vangveravong, S.; Tu, Z.; Pan, F.; Chang, K. C.; Hotchkiss, R.; Mach, R. H. Sigma-2 
ligands induce tumour cell death by multiple signalling pathways. Br. J. Cancer 2012, 106, 
693–701.   

63 Xu, J.; Zeng, C.; Chu, W.; Pan, F.; Rothfuss, J. M.; Zhang, F.; Tu, Z.; Zhou, D.; Zeng, D.; 
Vangveravong, S.; Johnston, F.; Spitzer, D.; Chang, K. C.; Hotchkiss, R. S.; Hawkins, W. G.; 
Wheeler, K. T.; Mach, R. H. Identification of the PGRMC1 protein complex as the putative 
sigma-2 receptor binding site. Nature Comm. 2011, 2, 380. 

64 Ahmed, I. S.; Rohe, H. J.; Twist, K. E.; Craven, R. J. Pgrmc1 (progesterone receptor 
membrane component 1) associates with epidermal growth factor receptor and regulates 
erlotinib sensitivity. J. Biol. Chem. 2010, 285, 24775–24782. 



 285 

                                                                                                                                                       
65 Lange, M. S.; Stampfl, A.; Hauck, S. M.; Zischka, H.; Gloeckner, C. J.; Deeg, C. A.; Ueffing, 

M. Membrane-initiated effects of progesterone on calcium dependent signaling and activation 
of VEGF gene expression in retinal glial cells. Glia 2007, 1073, 1061–1073. 

66 Su, C.; Cunningham, R. L.; Rybalchenko, N.; Singh, M. Progesterone increases the release of 
brain-derived neurotrophic factor from glia via progesterone receptor membrane component 1 
(Pgrmc1)-dependent ERK5 signaling. Endocrinology 2012, 153, 4389–4400. 

67 Takebayashi, M.; Hayashi, T.; Su, T.; Unit, C. P.; Neurobiology, C. Nerve Growth Factor-
Induced Neurite Sprouting in PC12 Cells Involves Sigma-1 Receptors  : Implications for 
Antidepressants. J. Pharmacol. Exp. Ther. 2002, 303, 1227–1237. 

68 Hung, J.-H.; Su, I.-J.; Lei, H.-Y.; Wang, H.-C.; Lin, W.-C.; Chang, W.-T.; Huang, W.; Chang, 
W.-C.; Chang, Y.-S.; Chen, C.-C.; Lai, M.-D. Endoplasmic reticulum stress stimulates the 
expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated 
protein kinase. J. Biol. Chem. 2004, 279, 46384–46392. 

69 Shweiki, D.; Neeman, M.; Itin, A.; Keshhet, E. Induction of vascular endothelial growth factor 
expression by hypoxia and by glucose deficiency in multicell spheroids: Implications for tumor 
angiogenesis.  Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 768–772.  

 
70 Marjon, P. L.; Bobrovnikova-Marjon, V.; Abcouwer, S. F. Expression of the pro-angiogenic 

factors vascular endothelial growth factor and interleukin-8/CXCL8 by human breast 
carcinomas is responsive to nutrient deprivation and endoplasmic reticulum stress.  Mol. 
Cancer 2004, 3, 4–16. 

 
71 Ostenfeld, M. S.; Fehrenbacher, N.; Høyer-Hansen, M. et. al. Effective tumor cell death by s-2 

receptor ligand siramesine involves lysosomal leakage and oxidative stress. Cancer Res. 2005, 
65, 8975-8983.  

72 Ostenfeld, M. S.; Høyer-Hansen, M.; Bastholm, L.; Fehrenbacher, N.; Olsen, O. D.; Groth-, 
L.; Puustinen, P.; Kirkegaard-Sørensen, T.; Nylandsted, J.; Farkas, T.; Jäättelä, M. Anti-cancer 
agent siramesine is a lysosomotopic detergent that induces cytoprotective autophagosome 
accumulation. Autophagy 2008, 4, 487–499. 

73 Hornick, J. R.; Vangveravong, S.; Spitzer, D.; Abate, C.; Berardi, F.; Goedegebuure, P.; Mach, 
R. H.; Hawkins, W. G. Lysosomal membrane permeabilization is an early event in sigma-2 
receptor ligand mediated cell death in pancreatic cancer.  J. Exp. Clin. Canc. Res. 2012, 31, 41. 

 
74 (a) Song, H.; Moon, A. Glial cell-derived neurotrophic factor (GDNF) promotes low-grade 

Hs683 glioma cell migration through JNK, ERK-1/2 and p38 MAPK signaling pathways. 
Neurosci. Res. 2006, 56(1), 29–38.  (b) Wan, G.; Too, H.-P. A specific isoform of glial cell 
line-derived neurotrophic factor family receptor alpha 1 regulates RhoA expression and glioma 
cell migration. J. Neurochem. 2010, 115, 759–770.  

 



 286 

                                                                                                                                                       
75 Paratcha, G.; Ledda, F.; Ibáñez, C. F. The neural cell adhesion molecule NCAM is an 

alternative signaling receptor for GDNF family ligands.  Cell 2003, 113, 867–869.  
 
76 Nishimoto, S.; Nishida, E. MAPK signaling: ERK5 versus ERK1/2.  EMBO reports 2006, 7, 

782–786.  
 
77 Mody, N.; Leitch, J.; Armstrong, C.; Dixon, J.; Cohen, P. Effects of MAP kinase cascade 

inhibitors on the MKK5/ERK5 pathway. FEBS Lett. 2001, 502, 21–24.  
 
78 Bain, J.; Plater, L.; Elliott, M.; Shpiro, N.; Hastie, J.; McLauchlan, H.; Klevernic, I.; Arthur, J. 

S. C.; Alessi, D. R.; Cohen, P. The selectivity of protein kinase inhibitors: a further update. 
Biochem. J. 2007, 408, 297–315. 

 
79 Wei, J.-W.; Yeh, S.-R.; Cheng, C.-L. Characterization of 3H-serotonin (5-HT) binding and 

effects on the phosphoinositides (PI) turnover in cultured C6 glioma and N2 neuroblastoma 
cells from rodents.  Chin. J. Physiol. 1992, 35(3), 227–239.  

 
80 (a) Bohn, L. M.; Belcheva, M. M.; Coscia, C. J. Mitogenic signaling via endogenous κ-opioid 

receptors in C6 glioma cells. J. Neurochem. 2000, 74, 564–573.  (b) Bohn, L. M.; Belcheva, M. 
M.; Coscia, C. J. µ-Opioid agonist inhibition of κ-opioid receptor-stimulated extracellular 
signal-regulated kinase phosphorylation is dynamin-dependent in C6 glioma cells. J. 
Neurochem. 2000, 74, 574–581. 

 
81 Belcheva, M. M.; Haas, P. D.; Tan, Y.; Heaton, V. M.; Coscia, C. J. The fibroblast growth 

factor receptor is at the site of convergence between µ-opioid receptor and growth factor 
signaling pathways in rat C6 glioma cells.  J. Pharmacol. Exp. Ther. 2002, 303, 909–918.  

 
82  Chien, C.-C.; Pasternak, G. W. Sigma antagonists potentiate opioid analgesia in rats.  

Neurosci. Lett. 1995, 190, 137–139.  
 
83 Castillo, C. A.; Albasanz, J. L.; Fernández, M.; Martín, M. Endogenous expression of 

adenosine A1, A2 and A3 receptors in rat C6 glioma cells.  Neurochem. Res. 2007, 32, 1056–
1070. 

 
84 Yamagata, K.; Hakata, K.; Maeda, A.; Mochizuki, C.; Matsufuji, H.; Chino, M.; Yamori, Y. 

Adenosine induces expression of glial cell line-derived neurotrophic factor (GDNF) in primary 
rat astrocytes. Neurosci. Res. 2007, 59, 467–474. 

 
85 Flajolet, M.; Wang, Z.; Futter, M.; Shen, W.; Nuangchamnong, N.; Bendor, J.; Wallach, I.; 

Nairn, A. C.; Surmeier, D. J.; Greengard, P. FGF acts as a co-transmitter through adenosine 
A2A receptor to regulate synaptic plasticity.  Nat. Neurosci. 2008, 11(12), 1402–1409.  

 
86 (a) Ikesue, H.; Kataoka, Y.; Kawachi, R.; Dohgu, S.; Shuto, H.; Oishi, R. Cyclosporine 

enhances α1-adrenoceptor mediated nitric oxide production in C6 glioma cells. Eur. J. Pharm. 
2000, 407, 221–226.  (b) Fishman, P. H.; Miller, T.; Curran, P. K.; Feussner, G. K. 



 287 

                                                                                                                                                       
Independent and coordinate regulation of β1 and β2-adrenergic receptors in rat C6 glioma 
cells. J. Rec. Res. 1994, 14(5), 281–296. 

 
87 Chen, J.; Rasenick, M. M. Chronic treatment of C6 glioma cells with antidepressant drugs 

increases functional coupling between a G protein (Gs) and adenylyl cyclase. J. Neurochem. 
1995, 64, 724–732.  

 
88 Rivera, E. et. al. AT1 receptor is present in glioma cells; its blockage reduces the growth of rat 

glioma cells.  Br J Cancer 2001, 85(9), 1396–1399.   
 
89 Clark, M. A.; Gonzalez, N. Angiotensin II stimulates rat astrocyte mitogen-activated protein 

kinase activity and growth through EGF and PDGF receptor transactivation.  Reg. Pept. 2007, 
144, 115–122.  

 
90 Couraud, P.-O.; Durieu-Trautmann, O.; Nguyen, D. L.; Marin, P.; Gilbert, F.; Strosberg, A. D. 

Functional endothelin-1 receptors in rat astrocytoma C6.  Eur. J. Pharmacol. 1991, 206(3), 
191–198.  

 
91  (a) Wan-Wan, L.; Kiang, J. G.; Chuang, D.-M. Pharmacological characterization of 

endothelin-stimulated phosphoinositide breakdown and cytosolic free Ca2+ rise in rat C6 
glioma cells. J. Neurosci. 1992, 12(3), 1077–1085. (b) Sedo, A.; Malík, R.; Vlăsicová 
K, Rovero P.  Calcium-mediated endothelin signaling in C6 rat glioma cells.  Neuropeptides 
1993, 33(1), 13–17. 

 
92 Cramer, H.; Schmenger, K.; Heinrich, K.; Horstmeyer, A.; Böning, H.; Breit, A.; Piiper, A.; 

Lundstrom, K.; Müller-Esterl, W.; Schroeder, C. Coupling of endothelial receptors to 
ERK/MAP kinase pathway. Roles of palmitoylation and Gαq. Eur. J. Biochem. 2001, 268(20), 
5449–5459. 

 
93 Koyama, Y.; Tsujikawa, K.; Matsuda, T.; Baba, A. Endothelin-1 stimulates glial cell line-

derived neurotrophic factor expression in cultured rat astrocytes.  Biochem. Biophys. Res. 
Comm. 2003, 303, 1101–1105.  

 
94 (a) Tyndale, R. F.; Hales, T. G.; Olsen, R. W.; Tobin, A. J. Distinctive patterns of GABAA 

receptor subunit mRNAs in 13 cell lines.  J. Neurosci. 1994, 14(9), 5417–5428. (b) Hales, T. 
G.; Tyndale, R. F. Few cell lines with GABAA mRNAs have functional receptors. J. Neurosci. 
1994, 14(9), 5429–5436.  

 
95 Baraldi, M.; Guidotti, A.; Schwartz, J. P.; Costa, E. GABA receptors in clonal cell lines: A 

model for study of benzodiazepine action at a molecular level.  Science 1979, 205, 821–823. 
 
96 Maurice, T.; Phan, V.-L.; Urani, A.; Kamei, H.; Noda, Y.; Nabeshima, T. Neuroactive 

neurosteroids as endogenous effectors for the sigma1 (σ1) receptor: Pharmacological evidence 
and therapeutic opportunities.  Jpn. J. Pharmacol. 1999, 81, 125-155.  

 



 288 

                                                                                                                                                       
97 Duveau, V.; Laustela, S.; Barth, L.; Gianolini, F.; Vogt, K. E.; Keist, R.; Chandra, D.; 

Homanics, G. E.; Rudolph, U.; Fritschy, J.-M. Spatiotemporal specificity of GABAA receptor-
mediated regulation of adult hippocampal neurogenesis. Eur. J. Neurosci. 2011, 34(3), 362–
373.  

 
98 (a) Peakman, M.-C.; Hill, S. J. Endogenous expression of histamine H1 receptors functionally 

coupled to phosphoinositide hydrolysis in C6 glioma cells: regulation by cyclic AMP.  Br. J. 
Pharmacol. 1994, 113, 1554–1560.  (b) Tseng, C.-L.; Wei, J.-W. Investigation on signal 
transduction pathways after H1 receptor activated by histamine in C6 glioma cells: 
Involvement of phosphatidylinositol and arachidonic acid metabolisms. J. Chin. Med. Assoc. 
2012, 75, 143–150.  

 
99 Viwatpinyo, K.; Chongthammakun, S. Activation of group I metabotropic glutamate receptors 

leads to brain-derived neurotrophic factor expression in rat C6 cells.  Neurosci. Lett. 2009, 467, 
127–130. 

 
100 Yao, H. H.; Ding, J. H.; Zhou, F.; Wang, F.; Hu, L. F.; Sun, T.; Hu, G. Enhancement of 

glutamate uptake mediates the neuroprotection exerted by activating group II or III 
metabotropic glutamate receptors on astrocytes. J. Neurochem. 2005, 92, 948–961. 

 
101 Battaglia, G.; Molinaro, G.; Riozzi, B.; Storto, M.; Busceti, C. L.; Spinsanti, P.; Bucci, D.; Di 

Liberto, V.; Mudo, G.; Corti, C.; Corsi, M.; Nicoletti, F.; Belluardo, N.; Bruno, V. Activation 
of mGlu3 receptors stimulates the production of GDNF in striatal neurons. PLoS One 2009, 
4(8), e6591. 

 
102 Taylor, S.; Srinivasan, B.; Wordinger, R. J.; Roque, R. S. Glutamate stimulates neurotrophin 

expression in cultured Muller cells. Brain Res. 2003, 111(1-2), 189–197.  
 
103 Armstrong, K. J.; Niles, L. P.  Induction of GDNF mRNA expression by melatonin in rat C6 

glioma cells.  Neuroreport 2002, 13, 473–475. 
 
104 Das, A.; Belagodu, A.; Reiter, R. J.; Ray, S. K.; Banik, N. L. Cytoprotective effects of 

melatonin on C6 astroglial cells exposed to glutamate toxicity and oxidative stress.  J. Pineal 
Res. 2008, 45, 117–124.  

 
105 Rincón Castro, L. M.; Gallant, M.; Niles, L. P. Novel targets for valproid acid: up-regulation 

of melatonin receptors and neurotrophic factors in C6 glioma cells.  J. Neurochem. 2005, 95, 
1227–1236.  

 
106 Tang, Y. P.; Mia, Y. L.; Chao, C. C.; Chen, K. Y.; Lee, E. H. Y. Enhanced glial cell line-

derived neurotrophic factor mRNA expression upon (-)-deprenyl and melatonin treatments.  J. 
Neurosci. Res. 1998, 53, 593–604.  

 
107 Pinkas-Kramarski, R.; Edelman, R.; Stein, R. Indications for selective coupling to 

phosphoinositide hydrolysis or to adenylate cyclase inhibition by endogenous muscarinic 



 289 

                                                                                                                                                       
receptor subtypes M3 and M4 but not by M2 in tumor cell lines.  Neurosci. Lett.  1990, 108(3), 
335–340.  

 
108 (a) Budd, D. C.; Willars, G. B.; McDonald, J. E.; Tobin, A. B. Phosphorylation of the Gq/11-

coupled M3-muscarinic receptor is involved in receptor activation of the ERK-1/2 mitogen-
activated protein kinase pathway. J. Biol. Chem. 2001, 276, 4581–4587. (b) Kim, J. Y.; Yang, 
M. S.; Oh, C. D.; Kim, K. T.; Ha, M. J.; Kang, S. S.; Chun, J. S. Signalling pathway leading to 
an activation of mitogen-activated protein kinase by stimulating M3 muscarinic receptor. 
Biochem. J. 1999, 337(Pt2), 275–280.  

 
109 (a) Jaiswal, N.; Diz, D. I.; Tallant, E. A.; Khosla, M. C.; Ferrario, C. M. Characterization of 

angiotensin receptors mediating prostaglandin synthesis and release in C6 glioma cells. Am. J. 
Physio.l Regul. Integr. Com.p Physiol. 1991, 260, R1000–R1006. (b) Kitanaka, J.; Hashimoto, 
H.; Gotoh, M.; Kondo, K.; Sakata, K.; Hirasawa, Y.; Sawada, M.; Suzumura, A.; Marunouchi, 
T.; Matsuda, T.; Baba, A. Expression pattern of messenger RNAs for prostanoid receptors in 
glial cell cultures. Brain Res. 1996, 707(2), 282–287.  

 
110 Park, M. K.; Kang, Y. J.; Ha, Y. M.; Jeong, J. J.; Kim, H. J.; Seo, H. G.; Lee, J. H.; Chang, K. 

C. EP2 receptor activation by prostaglandin E2 leads to induction of HO-1 via PKA and PI3K 
pathways in C6 cells. Biochem. Biophys. Res. Commun. 2009, 379(4), 1043–1047.  

 
111 Dal Toso, R.; De Bernardi, M. A.; Brooker, G.; Costa, E.; Mocchetti, I. Beta adrenergic and 

prostaglandin receptor activation increases nerve growth factor mRNA content in C6-2B rat 
astrocytoma cells. J. Pharmacol. Exp. Ther. 1988, 246, 1190–1193.  

 
112 Lebman, D. A.; Spiegel, S. Cross-talk at the crossroads of sphingosine-1-phosphate, growth 

factors, and cytokine signaling. J. Lipid Res. 2008, 49, 1388–1394.  
 
113 Sato, K.; Tomura, H.; Igarashi, Y.; Ui, M.; Okajima, F. Possible involvement of cell surface 

receptors in sphingosine 1-phosphate-induced activation of extracellular signal-regulated 
kinase in C6 glioma cells. Mol. Pharmacol. 1999, 55, 126–133. 

 
114 Vann, L. R.; Payne, S. G.; Edsall, L. C.; Twitty, S.; Spiegel, S.; Milstien, S. Involvement of 

sphingosine kinase in TNF-a-stimulated tetrahydrobiopterin biosynthesis in C6 glioma cells. J. 
Biol. Chem. 2002, 277(15), 12649–12656. 

 
115 Mologni, L.; Sala, E.; Cazzaniga, S.; Rostagno, R.; Kuoni, T.; Puttini, M.; Bain, J.; Cleris, L.; 

Redaelli, S.; Riva, B.; Formelli, F.; Scapozza, L.; Gambacarti-Passerini, C. Inhibition of RET 
tyrosine kinase by SU5416. J. Mol. Endocrin. 2006, 37, 199–212. 

 
116 Lanzi, C.; Cassinelli, G.; Cuccuru, G.; Zaffaroni, N.; Supino, R.; Vignati, S.; Zanchi, C.; 

Yamamoto, M.; Zunino, F. Inactivation of Ret/Ptc1 oncoprotein and inhibition of papillary 
thyroid carcinoma cell proliferation by indolinone RPI-1.  Cell. Mol. Life Sci. 2003, 60, 1449–
1459.  

 



 290 

                                                                                                                                                       
117 Fong, T. A. T.; Shawver, L. K.; Sun, L.; Tang, C.; App, H.; Powell, T. J.; Kim, Y. H.; 

Schreck, R.; Wang, X.; Risau, W.; Ullrich, A.; Hirth, K. P.; McMahon, G.  SU5416 is a potent 
and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that 
inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. 
Cancer Res. 1999, 59, 99–106. 

 
118   Wang, S. Y.; Chen, B.; Zhan, Y. Q.; Xu, W. X.; Li, C. Y.; Yang, R. F.; Zheng, H.; Yue, P. 

B.; Larsen, S. H.; Sun, H. B.; Yang, X. SU5416 is a potent inhibitor of hepatocyte growth 
factor receptor (c-Met) and blocks HGF-induced invasiveness of human HepG2 hepatoma 
cells.  J. Hepatol. 2004, 41, 267–273. 

	
  
119 Lanzi, C.; Cassinelli, G.; Pensa, T.; Cassinis, M.; Gambetta, R. A.; Borrello, M. G.; Menta, 

E.; Pierotti, M. A.; Zunino, F. Inhibition of transforming activity of the ret/ptc1 oncoprotein by 
2-indolinone derivative.  Int. J. Cancer 2000, 85, 384–390.  

 
120 Cuccuru, G.; Lanzi, C.; Cassinelli, G.; Pratesi, G.; Tortoreto, M.; Petrangolini, G.; Serengni, 

E.; Martinetti, A.; Laccabue, D.; Zanchi, C.; Zunino, F. Cellular effects and antitumor activity 
of RET inhibitor RPI-1 on MEN2A-associated medullary thyroid carcinoma. J. Natl. Cancer 
Inst. 2004, 96, 1006–1014.  

 
121 Cassinelli, G.; Lanzi, C.; Petrangolini, G.; Tortoreto, M.; Pratesi, G.; Cuccuru, G.; Laccabue, 

D.; Supino, R.; Belluco, S.; Favini, E.; Poletti, A.; Zunino, F.  Inhibition of c-Met and 
prevention of spontaneous metastatic spreading by the 2-indolinone RPI-1.  Mol. Cancer Ther. 
2006, 5, 2388–2397.  

 
122 (a) Caumont, A.-S.; Octave, J.-N.; Hermans, E. Specific regulation of rat glial cell line-

derived neurotrophic factor gene expression by riluzole in C6 glioma cells. J. Neurochem. 
2006, 97, 128–139. (b) Tsuchioka, M.; Hisoaka, K.; Yano, R.; Shibasaki, C.; Kajiatani, 
Takebayashi, M. Riluzole-induced glial cell line-derived neurotrophic factor production is 
regulated through fibroblast growth factor receptor signaling in rat C6 glioma cells. Brain Res. 
2011, 1384, 1–8.  

 
123 Suter-Crazzolara, C.; Unsicker, K. GDNF mRNA levels are induced by FGF-2 in rat C6 

glioblastoma cells.  Mol.  Brain Res. 1996, 41, 175–182.  
 
124 (a) Tanabe, K.; Matsushima-Nishiwaki, R.; Iida, M.; Kozawa, O.; Iida, H. Involvement of 

phosphatidylinositol 3-kinase/Akt on basic fibroblast growth factor-induced glial cell line-
derived neurotrophic factor release from rat glioma cells.  Brain Res. 2012, 1463, 21–29. (b) 
Obara, Y.; Nemoto, W.; Kohno, S.; Murata, T.; Kaneda, N.; Nakahata, N. Basic fibroblast 
growth factor promotes glial cell-derived neurotrophic factor gene expression mediated by 
activation of ERK5 in rat C6 glioma cells. Cell. Signal. 2011, 23, 666–672.  

 
125 Evans, S. J.; Choudary, P. V.; Neal, C. R.; Li, J. Z.; Vawter, M. P.; Tomita, H.; Lopez, J. F.; 

Thompson, R. C.; Meng, F.; Stead, J. D.; Walsh, D. M.; Myers, R. M.; Bunney, W. E.; Watson, 
S. J.; Jones, E. G.; Akil, H. Dysregulation of the fibroblast growth factor system in major 
depression.   Proc. Nat. Acad. Sci. 2004, 101(43), 15506–15511.  



 291 

                                                                                                                                                       
 
126 Turner, C. A.; Gula, E. L.; Taylor, L. P.; Watson, S. J.; Akil, H. Antidepressant-like effects of 

intracerebroventricular FGF2 in rats. Brain Res. 2008, 1224, 63–68.  
 
127 Hisoaka, K.; Tsuchioka, M.; Yano, R.; Maeda, N.; Kajitani, N.; Morioka, N.; Nakata, Y.; 

Takebayashi, M. Tricyclic antidepressant amitriptyline activates fibroblast growth factor 
receptor signaling in glial cells.  J. Biol. Chem. 2011, 286(24), 21118–21128.  

 
128 Bachis, A.; Mallei, A.; Cruz, M. I.; Wellstein, A.; Mocchetti, I. Chronic antidepressant 

treatments increase basic fibroblast growth factor and fibroblast growth factor-binding protein 
in neurons. Neuropharmacology 2008, 55, 1114–1120.  

 
129 Skaper, S. D.; Kee, W. J.; Facci, L.; Macdonald, G.; Doherty, P.; Walsh, F. S. The FGFR1 

inhibitor PD 173074 selectively and potently antagonizes FGF-2 neurotrophic and neurotropic 
effects.  J. Neurochem. 2000, 75, 1520–1527.  

 
130 Mohammadi, M.; Froum, S.; Hamby, J. M.; Schroeder, M. C.; Panek, R. L.; Lu, G. H.; 

Eliseenkova, A. V.; Green, D.; Schlessinger, J.; Hubbard, S. R. Crystal structure of an 
angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain.  EMBO J. 1998, 
17(20), 5896–5904.  

 
131 Millette, E.; Rauch, B. H.; Kenagy, R. D.; Daum, G.; Clowes, A. W. Platelet-derived growth 

factor-BB transactivates the fibroblast growth factor receptor to induce proliferation in human 
smooth muscle cells.  Tr. Cardio. Med. 2006, 16(1), 25–28.  

 
132 Millette, E.; Rauch, B. H.; Defawe, O.; Kenagy, R. D.; Daum, G.; Clowes, A. W. Platelet-

derived growth factor-BB-induced human smooth muscle cell proliferation depends on basic 
FGF release and FGFR-1 activation.  Circ. Res. 2005, 96, 172-179.  

 
133 Westermann, R.; Unsicker, K. Basic fibroblast growth factor (bFGF) and rat C6 glioma cells: 

Regulation of expression, absence of release, and response to exogenous bFGF.  Glia 1990, 3, 
510–521.  

 
134 Tassi, E.; Al-Attar, A.; Aigner, A.; Swift, M. R.; McDonnell, K.; Karavanov, A.; Wellstein, 

A. Enhancement of fibroblast  growth factor (FGF) activity by an FGF-binding protein.  J. 
Biol. Chem. 2001, 276(43), 40247–40253. 

 
135 (a) Hutton, L. A.; deVellis, J.; Perez-Polo, J. R. Expression of p75NTR TrkA, and TrkB mRNA 

in rat C6 glioma and type I astrocyte cultures.  J. Neurosci. Res. 1992, 32, 375–383.  (b) 
Zaheer, A. Expression of mRNAs of multiple growth factors and receptors by astrocytes and 
glioma cells: Detection with reverse transcription-polymerase chain reaction.  Cell. Mol.  
Neurobio. 1995, 15(2), 221–237.  

 



 292 

                                                                                                                                                       
136 Weis, C.; Wiesenhofer, B.; Humpel, C. Nerve growth factor plays a divergent role in 

mediating growth of rat C6 cells via binding to the p75 neurotrophin receptor.  J. Neurooncol. 
2002, 56, 59–67.  

 
137 Strawn, L. M.; Mann, E.; Elliger, S. S.; Chu, L. M.; Germain, L. L.; Niederfellner, G.; 

Ullrich, A.; Shawver, L. K. Inhibition of glioma cell growth by a truncated platelet-derived 
growth factor-b receptor.  J. Biol. Chem. 1994, 269(33), 21215–21222. 

 
138 Lokker, N. A.; Sullivan, C. M.; Hollenbach, S. J.; Israel, M. A.; Giese, N. A. Platelet-derived 

growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in 
glioblastoma cells: Evidence that the novel PDGF-C and PDGF-D ligands may play a role in 
the development of brain tumors. Cancer Res. 2002, 62, 3729–3735. 

 
139 (a) Lei, H.; Kazlauskas, A. Growth factors outside of the platelet-derived growth factor 

(PDGF) family employ reactive oxygen species/Src family kinases to activate PDGF receptor 
α and thereby promote proliferation and survival of cells. J. Biol. Chem. 2009, 284(10), 6329–
6336.  (b) Lei, H.; Velez, G.; Kazlauskas, A. Pathological signaling via platelet-derived growth 
factor receptor α involves chronic activation of Akt and suppression of p53.  Mol. Cell. Biol. 
2011, 31(9), 1788–1799.  

 
140  Kovalenko, M.; Gazit, A.; Böhmer, A.; Rorsman, C.; Rönnstrand, L.; Heldin, C.-H.; 

Waltenberger, J.; Böhmer, F.-D.; Levitzki.  Selective platelet-derived growth factor receptor 
kinase blockers reverse sis-transformation.  Cancer Res. 1994, 54, 6106–6114. 

 
141 Gazit, A.; Yee, K.; Uecker, A.; Böhmer, F.-D.; Sjöblom, T.; Östman, A.; Waltenberger, J.; 

Golomb, G.; Banai, S.; Heinrich, M. C.; Levitzski, A.  Tricyclic quinoxalines as potent kinase 
inhibitors of PDGFR kinase, Flt3 and Kit.  Bioorg. Med. Chem. 2003, 11, 2007–2018. 

 
142  Blásquez, C.; González-Feria, L.; Álvarez, L.; Haro, A.; Casanova, L.; Guzmán, M. 

Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas.  Cancer Res. 
2004, 64, 5617–5623.  

 
143 Nakamura, K.; Yamamoto, A.; Kamishohara, M.; Takahashi, K.; Taguchi, E.; Miura, T.; 

Kubo, K.; Shibuya, M.; Isoe, T. KRN633: A selective inhibitor of vascular endothelial growth 
factor receptor-2 tyrosine kinase that suppresses tumor angiogenesis and growth.  Mol. Cancer 
Ther. 2004, 3, 1639–1649.  

 
144 Ward, W. H. J.; Cook, P. N.; Slater, A. M.; Davies, D. H.; Holdgate, G. A.; Green, L. R. 

Epidermal growth factor receptor tyrosine kinase: Investigation of the catalytic mechanism, 
structure-based searching and discovery of a potent inhibitor.  Biochem. Pharmacol. 1994, 
48(4), 659–666. 

 
145 Levitzki, A.; Gazit, A. Tyrosine kinase inhibition: An approach to drug development. Science 

1995, 267, 1782–1788. 
 



 293 

                                                                                                                                                       
146 Yingling, J. M.; Blanchard, K. L.; Sawyer, J. S. Development of TGF-β signaling inhibitors 

for cancer therapy. Nat. Rev. 2004, 3, 1011–1022. 
 
147 Dunn, I. F.; Heese, O.; Black, P. McL.  Growth factors in glioma angiogenesis: FGFs, PDGF, 

EGF, and TGFs.  J. Neurooncol. 2000, 50, 121–137.  
 
148 Peterziel, H.; Unsicker, K.; Krieglstein, K. TGFβ induces GDNF responsiveness in neurons 

by recruitment of GFRα1 to the plasma membrane.  J. Cell Biol. 2002, 159(1), 157–167.  
 
149 Uhl, M.; Aulwurm, S.; Wischhusen, J.; Weiler, M.; Ma, J. Y.; Almirez, R.; Mangadu, R.; Liu, 

Y.-W.; Platten, M.; Herrlinger, U.; Murphy, A.; Wong, D. H.; Wick, W.; Higgins, L. S.; 
Weller, M.  SD-208, a novel transforming growth factor b receptor I kinase inhibitor, inhibits 
growth and invasiveness and enhances immunogenicity of murine and human glioma cells in 
vitro and in vivo.  Cancer Res. 2004, 64, 7954–7961.  

 
150 Dhandapani, K. M.; Wade, M. F.; Mahesh, V. B.; Brann, D. W. Basic fibroblast growth factor 

induces TGF-b release in an isoform and glioma-specific manner.  NeuroReport 2002, 13, 
239–241.  

 
151 (a) Wang, L.-H.; Battey, J. F.; Wada, E.; Lin, J.-T.; Mantey, S.; Coy, D. H.; Jensen, R. T.  

Activation of neuromedin B-preferring bombesin receptors on rat glioblastoma C6 cells 
increases cellular Ca2+ and phosphoinositides.  Biochem. J. 1992, 286, 641–648. (b) 
Charlesworth, A.; Rozengurt, E. Bombesin and neuromedin B stimulate the activation of 
p42(mapk) and p74(raf-1) via a protein kinase C-independent pathway in Rat-1 cells. 
Oncogene 1997, 14(19), 2323–2329.  

 
152  Beaumont, K. Rat C6 glioma cells contain type I as well as type II corticosteroid 

receptors.  Brain Res. 1985, 342(2), 252–258. 
 
153 Agarwal, M. K. The antiglucocorticoid action of mifepristone. Pharmacol. Ther. 1996, 70(3), 

183–213. 
 
154 Cadepond, F.; Ulmann, A.; Baulieu, E.-E. RU486 (Mifepristone): Mechanisms of action and 

clinical uses. Annu. Rev. Med. 1997, 48, 129–156.  
 
155 Huang, H.; Lung, H. L.; Leung, K. N.; Tsang, D. Selective induction of tumor necrosis factor 

receptor type II gene expression by tumor necrosis factor-alpha in C6 glioma cells. Life Sci. 
1998, 62(10), 889–896.  

 
156 Saha, R. N.; Liu, X.; Pahan, K. Up-regulatio of BDNF in astrocytes by TNF-α: A case for the 

neuroprotective role of cytokine.  J. Neuroimmune Pharmacol. 2006, 1, 212–222. 
 
157 Niwa, M.; Nitta, A.; Yamada, K.; Nabeshima, T. The roles of glial cell line-derived 

neurotrophic factor, tumor necrosis factor-α, and an inducer of these factors in drug 
dependence. J. Pharmacol. Sci. 2007, 104, 116–121.  



 294 

                                                                                                                                                       
 
158 Kuno, R.; Yoshida, Y.; Nitta, A.; Nabeshima, T.; Wang, J.; Sonobe, Y.; Kawanokuchi, J.; 

Takeuchi, H.; Mizuno, T.; Suzumura, A.  The role of TNF-alpha and its receptors in the 
production of NGF and GDNF by astrocytes. Brain Res. 2006, 1116, 12–18.  

 
159 Yu, B.; Becnel, J.; Zerfaoui, M.; Rohatgi, R.; Boulares, A. H.; Nichols, C. D. Serotonin 5-

hydroxytryptamine2A receptor activation suppresses tumor necrosis factor-a-induced 
inflammation with extraordinary potency. J. Pharmacol. Exp. Ther. 2008, 327, 316–323.  

 
160 Gilmore, D. L.; Liu, Y.; Matsumoto, R. R. Review of the pharmacological and clinical profile 

of rimcazole.  CNS Drug Rev. 2004, 10(1), 1–22.  
 
161 Matsumoto, R. R.; Bowen, W. D.; Tom, M. A.; Vo, V. N.; Truong, D. D.; DeCosta, B. R. 

Characterization of two novel sigma receptor ligands: antidystonic effects in rats suggest sigma 
receptor antagonism.  Eur. J. Pharmacol. 1995, 280(3), 301–310.  

 
162 Ghelardini, C.; Galeotti, N.; Bartolini, A. Pharmacological identification of SM-21, the novel 

sigma(2) antagonist. Pharmacol. Biochem. Behav. 2000, 67, 659–662. 
 
163 Chaki, S.; Tanaka, M.; Muramatsu, M.; Otomo, S.  NE-100, a novel potent sigma ligand 

preferentially binds to sigma 1 binding sites in guinea pig brain. Eur. J. Pharmacol. 1994, 251, 
R1–R2. 

 
164 Skuza, G.; Rogoz, Z. Effect of BD1047, a sigma1 receptor antagonist, in the animal models 

predictive of antipsychotic activity.  Pharmacol. Rep. 2006, 58(5), 626–635. 
 
165 Zambon, A. C.; De Costa, B. R.; Kanthasamy, A. G.; Nguyen, B. Q.; Matsumoto, R. R. 

Subchronic administration of N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino) 
ethylamine (BD1047) alters sigma 1 receptor binding.  Eur. J. Pharmacol. 1997, 324(1), 39–
47. 

 
166 (a) Luetteke, N. C.; Phillips, H. K.; Qiu, T. H.; Copeland, N. G.; Earp, H. S.; Jenkins, N. A.; 

Lee, D. C. The mouse waved-2 phenotype results from a point mutation in the EGF receptor 
tyrosine kinase. Genes Dev. 1994, 8, 399–413. (b) Ahmed, I. S.; Rohe, H. J.; Twist, K. E.; 
Mattingly, M. N.; Craven, R. J. Progesterone receptor membrane component 1 (Pgrmc1): A 
heme-1 domain protein that promotes tumorigenesis and is inhibited by a small molecule.  J. 
Pharmacol. Exp. Ther. 2010, 333, 564–573.  

 
167 Sanjo, N.; Owada, K.; Kobayashi, T.; Mizusawa, H.; Awaya, A.; Michikawa, M. A novel 

neurotrophic pyrimidine compound MS-818 enhances neurotrophic effects of basic fibroblast 
growth factor.  J. Neurosci. Res. 1998, 54(5), 604–612.  

168 Lewis, M. A.; Hunihan, L.; Franco, D.; Robertson, B.; Palmer, J.; Laurent, D. R. S.; 
Balasubramanian, B. N.; Li, Y.; Westphal, R. S. Identification and characterization of 



 295 

                                                                                                                                                       
compounds that potentiate NT-3-mediated Trk receptor activity. Mol. Pharmacol. 2006, 69, 
1396–1404. 

169 Ishima, T.; Nishimura, T.; Iyo, M.; Hashimoto, K. Potentiation of nerve growth factor-
induced neurite outgrowth in PC12 cells by donepezil: Role of sigma-1 receptors and IP3 
receptors. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2008, 32, 1656–1659. 

 
170 Nishimura, T.; Ishima, T.; Iyo, M.; Hashimoto, K. Potentiation of nerve growth factor-

induced neurite outgrowth by fluvoxamine: Role of sigma-1 receptors, IP3 receptors and 
cellular signaling pathways. PLoS One 2008, 3(7), e2558.  

 
171 Ishima, T.; Hashimoto, K. Potentiation of nerve growth factor-induced neurite outgrowth in 

PC12 cells by ifenprodil: The role of sigma-1 and IP3 receptors.  PLoS One 2012, 7(5), e37989. 
 
172  Itoh, K.; Ishima, T.; Kehler, J.; Hashimoto, K. Potentiation of NGF-induced neurite 

outgrowth in PC12 cells by papaverine: Role played by PLC-γ, IP3 receptors.  Brain Res. 2011, 
1377, 32–40.  

 
173 Robson, M. J.; Elliott, M.; Seminerio, M. J.; Matsumoto, R. R. Evaluation of sigma (σ) 

receptors in the antidepressant-like effects of ketamine in vitro and in vivo.  Eur. 
Neuropsychopharm. 2012, 22, 308–317. 

174 Maragnoli, M. E.; Fumagalli, F.; Gennarelli, M.; Racagni, G.; Riva, M. A. Fluoxetine and 
olanzapine have synergistic effects in the modulation of fibroblast growth factor 2 expression 
within the rat brain.  Biol. Psych. 2004, 55, 1095–1102. 

175 Kashiwagi, H.; McDunn, J. E.; Simon, Jr., P. O.; Goedegebuure, P. S.; Vangveravong, S.; 
Chang, K.; Hotchkiss, R. S.; Mach, R. H.; Hawkins, W. G. Sigma-2 receptor ligands potentiate 
conventional chemotherapies and improve survival in models of pancreatic adenocarcinoma.  
J. Transl. Med. 2009, 7, 24. 

 
176 Yagasaki, Y.; Numakawa, T.; Kamamaru, E.; Hayashi, T.; Tsung-Ping, S.; Kunugi, H. 

Chronic antidepressants potentiate via sigma-1 receptors the brain-derived neurotrophic factor-
induced signaling for glutamate release.  J. Biol. Chem. 2006, 281(18), 12941–12949. 

 
177 Johannessen, M.; Fontanilla, D.; Mavlyutov, T.; Ruoho, A. E.; Jackson, M. B. Antagonist 

action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels.  Am. 
J. Physiol. Cell. Physiol. 2011, 300(2), C328–C337. 

 
178 Piccotti, J. R.; LaGattuta, M. S.; Knight, S. A.; Gonzales, A. J.; Bleavins, M. R. Induction of 

apoptosis by cationic amphiphilic drugs amiodarone and imipramine.  Drug Chem. Toxicol. 
2005, 28, 117–133.  

 



 296 

                                                                                                                                                       
179 Bown, C. D.; Wang, J.-F.; Young, T. Increased expression of endoplasmic reticulum stress 

proteins following chronic valproate treatment of rat C6 glioma cells.  Neuropharmacology 
2000, 39, 2162–2169.  

 
180 Hung, J.-H.; Su, I.-J.; Lei, H.-Y.; Wang, H.-C.; Lin, W.-C.; Chang, W.-T.; Huang, W.; Chang, 

W.-C.; Chang, Y.-S.; Chen, C.-C.; Lai, M.-D. Endoplasmic reticulum stress stimulates the 
expression of cyclooxygenase-2 through activation of NF-κB and pp38 mitogen-activated 
protein kinase.  J. Biol. Chem. 2004, 279(45), 46384–46392.  

 
181 Krauss, G.  Biochemistry of Signal Transduction and Regulation, 4th ed.; Wiley-VCH Verlag: 

Weinheim, 2008.  


	*0-CoverPages
	*0-PrefatoryPages
	Ch1-PyrazoleArylation
	*Ch2-TrkB
	*Ch3-GDNF

