
Software Development Environments for
Very Large Software Systems

Gail E. Kaiser, Columbia University, Department of Computer
Science, New York, NY lOO27

Yoelle S. Maarek, Technion, Israel Institute of Technology, Computer
Science Department, Haifa, 32000 ISRAEL

Dewayne E. Perry, AT&T Bell Laboratories, Computer Systems Research
Lab, Murray Hill, NJ 07974

Robert W. Schwanke, Siemens Research and Technology Laboratories,
Princeton Forrestal Cent~r, Princeton, NJ 08540

December 1987

CUCS-279-87

Abstract

This technical report consists of the three related papers. Uving with Inconsistency in Large
Systems describes CONMAN, an environment that identifies and tracks version inconsistencies,
permitting debugging and testing to proceed even though the executable image contains cenain
non-fatal inconsistencies. The next two papers are both from the INFUSE project. Change
Management for Very Large Software Systems presents the new non-Euclidean hierarchical
clustering algorithm used by the INFUSE change management system to cluster modules accord­
ing to the strengths of their interdependencies. Models of Software Development Environments
presents a general model of software development environments consisting of three components
- policies, mechanisms and structures - and classifies existing and proposed environments
into the individul, family. city and state classes according to the size of projects that could be
adequately supponed.

Prof. Kaiser is supported in part by grants from AT&T Foundation. Siemens Research and Tech­
nology Laboratories. and the New York State Center of Advanced Technology - Computer &
Infonnation Systems, and in pan by a Digital Equipment Corporation Faculty Award. When this
r.~sea.rch was conducted, Ms. Maarek was a visiting PhD student at Columbia University.

•

Final version to appear in International Workshop on Software Version and Configuration
Control. Grassau, West Germany, January 1988.

Living With Inconsistency in Large Systems

Robert W. Schwanke
Siemens Research and Technology Laboratori~

Princeton, NJ 08S40

Gail E. Kaiser •
Columbia Univel"!ity

Department ot Computer Science
New York, NY 10021

31 Augmlt 1987

Cop)TIp& ~ lQ81 Siemens Research and Support, Inc.

All Ri,hts Reserved

Supported in part by ,!'Uti (rom Siemens Research and Technology Laboratories.
AT &T Foundation, and New York Sta~ Center or Advanced Technology - Computer
and Information Systems, and in part by a Digital Equipment Corporation Faculty
Award.

Abstract

Programmers generally want to be sure that the systems they are building are
consistent, both with respect to source code versions used, and with respect to type
safety. Most modern high-level language systems enforce this consistency upon the
system instances they build. However, in a large system this can lead to very large
recompilation costs after small changes. Therefore, programmers often circumvent
enforcement mechanisms in order to get their jobs done. The CONMAN configuration
management project explores the premise that some degree of inconsistency is inevitable
in software object bases, and that programming tools should be designed to analyze and
accomodate it, rather than to abhor it. The CONMAN programming environment will
help the programmer contend with inconsistency by automatically identifying and
tracking six distinct kinds of inconsistencies, without requiring that they be removed; by
reducing the cost of restoring type safety after a change, through a technique called
smarter recompiiation; and by supplying the debugger and testing tools with
inconsistency information, so that they can protect the programmer from naws in the
code.

t.· .

1. Introduction

Every programmer remembers wasting large amounts of time looking for a bug caused

by changing and recompiling one source file and failing to recompile a related tile. This

kind of problem has made the Unix™ make tool [31 very popular; when invoked after a

change to a source file, make rebuilds every file derived (directly or indirectly) from the

changed file.

Programmers generally want to ensure that the systems they are building are

consistent. For example, they want to know that the object code they are running was

built from the exact source code they are looking at, rather than from some previous

version of the source code. They also want to ensure that the executable program is

type 8ale; that is, that it satisfies the type rules of the programming language. Most

modern high-level language systems enforce this consistency upon the system instances

they build. In a large system, however, this can lead to very large recompilation costs

even after small changes. Therefore, programmers often circumvent enforcement

mechanisms in order to get their jobs done.

This practice is not only commonplace; it is commendable! The programmer can do it

successfully by using design knowledge to decide which inconsistencies are harmless and

which are dangerous. Allowing inconsistency can speed up the edit.-compile-debug cycle,

and can also reduce the coordination needed between programme!'!. Both benefits

improve productivity dramatically.

The CONMAN conriguration manacement project is exploring the premise that some

degree of inconsistency is inevitable in software databases, and that programming tools

should be desiped

to analyze and accomodat.e it., rather than to abhor it. The CoNMAN programming

environment helps the programmer contend with inconsistency by:

• Automatic&1ly identifying and tracking inconsistencies: CONMAN cl~ifies
each inconsistency into one of six categories, and tracb it for the
programmer, without requiring her to remove it right away.

.)

• Reducing the cost of type safety: CON~L-\ .. N·s type safety is based on a
constraint called link consistency, which is less stringent than in
conventional systems. This permits use of a technique called smarter
recompilat,'on to reduce the cost of restoring type safety after a change [15] .

• Supporting debugging and testing: The debugger automatically stops
execution upon reaching inconsistent code, thus helping to prevent crashes.
The test coverage analyzer tells the programmer which tests can be executed
in <the presence of an inconsistency.

This paper begins by presenting several scenarios in which allowing inconsistency is

more cost-effective than removing it. Then it describes the six kinds of consistency that

CONrviAN recognizes automatically. Next, it explains how smarter recompilation uses

link consistency to decide which modules really must be recompiled after a source code

change. Finally, it describes how the CONMAN programming environment uses

consistency analysis to help the programmer build, debug and test inconsistent systems.

2. Beneficial Inconsistency

Inconsistency is commonplace in soCtware project libraries. A project library typically

contains many system configurations, where each configuration might contain

requirements, specifications, code, test data and documentation. Informally, a project

library is inconsistent if it contains direct contradictions. For example, iC a global data

type is somehow defined dirrerently in difrerent parts of a configuration, this constitutes

a contradiction (because most languages permit only one definition or each global

identifier). On the other hand, two distinct system configurations may define the type

dirrerently, and that would not be a contradiction.

IncoO!istency 11 likely to occur when permitting it is more cost erCective than

forbidding it. For example:

• Debug,in, and testinl under deadline pressure. On fixing a bug, the
programmer should recompile the minimum amount. or code necessary to
continue testing. She can wait. to recompile the rest or the system until she
goes home ror the night •

• Debugging an incomplete implementation. In a language such a:s Ada(R),

3

with specifications separated from package bodies. an early version of ~

package body might not contain all of the procedures. The programmer
should not be distracted from her creative task by the tedium of writing
stubs. (Wolf studies this form of incompleteness [18].)

• Changing requirements after implementation is under way. \Vhen
requirements change, it may be easier to start by combining the new
requirements with the old implementation - even though they contradict
each other - rather than keeping them in separate system configurations
until they agree.

• Handling "software rot". Sometimes a bug fix introduces new bugs. Until
the new bugs are resolved, debugging may be easier if some parts of the
system use the old version of the code, while others use the new version.

• Large teams debugging related changes. During large system maintenance, a
single change reque!t often involves several modules and the interfaces
between them. Each team member would debug her changes independently,
before integrating them with the work of others. To do so she should build
an executable system instance with whatever versions ot others' modules she
deem" appropriate, even ir !Ome of them still use obsolete, incompatible
interrace specifications.

This last example, when elaborated, provides many clues as to how a programming

environment should support programming with inconsistency. Consider a typical

operating !}"!tem maintenance project, having [51

• 1 ,000,000 lines ot !Ource code,

• 300 programmers,

• a new release about once per year,

• 300,000 lln. of new or ehanled code per release,

Suppose there .ere one bUI tor every 30 lines or changed code, the syntax is correct but

before any debuuinl or testinl. That would add up to about 10,000 bUg! per rele~.

Many module changes include modified interfaces. Suppose that each programmer has

been assigned to modity a different module. Because tasks progress at different rates,

and because !Ome tasks m~t be redone, several new versions or each module will be

produced. Each programmer is responsible for debugging and testing her own code as

well as she can before releasing it to others. To do so, she selects the versions of other

modules that she thinks will work best with her module. However, the ones she wants

to use may not be ready yet. She might choose not to simulate them with a test

harness, because test harnesses are often too expensive for early debugging and unit

testing. They must be updated whenever the interface changes, which requires both

manpower and calendar time. Therefore, programmers often build inconsistent

configurations of the real system to use for debugging. In fact, large projects often

assign their best analysts to figure out workable, albeit inconsistent, configurations for

debugging and testing.

To build, debug and test inconsistent systems, programmers need tools that

• Identify and evaluate the severity of inconsistencies.

• Display the inconsistency information in a ~rul way, such as by
incorporating it in a browser or by using it to compare several alternative
module versioll!, none of which is completely compatible with the rest of the
system.

• Protect the programmer from system crashes due to known inconsistencies,
by placing firewalls around dangerous code.

3. Kinds or Consistency

CONMAN formalizes the concept of incoll!istency by defining six distinct kinds of

consistency, to ~ for cluaifyinl incoll!istencies it discovers in programs.

We ~ the term 'tI,t"" inltonce to mean an executable representation of a program,

typically crea&ec:l by eompi11DI numerous separate Pl'Olram units and linking them

together. We lIIWDe that the Pl'OlrammiDg language specifies some form or static type

checking, and that. the procramming environment provides a way or uniquely

identifying versioll! of bot.h !Curce eode files and derived files (such as object code files).

The six kinds of coll!istency are:

• Full cDn.n.denC1f. A system ill!tance satisfies the rules that the programming
language specifies for legal programs, insofar as they can be checked prior to

;)

execution. It also In ust be version consistent, as detined below.

• Type -consistency. The system instance satisfies the static type checking
rules oC the programming language.

• Version consistency. The system instance is built using exactly one version
of each logical source code file.

• Derivation consistency. The system instance is operationally equivalent to
some version consistent system instance (which need not have actually been
built).

• Link consistency. Each compilation unit is Cree o(static type errors, and
each symbolic reference between compilation units is type saf'e according to
the rules or the programming language.

• Reachable cOflsistencll. All code and data that could be accessed or executed
by invoking the system through one or its entry points are type safe.

The definitions above have the (ollowing partial ordering:

~V.l'!ion --J)~derivation

rUII~ ~ link ---:>~reachable
type

3.1. Full Consiatency

The strongest Corm or consistency is full consistency. The definition tries to capture

the ideaJ world. For example, a system written in Ada is consistent when it is built

with exactly one version or each compilation unit, and the units have all been compiled

without error in a.n order compatible with the inter-package dependencies, and then

linked.

3.2. Type Coulatenc7

Type consisteney depends only on those language rules that deal with the types of

identifiers. Operationally, & system instance is type consistent if the compiler reporn no

type errors (or any separately compiled component, and it each identifier whose scope

spans more than one compilation unit ha." the same type in every such unit. (For the C

6

language, the rules checked by the Unix lint tool [6] define type consistency across

boundaries of separately-compiled modules.)

3.3. Version Consistency

Version consistency is the system property enforced by Unix make. For example, if a

system written in C contains a source file named "symtab.h", then make ensures that

all files that include it (incorporate its text) are compiled with the latest ve~ion.

Ve~ion consistency is also important because it provides a practical means of ensuring

(or circumventing!) type consistency. Many language systems implement type checking

across separately compiled modules by using a file of definitions, called an "include

file Of, to define the types of the identifiers exported from a compilation unit. II the

same version of the include file is used to compile the exporting module and every

importing module, then the exported identifiers will have the same type throughout

their scopes. Conversely, one can trick a. compiler into generating code ror a module

that is not type corusistent with other modules, by using different versiorus of the include

file when compiling dirrerent modules.

The definition or version corusistency includes the word .. logical" to cover a special

cla.ss of sy!tems in which two or more versions or a module are included by design. For

example, a test configuration might be created to compare the behavior of two versions

of a module. Its system construction model (cr. OSEE [01, Cedar (81) would treat the

two versions as separate IOCic&! entities durin, compilation and linking. A version

consistent instance ot this system could still use two dirrerent versions of the module,

because the versiou would implement two difterent logical modules.

3 .•. Derivaiioa CoJWat,eacy

Derivation consistency includes the class or systems that one can build by foregoing

unnecessary recompilations, and then ~ as if they were version consistent. For

example, when a type is changed in an include rile, only the m04ules that use the

changed type need to be recompiled. Other modules that include the changed file, but

do not use the type that was changed, need not be recompiled. Linking the object

modules together produces a system that is equivalent to one where all modules ·ere

recompiled to use the new version of the changed include tile.

3.5. Link Consistency

Link consistency is weaker than type consistency, because it enforces type safety

pairwise between compilation units, rather than requiring types to be defined and used

consistently system-wide. Nonetheless, this definition is sufficient to support debugging,

because the actual executable code is all type safe according to the rules of the

language. If each object module is internally type safe, and every data path between

modules is type safe, then there is no place in the system where machine code that

expects data of one type can operate on data of some other type.

Link consistency can be achieved without type consi8tency by using different versions

or include files with different compilation units. Two units need to use equivalent

versions of an included definition only it the link-time interrace between them is

affected (directly or indirectly) by that definition ..

Link consistency describes some situations where a widely-used definition has been

changed, but only some of the places where it is used have been rewritten to

accomodate the change. Consider a sy!tem in which one module defines the type

linked list, and two other subsystems each use linked nats internally, but do not pass

linked lists between subsystems. This example is depicted in figure 3-1.

Suppose it is decided to chance the implementation from singly-linked list! to doubly­

linked lis t.s , to enable sequencing in both directions. The programmer would like to try

out the doubly·linked implementation in a limited context, before rewriting all of the

places it is used. U she rewrites and recompiles the Unked n.t module and just one of

the subsystems that U-'tS it, the system instance will be link consistent (because every

module and every link is type saCe), but not type consistent (because !Ome modules were

compiled with the singly-linked implementation, and some with the doubly-linked

implementation). Assuming that the list representation is directly manipulated by the

subsystems that use it (to increase efficiency), the programmer cannot compile the

Subsystem A Subsystem B

Modules that use t'YJ'4I
lizWclllst

Unka that depent1 on
type Ullked lilt

Otbtr UnkI

FiCUN 3-1: Clusters That Use a Type Independently

second subsyReaa with the doubly-linked implementation until she rewrites it.

Recompilinl wI&hou' rewritlq would live lotos or error mesa&&es, and probablY no

object code.

Such independent uses or a global type are consistent with sound design principles. A

large system is frequently layered into levels, where each level uses services provided by

the levels below it, and provides services to the levels above it. In a system that

9

provides a broad range of end-user services, it is not unusual for the middle layers of

the system _to contain several subsystems that do not call each other at all. In that

situation a service type defined by a lower level could be used independently by the

subsystems at the next level.

Besides global types, several other la.nguage constructs permit multiple coexisting

definitions without sacrificing link consistency. For example, Ada's inline procedures

and generics both cause a definition to be instantiated separately at each place where it

is used. Usually, separate instances of a generic package are treated as unrelated at run

time, even though they were derived from a common definition. (Of course, Ada's rules

currently forbid version inconsistency.)

3.8. Reachable Consistency

Reachable cOIl3istency is useful during development when service routines are written

before the external interfaces that use them are ready. Any type errors in unused

routines can not interfere with debugging the code that is reachable.

3.7. Automatic Checkinc

CONMAN check.! all six kinds of cOIl3istency automatically. Version consistency is

checked by straightforward configuration management methods. Type consistency and

derivation cOIl3istency are checked by the methods used in smart recompilation [171.

(Full cOIl3istency simply me~ version consistency and no compilation errors.) Link

consistency is checked by a simple method described in the next section. Reachability is

checked by incremental, interprocedural data now analysis, recently made efficient by

Ryder and Carroll [14).

4. ReduciDI the Coat or Consistency

The Unix make tool restores version cOn:5istency by rederiving any output files that

are older than the current versions or the input files (rom which they are supposed to be

built. This can cause many recompilations after only a small change.

Toolpack [121 and smart recompilatioll reduce the coet of restoring consistency by

lO

restoring only derivation consistency. Both systems maintain a single. consistent

version list of the" latest versions" of each file. They reduce recompilation costs by not

rederiving a file when the existing derived file is operationally equivalent to what would

be created by rederiving it with the new source file versions.

Toolpack defines "operationally equivalent" to mean "identical contents"; it permits

certain attributes such as timestamps to be different. Toolpack uses the same "older

than" rule as make to trigger recompilation, but avoids some processing steps by

noticing when a certain step produces an output file with contents identical to the one

it is replacing. This means that using the new output file in a subsequent translation

step would be equivalent to using the old version, so the next step is avoided unless

other inputs have changed.

Smart recompilation determines equivalence by extracting, from the inputs to a

compilation, the set or d~claration.s that actually affect the output files; two output files

are equivalent if they are derived from equivalent extracted inputs. (The output files

are also allowed to include unused code that ditters.) Smart recompilation preprocesses

each changed file to identify the declaration.! that have changed in it. The method then

recompiles only the files that actually contain or use the changed declaration.!.

Smart recompilation succeeds because it performs only local semantic analysis, which

it can do cheaply. Local semantic analysis examines each source file in isolation. Any

identifiers oecurring free in that file are a.umed to be declared in some compatible

way; they are typically bound by include statements to other files. The analysis

produces a dependency nle listinl the identiners exported by that file, and the free

identifiers on which they depend. The details of smart. recompilation are thoroughly

explained in (11).

II

4.1. Checking Link Consistency

To simplify the following sections, we limit our discussion to a simple Pascal

programming system, such as provided by the Berkeley Pascal compiler running on

Berkeley Unix 4.2. This environment provides a version of Pascal that has been

augmented with a separate compilation facility. Procedure headers can be separated

from procedure bodies. Typically, the interface to a module is placed in a separate

"include" file, which is included in the module that provides the interface and in every

module that uses the interface. In the remainder of this paper, we use the term

"module" to refer to a normal compilation unit, and "file" to refer to a module or an

include file. Our discussion does not cover overloading nor identifiers that are moved

between modules during a change. These extensions can be handled analogously to the

way smart recompilation handles them.

Link consistency is defined on linb between object modules. A link is a

(definition, use) pair consisting oC an identifier declared global in the object module that

defines it, and ezternal in the object module that uses it. A link is consistent if the

definition and the use were compiled using equivalent declarations of the identifier's

type. For example, iC a procedure P with one parameter of type T is exported by one

module and imported by another, then the two modules must agree that P has only one

parameter, that its type is T, and that T's type is equivalent in both modules.

To check link consistency, we first identiCy the source code constructs that produce

global and external rererences. Then, we use preprocessing methods derived from smart

recompilation to &nalyu dependencies involving these constructs.

The only two kinds or object module links in Pascal are variables and procedures.

'#bere Pascal programs denne enumerations, records, constants, etc., the compiler

translates them directly into object code, without leaving any links to external

identifiers. We know, therefore, that a link exists only where a procedure or variable i!

exported from one module and imported by another.

To check link consistency, we augment the smart recompilation preproc~r in two

12

ways:

• We divide dependencies into inter/ace dependencies and implementation
dependencies. For example,

extern
procedure P(a:T);

var b:V;

This procedure has an interCace dependency on type T, and an
implementation dependency on type V .

• For each exported procedure and variable, we record its type signature, in
which bound type names are replaced by their definitions, but Cree type
names are treated as primitive. For example,

(import type R)
type Q is integer;
type T is record

&: Q;
b: R
end

extern V&r v: T:
In this case, v's type signature would be record(intepr,R). (This kind of
type signature defines type safety by structural equivalence. It can be easily
modified to use name equivalence instead.)

To test whether a link is co~istent, we compare the versio~ of the identifiers that

affect the definition site and the use site. We do 50 in the following steps:

1. Determine which 50urce file versio~ to ueociate with the definition site, and
which to asaociate with the use site. These can either be the riles that were
actually used, or nles that are proposed to be used.

2. For both the dennition and use sites, locate the 50urce rile version that
defines the identiner's type.

3. Compare the two dennjtio~ ror equivalence, as rollows:

a. It the version numbers are different, compare the type signatures. It
they are dirrerent, the dennitio~ are not equivalent.

b. For each free identifier in the type signature, compare its two
definitio~ (in the "definition site" versions and the "use site"
versio~) for equivalence, using this same algorithm recursively.

13

c. If all the free identifiers in the type signature are equivalent. the
definitions are equivalent.

4. (The results of every comparison should be saved for re-use should the type
appear again elsewhere in the signature. or in the signature of another link
between the same pair of modules.)

4.2. Smarter Recompilation

Smarter recompilation works by finding clusters of modules that must agree on certain

identifier definitions in order to be link consistent. Specifically, clusters are defined

with respect to a specific set of global identifiers. Two modules are in the same cluster

if and only if they are connected by a link that depends on any of those identifiers.

(Modules whose interraces don't depend on the identifiers at all are not placed in any

cluster.) Smarter recompilation saves processing time and programming time whenever

a system contains two or more clusters with respect to a set of changed identifiers. The

method reduces to smart recompilation when this definition causes all modules to be in

the same clU!ter. It starts with the files that have changed, and at least one module

that must be recompiled to test the changes. It then "grows" a cluster of modules that

are transitively connected to the starting module via links affected by the changes.

Th~ are the other modules that must be recompiled. The algorithm proceeds as

follows:

1. Begin with a previolL! system instance. all relevant source file versions, and
the results of preprocessing each of the source files. These results are
collected in a dat.a structure that indexes all links, so that it is easy to find
which links to check when decidins to recompile a module. The data
structure is updated incrementally each time the system instance is modified.

2. Ask the Pl'OIrammer to select a set of file versions she wishes to debug or
test. There can be at meet. one version of each logical module in the system,
but the prosrammer need not chooee versions or modules she does not care
about.

3. Use smart recompilation to select a set of build candidatu. Smart
recompilation requires there to be a set of "new" file versions and a set of
"old ~ file versions. For this purpose, the versions chosen by the
programmer are the new ones, and any conflicting versions are the old ones.

4. Ask the programmer to select an initial build set from the candidates. These
modules define the context in which she wants to debug or test her change.

5. For each new member of the build set,

a. Determine which versions of the source tiles will be included when it is
recompiled. Use heuristics to select versions that the user left
unspecified, such as "latest" , "whatever was used before" , or
"w hatever has already been used in the build set".

b. If the module's source code has changed, update the link index to
reflect any changes.

c. Using the proposed version bindings, check the consistency of each link
between the new member and other modul~.

d. Augment the build set with any candidat~ that have become link­
inconsistent with it.

The total time to check consistency is proportional to B • I· T, where B is the size .
of the build set, I is the average number or identifiers imported and exported from a

module, and T is the average number of identifiers that must be tested for equivalence

in the course or validating a link.

Smarter recompilation can be generalized to more complicated translation tools, and

additional kinds or derived files. For example, consider a system written in Ada. The

Ada compiler would generate interrace files (.int, files, containing compiled

specifications) and object code nles (.obj files, containing package bodies); the compiler

would read in interface nles when compiling modules that depended on them. Suppose

main subpro&nm X depends on pac:kaae specincations Y and Z, and package

specification Y depends on Z. Compiling X requires a consistency check between Y

and Z, to ensure that Y wu compiled with a compatible version or Z. This processing

model is diagrammed in figure 4-1.

In this situation, the concept or "link" generalizes to "name binding". Each

compilation step r~lves Cree names in some or it! input! by binding them to definitions

exported by other input.s. Since any exported definition could be involved in a binding,

1.')

Yspec.ada""

~Yspec.int

Zspec.ada ---~>~ Zspec.int // '» '" Xbody.obi

Xbody.ada

Figure 4-1: Compiling a Small Ada Program 'With Transitive Dependencies

the preprocessor would keep type signatures for all exported identifiers. Because the

inputs to a compilation step are sometimes produced by other compilation steps, there

can be version conflicts between inputs to compiles as well as to the link step. The

consistency checking algorithm m~t be a.ugmented to account for such complications in

the version selection lists.

Smarter recompilation can be generalized further, to a broad class of translators and

derived files, including program generators (such 8."5 Unix utilities lez and yaee), and

distributed execution environments. "Compilation" generalize! to any translation step

that produces an identifier definition or use based on input definitions and uses. For

each "source code" language in the system, one would look for the kinds of identifier

declarations that translate into unresolved references in derived files. For each such

kind of identifier, a preprocessor would perform l~al semantic anal}'5is to determine the

equivalent of a type signature. Then, each tool that performs name binding can be

preceded by an analysis step that uses version lists and type signatures to identify link

inconsistencies.

In summary, smarter reeompilation reduces the cost of restoring consistency by

enforcing only link consisteney, rather than derivation consistency. It interacts with the

programmer to choose versions relevant to the current task, then performs the least

number of compilations necessary to construct a system instance that is link-consistent

with those choices.

t.: .

15

5. An Environment for Programming with Inconsistency

CONMAN is a programming environment that helps the programmer interactively

construct and debug inconsistent systems. The systems may contain different kinds of

inconsistency in different places. The environment consists of an object base and a set

of tools, consisting of a browser, a compiler, consistency analyzers, an incremental

linker, a flow analyzer, a debugger, a test coverage analyzer, and an automated

maintainer's assistant. Each is based on available technology, modified to handle

inconsistent systems.

The object base is an integrated database of software artifacts [11, 11. Each file is

stored as an object, together with attributes and relations that represent its

relationships to other parts of the system. The objects belong to a class hierarchy, with

multiple inheritance. Tools in the system can be classified as either foreign tools or

native tools. Foreign tools have no knowledge of the environment; they exchange data

with the environment through an envelope that sets up an execution environment, calls

the tool, and collects its results. Native tools can use the objeet base direetly, such as

to store dependencies between 50urce files or to analyze inconsistencies in a desired

system instance.

The compiler and linker are augmented with preprocessors to collect type signatures,

whieh the analyzers then use to de teet inconsistencies.

The browser helps the programmer construet a deseription to build. (We call this

description a BCT (or compatibility with the Domain Software Engineering

Environment's (DSEE's) Bound Configuration Thread [91.) A structure editor is a

promising type of browser (or this application. Through it, the programmer can not

only construct the BCT itaelt, but can also examine its conneetions with the rest of the

object base.

The programmer starts by examining the BCT ror some previous system build. The

editor presents her with all the new module versions that have been created since the

last system build, and asks her which ones she would like to use. The programmer

17'

assigns new version bindings to the derived objects she wants rebuilt. .-\5 the

programmer makes the version choices. the editor highlights version inconsistencies and

schedules background tasks to classify them further. Zooming shows details of an

inconsistency, including its severity and the specific identifiers involved. The

programmer can respond to an inconsistency by:

• Selecting modules to recompile.

• Choosing different source versions.

• Substituting previously compiled object files from the derived object pool
(cr. DSEE).

• Approving the inconsistency.

As each part of the BCT is approved, its derivation begins. Any warning or error

messages that result are pr~nted to the programmer, who can further modify the BCT

if she wishes.

The linker and debugger cooperate to protect the programmer from link

inconsistencies. The linker inserts a debugger hook at each inconsistent link, so that

execution will stop before the code that uses the link is executed. The debugger then

permit.! the programmer to either move the program counter to a sater place, or

continue execution at her own risk.

The BCT description l&nguace allows the programmer to permit two versions of an

object module to coexist. The linker supports this by accepting multiple definitions of

global identifiers, ud l1nkllll each use to the definition with the correct type.

The test cove",e ualyzer produces a database for each test indicating the code it

covers. On request, it compares this data to the link inconsistencies in a system

instance, and tells the programmer which tests are sate and which are not.

The maintainer's assistant is facility for automating mundane programming t~b in a

controlled way, called opporttJni~tie proc~6ing. Whenever a programmer makes a

18

manual change to a source iile. it schedules appropriate analysis and compilation tools

to run in background. as resources permit. ft monitors the costs of compilation and

linking, and uses them to estimate the costs of rebuilding after a change. This

information is fed back to the user through the browser. The analyzer performs the

consistency analysis in background, so that the information is ready when the

programmer is ready to edit her BCT. It also maintains an agenda of modules needing

rewriting due to changed interfaces.

This combination of tools helps the programmer keep track of inconsistencies, analyze

their severity, estimate the cost of recompiling to remove them, and helps select test

cases that avoid them. It also protects the programmer from inadvertently executing

inconsistent code, while still allowing her to do so if she insists.

6. Implementation

Smarter reeompilation has been implemented for the C language, as a M~r's thesis

at Columbia University [101. It was constructed by making source code modifications to

the portable C compiler and make. The prototype succe!Stully handles such details as

macrae, structs, unions, and even bit field sizes and anonymous struct fields. Although

it has not been tested on large systems, it demonstrates that the C05t of adding the

functionality to existing tools is reasonable.

The CON~ progr&inming environment is being assembled from a collection of other

systems being developed and/or used at Siemens RTL. The object base and controlled

automation system are belnl designed in conjunction with the Marvel project [7}. The

browser is beiDl implemented with the DOSE structure editor prototyping system [2}.

The system model1nl lancuage draws ideas from both OSEE and Cedar, but adds

facilities for conveniently naming and manipulating derived objects, and for mapping

source-language dependencies into build step input,-output dependencies. For example.

a system model could declare that one !Ource file called procedures in another source

file; the system builder would automatically link the second file into !YStem instances

that used the first. The debugger will be the Sun Unix db:ztool [16}, which will be

19

primed with a set of breakpoint commands generated by the linker. Test cov,=rage :0015

and methods will be drawn from the Asset project [13, 41. Reachability analysis will be

based on Ryder's methods, in a future version of the system.

7. Conclusions

Inconsistency is commonplace in real software projects. It is permitted to remain

because it is often more cost-effective than consistency.

Automatically recognizing several gradations of consistency permits the programmer

to choose the level appropriate to her task. Better tools can reduce the cost of restoring

consistency, but not the cost of rewriting all the code affected by a change. Smarter

recompilation permits derivation inconsistency without sacrificing run-time type safety,

and thereby permits some rewriting to be deferred, reducing the length of the edit­

compile-debug cycle and reducing the amount of synchronization needed between

programmers.

The CONMAN configuration management project is developing a programming

environment that helps a programmer to select different degrees of consistency in

different parts of her system. The tools will recognize and keep track of inconsistencies

for her, and place firewalls around them during debugging, but will not force her to

remove them. By this approach, CONMA.N will help the programmer live with

inconsistency.

8. Acknowledgement

Our thanks \0 Walter TIchy for his mUlY helpful comments on earlier versions of this

paper, and to Harris Morcenstern for implementing smarter recompilation as his

master's project at Columbia University.

20

References

[I] Philip A. Bernstein.
Database System Support for Software Engineering.
In 9th International Conference on Software Engineering, pages 166-178.

Monterey, CA, March, 1987.

[21 Peter H. Feiler, Fahimeh Jalili, and Johann H. Schlichter.
An Interactive Prototyping Environment for Language Design.
In Proceedings 0/ the Hawaii Conference on SlIlJtem Sciences. January, 1986.

[31 Stuart I. Feldman.
Make - A Program for Maintaining Computer Programs.
So/tware--Practice and Experience, April, 1979.

[4J P. G. Frankl and E. J. Weyuker.
A Data Flow Testing Tool.
In ProceedinglJ 0/ the IEEE Soft/air II. San Francisco, December, 1985.

[5J Klaus Gewald.
Private Comm unication.
June, 1987.

[6] S. C. JohIL!On.
Lint, a C Program Checker.
In Uniz Programmer'~ Manual Supplementary Document~. 4.2 Berkeley

Software Distribution, 1984.

{7] Gail E. Kaiser &nd Peter H. Feiler.
An Architecture for Intelligent Assistance in Software Development.
In Ninth International Conference on Software Engineering, pages 8~88.

IEEE, Monterey, CA, March, 1087.

{8J Butler W. Lampson and Eric E. Schmidt.
Organizing SoCtware in a Distributed Environment.
In Proceeding, 01 the SrGPLAN '89 Sympoftum on Programming Language

luuu in So/lWOrt SJI,tmu, P&&es 1-13. June, 1083.

{9J David B. Lebla.nl a.nd Gordon D. McLean, Jr.
Confipra&lon Ma.nacement Cor Large-Scale SoCtware Development ECforts.
In Worblaop on SoltUJGrt Engineering Environment, lor

Progy-amming-in-l.he-LArge, pages 122-127. June, 1985.

(101 Harris M. Morgenstern.

t I .

All Inconsi!tency Management System.
Master's thesi!, Columbia University Computer Science Department, March,

1087.

~l

[11] John R. :'-iestor.
Toward a Persistent Object Base.
In Reidar Conradi, Tor ~vL Didriksen and Dag H. \Vanvik (editors), Advanced

Programming Environments, pages 372-394. Springer-Verlag, Berlin, 1986.

[12] Leon J. Osterweil.
Toolpack - An Experimental Software Development Environment Research

Project.
IEEE Transactions on Software Engineering , ~ovember, 1983.

[13] S. Rapps and E. J. Weyuker.
Selecting Software Test Data Using Data Flow Information.
IEEE Transactions on Software Engineering 11(4):367-375, April, 1985.

[14] Barbara G. Ryder and Martin D. Carroll.
An Incremental Analysis Algorithm for Software Systems.
Technical Report CAIP-TR-035, Department of Computer Science, Rutgers

University, March, 1987.

[15] Robert W. Schwanke and Gail E. Kaiser.
Smarter Recompilation.
ACM Transactions on Programming Language3 and Systems, submitted for

publication.

[16] Debugging Tool8 for the Sun Work-atation
Sun Microsystems, Inc., 1986.

[171 Walter F. Tichy.
SmartRecompiiation.
ACA1 Transaction8 on Programming Language" and System" 8(3):273-291, July,

1986.

[181 Alexander L. Wolf, Lori A. Clarke, and Jack: C. Wileden.
Ada-ba,.,ed Support (or Programming-in-the-Large.
IEEE Software, March, lOSS.

Change Management for Very Large Software Systems

Yoelle S. Maarek
Technion. Israellnstirute of Technology

Computer Science Department
Haifa 32000. Israel

Abstract

Gail E. Kaiser
Columbia University

Department of Computer Science
New York. NY 10027

Very large software systems tend to be long-lived and continuously evolving. Purely managerial means
for handling change are often adequate for small systemS. but must be augmerued by technological
mechanisms for very larp systems simply because no one person can understand all the interactions
among modules. Many software developmem environmems solve part of the problem. but most consider
ch.ange only as an external process that produces new veniona. In comrast. INFUSE coocerurarea on the
actual change procesI and provides facilities for pmpqating chanaes that affect OCher modules. lNFUSB
structures the set of modules involved in a dwlae into a lUuarclry of 0lHf'inu1Ual darabases, where eacb
experimental dataMse isolara a collcctioo of modules from the cbanps made II) other modules and me
hierarchy conaols the integratioo of chan&eI made 10 separate subIysIems. The focus of thiJ paper is OIl
the clusterin& alSOrilhm tbal automatically aenerates and m.intaim this hierarchy according II) me
strengths of interdependencies UDOIlI modula u !bey are added and modified during developmem and
maintenance.

To appear in s..-tII Annual Iftternadonal Phoenls Conference on Computers and
CommunicatlonJ. Scocuda1e, AZ. March 1988.

1. Introduction
A Very Large Software System (VLSS) is composed of a large nwnber of interdependent modules that
typically undergo numerous changes during their lifetime. By module, we mean a separately compiJable
syntactic unit. such as an Ac1a™ package, a Modula-2 module or a C source file. As such modules
change, they often diverge from their specifications and the number of interface errors grows [12].
Change management tools are needed to coordinate programmers as they modify their modules. to
propagate interface changes to dependem modules, and to enforce cooperation among programmers
towards their goal of preventing interface errors. We describe a new algorithm thaI provides the basis for
the INFUSE change management facility.

TIle change process in VLSS is considerably more complex than for small systems. For instance. deter­
mining the alent of a change (what is affected by the change) and its implicarioru (what is necessary for
restoring consistency after the change) is complicated by the sheer number of the interdependencies
among pieces of the system. Moreover, an apparently simple change can easily c(J.Jcadt in unpredictable
ways. requiring several rounds of changes for restoring consistency. Other problems such as the handling
of temporary inconsistencies or the support of the iterative process of propagating changes become much
more complex as the size of the system increases. INFUSE handles all these problems for syntactic
consis~ncy, that is, those inconsistencies that can be detected by a sWldard compiler. we are inves­
tigating extending INFUSE to semantic inconsistencies [14].

Several other tools have addressed simple cases of these problems. Make [3] automates recompilation of
all dependent modules after source changes; it determines the ext.em of changes. and restores consistency
by recompilina everythina which might be affeded. thus the first and fifth probJem.s are solved in a roup
way. Cedar's SystDfl M~Uu [9] and Apollo's DOtrVIba Sojtwart EltgiMtri1l8 E1fViTONntIll [10)
(DSEE'I'W) give programmers more corurol over dependencies among distinct versions of modules, but
provide little more help than Make with respect to coordiIWion and cooperation. None of these tools
directly monitor the chanae process; OSEE permits eacb proarammer to set up his own monitors to carTy

out specified actions whenever cenain events occur, such u addini a new version to the baseline system.
In contrast, INFUSE does 00l wait for deposit in10 the basel.i.ne system to perform its actions.

The NuMU.. prototype [11] and Smile [6] are both much closer to INFUSE. The NuMIL prototype deter­
mines the impaa of alterations bued upon upward compatibility but provides analysis ra1ber than control
of the change process. Smile inrroduced the notion of 111 OIHf'tIMN4l da'tlb4Jt, which is a (virtual) copy
of the baseline syszem thai permits dw1aa only to the sublet of the system reserved by the user. isolating
these dw'1ies from omer pr'OlJ'IIIUIlelS. INRJSB euendl the nocion of experimental daubue to a
multiple-level hierarchy, and, unlike Smile, illhen ~aUy the modules into databases.

Previous papers on INFUSE haYe outlined its basic philosophy and discussed its automatic application of
consistencY~1 10011 [1'. 7]. In this paper, we briefly explain the INFUSE methodology and
describe its use of I tletarchy of experimental dauMse1 for controlling and coon1inating changes. We
then present the Ilpilbm 1NFtJSI uses to automatically build and maintain this hierarchy.

2. The Hierarcby or Experimental Databases
INFUSE places all the modules involved in the chanae process in a distinpished experimental database:
the top ItveJ datQ.bQse. This chanp set is normally chosen manually by a syslem analyst to attempt to
satisfy the particular group of modificJlion requests (MRs) appropriate for the next pIlCh or release.
Since the more numerous the modules in me c:banie set. the more difficult me determination of the

implications and the extent of chanps. the top level experimental database is divided into several subsets
that arc themselves experimerul databases. The implications and extenl of changes in these smaller

2

databases are easier to determine than in the top level one. By iteratively dividing the e)(perimental
databases into -smaller m1 smaller databases. INFUSE limits the interactions that the programmers must
cope with at one time. The hierarchy of experimental databases is the result of this division. The root of
the hierarchy is the top level database. and each hierarchy level. from coarse to fine. is a partition of the
original experimerual database: a leaf contains a single module (see figure 1).

lo~leYel dalab&.M

slnglelon dalabu ..

1. A hierarchy of experimental databases

The actUal changes are made by editinS the modules within their sinsleton databasn Once I sinsJeton
dataMJe is self-consisr.em it can be deposited into its parenI dillbise An analysis tool is applied CD •
determine this self-consi.steDc:y: everydUns both defined and used within Ihe module is used correctly
witb respect to ill definition and everyWna uxd but not defined widIiD Ihe module is always used in I
compatible manner. Once I sin&leIDa dar" is deposited. INFUSE coordinua and manqes the itefa.
tion of chanica by applyinc the followina procesI recunively on every experimenul dltlMie from the
sinalecons to the top level (not included):

• When all child dl'lbeta have been deposited inr.o their parenl. INFUSE invokes an analysis tool for
performinS chartae propapriona wilhin thiJ pamu dl'IMie and checkins the consistenCy amons its
subsec of the cbanpd modula. An analysi. tool such u LinI (5] can be applied to the modules
after all chanps are made. or errors can be ~ ~me.rully u by Mercury (8].

• If the darabA is self<OnSisr.ent. then it can be deposited iruo ill own parent dillbese
• If not. the loa! inconsiAencies are defected and reponed to the responsible prosrammef1. who then

nelOCiale and apec on new mocWIcationI for resolvinl the conflicu. The darabase. or only the pan
of it reqWrinJ funher c:han,a. is repanitioncd inI.o I subCrec. and the sinsJeron dlta"'s of that
subtree are modified. The proce.a above is rapplied to these uperimerual databises until the
problematic dar"'" bceDma sc1I-consisIenc and can be deposited inro its parent dallhase.

Finally. when all ciacendara hive been deposited inro the top level and it is both selt-consistent and
consisWtt with the IDOduIei of die buellne sysrem &hal do not appear in the top level. the top level is itself
mcrgcd back inID 1M b.elin&

The goal of this illD support • widely aa:epced rule-of·lbumb of software enlincerina: errors
discovered early nllUldllea COSIly to repair than those discovered We. The purpoaof the hierarchy is
to clUSlU IOpther.1he low levcJI me. coUcctiona of moduJa when: chanps are mOlt likely to lead to
interface errors. enswinl early de&ec:bon. and those coUections of modula where the chanps are wWkely
to affect each other are not brouIN fDIClher until the hip levels of the hiervchy.

Thus we need a measure for lJ.lherinl collections of moduJa when: chansa are more or leu likely to
lead to inlerface erron. Our meuwe is the illlercOM«tioll ,,,,",m amana pairs of modula. an ap­
pro~mation to the oracle that would tell us ellKtly how the turwe chanps will effect other modules. Our
appro~mation is based on the intuition lhal the probability of an interface error between modules M and

3

N is proportional to k. where module M uses i facilities imported from N. N uses j facilities from ~. and

Ie is the sum of rand j.
Consider three modules. A. B and C. importing and exporting items between each other. where an item is
an importable syntactic unit of the programming language such as a procedure. a data type. etc. Since B
and C are more strongly connected to each other than to A (see figure 2). they should be gathered in the
same experimental database. A being added to them only at an upper level of me hierarchy.

" X __ Y (Y I " __ "...)()

2. Clustering according to the interconnection strength

3. BuUdinl a Hierarcby ot Experimental Databases
'There are two ways to build a hierarchy: top-down or boaom-up. The fim way corresponds to
partiliolUllg methods and the second to cUuurillg. In the partitioning approach we recursively divide the
top level experimental darabue until reaching the sin&Jetoo databases. When dividina a database, we
need to know a priori the number of sublets we WaN to obcain; this approach is ~i~ivtll. Since the
modules are available before beliMing the constnJction of the hierarchy, we prefer the dma-driVtll ap­
proach of clustering methods.

'There is a sD"Ong analogy between the consuuaion of I hierarchy of experimerual dalaba-~s and the
hierarchical clustering of a set of objecll. aUSICn are grouP' of objecu whose rnemben are "more
similar" to each omer than to memben of another JI'OUP. The similarity between two clusten is meuwed
by a di.uimilluity iNIu: the more sim.ilu any two cluaen.the lower lheir disaimilarity index. There exist
numerous hierarchical clus&enna algorithms [17] lhal differ only by the choice of the measure of
similarity between clusten. ExperimclUal databases correspond to clusten of modules, where the
measure of similarity between c:lu.IIaI is the inwtonnection Stm1ams between modules.

HierarchicaJ clus&aiDC is usually divided inro two wks: The fint consisu of applying the following
gene raj method [1 J 011 the objecu to be clustered.

• Identify the twO cl~n (initially I sin&1e object) !hal are the most similar accordinl to the
dissimilarity inda.

• Merge !hem toaether iruo a sin&1c cluster .

• Repeal Lhis pnx:ess iteratively until there is only one cluster.

Every iteration in the clustering process forms a new inti du.sttfillg by adding a new cluster and remov­
ing the merged clusters. The nnal output of the clustering process is otten pictured as a hierarchy whose
levels are these successive level clusterings: the hierarchy arises because exh new cluster merae! its two
children in the immediately preceding level. The second task consists of selectinl from this hierarchy the

4

'meaningful' level clusterings according to the needs of the application. This is usually done by an
analyst since it requires knowledge of the application domain.

INFUSE expecu a hierarchy where the arit}' of each experimental database is specific to the actual inter­
connection strengths of the modules in the change seL Out proposed algorithm combines the [wo tasks
described above, without recourse to a human analyst: in particular, only the 'meaningful' level cluster­
ings are actually generated. thus forming directly the hierarchy of experimenral databases supported by
INFUSE.

4. The Arity Controlled Clustering Algorithm
Unlike classical hierarchical clustering algorithms, our algorithm lreatS the level clusterings as temporary
as long as they are not 'meaningful'. 1be temporuy level clustering! are said to be prosptcrivt. whereas
each level clustering tlw is selected is said to be frozt1l. 1be sequence of frozen level clusterings gives
the hierarchy of experimemal databases. To treeze level clusterings, the algorithm evaluates the
similarity between the prospective level clusterings and an aempltu. We define the ariry of an ex­
perimerual database as its number of immediate descendala in the next level of the hierarchy. 1be
similarity is computed by measuring the SWistical dispersion of lrities through a variance function
defined as follows:

Let LC be a prospective level clustering and (Zt.ll,raj the sequence of the arities of its k experimen­

tal databases; Zi represems the number of descendams thal the ,1h database of LC bas in the previouI
frozen level clu.st.erina. Tbe exemplar is defiDed by a sin&Ie coefftcient a.. We define the m~ v (I for
evaluating the similarity between the LC aDd the exemplu by.

1 • v(l= i ~ (.tj - a)2

1be initial frozen level cluaerlna is compoted of the sin&Jeton databases. Given thia initial level cluster­
ing and an example arity for all the databases of the next level, the algorithm compwes all the successive
prospective level clusterinp and free.za the one thM minimizes our vutance measure in order to deter­
mine the next level of me hierarchy. However, it is too coaly to compute all the forthcoming level
clusterinp and to ~ to the aa.olute opamum. In pncdce, the allOrilhm instead finds a local
optimum, where the dqree of locality is deftned by a 1oot.ahead coefficient - that is, how mmy
prospective level cluswinp to ~.

The example arity is pnerlled by the aJ.aorithm itJeJf. It rememben pall hiera.rc:hies involvinl the same
software sYs&em. at UIeI pe.iauIly successful values whenever possible. When not possible. such as in
the early staaa 01 dII syIIaD'l cIeveIopmeU when few chanps have been made, the exemplar is chosen
randomly or proridId by 1ft mal,..
COO1l'OllinI the .., of expertmeral duabelel is ~minisca1l of me model-dmen partitionina approach
we rejected. where eacb piftiIian spIiII an experimerual d.tabae in a number of sell decided a priori.
The similarity is misleadi".. When our aIaorithm c:onuolJ the c1U1t.erin1 arity of every level clusc.erinl. it
UUIS this level arity u an exemplar thai it is not necesury to meet. It ctIloIe:I aDlOlll severu prospective
level clus&erinp the one c10sesa to the exemplU' but does noc force the consuuction of I level clusterinl
identical to the exemplar.

We preseru a simplified version of OUt alioridm, wilb a looUhead equal to one, in ftawe 3. The overall
time complexity of our allOrilhm is O(rIOI(II», the same as the clauic:al c1usc.erinl allOrithms (161,

5

even though we introduce supplementary computation by controlling the variance of the arities.

Input:

Output:

TIle interconnection strength values between pairs of modules.
The coefficients a.b ,c.d for computing the interconnection strengths.
The exemplar arit}' for every level clustering.
A hierarchy of experimental databases.

Stan from the initial level clustering.
L = {{mt!.{mz} •... ,(m,,}).
whose elements are the
singleton experimental databases reduced to a single module. Get
the value of a for the next level. The current prospective level
clustering is set to the previous frozen level clustering. nre arity
of each of its experimental databases is set to 1.

While there are more than two experimental databases in the
cum:nt level clustering do:

1. Construct the next prospective level ciUSlerina. NLC. by merging together the two experimental
databases of the CW1'emlevel clustering that mpjmju: 5 (If there is more than one pair of clu.ste:rl
which reali.ze this maximum. one of them is cboaen arbitrarily. 1'hi5 new experimental database is
their ancestor in the hierarchy.

2. Update the iruerc:onnection suengdl values.
3. It the VII of NLC is pealer than thal of the cumm level clustering. freeze the curremlevel cluster­

ing. The anties of the experimaual databases of the CW1'emlevel clustering are set to one. Get
the value of a for the next frozen level.

4. Else the NLC becomes the CWTa1t level clusterma.
End While

Merp tolether the last two clUSlerJ of the cwremlevel clus&erina.
in order to form the last frozen level of the hierarchy.

3. The arity corurolled clusterinl allOrithm

The sequence of all the frozen level c1u.s&erinp lives us the hiervchy of experimental databases.

S. Maintainina the CODSisteDCy of the bierarchy
Changes made to IDOduIes mly invalid.al.e the hieruthy. in the sense that it no lonler correctly reflects the
interconnection .. ea:cma amcoa modified modules. Two main classes of modifications can lead to in­
validation:

I. Modifyinl the interflCe of I module. since the struc:ture of the hierarchy is based on intercon­
nection strenp

2. Adding. module to the hierarchy; a planned modification may involve crellinll new module or
conflict resolution may require modifyinl modules in the baseline but not in the oriiUW change
sel

It is possible to treat. module whose interface has been modified in the same way u a new module. The
older version is removed from the hierarchy. and the new one added. Therefore. we focus on adding a

6

module to the hierarchy. The roughest way of updating the hierarchy is to recluster the entire change set.
including the-new module. This is too costly: Many experimental databases not affected by the modifica­
tion would also be reprocessed, and deposits to these daubases would have to be repeated. However. if
we reject full reclustering and instead make only local changes. we cannot guarantee the resulting hierar­
chy is as 'good' as the one produced by our clustering algorithm. Fortunately, most practical cases
(where relatively few imerfaces ale changed) affect only a small portion of the hierarchy and only this
portion may not be the same as had full reclustcring been applied.

In most cases, our incre~n.taJ reclustering algorithm worts as follows. 'The new module, M, is added to
the top-level experimental database. 'Then it is merged into the next level experimental database with
which it has the highest i.ntercomectioo sttength. This process is applied recursively uruil a singleton
databue is reached. 'The singleton is changed to contain two modules (the original and M) and has two
new singleton children.

This naive algorithm worts very nicely except for special cases where M is only weakly connected to

each of the children of an experimental databac;e, which occurs most frequently with a brand new module
that is empty. Such a module is called an oUllUr. To determine that the module M is an outlier among
several databases, El~'E", our incremerual algorithm computes the irucl"CODDeCtion strength values
between every pair of databases in the set: {El~"" .El'{M}}. If the maximum is realized by a pair
tha1 does DOC include {M}, it means tha1 M is less COIIJIeCted to any Ej than the Ej are intercoI.~cted
among themselvel. In this case. M is added U I DeW child of the parent experimeral d •• bge.

6. Some empirical results
We selected Smile - I mu1riple-uer prolJ'lllllllinl environmed for C deYe10ped as part of the Omdalf
project (4) - U our tell Calle for mil paper since it is a medium sized system where the cbanp processes
involve few enou&b modules II) be illUlU'lltd nicely in ftpua. We have alJo applied our clustering
allOrithm to the 60 modula of ALOE [2). alIo from the Omdalf project. u well as to several much
smaller sys&emJ. Our eumpie UlWDei tbIl two Smile modules. CMOS and CMDOATA. are to be
modified extensively. Therefore. the analy1l alto places the set of eleven modules relaled to them in the
top-level experimental d.rabue. since rbeIe may a1Io need to be modifted. 'The interconnection strength
values between IheIe modulel are au tom I tic ally exncred tram the propam text and aiven in the follow­
ing matrix (fisure .). Ucili1y moduIa imponed everywhere are not considered. since they are handled

specially [1'].

7

Q£)QUA I s
cam. I 27 s
COM»ILII I 17 • z
CO-=tJa. f 2 13 3 z
OBLOCIC f 31 23 31 4 z
OBIGIft' I U 51 10 1 25 z
RZsatV'. I 11 , 0 0 1 , s
WOAD I 5 21 52 3 30 U 2 z
O'1'IUft I 27 21 2. 2 0 , 0 31 z
MaG I 1 0 0 0 0 0 0 0 0 s
PRCII'ILa I 0 2 1 3 0 2 0 0 3 0 s
SY-=:II I 2 5 0 0 0 • 1 0 0 0 0 s
0'1'u, I 11 17 t 0 5 11 • • U 3 1 , z

+---
I I I I I I f I I I I I I

QeDAD I CCMtlLa I DAU)QIC I a&IaV. I O'1'%LIft I ~IICI'1La I anI.
CX)8

...
ca..u
UllQAl1
\JT'JJn'
OCII
~

CIoC)()ATA
c:aoca:
~~"

""01\1
Q(~Aro.

S"'O
uT,,-

c:o-.:aa. Da.G'f ~DAD M8G

4. Mattix of iruen::onnea:ion strengths

I.eQ

ca..u
UllQAlW r-------__ .J u1'JJ1'V

caa
~

a.cIDAfA
~

Dalen ...,... -... ~ IWCIe
UTL

nwc::a

--.---
5. Hierarchy of experimental databases for Smile

8

Given this data. our algorithm produces a hierarchy (see figure S) similar to the o~ manually identified
by a Smile 'expen'. When applied to the larger ALOE. the hierarchies obtained are still very similar but
not identical to the ones computed by hand.

7. Conclusion
We have described INFUSE. a software development environment that suppons change management in
addition to recompilation and version control after changes. Unlike other tools. INFUSE assists program­
mers during ramer than after the change process. Conflicts are detected early when they are relatively
inexpensive to repair. rather than later after the entire change process has completed and recompilatim
and testing has begun. The major coruribution of this paper is the presentation of a new clustering
algorithm which makes such conflict detection and resolution possible. From the change set. INFUSE
automatically builds a hierarchy of experimental databases where the most strongly connected modules
are collected together into the 'natural' clusters specific to the VLSS and negotiation of module interface
errors are enforced. INFUSE thus provides practical suppan for managing and coordinating changes in
very large software systems. We are C\llT'eIUly extending INFUSE with mechanisms to combine stubs and
test drivers hand-constructed for unit testing to operue as test harnesses for the integration among
strongly connected clusters of modules.

Acknowledplents
Dewlyne Perry and Gail KaiJer first developed INFUSE in the CODIext oftbe Inscape project [13] It AT&T
Bell Laboratories. where PeIlY Quinn wu responsible for exttIICtin& the Smile and ALOE depeDdency
matrices. Travis Winfrey. Ben Fried and Pierre Nicoli completed the implemenwiOll under the direction
of Buleru Yener. Galina DaIlkImky. Michael Elbtdtd, Sreve Popovich and the anonymOUl referees read
earlier versions of this piper and made useful criticisms and sugatiOOl.

This research was supponed in pan by JJ'IIU from AT&T fouDdation. IBM. Siemens Research and
Technology Labol"l1OrieI. 1M New Yort Stare Cenler of Advanced Technology - Computer and Infor­
mation Systems. and in pan by I Dilital Equipment Corporation Faculty Award.

References

[1) E. Diday. J. Lemaile. J. Poupt and F. Tesw.
EIoMIW tf AMlyJ~ da DoItMu.
Duood. 1982.

(2) Peter K. Feiler and Raul Medina-Mora.
An IrlCldMIII" Protrmmq ~
IEEE T,fPM:fiotv 011 Sc/IWGr~ EllliM~"", SE-7(S):.72-482. Sepcember, 1981.

(3) S.I. FeJdm.
Make - A Prop1m for MJincainjq CompWel' PropamJ.
Softwtu~ - PrtlCfic~ Ii E1qM~ItC, 9(.):2S5-2M. April. 1979.

[4] A.N. Habermann and D. Nottin.
Ganda1!: Software Developmem Environmenu.
IEEE T,Q/UQCtiolU 011 So/twtJr~ EllliM~ri,., SE-12(12): 1117·1121, December. 1986.

~: .

(5) S.C. Johnson.
Lint. a C Program Checker.
Unix Programmer's Manua.i.
AT&T Bell Laboratories. 1978.

[6] Gail E. Kaiser and Peter H. Feiler.

9

Intelligent Assistance without Artificial Intelligence.
In Thirry-5econd IEEE Computer Society /nurnalionai Conference. pages 236-241. San Fran­

cisco. CA. February. 1987.

[7] Gail E. Kaiser and Dewayne E. Perry.
Wortspaces and Experimental Databases: Automated Support for Software Maintenance and

Evolution.
In Conference on So/tw(J}'e Maintenance. pages 108-114. Austin. TX. September. 1987.

[8] Gail E. Kaiser. Simon M. Kaplan and Josephine Micallef.
Multiuser. Distributed Language-Based EnvironmenIS.
IEEE So/tw(J}'e :58-67. November. 1987.

[9] Bulter W. Lampson and Eric E. Schmidt
Organizing Software in a Disaibuted Environmeru.
In SIGPLAN' 83 Symposium on Programming l...anguage IsSJUs in So/tw(J}'e Systems. pages 1-13.

San Francisco. CA. June. 1983.
Proceedings published as SIGPLAN Notices. 18(6). June 1983.

[10] David B. Leblang and Gordon D. McLean. Jr.
Configuration Man,aaemeru for I...arJe-Scale Software Development Efforts.
In GTE Worlcshop 011 Sojtw(J}'e EllgiMuillg ElIViroMUllUfor Programmillg in rJu Large. pages

122-127. June. 198'.

[11] K. Narayanaswamy.
A Framework to Support Softwart System EvoUuWlI.
PhD thesis. Unive~ity of Southem California. May. 198'.

(12) D.E. Perry and W.M. Evangelist.
An Empirical Study of Software Interface Erron.
In /lllerMlioNJi Symposiwll Oil New Dtl'tcriofU ill ComplUillg. pages 32·38. Trondheim. Norway.

August. 198'.

(13) Dewayne E. Perry.
Programmer Productivity in the Inscape EnvironmenL
In IEEE G/obQJ Tt~cOIMUUIiclJliofU Colf/trtMe. plIeS 428-434. December. 1986.

(14) Dewayne E. Perry.
Software Imen:ormeaioIl Models.
In 9tJt IItUntIIIioIt4l COI'(ertMt Oil So/fwQrt ElIgiMtrillg. paKes 61-69. Monterey. CA. Marth.

1987.

[151 Oewayne E. Perry and Gail E. IUiser.
Infuse: A Tool for AUUXIllbcally MinisinK and Coordirwing Source Changes in Large Systetm.
In ACM Fi/Utllllt A~ Compwur SCUMt Colf/trtMt. plies 292·299. St Louis. MO.

February. 1987.

(16) J.C. Simon.
Erudu tt RtCMrCMs tll/lf/OmtlJliqlU: LA RecofWli.ss(JIICt du fOr7MS ptJT algorithma.
Masson. 19~.

(17) R. R Sokal and P. H. Sneath.
Principles of Numerical Ta:lIJnomy.
W. H. Freeman. 1973.

10

Final verSlOn [0 appear in 10th International Conference on Software Engineering.
Singapore, April 1988.

Models of Software Development Environments

Dewayne E. Perry
AT&T Bell Laboratories
Murray Hill. NJ 07974

Gail E. Kaiser
Department of Computer Science

Columbia University
New York. NY 10027

AuIUSl 1987

Abstract

We presem a ,men! model of software developmena envitonmerus thai consistS of
rhree componena: policies. mechmisma and SU\ICtW'eS. 1be advantage of this
fonnaJizarion is dw it d.i.slinpishes preci.te1y thole aspeas of an environment thai are
useful in comparinI and conlr'Utiftc softw development environmena. We

introduce fOW' claaes of modi .. by meant of 1 socioloaical metapbor thai emphasizes

scale: the indjviduat chi fllftily. chi ciry and chi Stile models. The utility of this

ruonomy is thai ir deLN.a che imponanI claues of interaction amon, software
developen Iftd ezpna _ wlYs i.ft wtUdl CWTenI sohue developmem environln=ntS
iI1adequ..a, Suppoft chi dl\'elopnenl of lup systems.

Environmwa rws.can, chi individual and (anUly models are the cumnt stale of the
an. UnlomarwIly. thai rwo models ~ Lll-suiled for chi developmeru of larae
systems dw ~ite rnocw chan. say. 20 propamrneft. We upe ~ there is I

quilitaUve d.i.fference benrfeen chi inleraaionl amanc • small. "family" project and 1

lup. "city" project and d\II chiI qualiurive dilference requiIa • fundamenWly
differeru model of soh develop env&roNncna. We illusua the city model
with Wwe and !STAll, the only rwo environments .. know of chI& inlcantiate this
model. and show Ihaa there is a pnssiq need for f&&nha research on this kind of
env ironment. Finally. we posNJ _ • St8 model. wtUcft is in need of further

clari&ation. undentandina and.. uJtimalely. implemenwion.

• 1 .

1. Introduction

A model is useful primarily for the insight it provides about panicular instances and

collections of instances. By absuacting away non-essential details thai often differ in
trivial ways from instance to instance and by generalizing the essential details into the

components of the model. we derive a tool for evaluaring and classifying these

instances - in ways that we h.ad not thought of before we consaucted our model. It
is with dtis purpose in mind - classification and evaluation - that we inuoduce a

general model of software development environments (SOEs). Our model consists of
three componentS: polic~. mechanisnu and sttUctUl'eS.

Once we have defined this general model of software development envirorunents. there
are various points of view &om which we miatu classify environments. We ~ for
example. classify the SOEs accordin, to their coverap of the software life cycle; or

classify them acc:ordiq to the kinds of tools thai they provide. comrurinl those thai
provide a Iwnel set wiIh thou m.. provide an enended set; etc. Each of these
ciassificalioaa yie1da useful comparisons and insipa.

Anochet iqJonanl pow of vicw. which we have flOC seen in me literature. is a
classific:arion of SDEs relative to the probl.emI of scale - whal is required of software
developmem envirorimaus for projecu of different sizes takina intO account the

nurnben of prosnmmers and the lencm of the project as well as the size and

compluiry of the syscem.. Note thII the distinction between proanmminl-in-the-srna1l
and ~.ia-dII-l ... (7) hII 101M intimaIiona of the problems of scale.

However. WI diIriIlCtion it baicaUy OM of sinaIe-unit versus multiple-unit systems

and capna.res only a small pin of dUI problem. W. build software sy~ thai ranp
from small 10 YerJ and will be able to build even luau systemS as hardware
lets cheaper lad m&n powerf\ll. WhII haa noc been sufftciently considered is the
effect of dIIlCIIe of syalrnl on chi tools needed to build them-.

Thus. the ... focuI of dUa paper - and. indeed.. of our raearch - is the problem of

scale. W. iaIIoIacI • dalai6c1liGft of SDEs in terms of • socio1oaical metaphor lhat

emphasizes dUa pIObIem 01 seW and provides inliaN inao the environmental
requiremena for projeca of d.itferII. sizes. ThiI meuphor sugestl (our classes of

modell' individual, fllllily, ciry lad.... 1'hI individual and family c:laua are the

• Far I'", HowcIIa [111 C' B' In $l)f.a for lM'ti _ IIIId ry. m' oaIy rrc. IbI cedporial
ot ~;nOOO ... nc alibi

.. 2 ..

current state of the art but are inadequate for building very large systems. We argue
that the city model is adequate but that very little artention has been given to this
class. Further. we argue that future research and development should address the city

model and the proposed state model.

In section 2. we present our model of software development environments. discuss the
individual components and their interrelationships. and illustrate various distinctions
that we make with environments from the literarure. In section 3. we classify SDEs

into the four classes suggested by our metaphor. characterize these classes. present a
basic model for each class. and categorize a wide variety of existing environments into
the individual. family and city classes (we know of no examples of the state class).

Finally. in section 4 we summarize the conaiburions of our model and classification

scheme.

We confine out discussion in the sections below primarily to those envirorunents

concerned with the problems of implementinl. testins. and maintaining software
systems - thar is. those environments ttw are concerned about the technical phases of

the software development process. We believe thai environments thai concenttare on

the full life<ycle and projea manaaement issues also could be described with this

model and caregorized accordin, to our classificarion scheme presented in section 3.

2. r\ (;eneral \Iodel 01 Sonware Oe\'etopment Environments (SOts)

Our general model of software development environments consists of three interrelated

components: policies. mechanisms and sauc:tu.res.

General SOE Model a ({ Policies }. { Mechanisms }. { Structures})

• Policies are the naIa. JWdelines and SUaielies imposed on the programmer by the
env iroNnenI;

• mechaniamlue the visible and undertyin, tools and tool frqments~

• suuctW'eS are the underlyinl objects and object IIP,ales on which mechanisms

operate.

In general. these three components arc nron&ly irucrrel.a.lect choosina one component

may have serious implicalions for the ocher twO components and place severe

1 imitalions on them.

We disalss each of these components of the model. illustrate them with examples

from the soe litenrure. and discuss cheir interdependencies.

·3·

2.1 Policies

Policies are the requirements imposed on the user of the environment during the
software development process. These rules and sttategies are often hard-coded into the

environment by the mechanisms and structUreS. For example. static linkerlloaders
generally require all externally referenced names to be defined in the set of object
modules that are to be linked together. This requirement. together with the
requirement that only linkedlloaded objects may be executed. induces a policy of

always compiling the modules before linking them. A different strategy is possible for

execution preparation tools thai provide dynamic linking and. hence. a different policy:
for example. Multics' segmentation scheme [33] allows externally referenced names to

be resolved at run-time. In most cases. the desisn of the tools and the supponing
structUres define or impose the policies.

But policies need noc be hard-wired. A few architectures allow the explicil

specification of policies. For example, OsterWeil's process proanmminl [34.49]
provides the ability to ptOJnI11 the desiJed policies with respect to the various

mechanisms and strUctures available: Darwin's law-Iovemed systems [301 consist of

declararively defined rules restrictinl the inceractions of programmers and tools. The
imponant distinction berween hard-wired policies and process prosrams or rule

systems is thai the lalter are architectUres for buildin. environments and provide a way

of explicitly imposm, policies on the developers independently of the mechanisms and
StNctwes.

Another d..Winction La between supponinl and enforcinl policies. If a policy is

supl'O'tld. then !he rnedwUsmJ and sauc:nues provide a means of wisfyinl thll
policy. For eumpie. suppoII ctw top-down development is a supponed policy. We

would expect to And tooIa Ind StNCftl.l'eS chaI enable the developer to build the system

in a t~ (1IIliaa; by &mpi ic:1I ion. we would also expect to find tools and

structWel eo build syseema in ocher ways as weU. If a policy is tnjoretd, then not

only is it tupF IM1ed. but il is not possible to do it any other way within the

envitOl'"IInInt. W. call Ihis dir«r Iff/OIelllV'" when the environment explicitly forces

the developer to foUow the policy. It.. sliahdy diffeRnI kind of enforcemenl is thai of

indirtct tlt/tNCtllV1tI: policy decisions are madI ouaidl !he enviroNnen& either by

manqemenI or by convenrioa but once made they are supponecl bu& not enforced by

the environmenl. For exampie. manqemenI decidea th.M all syama are to be

genenled only from modules resident _idUn Ihe Sowce Code Comrol SYSIem (SCeS)

(42). The envitocmem sUpportS c:onfisuraDon manqemenc wa sees; however, it i.s

the m.anqemem decision thai forces the developen to c:0ftII'0l their modules witltin

sccs.

- ~ -

There is a fu.nher distinction to be made between those policies thai apply to
mechanisms and structures and those that apply to other policies. We refer to the

second as higher-order policies. For example, . all projects will be done in Ada' i! a

higher-order policy.

2.2 Mechanisms

Mech.an.ism.s are the languages, tools and tool fragments thai operate on the structures
provided by the environment and thal implement, together with sttuctures, the policies
supponed and enforced by the environment. Some of these mechanisms are visible to

the developers: others may be hidden from the user and function as lower-level
suppon mechanisms. For example, the UNIXTIoC System [25] tools for building
systems are available to the user. However, in Smile [21] these tools are hidden

beneath a facade thai provides the developer with higher-level mechanisms thaI in tum

invoke individual UNIX tools.

Policies are encoded in mechanisms in one of two ways: either explicitly by policy
makers for a particular project. or implicitly by the toolsmiths in the tools that

comprise the environment. In the first case. mechanisms such as shell scriptS [19],

Darwin '5, CU's [~1 or Marvel's rules [20]. or process programs enable the policy

maker to define explicidy the policies to be supponed by the system. Whether these

can also be enforced depends on how well these mechanisms restria the developer in

what he or she uses in the envitonmenr. In the second case. the examples from the
preced.Ut, section Ollustrllin. hard-wired poliCies) exemplify implicit encoding. In
moSI SDEs. policies are impIicidy encoded in the mechanisms. There are good

ttistorical reasons for d\iI s~ we mUll wort out particular instances before we

can generalize. Particular mech.anisms and sttucnues mUll tint be built thai implicitly

encode policia in ordIr to reach I sufftcienl undemandin, of the important issue!.

Once we haw reldled dUa level of mllWiry. we can men scparue the specification of

policies fram rnechInisms and StNcnues.

2.3 Snr~1

ScructW'eS are lhose objects or object agre,1ICS on which the mechanisms operate. In
the simplest (and chtonoloaically, eartiaa) incanWion. the buic SU'\ICNIeS - me

objects widl which we build sYRemS - are fila (II in UN1X. for example). The
trend. however. is towards more compla and comprehensive objeca II the buic

strUc:tWU. One reason for compla buic sauctwa is found in imelf1led
environments. paniculart y Ihose cerueted around a s yntU -directed editor [12. ~o 1·
These SDEs share I complu iluerna1 represenwion s~h as an abilrKt symu tree [91
or an lOL graph [26] to l&in efficiency in each tool (becawe. (or eumpie. each tool

- 5 -

does not need [0 reparse the textual form, but uses the intermediale. shared
representation). The disadvantage of this approach is that it is difficult to integrate
additional tools into the environment. particularly if the sttucture provided does not
support weU the mechanisms and their intended policies. Garlan' 5 [001 views (L 4]

provide a partial· solution: a sttucture and a mechanism for generaring the underlying
conunon structure consistent with all the requirements of the different tools in the
SDE.

Another reason for this trend is to maintain more information about software objects to

support more comprehensive mechanisms and policies, For example, the use of
project darabases has been a topic of considerable interest in the recent past [1, 311.
'The basic structUre currently generating a large amount of interest is the obj~ctbtls~
(20. 49. 4~J - it hoped that this approach will solve the deficiencies of tiles and

databases.

'These basic Stnlctutes are the foundation for bWld.ini more complex and more
comprehensive hipr-order structUres. For example. Insape [37. 38] maintains a
complex semantic interconnec:tion Stnlcture amonl the system objects to provide

comprehensive semantic analysis and version corurol mechanisms and policies about

semantic consistency, completeness and compatibility amona the system objects.

Smile's experimental darabase is a hipr-order orlanizarion of buic structures thal

suppons mechanisms and policies for rnanaaina c:hanps to exislinl systems. The
Project MUler Dara Bue (PMOB) (36J provides an entity-relationship-attribute model
(4 J to represent, for example. problem reponina. evaluation and trackinl processes.
eMS's Modification Request Trackinl System [.3) builds a structure thai is
intertWined widl secs's c:onftprarion manapmelU databue (which in rum is built on

top of the UNIX file sysIIm); it coon:Unares chanp requests with the actual chanles in
the system. Finally. Apollo's Domain Sotcware Eqineerinl Environment (OSEE)
provides I c:omprehenIive sec of SlNCNm for coordirwinl chi buildinl and evolvinl
of soh. sysIIrns; rhese sauc:nues suppon. (or example. confiJURlion control.

p1arutinl and dneloper inleraaions.

• W. say,.,s/li ia !ill Gart.'s ... do _ bIIf • all it till ~ aDd ita tooII
Weldy e~ lDdrpIadlndy 01 aart.'s rnectww GIW 100II aMd Ia be addId. "is a fuJI
soluDoe ill dill ... !All" OGI dlvel. dill etMI'l Qartaa's viIwI, ct.. addia. a
IlIW ted rtqWIes cbII OGI addI .. vww ...tId by _ IaGI Ia till ocipul - lad IIGI~ '*­
IIIW Iy ualf'llld scnxnn.

- 6 -

In general. structures tend to impose limitations on the kinds of policies that can be
supported and enforced by SDEs. Simple strUctUres such as files provide a useful
communication medium between tools but limit the kinds of policies that can be

supported. The more complex strUctures required by integrated environments such as
Gandalf [32] enable more sophisticated policies. but make it harder to integrate new
mechanisms and policies into the environment. Higher-order structures such as

Infuse's hierarchy of experimental databases [39] make it possible to enforce policies
that govern the interactions of large groups of developers, but do not a1l0~ the policy
maker the abiliry to define his or her own policies.

One fact should be clear: we have not yet reached a level of manuiry in our SOEs
with respect to structures. "There is still a feeling of exploration about the kinds of

structures thai are needed. Indeed, there is the same feeling of exploration about the
policies that can or should be supponed by an SOE. panicularly for those SOEs thai
are concerned with large·scale projects.

J. Four Classes of \lodels

We present a classificalion of SOEs from the viewpoint of scale: how the problems of

size - primarily the nwnbers of developers, but by implicalion the size of the system

as weU - affect the requirements of an SOE thac suppan! the development of those

systems. Our classlficaaion is in terms of a sociological metaphor thai is suggestive of

the distincnons wim respect to the problems of scale. Alonl whac is a continuwn of

possible models. we dislinpish the foUowinl fow classes of SDe models:

IndiVidual Family Ciry State
. . . .

There rna, be tunher disbnaions to be made to the right of the family model;

relauvely litde is known moue the U\ds of SOEs thai suppan the ciry model and

nothing is known abouI SOEs ttw suppon the Stale model. We concenttare our

Jrtention on those two c:lasses - thaI is, the ciry and the stale.

We present two onholonal chvactcriurions for each elm. 'The first emphasizes what

we cons ide! to be the key aspec1 thai dislinl"i.shcs if in terms of scale flom the ochers.

These aspects ue:

• COltStTwctiOlt for the individual class of models:

• coordinatiOfl for the family class;

• coop~rQriofi for the ciry class; and

- 7 -

• commonality for the stale class.

'The second characterization emphasizes the relationships among the components.
Historically,

• mechanisms dominate in the individual class;

• suuetures dominate in the family class;

• poJicies dominate in the city class; and

• higher-order policies dominate in the stale class.

For each class of models we ptesem a desaiprion of the class and support our
characterizations with example SDEs. For convenience in the discussion below. we
use the tenn modll inSilead of cUJu of modlU.

J.J TIll Individual Modll

The individual model of software developmel1l environments represents those

environments thai supply the minimum set of implemenurion tools needed to build

software. 'These environmena ant often refernd to as prog,.ammillg t1tViTol'IIMltIs.

The rnech.anisms provided are the tools of prosram construction: editors. compilers.

linker;1oaders and debuUers. "These enviroomena rypically provide a single sauc:ture

[hal il shared amon, mechanisms. For example. !he stnacture may be simple. such as
a tile, or complex. such as a deconIed tree. 'The policies are rypic:ally ltJisu% fairt

about methodoto,ical issues and twct.wired for n.no-rnanqemem issues.

Indivdaal Model •
(

)

{ tool·il'ldf,jCHI poIicils- } ,

{ ;"."llrfWttl4liOlt ,oou } .
{ Sill,11 StrllCtwl }

These envUocmenu are domin-s by &slues of sofrwue co,..,,,.uctioII. This

orienrllion haa led to 1ft empftaIia on Ihe tools of conmuction - thII is. the
mechanismI - widl policies and sauawa uawninl secondaty imponance. The

:: .

- 8 -

policies are induced by the mechanisms - that is. hard-wired - while the structw'es
are dictated by the requirement of making the tools work together.

We discuss four groups of environments that are instantiations of the individual model:
toolkit environments. interpretive environments. language-oriented envirorunents. and
transformational environments. 1be toolkit environments are exemplified by L "NIX;
the interpretive environments by Interlisp [S 1]; language-oriented environments by the
Cornell Synthesizer [SO]; and the transformational environments by Refine (46].

The toolkit environments are. historically. the archetype of the individual model. The
mechanisms communicate with each other by a simple structure. the file system.

Policies take the fonn of conventions for organizing sttUctures (as for example in

UNIX. the bin. include. lib and src dUectories) and for ordering the sequence of

developrneru and construction (as exempWied by Make [13]). lbese policieS are very

weak and concerned with the minutiae of program construction. However. shell
scripts provide the administralor with a convenient, but flOC very extensive. mechanism
for integrabnl toob and providing suppon for policies beyond those encoded in the
tools.

Toolkit Model =
(

)

{ fOOU·iMUC,d polici,s. script.'1ICod~d po/kin, ... } .

{ editors, compilers, llnkerAoaders, debuUers } ,
{ tile system }

Interpmive environments an: also an earty incanwion of the individual model. 'They
consist of aD irueplled set of tools th&c center around an interpreter for a single
languqe sudl &I Lisp or Smallralk [1 ~1. The Impale and the envirorunenl are nO(
really sepiable: the lanpap is the inrerface to the \lSef and the interpreter the tool
[hal the ~ inIerKts wicht The strUC1Uft shared by the various tools is an internal

represenraDoa of Ihe proll'am, possibly witb some accompanyin. inlOrmalion as
exemplified by property lists. These envirormcnlS an: noced for their extreme
ftexibilicy and there are vimaally no policies enforced (or, (or thal maner. supported).
Thus, in contrast to tt. toolkil approKh where the (oob induce certain po~ies thai

force the prolJ"U1U'l1er into cenain modes of operation. pt'osnmmen can essentially do

as they please in the constrUCtion of their software.

·9·

Interpretive Model =
(

)

{ virtUally no res"ictive polici~s } .
{ interpreter. und~rly;ng support tools } .
{ intermedWe representation}

Language-oriented envirorunents are a blend of the toolkit and interpretive models.

1bey provide program construction tools integr.ued by a complex structure - a
decorated syntaX tree. Whereas the tools in the toolkit environmems are batch in
natUre and the tools in the interpretive are interactive. the tools in languaae-oriented

environments are incremental in rwure - thai is, the languqe-oriented tools try to

maintain consistency between the input and output II the arain of editinc commands.
A single policy penneares the tools in this model: early error detection and

norificarion. These environments miaht be primarily hand-coded. as in Garden [401. or
leneraled from • fonnal specification. such as by die ComeU SyNhesizer Generator
(41).

)

{ enor prevention. early error detection and notification, ... }.
{ editor. compiler, debuuer •... } •
{ decorlled symu tree }

Transformational environrnaus rypically suppon a wide-specawn 1anlUlle (such as V
(46 J) thar denoces a ranp of object and conaol SI:NCftIJa from abstract to concrete.
Proarams IN iniIiIUy -riae4 in • abluact fonn and modified by a sequence of
transfonn.... inIo .. eflcicnl. coner.. form.. 'The mechanisms are the
transfonNlioaa themselves and the machinery for applyUta them. The structure is
rypically • c:ro. berleeen &he inlermcdia&e represcnuUon of the interpretive model and
the decotIIICI synIU aee of chi lanauaae-oriented model As in chllanpap-orienled
environmena. a sinlle policy deftna lhI sIYIe of chi environmenl: chi tnnsfomwional
approach to cOftSUUC'rinl prop_na (a. for eump.. ill Erao (444) Ind PDS (3».

Proarammer apprentices. sucb a KB Emacs [531. are a varilliaa of chiI policy in thM
the prosranner can switch between IhI cnnsformlliGnal appoadl and interpretive

approach &I any time.

Transformational Model =
(

- 10 -

{ transformational constrUction •. ,. }.

{ interpreter. transformational engine. ... }.
{ intermediare representarion/decowed syntax tree •... }

)

We have discussed four differen~ groups of individual models and cited a few of the
many environments thar are examples of these different models. Most research

environments and many commercial environments are instances of these individual
models.

1.2 TM Family Mod~1

1be family model of software development environments represents those

environments thai supply. in addition to the minimal set of program consauction tools,

facilities thai suppon the interactions of a small group of propammen (under, say,

10). 1be analogy to the family for this model is thai the members of the family work

autonomously. for the most part. but trUSI the omen to act in a reasonable way; there

are only a few rules ttw need to be enforced to maintain smoodt interactions among

the members of the family. It is these rules. or policies, thai distinauish the individual

from the family model of environments: in the individual model, no rules are needed
because there is no interaction; in the family model, some rules are needed to regulate

cenain critical interactions amon. the prosnmmers.

Family Model ~

(

{ coordiNJriolt policits } •
{ COOl'diNJtiolt fPIIclwvtisms } •
{ s~ci4/·p",pou d4labQsts }

)

The chanlcWisric thM dislinl"ishes the fanUly model from the individual model is thai

of tnftNctd cOMdiNU'iOlt. The envitonmenc provWies a means of orchestratinl the
interactiON of the developen. wich the loal d\M inIonnation and effon is neither lost

nor duplicared u a result of the simultaneous activities of the prosrammen. The

sauc:tW'eS of the individual model do not provide the necessary (bus weak form 00
concwrency conttol. Because the individual model's sauctweS are not rich enouah to

coord.in.ale simultaneouJ activities. more complex StJ'\1CtW'eS are required. It is these
saucnues thai dorrurwe the desill' of the envitoumettt. wherein the individual model

the mechanisms dominated; the rnechanWna and policies in the family model are

- 11 -

adapted to the sttuctwes.

We discu~ four groups. of environments that are instantiations of the family model:

extended toolkit environments. integr.ued environments. distributed environments. and
project management environments. The extended toolkit environments are exemplified
by UNIX together with either sces or RCS [~21; the integrated environments by

Smile; the distributed enviromnents by Cedar [48]; and the project management
environments by CMS.

'The extended toolkit model d.irectly extends the individual toolkit model by adding a

version conaol sttuctu.re and configuration conaol mechanisms (see. for example.

UNIX PWB (8». Programmer cooniinarioo ~ supported with these structures and

mechanisms; enforced coordination ~ supplied by a rnan.ap:mem decision to aenerale
systems only &om. for example. sees or RCS darablses. Thus. this kind of family
environment provides individual propanmers a peal deal of freedom wilb

coord.inarion supported only • poinu of cSepo.it imo abe versioo conuol database. The
basic mechlnisml for propam consuuction from the individual toolkir model are
retained. However. these toolJ must be adaped to the family model structure as, for
example. Make rmJC be modified to work widl ReS or seCS. Altenwively. me tools

may be constrUcted in conjunction with • dllibue - e .•.• me Ada proaram support
envitonmena (APSEs) [2].

Extended Toolkit Model •
(

{ ... , suppon versMx1/con6pruion control } •
{ ... , venioniconApruion manqemem } •
{ ...• campaaed versiona, venioo crees }

)

'The inN. H.~ model u... by 1nI100 the individual lU\lUIIe~riented model,

where chi CGllliIaIncy policy penni" the tools. Hen consislency is maintained
amona die ~ IIIIOGIIa in addition to wilhin • module. N in the individual
model. the mechmisma defenninI conailaency lna'emaally. althoup the pain size
ranps from che syntU a. nodIS of chi Oandall Procorype (0') (16) to proc:edures in

• ".. II'O''P'" .. aac •,.,, a.ct..~. la puIicIdIr diltlitMM or projecl
tn_a r _ upICII <=- be aad •• c:bId aIIIIr .1JIIItM tooUriI or .. ~
ea\irlil ,-.

- 12 -

Smile. to entire modules in Toolpack [35] and RII [6]. This model's structure is
typically a special-purpose database. although in eLF it is generated from a
specification. The structures vary in their suppon from simple backup versions to both

parallel and sequential versions [17. 22].

Integrated Model =
(

{ enforced version control. enforced consistency } .

{ version description languages. consistency checking tools} .
{ special-purpose database }

)

"The distributed model expands the integrated model across a number of machines

connected by a local area network. Additional structUreS are required to support
reliability and high availabiliry as machines and netWork links fail. For example,
Mercury [23] is a multiple-user, languqe-oriented environment thai depends on a

special distributed allorithm thai simulates a small shared memory to guarantee

consistency amon. module interfaces: OSEE's darabase [271. on the other hand, is a
simple extension ApoUo' s network file system.

DUaibured Model =
(

(... } .
{ ... , IIttwOl"k m~ch4nism.s } .
{ disaibuced obi*clS }

)

The project rn.anqemenc model is onhoaonal to the proaression from the extended

toolkit model to u. ciillribuled model. These environments provide additional support

for coordiallina chanps by usipUnl tuks to individual programmers. in OSEE.

strucrures IIId mectwUsms are proVided for assia:ninl and comp1etinl tasks that may
be compolld of sublasts and activities [28}. CMS adds a modificazion request (MR)

rrxkin. system on top of sees in wttich indivdW proanmmcn are assigned

paniculu chin,e ~quesu and the chlnles are associaled with puricular sets of sees
versions.

I.." •

• L 3 .

Project Management Model =
(

{ suppon activity coordination } .
{ activity coordination ~chanisms } .
{ ...• activity coordination SlTUClW'tS }

)

The family model represents the current stale of the an in software development
environments. In general. it is an individual model extended with mechanisms and

structUres to provide a small degree of enforced coordinarion among the programmers.
'The policies are generally /aisu% fairt with respea to most activities; enforcement of
coordination is generally centered around venion control and configuration
manqernent. 'The most elaborare instance of the family model with respect to
mec::hanisms is OSEE; the most elaborue with respea to sauc::tures is CLf.

J.J TIlt Ciry ModIl

As the size of a project pows to. say, more than 20 people, the interactions among

these people increue bodl in number and in complexiry. Althouah families allow a
grell degree of freedom. much larpr populJlions, such u cities. require many more

rules and reguJarions with lheit ancndanl resaictions on individual freedom. The
freedom appropriate in small aroups produces anarchy when allowed to the same
degree in laraer IfOUPS. [r is precisely this problem of scale and the complexity of
interutions dw leads us to inttoduce the ciry model.

Ciry Model •
(

{ ... , coop.,,,,iQlt poIk;'J } ,
{ ... , cOOfH,t:IIioIt 1fVC#t4IWJJu }.
{ .. ,' srrllcnu'J/or coofH,t:lliOli }

)

The n«ion of enlotad coord.inaIion of the famlly model it insufllcienl when applied
to the scale repraenred by the ciry model. Consider the foUowin, anal0lY. On a
fann. very few NIes an nulled to ,ovem the use of eM farm verucla while wilhin

the con4na of the fann.. A rninimII set of naJa ,ovem who usa which vehicles and

how they are to be used - buically, how the fum wOlbrs coordinar.e widl each ocher

on usc of the vehicles. Fwther, these N1es aD be detemUned in rial tiJfw - that is,
they can be adjusted as various I*ds arise Of chan,e. However, dw set of rules and
mode of rule determination is inadequ_ to ,ovem the inleractions of can and ttuck.s
in an averap city: chaos wouJd result wilhoul I more compIa set of rules and

- l~ -

mechanisms that enforce the cooperation of the people and vehicles; the alteration of
rules. of necessity. has serious consequences because they affect a much larger
population (consider the problem when Europe changed from driving on the left to
driving on the right side of the road). Thus. enforced cooperation is the primary

characteristic of the city model.

It is our contention that the family model is currently being used where we need a city
model. and that the family model is not appropriate for the task. Because the family

model does not support or enforce an appropriate set of policies to handle the

problems incurred by an increase in scale, we generally have a set of methodologies
and management techniques that attempt to stave off the anarchy that can easily occur.

"These methodologies and management techniques work with varying degrees of

success. depending on how weU they enforce the necessary cooperation among
developen.

Little work has been done on environments thal implement a city model - thal is,
that enforce cooperation among developen. We discuss two such environments:

Infuse (39) and ISTAR (10). Infuse fOC\1leS on the technical management of the

change process in large systems where&! 1ST AR focuses on project management

issues. In both cases. the concern for policies of enforced cooperation dominate the

design and implement arion: in Infuse. the policy of enforced cooperation while

making a concerted set of changes by many prollammen has led to the exploration of

various strUctures and mechanisms; in 1ST AR. the conlnCtUal model and the policies

embodied in [har model donWwe the 5ellCh for project manqement saucrures and

mechmisms.

'The primary concern of tntuse· is the technical manaaemem of evolution in large

systems - thai is. whII kinds of policies. mectwUsms and StNcrures are needed to

automate tuppon for mKlnl chanlcs in luae systems by lUSe numbers of

pro gratnI'IWI. lnluse pneralizes Srrule' s e l perimenlal daraba.ses into a hierarchy of

experunenul dIr&bases, which serves as the encompusinl structure for enforcinl

Infuse's policies about prolfllMlCr inleraction. These policies enforce cooperation

• [nI\de onpAllld u. mt mU is. lbI chaa .. IftIDIIIIIMIII cornpocnl of tbI laIape E.IMroaDeal
(wbldl e.ora lbIlUI of bmII ..-Ifact ,,*&6cm~ aad of alttUSic iDr.In:OGIIICIioD model in
lbI cODllNClioG _ evoi.-:iaa of sohn syuttU). Howevtf. tbI mlDlfltDtGl i&..s of bow (0

suppoft alarp auablr of cilYftope" 1ft sutJkieady ~ 10 tbI """wjc: COQCIrDI of ~
to be ~ ID a muda w1da c:oaItZl (for eumpII. (0 eavd'oalDelD aad too6I s~1 I
SYalXbC LnRrtoaDeC1Ioa !DOdd) aDd (0 be aellld 1Die~.

• 15 •

among progranuners in several ways [24].

• Infuse automalically panitions the set of modules involved in a concened set of

changes into a hierarchy of experimental databases on the basis of the strength of

their interconnectivity (this measure is used as an approximation to the oracle thai
tells which modules will be affected by which changes). This panitioning fOnn!

the basis for enforcing cooperation: each experimental database proscribes the
limits of interaction (however. see the discussion of workspaces below) .

• At the leaves of the ttierarchy are singleton experimental databases where the
actual changes take place. When the changes to a module are self-consistent it

may be deposited into its pareru database. At each non-leaf database. the effects of

changes are determined with respea to the componenIS in ttw partition. thai is,
analysis detennines the local consis~ncy of the modules within the cWabase. Only

when the modules widUn a panition are locally consistent may the dltabge be
deposited wo its parenI. ThiJ ile1'llive procesa continues umil the entire syscem is
consistent.

• When chanps conftiCI, the experimenu1 database provides the fONln for

neloriariq and resolvina thole confticts. Cu.nendy. there are no fonnal facilities

for this nelOliation. but only the framework (or it. Once the confticts have been

resolved. the darabue is repanilionecl and the chanp process repeatS for thai (sub-)

panirioninl·

• Because the panirionina aJaoridwn is only 1ft approximation of the opWnal oracle.

lntuse provides 1ft aape mechanUln. the WfNUptlCI, in which propammen may
voluntarily coopa_ 10 fotestaU expensive inconsistencies at the top of the
tticrarchy.

Thus the for ~ 11'1 encoded in the mechanisms, with the hierarchy

providina suppodinl SInICftIN·.

• W ... abo UMep;s. dII uUry of dIiI ~ far cooperldaa ia _......... Widl I

aoQoa oIloc:a1 _p" 10 <* aaciaa 01 local (Ill ia u .. 'I dwdrin expea
to be ... 10 ... dII _ 01 $= .. ,.... by piowidiDa "ri'jIW for - bImaI
coam.::aca MId rwp •• IIIIIiIII wwdIID dIiI rn..wos.

Infuse Model =
(

- 16 -

{ enforced and voluntary cooperation } .
{ automatic partitioning.

local consistency analysis,
database deposit.
local integration testing •
... } ,

{ ... , hierarchy of experimental databases }
)

Whereas Infuse is concerned with the technical problems of managing system
evolution. 1ST AR is concerned with the managerial problems of managing system
evolution. 1ST AR is an integrated project suppan envirorunem (IPSE) (29) and seeks
to provide an envi.ronmem for m.an.aain, the cooperation of large groups of people
producing a larp system. To this end, it embodies and implements a conrract mothl
of system developmem. 1ST AR does noc direc:tly provide tools for system

construction but instead suppans "p1uUinl in" various kinds of workbenches. 'The

contract model dictates the allowable interactions amon, component developers [47] .

• The cliem specifies the required deliverables - that is, the products to be

produced by the ContrlCtor. Fwtber. the client specifies wtw the tenns of

satisfaction are for the deliverables - thai is. the specific validation tests for the
products .

• The contrK'tor provides periodic reponina about the starus of the project and the
stare of the product bein. developed. Cliena ate thus able to monitor the progress

of their contraas.

• 1ST AR pcovMies suppon for amcndinl the contracts as the project develops. Thus.
the c suuc:tun can chan Ie in the wne ways thai the produc:cs themselves

can cbIftp.

• A contraa cbllDue provides the undcrlyinl sauc:nue for rhis environment.

Thus the interactions between the clicntJ and the contrKtOrS are prosc:ribed by the
underlYlna model and the mechanisms in the envirocunenc enforce those Nlcs of

interaction. The e~act in.racnon of tools in the ConsG'Udion of the =rnponenlS of the
system is left unspecified. but the means of conmainl for c:ompouesus of a syslem are

enfon:ed by the environment.

3.4 TM State Model

- L 1 -

1ST AR Model =
(

{ contract model } .
{ contract support tools } .
{ contract data base }

)

Pursuing our metaphor leads to the consideration of a stale model. Cenainly the notion
of a stare as a collection of cities is suggestive of a company with a collection of
projects. There are. we think. intimations of this model in the follow inS: the

Department of Defense standardizing on one panicu1ar 1ansuqe. Ada. for all its

projects; a company tryinl to establish a uniform development environment such as
UNIX for all its projec:a: a company esublishin, • common methodololY and sec of
standards to be used on all its projects. It is euy to understand the rationale behind
these decisions: reduction in COSI and improVemenl in productivity. If there is a

uniform envitonmenl used by several projects. developers may move freely between

projects wichout incurrinl the cose of leaminl a new environment. Further, reuse of

various klnds is possible: tools may be distributed with little difficulty; code may be
reused; duian and requirements may be reused; etc.

Stare Model a

(

)

{ C"OIMtOIIQUty poIk;,s } •
{ supponiII, 1fW('#IQ";s,,.., } ,
{ S"fJPO'fiIl, strllCtW,S }

[n dUs rnocW. IbI concem tor commonaliry, for standards. is domirwu. This policy of
cornmonalilJ __ to induce poHcles in the specific projects (or. in Eheit city model

envitoc."...). n.., the policies of the Uale model are hiJher~rdet policies because

they have dUs qaliry of inducinl pohcles. ramer than particular suucrures and

mechan.i.sml.

'Nhile one can imqine the existence of instances of this model (and there are certainly
many cases where it is needed), we do not know of one. Our iruuilion* sugesa me

- 18 -

following general description.

• Provide a generic model with its attendant tools and supporting structUres for
software development to be used throughout a particular company.

• Instantiate the model for each project. tailoring each instance dynamically to the
particular needs of the individual project.

• Manage the differences between the various instances to support movement
between projects.

Thu.s, while little i.! known about the state model, it appears to be a useful and fruitful
area for investigation.

3.J Scaling Up from OM Class to tlu N,xt

Ideally, scaling up &om one class to the next would be a ma.trer of adding structures
and mechanisms on top of an existina environment. In at lew one case this has been
done without too much difficulry: salinl up from the individual toolkit model to the

family extended toolkit model. This example involves only a small increment in
policy.

IE il extremely annctive to think of the rusher-level models as u.sing the lower-level

models as components upon which to establish new policies, mechanisms and

structUres. Unfomuwely. there ate several difficulties. Firs~ there is the problem of

the tiahmess of couplinc berween stnICt\WS and rnectwUsms. Even in scaling up from
the tooUW to the exlended toolkit envirot.meuu, reuofinina of old tools to new
structUres il neceSUIY. nu. raises chi fundamental question of whether it is more

profitable to mro6& dwlpa do chi syaem or to reconsuuct the entire environment
from sct'IIdL For ex..... even Ehouah lntuse is I direct pneralization of Smile.

Intuse . s impIementlbaa iI I reconsauc:rion reusinl some code from Smile ramer than

an extenaiaa on top of Sma.. Because environment lenerllors asswne a common
kernel dill iI opaized for a speciAc model, and otten a pU1icular poup withln the

model. they are diftlcu1t to scale up. Similar to tntuselSmi1e, Mercury scales up the
CorneU Synchesizcr OenerllGr by utensive modific.ions to its common kemel ramer
than by addinl somethinc to coordinale pnenIed editors.

• See vaftoaa poaDoa ~ a:S ~ao. II dII 3"' ~ Soh ... ProcetI W~
[11].

- 19 -

Second. problems arise from the lack of sa'uctw'es and mechanisms in the base-level
environment suitable for the next level. For example, multiple-user inteqnetive
environments are extremely rare. Further. this lac:k of suitable Stl'\1CtW'e5 and
mechanisms is particularly imponaru in moving from the family model to the city

model where enforcement is a much more serious issue. Building security measures
on top of a pennissive environment (such as UNIX) is particularly difficult: it is too

easy to subven the enforcement mechanisms.

Last. there is the problem of how well the granularity of the Sa'Uctures and the

mechanisms of one level lend themselves to supponing the next level. For example.
the file system in the toolkit approach is easily a.dapced to the extended toolkit.
However, some of the higher-level structUre of the extensions is embedded, by
convention. within the lower-level sttuctUre, as in sees where version information is
embedded by an sees directive wilhin the source files.

Note thai most of OW' examples illusttllinl scalinJ difficulties are from the individual
to the family model. Since dUs inctemenc is much smaller than from family to city.

we can expect arearer obsuuctions in scalinl from die family to the city model.

". Contributions

We summarize the conttibutions of this paper as foUows:

• Our pnera! model distinpi.shes precisely those aspeas of an environment that are
useful in evaluarinJ softwue developmem environments: policies. mechanisms
and StnIc:nua.

Our tuonomy dIlineMa four imponanI classes of interaction amonl software
developen wida re..,.a to the problems of scale .

• The ildvklaal and fImll'1 models represent the auTeru stile of the an in software

devel., .. envirolmena. We elplain why these two modelJ are ill-suited for
the de.,..., ... of larp sySlems.

• We show tN& the city model ina'oduca the qual.llive differences in the policies.
sttUc:nues and mechanisms ~ (Of very larp softwue developmem projects.

• We propose a stile model. which is in need of tUnher clarification, understandinl

and implemenw:ion.

We conclude thai there is a pressinl need for research in bach the technical and

mana,erial aspects of city model environmena.

- 20 -

Professor Kaiser is supported in part by grants from AT&T FOundarion. Siemens
Research and Technology Laborouories. and New York State Center of Advanced
Technology - Computer and Informarion SystemS. and in pan by a Digital Equipment
Corporation Faculty Award

· 21 .

Reference!

[lJ Philip A. Bernstein. "Database System Suppon for Software Engineering",
Procttdings of 1M 9th Inltrnationai Conference on Software Engineering,
Monterey, CA, March 1987, pp 166-178.

[2J lohn N. Buxton and Lauy E. Druffel. "Rationale for Stoneman", Fourth
Inltrnationai Computer Softwart and Applications Con/trence, Chicago, IL,
October 1980. pp 66-72.

[3J Thomas E. Cheadwn, lr., Glenn H. Holloway and Judy A. Townley .
. , Program Refinement by Transfomwion", Procttdings of 5th IfUtrnarional
Conftrtnce on Softwart EngiMtring, San OleIO, CA, March 1981. pp 430-

437.

[4] P. (ben. "The Entiry-RelaliONhip Model - Toward a Unified View of
o.a", ACM TrtlllSQCtiolu 011 Dat4btJu SysttJfU, 1:1 (March 1976). pp 9-36.

[3] Donald Cohen. "Automatic Compilation of Lolical Specifications into

Efficient Propams". 5", NQIionaI Conftrtrte, 0" Ntifrci4llrtt,lIigtnc" August

1986, Philadelphia. PA. Science Volwne. pp 2()'~.

[6] Keith D. Cooper. Ken Kennedy and linda Torczon. "The lmpact of
lnterprocedure Analysis and Opcimiw:ion in the R II Propvnminl
EnvitCXil11llnl", AC M TrtUUllCtiOlU 01'1 Pro,rammi", Lang&IQgfS and Syst,ms ,

8:4 (October 1916). pp 491-'23.

[7J Frank DeRemer and Hans H. Kton. "Prop"un1nI-in-the-Large Venus
ProIflllV1Unl-in-d1ll-Srnall", IEEE Tr4lUQCti01U 011 SoftwGr, Engwtring, SE-
2:1 (1 ... 1976). pp 10-16.

(8) T.A. DoIoaa. R.C. HIiJhI and l.R. Mashey. "The Proll'ammer's Workbench",
TlwIMl Sy.". Ttd'ltical JOIU1'fQI, ~7:6-2 (JuJy-AulUSl 1978). pp 2177-2200.

(9) Vaanique Donzeau-Oou ... Oenrd Huet, Gilles Kahn. and Bernard Lanl.
, 'PropmvninJ Envitormeuu Bued on StNCIW'ed Edilon: The Mentor

£Kpericnce ". IItI'roctiw Pro,,4IftIftiIt, EnvirONfllNS, David R. Barstow,

Howltd E. Shrobe and Erik Sandewall, editors. New Yort: McGraw-Hill Book
Co., 1984. pp 121-140.

(10) Mart Dowson. "ISTAR - An lnt.eJT1l.ed Project Support Environment",

SIGSOFTISIGPUH SoftWdrl EII,iM,rill, SyrrtpOsilUJl 011 PracricQI SOjrwarl
Dri"optrWN £irviTONfVIIU. Palo Alto, CA. December 1986. pp 27-33.
Proceedinp published at SIGPLAN NOIi€IS, 22: 1 (January 1987).

• 22 •

[11 J Mark Dowson. editor. Procudings of the 3rd Inttrnational Sojrwart ProctSs
Worlcshop: Iteration in the Sojrwart Proctss. Brecunridge CO. November
1986. IEEE Computer Society. 1987.

(12J Peter H. Feiler and Raul Medina-Mora. .. An Incremental Programming
Environment". IEEE Transacriof'IJ on Software Enginuring, SE· 7:5
(September 1981). pp 472-482.

(13J S.I. Feldman. "Make - A Program for Maintaining Computer Programs",
Software - Practice &: Experienct. 9:4 (April 1979). pp 255-265.

(14) David Garlan. "Views for Tools in Integrated Environments" • Advanced

Programming Envil'of1lMltIs, Reidar Conradi, Tor M. Oidriksen and Oag H.

Wanvik, editors. Lecture Notes in Computer Science, 244. Berlin: Springer­
Veriq, 1986. pp 314--343.

(15J Adele Goldbefl and David Robson. SmaIIlaUc-80 The UutglMlge and itS
lmplt~ntation, Reading. MA: Addison-Wesley Pub. Co., 1983.

(16) A.N. Habermann and C. Nockin. "Ganda1f: Software Development

Environments", IEEE TrallS4ctioflS 011 Software Engineering. SE-12: 12
(December (986). pp 1117 -1127.

[17J A. Nico Habermann and Dewayne E. Perry. ' 'System Composition and
Version ContrOl for Ada", S()fnwu' EIt,ilwerilt, EltviroNf'ltltls. H. Huenke,
editor. New York: Nonh-HoUand Pub. Co., 1981. pp 331-343.

(18) William E. Howden. "Contemporary Software Devlopmcm Environments",

ColMUUlicaJiOlU a/tlw ACM, ~:5 (May 1982). pp 318·329.

[19] William Joy. "All Inttoduction to the C shell", UNIX User's Manual
S,.,ltww1llQry D«JUfWNI, 1986. pp USC:".

(20)

[21)

(22)
4,: .

Gail I. Kaiser and Peter H. Feiler. .. An AlchirectWe for lnteUilent Assistance
in Software Developmena", Procttdilt,s of tM 9tla l1uentQtioNd Cort/"tl1&e Olt
Softwtut E"Iiltttriltl. Monlerey. CA. March 1987. pp 80-88.

Gail E. Kaiser and Peter H. Feiler. "lnteW,e" Assistance withow ArtiAcial
InteUipnc:e", Tltiny-Secolfd IEEE Compwer Society INenttJtiol'tQ1 Colt/"tl1&t,
Febnwy 1987. San Francisco, CA. pp 236-241.

Gail E. Kaiser and A. Nica Habermann. "An Environment for SyS1em Ver1ion
Control", Twt1tly-Sixtla IEEE Compwu Sociery INmtlJtioMI Con/ITtft&e. San

Francisco, CA, Febnwy 1983. pp 415-420.

- 23 -

[23] Gail E. Kaiser, Simon M. Kaplan and Josephine Micallef. "Multiple-User
Distributed Language-Based Environments", IEEE Sojrwart, (November 1987).

[24] Gail E. Kaiser and Dewayne E. Perry. "Workspaces and Experimental
Databases: Autonwed Suppon for Software Mairuenance and Evolution".
C on/trtnet all SoJtwart MaillltMnCt-1987. Austin. TX. September 1981.

[25] Brian W. Kernighan and John R. Mashey. "The UN1X Programming

Envirorunent". IEEE C ompUltr. 12:4 (April 1981). pp 25-34.

(26J David Alex Lamb. "IDL; Sharing Intermediate Representations", ACM
Tra1l.S(lCriofU all Programming Langwagt! and Systtms, 9:3 (July 1981). pp

297-318.

[21] David B. Lcblana and Gordon D. Mclean. Jr.. • • Configuration Management
for latJe-Scale Software Developcneru Efforts", GTE Worlcsltop Oil SOjrwarl

Ellgillltrin, EnvirONrWlIIS for ProgrtJlMlin, ill tIN wgl t Harwichpon. MA.
lune 1985. pp 122-127.

[28] David B. Leblq and Roben P. Chase. lr.. "Compuller-Aided Software

EnJineerina in a Oisuibuted Worallion Environmem", SIGSOFTISIGPLAN
Softwa" £1I,illltr;II, SYlf'lPO$ilUll 011 PriICtKal Softwarl Dtvtloprrwlll
Env;rONrWlIIS. PinsburJh. P A. April 1984. pp 104-112. Proceedinp published

as SIGPLAN NOIiets, 19:5 (May 1914).

{29] M. M. Ldwnaa and W. M. Turski. "es...w Properties of IPSEa", Softwa"
En,iMlriIt, Nou$ 12;1 (J...." 1987). pp '2·".

(30) Natraly H. MinIty. "ConII'OWna cbe Evolution of Larp Scale Software
SySIIIDI", CDIIfe'mcl 011 St1{twGrl MaiNlftIllICt-l98J, November 198'. pp
~()'SI.

(31) JoNI" H •• AX. "Toward. Penislem Object 8ue", Adwutcld Pro,rammillg
~ bidar Conradi. Tor M. Didriksen and Dq H. Wanvik. editon.
r...ecnu. NOleS in Computer Science. 244. Berlin; Sprinpr·Verl ... 1986. pp

312·3~.

[32] David Noctin. .. ". QANDALf Projeca", T1w JOMntlJJ of Sy#nru aItd
SojtwGn. 5:2 (May 1m). pp 91-105.

[33] Ellioa I. OrJanick. T1w MMltic$ SY#I".: An £z.amiNUiOll of 1'$ StrlM:fWI.

Cmlbridp. MA: The MIT PraI. 1m.

- 24 -

[34] Leon Osterweil. "Software Processes Are Software Too", Procudil1gs of th~

9th 1f1l~r1U1tio1U11 Conf~r~l1c~ 011 Softwar~ El1ginuril1g, Monterey, CA, ~a.rch
1981. pp 2-13.

[3S] L.J. Osterweil. "Too1pack - An Experimental Software Development
Environment Research Project", IEEE Transactions 011 Softwart El1gil1uril1g,
SE-9:6 (November 1983). pp 613-68.5.

[36J Maria H. Penedo. ' 'Prototyping a Project Master Database for Software
Engineering Environments", SIGSOFTISIGPLAN Softwar~ El1gil1ttril1g

Symposium on Practical Softwart D~~/oPTMlIl Envirof'llMf1ls, Palo Alto, CA,
December 1986. pp 1-11. Proceedings published as SIGPLAN Noric~s, 22:1
(1 anuary 1981).

[31] Oewayne E. Pen')'. "Software Interconnection Models", Procudings of tM

9th illltr1'1QrioNlI C OnfortMt on Softwart En,wtrin" Monterey, CA, Much
1981. pp 61-69.

(38) Oewayne E. Pen')'. "Venion Control in the Inscape Environment",
PrOCttdin,1 of tlu 9th illlt1'1tlJtiONlI COrr/trtMI 011 Softwart En,inttril1' ,

Monterey, CA. March 1981. pp 142-149.

[39) Dewayne E. Pen')' and Gail E. Kaiser. "Infuse: A Tool for Automatically

Manalinl and CoordiMlinl Source Cblnps in Larle Systems", AeM
Fiftllllllt NutIMJI Compllll,. Scilrte' COIf/trtrtel, St. Louis, MO, FebNaty 1981.

pp 292-299.

[40) Steven P. Reila. "A ConcepNal Proannvnin, Environment", Procltdings 0/
thl 9rlllltltr1tllllDlttJl COIt/fTlrtel Oft Sof/wGrl £n,ilWtrin" Monterey, CA,

Marcb 1917. pp 225-23'.

(41) "l'baa-. Repe and Tam Teitelbawn. "The Synthesizer GeneWOf".

SIGSOmSlGPLAN SO/fwdrl En,iM,rill, SytrtpOJilUJl 011 Practical Softwart

D"",.".,,,, £1tvi'OItIIVNJ. Pinsburpl. P A. April 1984. pp 41-48.
Procecdinp published u SIOPLAN NoticIJ. 19:' (May. 1984).

(42) M. J. Rochkind. "n. Sou.rce Codl Conuol SySlem", IEEE TrQlUQCtiollJ 011

SOj'twtul EII,illll";II,. SE-1 :4, (December 1975). pp 364-370.

[43) B. R. Rowland., R. E. Andmon. and P. S. McCabe. "The 38200 Processor &
DMERT Operuin, Sys~ Software Devlopmenc System", 1M S,ll Sysrl,"
TtcluUcal Jou"tIll, 62;1 pan 2 (January (983). pp 275-290.

• 2.5 .

[44J W. L. Schertis. "Software Development and Inferential Programming", in
Program Trans/ormation and Programming EnvirofllMfII.J, P. Pepper, editor.
Berlin: Springer-Vedag, 1983. pp 341-346.

[45] AndIea Skura and Stanley Zdonik. "The Management of Changing Types in
an Object-Orierued Database", ACM 1986 OOPSLA Con/trtnet, Ponland, OR,
September 1986. pp 483-49~.

(46] Douglas R. Smith. Gordon B. Kotik and Stephen J. Westfohl. "Research on
Knowledge-Based Software Environmems aI Kestrel Instilute", IEEE
TransacriollS on Softwart EngiMtring, SE-ll: 11 (November 198~). pp 1278-

129'.

[47] Vic: SteMin •. "An Introduction to ISTAR", Claper 1 in Softwtut

En,iMtrill, Elrvirofllrtlllls, Ian Sommerville, editor. lEE Computina Series 1.
London: Peter Perepinus Ltd., 1986. P 1-22.

[48] Daniel Swinehart. Polle Zcllwcaer, Ridwd BeKh and Raben Hagmann. "A
Saucnual View of the Cedar ProsnmminI Environmeru", AC M TransactiollS

0#1 Pro,ramminl LtJ"IIMIIIS aNI SysurJU, 8:4 (October 1986) pp 419-490.

(49) Ric:hard N. Taylor, Lori CWb, Leon 1. Os.erweil, Jack C. Wiledon and

Michal Y 0WlI. ,. Atcadia: A Software Development EnviroNnent Research
Projecl", 2nd (ffll11tIIliOltllI COII/",nt:, 011 Add ApplicatiOlU tVtd EnvirofllMnl$,

IEEE Compulft Society, Miami Beach. FL. April 1986.

[50) TIm Teiralblum and Tbomu RepI .. ". comeU Prosnm Synthesizer. A

Symu-DirectId PropumUn. Environmenl", CommlUlicatiolu O/IM ACM,

2.:9 (Sel*"'blr 1911). pp ~3-'n.

[5 1] W_ Teilalmla and l..any Muirller. "The Imedisp Proparnmina
Eavinal ·.la. Compllllr, 1.:. (Apr111911). pp ~-34.

(52) WIIIIr P. TIChy. "RCS - A Syuem for Venion Control", Softw"" -
Pr«tiel aNI ~rilrtC" 1':7 (Iuly 191') pp 637-6,..

('3) Richard C. WIIIIt'I. "KBEmIcs: Where's tbI AI?", T1w AI Ma,4ziM, VU:l

(Sprina 1916). pp .7-56.

