Academic Commons

Articles

Physical activity, black carbon exposure and airway inflammation in an urban adolescent cohort

Lovinsky-Desir, Stephanie; Jung, Kyung Hwa; Rundle, Andrew G.; Hoepner, Lori A.; Bautista, Joshua B.; Perera, Frederica P.; Chillrud, Steven N.; Perzanowski, Matthew S.; Miller, Rachel L.

Objective

Regular physical activity can improve cardiopulmonary health; however, increased respiratory rates and tidal volumes during activity may increase the effective internal dose of air pollution exposure. Our objective was to investigate the impact of black carbon (BC) measured by personal sampler on the relationship between physical activity and fractional exhaled nitric oxide (FeNO), a marker of airway inflammation. We hypothesized that higher personal BC would attenuate the protective effect of physical activity on airway inflammation.

Methods

We performed a cross-sectional study nested in a birth cohort of African American and Dominican children living in the Bronx and Northern Manhattan, New York City. Children were recruited based on age (target 9–14 year olds) and presence (n=70) or absence (n=59) of current asthma. Children wore wrist mounted accelerometers for 6 days and were classified as ‘active’ if they had ≥60 min of moderate-to-vigorous activity (MVA) each day and ‘non-active’ if they had <60 min of MVA on any given day, based on CDC guidelines. Personal BC measured using a MicroAeth, was assessed during two 24-h periods, at the beginning and end of physical activity assessment. High BC was defined as the upper tertile of BC measured with personal sampler. FeNO measurements were sampled at the beginning and end of the of physical activity assessment.

Results

In multivariable linear regression models, ‘active’ children had 25% higher personal BC concentrations (p=0.02) and 20% lower FeNO (p=0.04) compared to ‘non-active’ children. Among children with high personal BC (n=33), there was no relationship between activity and FeNO (p=1.00). The significant protective relationship between activity and airway inflammation was largely driven by children with lower personal BC (n=96, p=0.04).

Conclusions

Children that live in an urban environment and are physically active on a daily basis have higher personal exposure to BC. High BC offsets the protective relationship between physical activity and airway inflammation.

Files

Also Published In

Title
Environmental Research
DOI
https://doi.org/10.1016/j.envres.2016.09.005

More About This Work

Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.