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Abstract

This paper is concerned with merging globally rigid for-
mations of mobile autonomous agents. A key element in all
future multi-agent systems will be the role of sensor and
communication networks as an integral part of coordina-
tion. Network topologies are critically important for au-
tonomous systems involving mobile underwater, ground and
air vehicles and for sensor networks. This paper focuses on
developing techniques and strategies for the analysis and
design of sensor and network topologies required to merge
globally rigid formations for cooperative tasks. Central to
the development of these techniques and strategies will be
the use of tools from rigidity theory, and graph theory.

1. Introduction

This paper addresses merging “globally rigid forma-
tions.” A formation is defined as a group of mobile agents
moving in real 2- or 3-dimensional space. A formation is
rigid if the distance between each pair of agents does not
change over time, at least under ideal conditions. A forma-
tion is calledglobally rigid, if the distance between each
pair of agents is unambiguous. Sensing and communica-
tion links are used for maintaining fixed distances between
agents. It is not necessary to have sensing and communi-
cation links between each pair of agents to maintain a rigid
formation [2]. Distances between all agent pairs can be held
fixed by directly measuring distances between only some

agents and keeping them at desired values. It is also true
that it is not necessary to have sensing and communication
links between each pair of agents to create a globally rigid
formation [7]. In [2, 3, 6] Eren et al. introduced approaches
based on rigidity and global rigidity for maintaining forma-
tions of autonomous agents with sensor and network topolo-
gies that use distance, direction, bearing and angle informa-
tion between agents.

In the context of this paper, ”agents” are considered to be
autonomous vehicles, robots or sensors such as autonomous
underwater vehicles (AUVs), microsatellites, uninhabited
air vehicles (UAVs), mobile ground-based robots, and mo-
bile sensors.

A key element in all future multi-agent systems will be
the role of sensor and communications networks as an in-
tegral part of coordination. In a rigid formation, distances
between agents are held fixed by measurements and in-
formation gathered through “sensing and communication
links” between agents. One of the challenges in building
sensor and communications networks between agents is the
“topology” of the network. Bytopology, we mean the in-
terconnection structure of sensing and communication links
among agents. In other words, topology refers to the net-
work’s layout. A network’s topology determines how dif-
ferent agents in the network are connected to each other.
Two networks have the same topology if the interconnec-
tion structure is the same, although the networks may dif-
fer in physical interconnections, distances between agents,
transmission rates, and signal types. Network topologies are
critically important for autonomous systems involving mo-



bile underwater, ground and air vehicles, and for sensor
networks. Energy efficiency and communication bandwidth
are critically important in formations of mobile autonomous
agents, and hence strategies that make efficient use of power
and energy are beneficial. Therefore, we use topologies for
providing sensing and communications with the minimum
number of links, and propose methods requiring the mini-
mum number of changes in the set of links in merging rigid
sub-formations. Rigid formations with the minimum num-
ber of sensing and communication links required to achieve
rigidity are calledminimally rigid formations.

Formations of autonomous agents usually operate un-
der time-varying conditions where sensor and network
topologies need to be restructured. Such conditions can
be changes in the environment, obstacles along the tra-
jectories of agents or departures of agents from forma-
tion. Eren et al. addressed “operations” on rigid formations
in [4, 1]. By anoperation, we mean missions and maneu-
vers that include agent departures, splitting, and merging,
which result in changes in agent set and/or interconnec-
tion structure of sensing and communication links. These
operations included maintaining rigidity after an agent de-
parts from a formation, splitting formations, and merg-
ing sub-formations. Eren et al. addressed the use of global
rigidity in formations of mobile autonomous agents and in
network localization problem in [7, 5]. In this paper the ap-
proach is extended to the case in which we consider the
problem of merging globally rigid formations. Bymerg-
ing, we mean two types of operations. The first type is in-
serting links between globally rigid sub-formations which
results in a single post-merged globally rigid forma-
tion. The second type is sharing agents between two
sub-formations so that the resulting formation is glob-
ally rigid . During a merging operation, it is a natu-
ral starting point to preserve the links in each pre-merged
rigid sub-formation. Hence a reasonable goal is to cre-
ate a new post-merged rigid formation by inserting a min-
imum number of links between sub-formations in the first
type of merging operation; and to share minimum num-
ber of agents between sub-formations in the second type
of merging operations. A merging operation, for exam-
ple, can be used to create one single rigid formation after
split sub-formations pass around an obstacle. As a fur-
ther application of splitting and merging operations, one
can consider using both of these operations together when
there is a change in a mission. For example, some changes
in sensor and network topologies can be achieved by a se-
ries of splitting-merging operations by splitting a for-
mation into two or more sub-formations and then merg-
ing these sub-formations into one post-merged forma-
tion which has a completely different topology of sensing
and communication links.

To motivate our discussion of merging a rigid formation,

we have the following example:
Example: Consider two globally rigid formations in 2-
dimensional space as shown in Figure 1. We would like to
merge these two formations resulting in a single rigid for-
mation in such a way that all pairs of links in each forma-
tion are preserved and a minimum number of links is in-
serted between these two formations.

Figure 1. Two formations are merged to form
one single globally rigid formation. Finding
the new links to be inserted between these
two formations, which will make the whole
formation rigid, is the merging problem.

The paper is organized as follows: In§2, we review
strategies for creating sensor and network topologies of
rigid formations with distance information between agents
in 2- and 3-dimensional space [2]. In§3, we review strate-
gies for creating sensor and network topologies of globally
rigid formations with distance information between agents
in 2- and 3-dimensional space [2]. In§4, we present the
main results of the paper: strategies to merge globally rigid
formations. We end the paper with summary and conclud-
ing remarks in§5.

2. Rigid Formations

We start with an overview of rigidity. Recall that a for-
mation is rigid if the distance between each pair of agents
does not change over time under ideal conditions. In this
section, essentially complete theory of rigid formations in
2-dimensional space is reviewed, as well as known partial
results for 3-dimensional space. We review “generic” rigid-
ity, which is the type of rigidity most useful for our pur-
poses. In practice, actual agent groups cannot be expected to
move exactly in rigid formation because of sensing, model-
ing, and actuation errors. With generic rigidity, the topology
will be robust for maintaining formations under small per-
turbations. Although there is no existing comparable com-
plete theory for 3-dimensional space, there are useful partial
results [14, 15]. We review sequential techniques to gener-
ate rigid classes of formations both in 2- and 3-dimensional



space. The approach presented in this section forms the ba-
sis of the techniques developed in the subsequent sections.

2.1. Point Formations and Rigidity

By a d-dimensional point formation at p ,
column {p1, p2, . . . , pn}, written Fp, is meant a set
of n points{p1, p2, . . . , pn} in IRd together with a setL of
k maintenance links, labelled(i, j), wherei andj are dis-
tinct integers in{1, 2, . . . , n}; the length of link (i, j) is
the Euclidean distance between pointpi andpj . The idea
of a point formation is essentially the same as the con-
cept of a “framework” studied in mathematics [14, 12]
as well as within the theory of structures in mechan-
ical and civil engineering. For our purposes, a point
formation Fp = ({p1, p2, . . . , pn},L) provides a natu-
ral high-level model for a set ofn agents moving in real 2-
or 3- dimensional space. In this context, the pointspi rep-
resent the positions of agents inIRd {d = 2 or 3} and the
links inL label those specific agent pairs whose inter-agent
distances are to be maintained over time. In practice ac-
tual agent positions cannot be expected to move exactly in
formation because of sensing errors, vehicle modelling er-
rors, etc. The ideal benchmark formation against which the
performance of an actual agent formation is to be mea-
sured is called areference formation.

Each point formationFp uniquely determines a graph
G , (V,L) with vertex setV , {1, 2, . . . , n} and edge
setL, as well as a distance functionδ : L → IR whose
value at(i, j) ∈ L is the distance betweenpi andpj . Let
us note that the distance function ofFp is the same as the
distance function of any point formationFq with the same
graph asFp providedq is congruentto p in the sense that
there is a distance preserving mapT : IRd → IRd such that
T (qi) = pi, i ∈ {1, 2, . . . , n}. In the sequel we will say that
two point formationsFp andFq arecongruentif they have
the same graph and ifq andp are congruent.

By a trajectory of Fp, we mean a continuously param-
eterized, one-parameter family of points{q(t) : t ≥ 0}
in IRnd, which containsp. A point formationFp is said to
be rigid if the distance between every pair of its points re-
mains constant along any trajectory on which the lengths
of all of its maintenance links inL are kept fixed. Alterna-
tively, we can define a rigid point formation as follows: A
formation is said to undergorigid motionalong a trajectory
q([0,∞)) , {column {q1(t), q2(t), . . . , qn(t)} : t ≥ 0} if
the Euclidean distance between each pair of pointsqi(t) and
qj(t) remains constant all along the trajectory. Let us note
thatFp undergoes rigid motion along a trajectoryq([0,∞))
just in case each pair of pointsq(t1), q(t2) ∈ q([0,∞)) are
congruent. The set of pointsMp in IRnd which are congru-
ent top is known to be a smooth manifold. It is clear that
any trajectory along whichFp undergoes rigid motion must

lie completely withinMp; conversely any trajectory ofFp

that lies withinMp is one along whichFp undergoes rigid
motion. A point formationFp is said to berigid if rigid mo-
tion is the only kind of motion it can undergo along any tra-
jectory on which the lengths of all links inL remain con-
stant. Thus, ifFp is rigid, it is possible to “keep formation”
by making sure that the lengths of the formation’s main-
tained links do not change as the formation moves.

Whether a given point formation is rigid or not can be
studied by examining what happens to the given point for-
mation Fp = ({p1, p2, . . . , pn},L) with m maintenance
links, along the trajectoryq([0,∞)) , {{q1(t), q2(t),
. . . , qn(t)} : t ≥ 0} on which the Euclidean dis-
tancesdij , ||pi − pj || between pairs of points(pi, pj)
for which (i, j) is a link are constant. Along such a trajec-
tory

(qi − qj) · (qi − qj) = d2
ij , (i, j) ∈ L, t ≥ 0 (1)

We note that the existence of a trajectory is equivalent to the
existence of a piecewise analytic path, with all derivatives at
the initial point. It is also equivalent to the existence of a se-
quence of formations onp(n), n = 1, 2, . . . with the same
measurements, and withlimn→∞ p(n) converging top. As-
suming a smooth (piecewise analytic) trajectory, we can dif-
ferentiate to get

(qi − qj) · (q̇i − q̇j) = 0, (i, j) ∈ L, t ≥ 0 (2)

Here,q̇i is the velocity of pointi. Them equations can be
collected into a single matrix equation

R(q)q̇ = 0 (3)

whereq̇ = column {q̇1, q̇2, . . . , q̇n} andR(q) is a specially
structuredm× dn matrix called therigidity matrix [11, 14,
15].

Because any trajectory ofFp which lies withinMp, is
one along whichFp undergoes rigid motion, (2) automat-
ically holds along any trajectory which lies withinMp.
From this, it follows that the tangent space toMp atq, writ-
ten Tq, must be contained in the kernel ofR(q). Sincep
must be on any such trajectory, it must be true thatTp ⊂ ker-
nel R(p). If q̇ satisfies (3), then it lies in the tangent space.
If the affine span of the pointsp1, p2, . . . , pn is IRn (which
means that the pointsp1, p2, . . . , pn do not lie on any hyper-
plane inIRn), thenMp is n(n + 1)/2 dimensional since it
arises from then(n−1)/2-dimensional manifold of orthog-
onal transformations ofIRn and then-dimensional mani-
fold of translations ofIRn [11]. ThusMp is 6-dimensional
for Fp in IR3, and 3-dimensional forFp in IR2. We have
rank R(q) = nd− dimension kernelR(q) ≤ nd − n(n +
1)/2.

We have the following theorem [15]:



Theorem 1. AssumeFp is a formation with at leastd
points in d-space{d = 2, or 3} where rank R(p) =
max{rank R(x) : x ∈ IRd}. Fp is rigid in IRd if and only
if

rank R(p) =

{
2n− 3 if d = 2,

3n− 6 if d = 3.

This theorem leads to the notion of the “generic” behav-
ior of rigidity. When the rank is less than the maximum, the
formation may still be rigid. However, this type of rigid-
ity is unstable. For almost all small changes in the position
of p (or in the lengths of the maintenance links), the forma-
tion will no longer be rigid. We are interested in “generic
rigidity”, a property that will hold for all small changes in
p.

2.2. Generic Rigidity

In this section, we define a type of rigidity, called
“generic rigidity,” that is more useful for our purposes. A
point formationFp is generically rigid if it is rigid for al-
most all choices ofp in IRdn. It is possible to charac-
terize generic rigidity in terms of the “generic rank” of
R where byR’s generic or maximal rank we mean the
largest value ofrank{R(q)} as q ranges over all val-
ues inIRnd. The following theorem is due to Roth [11].

Theorem 2. A formationFp with at leastd points in d-
space{d = 2, or 3} is generically rigid if and only if

generic rank {R} =

{
2n− 3 if d = 2,

3n− 6 if d = 3.

To understand this type of rigidity, it is useful to ob-
serve that the set of pointsp that satisfy the condition
rank R(p) = max{rank R(x) : x ∈ IRd} is a dense open
subset ofIRnd [11]. Generic rigidity is a property of only
the set of maintenance links, or the underlying graph. It
does not even claim thatFp itself is rigid but only that al-
most all nearby pointsq give rigid formationsFq. The con-
cept of generic rigidity does not depend on the precise dis-
tances between the points ofFp but examines how well the
rigidity of formations can be judged by knowing the ver-
tices and their incidences, in other words, by knowing the
underlying graph. A point formationFp is strongly gener-
ically rigid if it is generically rigid and ifrank R(p) =
generic rank {R}. Hence, a strongly generically rigid point
formation is rigid and it remains rigid under small perturba-
tions. For this reason, it is a desirable specialization of the
concept of a “rigid formation” for our purposes. We have
the following theorem for a strongly generically rigid point
formation and a generically rigid graph [14]:

Theorem 3. For a formationFp in d-space with at leastd
points, the following are equivalent:

1. the formation’s underlying graphG = (V,L) is gener-
ically rigid in d-dimensional space (d = 2, 3);

2. for somep,

rank {R(p)} =

{
2n− 3 if d = 2,

3n− 6 if d = 3.

3. for almost allp, the formationFp is strongly generi-
cally rigid.

As noted above, the concept of generic rigidity does not
depend on the precise distances between the points inFp.
For 2-dimensional space, we have a complete combinato-
rial characterization of generically rigid graphs, which was
first proved by Laman in 1970 [10]. In the theorem below,
| . | is used to denote the cardinal number of a set, i.e., the
number of elements in a set.

Theorem 4 (Laman [10]). A graphG = (V,L) (where
L 6= ∅ or n > 1) is generically rigid in 2-dimensional
space if and only if there is a subsetL′ ⊆ L satisfying the
following two conditions: (1)|L′| = 2|V| − 3, (2) For all
L′′ ⊆ L′,L′′ 6= ∅, |L′′| ≤ 2|V(L′′)| − 3, where|V(L′′)| is
the number of vertices that are end-vertices of the edges in
L′′.

There is no comparable complete result for 3-
dimensional space, though there are useful partial re-
sults [14, 15]. Although we lack a characterization in
3-dimensional space, there are sequential techniques to gen-
erate rigid classes of graphs both in 2- and 3-dimensional
space based on the vertex addition, edge splitting and ver-
tex splitting operations [12, 13, 14]. We explain these
techniques in the sequel, but before that, we discuss mini-
mal rigidity in the next section.

2.3. Minimal Rigidity

A point formation isminimally rigid if removing any link
makes it non-rigid. There are2n − 3 and 3n − 6 main-
tenance links in minimally rigid formations in 2- and 3-
dimensional space respectively. A graph is called (generi-
cally) minimally rigid in d-space if it is rigid and has ex-

actly dn −
(

d + 1
2

)
edges (In the sequel, we use the term

rigid graph instead of generically rigid graph unless there is
a danger of confusion.).

If a point formation is rigid but not minimally rigid, we
say that there isredundancyin the link setL and such a for-
mation is called a redundantly rigid point formation. Let us
suppose that a link(i, j) is removed from a rigid point for-
mation. If the formation remains rigid then(i, j) is called
a redundant linkin the initial formation (redundant edgein
the underlying graph). If adding a link(i, j) does not in-
crease the rank of the rigidity matrix, then we call(i, j) an
implicit link (implicit edgein the underlying graph).



2.4. Sequential Techniques

First, we introduce two operations. One operation is the
vertex addition: given a minimally rigid graphG = (V,L),
we add a new vertexi with d edges betweeni andd other
vertices inV. The other is theedge splitting: given a mini-
mally rigid graphG = (V,L), we remove an edge(j, k) in
L and then we add a new vertexi with d+1 edges by insert-
ing two edges(i, j), (i, k) andd − 1 edges betweeni and
d − 1 vertices (other thanj, k) in V. The resulting graphs
after the vertex addition operation and edge splitting oper-
ations are also minimally rigid. A more detailed treatment
of these operations can be found in Eren et al. [2, 1]. These
two operations are used in Henneberg sequences.

Henneberg Sequences:Henneberg sequences are a sys-
tematic way of generating minimally rigid graphs
based on the vertex addition and edge splitting opera-
tions [12]. Ind-space, we are given a sequence of graphs:
Gd,Gd+1, . . . ,G|V| such that:

1. Gd is the complete graph ond vertices;

2. Gi+1 comes fromGi by adding a new vertex either by
(i) the vertex addition or (ii) the edge splitting opera-
tion.

All graphs in the sequence are minimally rigid ind-
space. Figure 2 depicts such a Henneberg sequence in 3-
dimensional space.

Figure 2. A rigid point formation generated
by a Henneberg sequence in 3-dimensional
space. Double-lined edges indicate edges
created for new vertices. Dashed edges indi-
cate removed edges in the edge splitting op-
eration.

3. Globally Rigid Formations

Global rigidity has been used in formations of mobile
autonomous agents and in the network localization prob-
lem in the context of sensor networks [5, 7]. The main rea-

son for creating globally rigid formations is that such for-
mations are unambiguous, i.e., the distance between every
pair of agents can be determined uniquely. A non-rigid for-
mation has infinitely many “realizations” for the given val-
ues of the constraints or dimensions. By arealizationof a
graphG is meant a function that maps the vertices ofG to
points in Euclidean space. Translations, rotations and reflec-
tions are not considered to be different realizations. It turns
out that even a rigid formation may have several distinct re-
alizations in this sense.

We begin with some notation and vocabulary. Given a
formation (V;L) we have a formation map which takes a
configurationp and measures the lengths of edges inL. This
can be written as

f(V;L) : IRd|V| 7−→ IR|L|.

Given a formationFp, we are interested in what other con-
figurations have the same set of measurements. In other
words we are interested inf−1

(V;L)(f(V;L)(p)). Is this set
of configurations a single equivalence class under congru-
ences? In general, as we have seen above, rigidity implies
local uniqueness. The converse sometimes fails. Now con-
sider global rigidity for formations in the plane. The appear-
ance of a larger finite number of realizations might come
from partial reflections, Figure 3. Generically, we will need
vertex3-connectivity to avoid such reflections if|V | > 3.
However, it is known that, even if a point formation is rigid
and there are no partial reflections, it is still possible to have
multiple realizations as shown in Figure 4 ([8]). The follow-
ing result has recently been announced [9].

Theorem 5. Given a graphG = (V,L) the following are
equivalent:

1. the graphG is 3-connected in a vertex sense, andG is
redundantly rigid;

2. the formation with distance constraints(V,L, f) is
globally rigid on generic configurations.

For 3-space we do know that the following conditions
are necessary for generic global rigidity: (i) the graph is4-
connected; (ii) the graph is generically rigid; (iii) the graph
is redundantly rigid. These are not sufficient. The coun-
terexample is the graphK5,5, the complete bipartite graph
on two sets of five vertices.

At the moment we do not have a conjecture for which
graphs are generically globally rigid in3-space. However,
we presented the following partial result for subclasses of
graphs in Eren et al. [7].

Theorem 6. A graphG = (V,L) with at leastd + 2 ver-
tices (d = 2, 3), is generically globally rigid with distance
constraints ind-space if there is an ordering of vertices
1, 2, . . . , |V | and a sequence of graphsGd+2, . . . ,G|V |
such that:



Figure 3. Two realizations with the same
weighted graph can be obtained by partial re-
flections. For example, vertices 5 and 7 are
partially reflected in these two realizations.

Figure 4. The realizations in a and c have the
same underlying distance graph. [8] obtained
such two realizations by temporarily remov-
ing the edge (3, 6) and rotating the rectangle
1452.

1. Gd+2 is Kd+2;

2. for d + 2 ≤ i ≤ |V |, Gi+1 is generated by (i) adding
a d + 1-valent vertex (ii) edge splitting;

3. G|V | isG.

4. Results

Now we present the main results of this paper. First,
we introduce strategies for merging globally rigid sub-
formations by inserting new links between sub-formations.
Second, we present the conditions on the number of points
shared by sub-formations so that the resulting merged sub-
formations are globally rigid.

Figure 5. A sequence for generating a glob-
ally rigid formation. The sequence starts with
K4, and a new vertex (shown as a larger cir-
cle) is adjoined at each step by edge splitting
operation. Edges about to be split are shown
as dashed lines.

4.1. Connecting Globally Rigid Sub-Formations in
2-Dimensional Space

We have the following theorem:

Theorem 7. Suppose that two globally rigid sub-
formationsF1 and F2, are connected by a set of linksL.
ThenF1 ∪ F2 ∪L is globally rigid if the following two con-
ditions hold (see Figure 6):

1. The end points ofL has at least three points inF1 and
has at least three points inF2.

2. There are at least four links inL.

Proof. Let us pick three verticesi, j, k from F2. By The-
orem 6, we apply a sequence of vertex addition and edge
splitting operations oni, j, k so that these vertices are con-
nected by four edges toF1 as shown in Figure 7 and the re-
sulting formation is globally rigid. Now, starting from the
three verticesi, j, k, the globally rigid formationF2 can be
created without making any changes inF1 and the inserted
four edges.

4.2. Connecting Globally Rigid Sub-Formations in
3-Dimensional Space

Theorem 8. Assume that two globally rigid sub-formations
F1 andF2, are connected by a set of linksL. ThenF1∪F2∪
L is globally rigid if the following two conditions hold (see
Figure 8):

1. The end points ofL has at least four points inF1 and
has at least four points inF2.

2. There are at least seven links inL.



Figure 6. Merging globally rigid sub-
formations in 2-dimensional space.

Figure 7. Sequential techniques for creat-
ing globally rigid formations are used in
the proof of the merging problem in 2-
dimensional case. (Please refer to the text.)

Proof. Let us pick three verticesi, j, k, u from F2. By The-
orem 6, we apply a sequence of vertex addition and edge
splitting operations oni, j, k, u so that these vertices are
connected by seven edges toF1 as shown in Figure 9 and
the resulting formation is globally rigid. Now, starting from
the four verticesi, j, k, u, the globally rigid formationF2

can be created without making any changes inF1 and the
inserted seven edges.

4.3. Globally Rigid Sub-Formations Sharing
Points in 2-Dimensional Space

Theorem 9. If two globally rigid formations,F1 andF2,
share at least three points, the formationF1∪F2 is globally
rigid (Figure 10).

Proof. First, let us suppose thatF1 ∪ F2 is not redundantly
rigid. Hence there exists an edge(a, b) such that the result-
ing formation becomes non-rigid if(a, b) is removed, and
therefore eitherF1 or F2 becomes also non-rigid. However,

Figure 8. Merging globally rigid sub-
formations in 3-dimensional space.

Figure 9. Sequential techniques for creat-
ing globally rigid formations are used in
the proof of the merging problem in 3-
dimensional case. (Please refer to the text.)

this is a contradiction with our initial assumption. There-
fore F1 ∪ F2 is redundantly rigid. Second, let us consider
the 3-connectivity ofF1 ∪ F2. Given the fact thatF1 and
F2 are 3-connected (since they are globally rigid) and they
share three vertices (hence there can be no partial reflec-
tions) the resulting graph is also 3-connected.

4.4. Globally Rigid Sub-Formations Sharing
Points in 3-Dimensional Space

Theorem 10. If two globally rigid formations,F1 andF2,
share at least four points, the formationF1 ∪ F2 is globally
rigid (Figure 11).

Proof. The proof is analogous to the proof in 2-dimensional
case.



Figure 10. Merging vertex-sharing sub-
formations in 2-dimensional space.

Figure 11. Merging vertex-sharing sub-
formations in 3-dimensional space.

5. Summary and Concluding remarks

In this paper, we introduced strategies for merging glob-
ally rigid formations of mobile autonomous agents. The
results are proved using techniques from rigidity theory.
These strategies are applicable in both 2- and 3-dimensional
space and for any number of agents. These results will be
combined with the techniques for splitting globally rigid
formations, which are currently under investigation.

Acknowledgments

Tolga Eren and Peter N. Belhumeur are supported by the
National Science Foundation under grants NSF ITR IIS-00-
85864, NSF EIA-02-24431 and NSF IIS-03-08185. Brian
D. O. Anderson is supported by the Australian Government
through the Department of Communications, Information
Technologies and the Arts and by the Australian Research
Council via a Discovery-project Grant and the Centre of Ex-
cellence program. A. Stephen Morse is supported by the
National Science Foundation. Walter Whiteley is supported
by the Natural Science and Engineering Research Council
(Canada) and the National Institutes of Health (USA).

References

[1] T. Eren, B.D.O. Anderson, A.S. Morse, W. Whiteley, and
P.N. Belhumeur. Operations on rigid formations.Commu-
nications in Information and Systems, 2004. Submitted.

[2] T. Eren, P.N. Belhumeur, B.D.O. Anderson, and A.S.
Morse. A framework for maintaining formations based
on rigidity. In Proceedings of the 15th IFAC World
Congress, Barcelona, Spain, July 2002. Available at
http://www.cs.columbia.edu/˜ eren.

[3] T. Eren, P.N. Belhumeur, and A.S. Morse. Closing ranks
in vehicle formations based on rigidity. InProceed-
ings of the 41st IEEE Conference on Decision and Con-
trol, Las Vegas, NV, USA, December 2002. Available at
http://www.cs.columbia.edu/˜ eren.

[4] T. Eren, P.N. Belhumeur, A.S. Morse, W. Whiteley, and
B.D.O. Anderson. Splitting and merging rigid for-
mations. In American Control Conference, Boston,
Massachusetts, USA, 2004. To appear. Available at
http://www.cs.columbia.edu/˜ eren.

[5] T. Eren, D. Goldenberg, W. Whiteley, A.S. Morse, B.D.O.
Anderson, and P.N. Belhumeur. Rigidity and randomness
in network localization. InProceedings of the IEEE INFO-
COM Conference, Hong Kong, 2004. To appear. Available
at http://www.cs.columbia.edu/˜ eren.

[6] T. Eren, W. Whiteley, A.S. Morse, P.N. Belhumeur, and
B.D.O. Anderson. Sensor and network topologies of forma-
tions with direction, bearing and angle information between
agents. InProceedings of the 42nd IEEE Conference on De-
cision and Control, Hawaii, USA, December 2003. Avail-
able at http://www.cs.columbia.edu/˜ eren.

[7] T. Eren, W. Whiteley, A.S. Morse, P.N. Belhumeur, and
B.D.O. Anderson. Globally rigid formations. InAmerican
Control Conference, Boston, Massachusetts, USA, 2004. To
appear. Available at http://www.cs.columbia.edu/˜ eren.

[8] B. Hendrickson. Conditions for unique graph realizations.
SIAM J. Comput., 21(1):65–84, 1992.

[9] B. Jackson and T. Jordán. Connected rigidity matroids and
unique realizations of graphs. Technical Report TR-2002-12,
Eotvos University, Budapest, Hungary, March 2003.

[10] G. Laman. On graphs and rigidity of plane skeletal struc-
tures. Journal of Engineering Mathematics, 4:331–340,
2002.

[11] B. Roth. Rigid and flexible frameworks.American Mathe-
matical Monthly, 88:6–21, 1981.

[12] T. Tay and W. Whiteley. Generating isostatic frameworks.
Structural Topology, 11:21–69, 1985.

[13] W. Whiteley. Vertex splitting in isostatic frameworks.Struc-
tural Topology, 16:23–30, 1990.

[14] W. Whiteley. Matroids from discrete geometry. In Joseph E.
Bonin, James G. Oxley, and Brigitte Servatius, editors,Ma-
troid Theory, volume 197, pages 171–313. American Math-
ematical Society, Contemporary Mathematics, 1996.

[15] W. Whiteley. Rigidity and scene analysis. In J. Goodman
and J. O’Rourke, editors,Handbook of Discrete and Compu-
tational Geometry, pages 893–916. CRC Press, 1997.


