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Abstract

Stable Basis and Quantum Cohomology of Cotangent Bundles of Flag Varieties

Changjian Su

The stable envelope for symplectic resolutions, constructed by Maulik and Ok-
ounkov, is a key ingredient in their work on quantum cohomology and quantum K-
theory of Nakajima quiver varieties. In this thesis, we study the various aspects of the
cohomological stable basis for the cotangent bundle of flag varieties. We compute its
localizations, use it to calculate the quantum cohomology of the cotangent bundles,
and relate it to the Chern-Schwartz—MacPherson class of Schubert cells in the flag

variety.
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Chapter 1

Introduction

1.1 Overview of the Main Results

In [MO2012], Maulik and Okounkov defined stable envelope for symplectic resolutions ([Kal2009]),
with the aim of studying the quantum cohomology of Nakajiama quiver varieties. Symplectic res-
olutions, by definition, are smooth holomorphic symplectic varieties (X,w) endowed with a proper

resolution of singularities

X — Spec H°(X, Ox).

Important examples include cotangent bundles of flag varieties, hypertoric varieties, Hilbert schemes
of points on the plane, and more generally, Nakajima quiver varieties.

In this thesis, we will focus on the stable basis for the cotangent bundles of the flag varieties. We
study their localizations, use them to compute the quantum cohomology of the cotangent bundles,

and relate them to the Chern—Schwartz—MacPherson classes of Schubert varieties.

1.1.1 Localization Formulas

One of the most useful techniques in equivariant cohomology is the Atiyah—Bott localization formula
([AB1984]). This formula transforms global computations into local ones, which are much easier to
handle. In order to apply it, we need to know the local information of the cohomology classes we are
interested in. Our first main result is of this kind for the stable basis of the cotangent bundles of the
flag varieties.

Let G be a complex semisimple linear algerbaic group, with a Borel subgroup B. Then T*(G/B)

is the resolution of the nilpotent cone N in the Lie algebra g. This is the so-called Springer resolution



(see [CG2010]), which is ubiquitous in geometric representation theories. As a cotangent bundle, it
is naturally equipped with a symplectic form. Thus it is a symplectic resolution. More generally, for
any parabolic subgroup P, T*(G/P) is also a symplectic resolution.

Let A be a maximal torus contained in B, and let C, act on T*(G/B) by dilating the cotangent fiber
by a weight of —h, and act trivially on the base G/B. Then the stable basis {stab_(y)|y € W}, which
depends on a choice of the Weyl chamber in Lie A, is a basis for the localized equivariant cohomology
Hjex (T*(G/B))ioc (see Section 2.2 for the definition). The torus fixed loci of T*(G/B) is in one-to-
one correspondence with the Weyl group W. For any equivariant cohomology class v € Hi(T*(G/B)),
let y|,, denote the restriction of v to the fixed point corresponding to w € W. The following is our

first main result.

Theorem 1.1.1. [Su2017] Let y = o109 -+ 07 be a reduced expression for y € W. Then

k
stab_(w)l, = (-1 [ @-n 3 #*]]s, (L1)

aERT\R(y) 1<y <ig<---<ip <1
w:ail 0'1'2 ..Ao'ik

where o; is the simple reflection associated to a simple root a;, B; = o1+~ 0i_104, and R(y) = {B;|1 <

i <1}. Furthermore, the sum in Equation (1.1) does not depend on the reduced expression for y.

We also have a formula for the opposite Weyl chamber, see Theorem 2.4.9. This should be seen as
a analogue of Billey’s formula for localization for Schubert varieties ([Bil1999]), which can be obtained
from the theorem via a limiting process (see Section 2.6). The formula is also generalized to T*(G/P)
in Corollaries 2.5.3 and 2.5.6. When G = GL(n), this is also obtained by Riményi, Tarasov and
Varchenko[RTV2015].

The idea of the proof is to use the graded affine Hecke algebra j action. See Section 3.2.1 for

the definition. By a theorem of Lusztig [Lus1988], there is an isomorphism
HE*C(T*(G/B) xx T*(G/B)) ~ M,

where T*(G/B) xn T*(G/B) is called the Steinberg variety. The left hand side acts on cohomology
of T*(G/B) via convolution (see [CG2010]). For simple generators of Hp, it is easy to compute how
it acts on the stable basis and the fixed point basis (Lemma 2.4.2). This gives a recursive formula for
the localization of stable basis (Corollary 2.4.3), which leads to Theorem 1.1.1.

In various examples, the stable bases turn out to be very interesting objects. In the cotengent

bundle case, it is the characteristic cycles of D-modules, see [Gin1986] and [MO2012, Remark 3.5.3].



In the case of Hilbert schemes of points on C2, it corresponds to Schur functions if we identify the
equivariant cohomology ring of Hilbert schemes with the symmetric functions, while the fixed point
basis corresponds to Jack symmetric functions, see e.g. [MO2012], [Nak1999]. The transition matrix
between these two bases was obtained in [She2013]. See [BFN2014] for a sheaf-theoretic approach to

the stable envelopes.

1.1.2 Quantum cohomology

The motivation to calculate the localization of stable basis is to compute the quantum connection
(see Section 3.1.2) of T*(G/P). The case when P is a Borel subgroup, i.e. the Springer resolution
case ([CG2010]), is solved by Braverman, Maulik and Okounkov by using an elegant reduction to
rank one argument ([BMO2011]). It turns out the quantum connection of the Springer resolution is
isomorphic to the affine Knizhnik—Zamolodchikov connection of Cherednik and Matsuo (see Theorem
3.2.1), whose monodromy is computed by Cherednik ([Che2005]). Combing these, Braverman, Maulik
and Okounkov confirm a conjecture of Bezrukavnikov relating the monodromy of quantum connection
and derived equivalences (see [BMO2011, Section 1.10], [BR2012, Bez2006]).

In the general parabolic case, it seems hard to the author to apply directly the method in
[BMO2011], since he does not know how to compute the rank one fibers (see [BMO2011, Section
5.3]) uniformally. Due to an idea of Okounkov, we can first compute, via virtual localizations (see
[GP1999]), the T := A x C*-equivariant quantum multiplications in terms of the stable basis, and
then use the relation between A x C*-equivariant cohomology and G x C*-equivariant cohomology to
get the quantum multiplications in the latter setting.

The stable basis, being a basis for the torus equivariant cohomology after localization, enjoys many
good properties (see Theorem 2.2.1), which makes the virtual localization computation much easier
than using the other basis, such as the fixed point basis. To be more specific, with the stable basis,
we can reduce the calculation to A-equivariant localization. Il.e., we can let h equal to 0. Then a
result of Okounkov and Pandharipande ([OP2010]) asserts that only some of the fixed components
of the moduli space have non-trivial contributions (see Section 3.1.3). This simplifies the calculation
dramatically.

The quantum multiplication in terms of stable basis is described by the following theorem, which
may be seen as a quantum Chevalley formula ([FW2004, Theorem 10.1]) in the cotangent bundle case.

See Section 2.3 for the meaning of the notations.



Theorem 1.1.2. [Su2016] The quantum multiplication by Dy in H3(T*(G/P)) is given by:

Dy s« staby () =y(A) stab () — Z (A, ") stab (77a)

a€RT,ya€R~
d(a) ﬂ
—h Z 7d() staby (o) + H 5 staby (9) | ,
aeR+\R+ BER}S

where y is a minimal representative in yWp, and d(«) is defined by Equation 3.5.

Using the localization formulas for the stable basis and the following relation

He o (T*(G/P)) = Hi(T*(G/P)" = (syma*)"[1],

we obtain the quantum multiplication formula for the G x C*-equivariant cohomology.

Theorem 1.1.3. [Su2016] Under the isomorphism Hp. c. (T*P) ~ (syma*)"VP[h], the operator of

quantum multiplication by Dy is given by

ao(f TI (B=h) Il oub

d(a) + +
q BERY, BER}
Dyxf=\f+h A aY - Il
el e s Il 5
aERT\Rp BeRY BeR:

where f € (syma*)"?[h] and G, is an element in the graded affine Hekce algebra Hy. Therefore, the

G x C*-equivariant quantum connection is conjugate to the following one

d g
V,\ - — ) — h Z m ot 3
aeR+\R+
where --- denotes some scalar determined by the condition V1 = —A.

This confirms a conjecture of Professor Braverman (through private communication), which is also
expected by many other experts. In particular, this gives another proof for the quantum connection
formula for the Springer resolutions.

For the other examples of symplectic resolutions, such as hypertoric varieties, resolutions of
Slodowy slices, Hilbert schemes of points on C2, more generally, Nakajima varieties ([Nak1998]),
and resolutions of slices in the affine Grassmannian ([MV2007]), their quantum cohomologies were
studied in [MS2013,BMO2011,0P2010,MO2012, Vis2016] respectively.

In [LT2017], Lam and Templier proved Rietsch’s mirror conjecture ([Rie2008]) for G/P when P

is maximal and minuscule. One of the steps in the proof is to identify, via the quantum Chevalley



formula, the quantum connection of G/P with Frenkel-Gross connection ([FG2009]) for minuscule
representation of G. The Frenkel-Gross connection on P!\ {0, 00} (see Equation 3.13) is the complex
analogue of the Kloosterman sheaf, which is constructed by Heinloth, Ng6 and Yun via geometric
Langlands techniques ([HNY2013]).

In Section 3.3.3, we construct a regular connection V on the trivial principle G' bundle on P* \
{0,1,00} when G is simply-laced (see Equation (3.17)). We show that when P is maximal and
minuscule, the quantum connection for T*(G/P) is isomorphic to V applied to the corresponding
highest weight representation (see Theorem 3.3.6 for the precise statement). When G = GL(n,C), we

show this connection is rigid in the sense of Katz (Theorem 3.3.8).

1.1.3 Chern—Schwartz—MacPherson classes

Pulled back to the zero section, the stable basis becomes some interesting classes in the cohomology
of flag varieties, which is the so-called Chern—Schwartz—MacPherson classes.

According to a conjecture attributed to Deligne and Grothendieck, there is a unique natural
transformation ¢, from the constructible functions on a variety X to the homology of X, such that if
X is smooth, then ¢.(lx) = ¢(TX) N[X].

The functor was constructed by MacPherson using Chern—Mather class and local Euler obstruc-
tions ([Mac1974]). The class c.(1x) was shown to coincide with a class defined earlier by Schwartz
([Sch1965]). For a constructible subvariety W C X, the class cgpr (W) := ¢ (1w ) is called the Chern—
Schwartz—MacPherson (CSM) class of W.

In [AM2015], Aluffi and Mihalcea computed the image of the CSM classes of Schubert varieties
under certain Demazure-Lusztig type operator (see Theorem 4.2.1), and obtained a recursive formula
for the CSM classes. Combing with the recursive formulas in Corollary 2.4.4 for the stable basis, it is

easy to deduce the following formula.

Theorem 1.1.4. [AMSS] Let v : G/B — T*(G/B) be the inclusion of the zero section. Then

*(staby (w))|p=1 = (—1) ™G/ Begy (X2),

and

L (stab_ (w))]n=1 = (1) Begp (Vy),

where X = BwB/B C G/B is the Schubert cell associated to w € W, and Y,, = B~ wB/B C G/B

is the opposite Schubert cell.



These are also obtained by Riményi and Varchenko ([RV2015]). In the above theorem, there is a
specialization i = 1. This leads us to define homogeneous version of the CSM classes, and Theorems
1.1.4, 4.2.1 can be easily generalized (see Section 4.3.2).

The stable basis for opposite chambers are dual to each other (see Remark 2.2.2(2)). So it is
natural to consider the dual classes of the CSM classes (See Section 4.4). There are two approaches
to it. The first one is to alternate the coefficients of the different degrees of the original classes. The
second one is to use the relation between the cohomology pairings on the cotangent bundle and on
the zero section. From these two approaches, we obtain a relation between the CSM classes and its
alternating class (see Equation (4.4)).

Recall the stable basis is equal to the characteristic cycle of some constructible function on G/B.
Then Theorem 1.1.4 is a relation between pullback of characteristic cycle of constructible functions
and CSM classes, both of which are well defined for any smooth varieties. This inspired us to find
a new formula for the CSM classes in terms of the characteristic cycles (see Theorem 4.5.1), whose
proof involves the shadow construction of Aluffi ([Alu2004]) and is not presented in this thesis. There
is also a closely related approach by Ginzburg ([Ginl1986]). Using Theorem 4.5.1, we were able to

reprove the index formula (see Theorem 4.5.2).

1.2 Structure of the thesis

The thesis is organized as follows. In Chapter 2, we introduce the stable basis for the cotangent bundle
of flag varieties T*(G/P), prove the localization formulas, and deduce Billey’s formula through a
limiting process. In Chapter 3.1, we compute the torus equivariant quantum multiplication by divisors
in terms of the stable basis, and deduce the G x C*-equivariant quantum connection in Chapter 3.2.
In Chapter 3.3, we construct a connection with regular singularities on P! \ {0,1, 00}, and show it is
isomorphic to the quantum connection of T7*(G/P) when P is maximal and minuscule. Moreover, we
show this connection is rigid when G is GL(n). In Chapter 4, we relate the stable basis and CSM
classes for Schubert varieties, and construct the dual classes of the CSM classes. Finally, we give a

general formula for CSM classes in terms of characteristic cycles of constructible functions.

1.3 Notations

Throughout this thesis, let G denote a complex semisimple group, with a maximal torus A and a

Borel subgroup B containing A. Let B~ dentoe the opposite Borel subgroup containg the maximal



torus A. Let R* be the positive roots consisting of all the roots in B, and let A be the set of simple
roots. Let P be a parabolic subgroup of G containing the fixed Borel subgroup B. Let Wp denote
the corresponding Weyl subgroup of the Levi factor of P, Ap be the simple roots in P, and R% be
the roots in R* spanned by Ap. Let B denote the full flag variety G//B, and P denote the partial
flag variety. Let Cj act on T*(G/P) by dilating the cotangent fiber by a weight of Lie C} equaling
—h and act trivially on the base G/P. Let T denote the product A x C;. Let < denote the usual
Bruhat order on the Weyl group W, i.e. y < w if ByB/B C W We also use it to denote the
Bruhat order on W/Wp.



Chapter 2

Cohomological Stable Basis

In this chapter, we prove our first main Theorem 1.1.1, and deduce Billey’s formula by taking a limit.

The main reference for this chapter is [Su2017].

2.1 Preliminaries on equivariant localization

The most important technique in this chapter is the following Atiyah—Bott localization formula.

Theorem 2.1.1. [AB1984] Let a torus A acting on a smooth projective variety X with fixed compo-

nents X4 = U,;Fj. Then for any equivariant cohomology class v € H(X), we have
Uiy
_2 : , J
T 7 VAN

where v; : F; — X denotes the inclusion of the j-th fized component, and eA(Nj) is the A-equivariant

Euler class of the normal bundle of F; in X.

Therefore, we can define integration on a non-proper variety X whose torus A fixed loci is proper
as follows:
g . 4
/[X]A : H}(X) — Frac H}(pt), ~+— ;/[Xj]A W,
where Frac H (pt) is the fraction field of the polynomial ring H? (pt) ~ Q[Lie A]. We can also define
a pairing on H%(X) as follows: for any 71,72 € H(X), define (y1,7v2)x = f[X]A ~v1 U 72. More
generally, we can define equivariant non-proper pushforward under the condition that the fibers have

proper torus fixed component. See [Liu2013] for more details.



2.2 Stable basis for T*B

In this section, we apply the construction in [MO2012] to define the stable basis for T*5.

2.2.1 Fixed point set

The A-fixed points of T*B is in one-to-one correspondence with the Weyl group W. Let wB denote
the fixed point corresponds to w € W, and let +,, denote the inclusion of wB into T*B. By Theorem
2.1.1, there is a basis {ty,«1|w € W} for the localized cohomology H7.(T*B)ioc := H7(T*B) @z (pr)
Frac H3.(pt), which is the so called fixed point basis. And we can use equivariant localization to define
a pairing (-,-) on Hx(T*B). For any v € Hy(T*B), let 7|, denote the restriction of 7 to the fixed

point wB.

2.2.2 Chamber decomposition

The cocharacters

c:C"—= A

form a lattice. Let

ag = cochar(4) ®z R.

Define the torus roots a; to be the A-weights occurring in the normal bundle to (7*B)*. Then

the root hyperplanes af- partition ag into finitely many chambers

GR\UOZZJ_:HQ:1

It is easy to see in this case that the torus roots are just the roots for G. Let + denote the chamber

such that all roots in R take positive value on it, and let — denote the opposite chamber.

2.2.3 Stable leaves

Let € be a chamber. For any fixed point yB, define the stable leaf of yB by

Leafe(yB) = {1‘ eT*B

limo(z) -z = yB}
z—0

where o is any cocharacter in €; the limit is independent of the choice of o € €. Then it is easy to see

that Leaf { (yB) = TgyB/BB, and Leaf _(yB) = Tg,yB/BB, where B~ is the opposite Borel subgroup.
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Define a partial order on the fixed points as follows:
wB 2¢ yB if Leafg(yB) NwB # .

By the description of Leaf(yB), the order < is the same as the Bruhat order <, and =<_ is the

opposite order. Define the slope of a fixed point yB by

Slopee (yB) = U Leaf¢(wB).
wB=eyB

2.2.4 Stable basis

For each y € W, let T;B and T,(T*B) denote T, 5B and T,(T*B) respectively, and define ¢, =
eA(Ty*B). Here, e” denotes the A-equivariant Euler class. Le., eA(T;B) is the product of A-weights in
the vector space Ty B. Let N, denote the tangent bundle of T*B at the fixed point yB. The chamber

¢ gives a decomposition of the tangent bundle
Ny = Ny © Ny,

into A-weights which are positive and negative on € respectively. Since T' = A x C*, H}.(pt) =

H? (pt)[h]. The sign in +e(N,,_) € H}(pt) is determined by the condition

te(Ny)lneo = €.

The following theorem is Theorem 3.3.4 in [MO2012] applied to T*B.

Theorem 2.2.1 ([MO2012]). There exists a unigue map of H3(pt)-modules
stabe : Hi:((T*B)*) — H:(T*B)

such that for any y € W, T’ = stabe(1,) satisfies:
1. suppT" C Slopey(yB),
2. T'|y = £e(N_ ), with sign according to €,
3. Ty is divisible by h, for any wB <¢ yB,

where 1, is the unit in H}.(yB).
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From here on, we let stabe (y) denote stabe(1,).

Remark 2.2.2. 1. The map is defined by a Lagrangian correspondence between (T*B)4 x T*B,

hence maps middle degree to middle degree.

2. From the characterization, the transition matrix from {stabe(y)|y € W} to the fixed point basis
is a triangular matrix with nontrivial diagonal terms. Hence, after localization, {stabe(y)|y €

W} form a basis for the localized cohomology, which is so-called the stable basis.
3. It is proved in [MO2012, Theorem 4.4.1] that {stabe(y)ly € W} and {(—1)"stab_¢(y)|ly € W}
are dual to each other, i.e.,

(stabe(y), (—1)" stab_¢(w)) = dy 0.

Here n = dim¢ B.

2.3 Stable basis for T*P

A similar construction works for 7*P. In this case, the fixed point set (7*P)# corresponds to W/Wp
([BGG1973]). For any y € W, let § denote the coset yWp. Let yP denote the fixed point in T*P
corresponding to the coset § = yWp. Let T;P and T;(1™P) denote T,;pP and T, p(T*P), respectively.
Define e = eA(Tgp). The sign in £e(N_ ) is determined by +e(N_ 5)|n=0 = €5. For any cohomology

class o € H}.(T*P), let |y denote the restriction of a to the fixed point yP. Then the theorem is

Theorem 2.3.1 ([MO2012]). There exists a unique map of Hx(pt)-modules
stabe : HR((T*P)*) — H(T*P)

such that for any §y € W/Wp, I' = stabe(1,p) satisfies:
1. suppT" C Slopey(yP),
2. Ty = £e(N_ 3), with sign according to e,
3. T|g is divisible by h, for any w <¢ 7,

where 1,p is the unit in H(yP).

From here on, we let stabe(y) denote stabe(1yp).
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Remark 2.3.2. 1. The Bruhat order on W/Wp is defined as follows:

yWp <wWp it ByP/P C BwP/P.

If the chamber € = +, then the order <, is the Bruhat order on W/Wp. If the chamber € = —|

the order is the opposite Bruhat order.

2. The stable basis for Hy(T*P)oc is {stabe(g)|y € W/ Wp}.

3. By [MO2012, Theorem 4.4.1], {stabe(7)|y € W/Wp} and {(—1)4m7 stab_¢(7)|y € W/Wp} are
dual to each other.

From now on, we use stabe (y) to denote the stable basis of T*B, and stabe (%) to denote the stable

basis of T*P.

2.4 Restriction formulas for the stable basis of 7B

In this section, we prove our first main Theorem 1.1.1 and an analogous one for the positive chamber

(Theorem 2.4.9).

2.4.1 Proof of Theorem 1.1.1

Let @ be the quotient field of Hx(pt), and F(W, Q) be the functions from W to Q. Restriction to
fixed points gives a map

Hi(T"B) — Hi(I"B)") = € Hi(wB)
weW

and embeds H}(T*B) into F(W, Q) by the localization Theorem 2.1.1.
It is well-known that the diagonal G-orbits on B x B are indexed by the Weyl group (see [Chapter

3][CG2010]). For each simple root o € A, let Y, be the orbit corresponding to the reflection o,. Then
E =B Xp, B

where P, = G/P,, and P, is the minimal parabolic subgroup corresponding to the simple root o and

contains B. Let T;%(B x B) be the conormal bundle to Y,. This is a Lagrangian correspondence in
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T*B x T*B,
T3 (B x B) ™—T"B
T*B.

Therefore, it defines a map
D, :=m 75 Hp(T*B) — Hp(T*B),

via pullback and pushforward. Define an operator Ay : F(W, Q) — F(W, Q) by the formula

P(woa) — p(w)

(Aop)(w) = oo (wa — h).

A similar operator is defined in [BGG1973]. Then we have the following important commutative

diagram.

Proposition 2.4.1. The diagram

Hp(T*B)—— F(W,Q)

Dal lAO

H7(T*B)—— F (W, Q)
commutes.

Proof. Since Hy(T*B) has a fixed point basis after localization, it suffices to show that the two paths
around the diagram agree on the fixed point basis {¢y.(1)|y € W}. Such an element gives to a function
vy € F(W, Q) characterized by

Uy(y) = e(T,T7B)

and ¥, (w) = 0 for w # y.

Then

o)) = =P, 0), o)) = 0, ()

and

Ao(Yy)(w) = 0, for w ¢ {y,yoa}.
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Going along the other way of the diagram, we have

(T}%(B X B),tys1® Lw*l)
e(T,T*B)

L (1).

By the definition of Y, (T;%(B X B),tys1® Lw*l) is nonzero if and only if w € {y,yo.}. By local-

ization,
(T(B % B), 1yl @ 1.1) = fyo;; M (1,17 B)
and
(T;—Q(B X B),1yel ® Ly(,ag) = yo‘y; P Ty T B).
Hence
Daltyel) = fyo;; P WT;hbyga*l.
Therefore,
D)) = =220
and
Da(1ye1) (yoa) = yo‘y; P (T T*B)

Since « is a simple root,

e(Tyo, T°B) = [[ WoaB —h)(—yoaB)

BERT
= I ®ouB—n)(-y0aB) (~ya — h)ya
BeR\{a}
- ew,B)
so we get
Dl 1)(w0w) = 5520,

Since Dy (ty+1) and Ag(t),) take the same values on W,

Da(ty<1) = Ao(thy).



The image of the stable basis under the operator D, is given by the following lemma.

Lemma 2.4.2.

D, staby (y) = —staby (y) — staby (yoq).

Proof. We only prove for the + case; the — case can be proved similarly.

By Remark 2.2.2(3), the lemma is equivalent to

1 w Y0
(Dq staby (y), (—1)" stab_(w)) = €{y.yoa}

0 otherwise.

Since Ty—~(B x B) is a Steinberg correspondence in 7*B x T*B,

(D staby (y), (—1)" stab_(w))

is a proper intersection number (see [MO2012, Section 3.2.6, 4.6]). Hence it lies in the nonlocalized

15

coefficient ring H%(pt). A degree count shows it actually lies in H%(pt) = Q. So it is a constant.

Therefore we can let i = 0. Then Properties (1) and (3) of Theorem 2.2.1 shows (staby (y)|w)|r=0 is

nonzero if and only if y = w. Using the second property, it is easy to calculate that the intersection

number.

Applying Proposition 2.4.1 to the stable basis {stab_(w)|w € W}, we get

O

Corollary 2.4.3. The stable basis {stab_(w)|lw € W} are uniquely characterized by the following

properties:
1. stab_(w)|, = 0, unless y > w.
2. stab_(w)]|, = 11 (wa — h) I wa.
a€ERt , waeRt a€ERT , waE—RT

3. For any simple root «, and ¢(yo,) = €(y) + 1,

yo

h
- stab_(w)|, —

stab_ (w)|ye, = — stab_ (woq)ly-

Proof. It is easy to see that {stab_(w)|w € W} satisfies these properties: (1) and (2) follow directly

from Theorem 2.2.1, and (3) follows from Proposition 2.4.1 and Lemma 2.4.2.

To show these properties uniquely determines a cohomology class is equivalent to show these

properties uniquely determine the values stab_ (w)|,. We argue by ascending induction on the length
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I(y) of y. Note that stab_(w)|; is determined by (1) and (2). Assume that {(yo,) = I(y) + 1 for some
simple root «. Then stab_ (w)|ys, is determined by stab_(w)|, and stab_(woa )|, by (3), which are

known by the induction hypothesis. O
For the positive chamber, we get

Corollary 2.4.4. The stable basis {staby(y)ly € W} are uniquely characterized by the following

properties:
1. staby (y)|w =0, unless w < y.

2. staby(y)ly = II  (ya—h) I  ye

a€ER*T,ya<0 a€RT,ya>0

3. For any simple root «, and {(yo,) = €(y) + 1,

wo — h

h
tab au):*itb w tab WOy *
stab (yoa) by = —— = stab (y)] stab 1 (9) o
The proof is almost the same as the proof of Corollary 2.4.3, so we omit it.
We now prove Theorem 1.1.1. We show that the formula given in Theorem 1.1.1 does not depend
on the reduced expression of y, and it satisfies the properties in Corollary 2.4.3.
Let A be the root lattice, and let A be the algebra over Q[A](%) generated by {u,|w € W}, with

relations

Uy Uy = Uy, U f = fUw,

where f € Q[A](R). For a reduced word y = o7 - - - 0y, define

where 8; = 01 -+ - 0;_1;. Expanding it, we have

ﬁ(h—ﬁi)

=1
Rey ooy = ) zw:stab,(w>|m...muw (2.1)

a€ERT
where stab_ (w)|y,...s, 1S given by Theorem 1.1.1. We first prove

Proposition 2.4.5. R, ... o, does not depend on the reduced expression of y = o1 ---0;. Hence we

can denote it by R,,.
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Remark 2.4.6. 1. With Equation (2.1), this shows that the sum in Equation (1.1) does not depend

on the reduced expression of y.

2. In [Bil1999], Billey proves this case by case when the Weyl group is replaced by the nil-Coxeter

2

O

group, which is defined by adding the relations u> = 0 for any simple root «.

3. The independence can also be proved easily as in [LZ2014].

Proof. Let cjo4---0] be a different reduced expression for oy ---o; that only differs in positions
p+1,....p4+m, with

Op4+1," " s0p+m = O0a;083,0a,03," "

and

0-;_‘_1’... ’0';+m — O—[%O-Oéao—ﬁao-ay"'
for some simple roots «, 8, and m = m(«, ) = order of o,05. It is well-known that every reduced
expression can be obtained from any other by a series of transformations of this type.
Since (1 + o;ou) = 0;(1 + ou), we have

Ral,.“ a; — Ral,--- ,0; 0102 JiRaiJrL.“ RIR

)

Hence,

Roéu"' ap — Ral,"' ,ap01 e O-pRaﬂa@#"o'l T 0p0alpgla - Rap+m+17"' Q)

s

so we only need to prove

Rapo = Rpap,
We show it case by case. We use letter «; for o, and a;; for S.

1. m = 2. Then 0;a; = oj,0;0; = ;. Therefore,

Rasa; = (1 + %Um) (1 Y, uaj)

h h
Q; a; ;o
:1+#ugi+#ugj+ ;,sz 0i0;
= Raj,a;-

2. m = 3. Then

o0 = 0505 = o + Q.
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Therefore,

Ra oy = (1 + %Uai) (1 L 019 ugj) (1 n wuai)

h h h
Qo
=1+ %QJ + %(uaz +ugj)
h2 0 h2 o h3 KA

=Ra; a0,

3. m = 4. Without loss of generality, assume «; is the short root. Then

O'iO'jO'iOéj = Oéj, O‘jO’l‘O'jOéi = Oy,

0,00 = 0504 :Oéi+04j, 00,0 = 0;05 :2041'4*0@'.

Therefore,

o Q5 0;Q; 0004 0,050,045
Rovopeniay = (14 o) (14 5w, ) (14 2550, ) (14 225050, )

and

(6% g;04 ;0,05 ;0,004
R = (1 5, ) (1 5280, ) (1 25200, (1220, )

Q; o; + 20 + a; o
1 T, ) (14 S g, ) (14 =, ) (14 S, )
(+hu”(+ 7 u>(+ i Ug, +hu’

Due to Billey’s calculation in [Bil1999], we only have to compare the coefficients of 1 = u2 =

gq

2 _ .2 _ 2 _ 2 _ 2 : . i :
Uy, Ug, = Up Ug, = Ug, Uy, a0d Uy, = Uz Uo; = Uo,Uy, . It is easy to see this by a direct
calculation.

4. m = 6. Without loss of generality, assume «; is the short root. Then

O'Z'UjO'iO'jUiOéj = Oéj, O'jUiO'jO'iO'jOéi = 4,
0,040,004 = 004 = @ + g, 0j00;0;,05 = 0;Qj = 30(1' + Qy,

0,0;0,05 = 00,05 = 30[2' + QOéj, 00;0;0; = 0,00 = QCVZ' + Q.



Therefore,

Rer o ovr v v :(1 & c,.) (1 iy U.) (1 gi05% (,_)
i, QG O, O, O +huz + hu] + h uz

0,0;0;Q; 0,050,004 0;050;0;0;Q;
(1 t ey ) (M e ) (1 o

h
(o 3o, + 20 +
—(1 JU.)1¥UY 142847,
<+hu’<+ 3 uj)<+ 5 u1>

3a; + 205 a; + o ;i
o2 (o2 o)

and

j i j 3o + 20

20 + 3oy + o a;
(1 4 hjuoi) <1 i h]uaj) (1 T %uai) .

Similarly to Case (3), we can show the coefficients of the corresponding terms are the same.

Next we prove
Proposition 2.4.7. The formula in Theorem 1.1.1 satisfies the properties in Corollary 2.4.3.
Proof.

1. Property (1) follows from [Spr2009, Proposition 8.5.5].

2. Property (2) follows from the fact
{yala € RT,ya € =Rt} = {-B;|1 <i <}
3. Suppose y = o7 - - - 07 is reduced and [(yo,) = I(y) + 1. Then by definition
Roy,o o0 = Ray oo 0y YR,

where yR, = (1 + ¥*u,_). Using Equation (2.1), we get
A o

h—ya
h

stab_ (w)lyo,, = stab_(w)l, + % stab_(woa)ly,

which is precisely property (3) in corollary 2.4.3.

19
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O

This finishes the proof of Theorem 1.1.1. We give a corollary of it, which will be used in Chapter

Corollary 2.4.8.

]l «

(71)l(y)+104271;+ (mod h2) if w= yog <y for some B € RJr,
stab_(w)|, =

0 (mod A?) otherwise.

Proof. Theorem 1.1.1 implies that stab_(w)], (mod h?) is nonzero if and only if w = o160y
for some ¢. Then w = yog with 8 = 0;---0;4104 and B; = —yB. And every element w = yog such
that w < y is of the form o7 - - - d; - - - oy for some i. Putting these into Equation (1.1) gives the desired

result. O

2.4.2 Restriction formula for the positive chamber

For the positive chamber, we have the following localization formulas.

Theorem 2.4.9. Let y = 0105+ --0; be a reduced expression for y € W, and w < y. Then

k
01045 « 0'7;].0(7;1. —h
) P S e ) | e (2.2)

1<iy <ig << <l Jj=1
w:ailaw..‘(rik

l—k
h II o (2.3)

k
H H 0iy0iy - - O4; Oy a€ERT
J=01;<r<ijia

Furthermore, the sum in Equation (2.2) does not depend on the reduced expression for y.

Let us consider the semidirect product @ x W, where @ is the quotient field of H7(pt). Let w,,
denote the element w in the Weyl group W. The action of W on @ is induced from the action of W

on the Lie algebra of the maximal torus A, and W acts trivially on h. For example, for any root «,

ht+a _ htwa
Uw = = “wa Yw-
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For any reduced decomposition oy, - - -0, of y, we define the following two functions

LI o0 —h
i1 Oig - v - 00 O
Car,0n, 00 (W) = Z H —

0i055 «..0;. 0.
1<iy <ip<--<ip<lj=1 17" A
1D:a'711(7i2...(771k

hl—k

k
H H 0i10i2~-~0ijar
7=04;<r<ijii

€Q,

and

!
h hto
Roy ooy o= H ( i +a Uai> cOnW

Q5 Q5
To expand Ra, s, ,a;; We need to find the coefficient of u,, for every w € W. For any subsequence
i1 <ig < ---<ipof 1 <2< ---<such that u, = Ug; Ugy, - - U, , WE get the following term

h h FL =+ Oéil h h =+ O[Z'2

) iy . .
aq (g (675 Q41 Qi

h+aik71 h h h—!—aik h h

a_iz...

Ty, (53
aik_l k=1 aik_1+1 aik71 aik k aikJrl (07]

ht+a _ htwa

Since w,, =% = o

Uy, the above term is equal to

k —
h+0i10i2...01j71aij hl k

k
H H Ui10i2~-~0'ij04r

§=0i;<r<iji1

Uy
j=1 03,04, ...O'ij_lai].

k I—k
_Hailaiz"'aijaij_h h
B k
H H Uilo'iz“-o'ijar

J=04;<r<ijii

Uy -

Therefore,

Ral,a2,---7al = Z gal,az,”';az (U})Uw (24)

weWw

Similarly to Proposition 2.4.5, we have
Proposition 2.4.10. Ry, o, ,a, does not depend on the choice of the reduced expression for y.

This can be checked case by case as in Proposition 2.4.5. We omit the details. With Equation
(2.4), this shows that the sum in Theorem 2.4.9 does not depend on the reduced expression for y.

Finally, we prove
Proposition 2.4.11. The formula in Theorem 2.4.9 satisfies the properties in Corollary 2.4.4.

Proof.
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1. Property (1) follows from [Spr2009, Proposition 8.5.5].

2. Property (2) follows from the fact

{yalo € RT,ya € —R*} = {-Bi]1 <i <1}

3. Suppose y = o1 - - - 0y is reduced and l(yo,) = I(y) + 1. Then by definition

h h+a
Ra17a27‘“aal7a7Ra170¢27“‘704l a+ a Ugy | 5

Equation (2.4) gives

Z&hﬂz;m ,Oéha(w)uw = Z€a1,ﬂé27"' o (w/)uw' (a +
w w’

h wa — h
= g <wa£a1,az,-.. o ('LU) + 501170[27... Lo (waa)> Uy -

Hence
h wa — h

gah“%“'»“ha(w) = mgal,um“wal + wo gahazwwaz(waa)

which is precisely property (3).

As in Corollary 2.4.8, modulo A2, we get

Corollary 2.4.12.

EJ] «

(‘Ulw)ﬂ% (mod h?) if w=yosz <y for some B € RT,
Yy
stabt (y)|w

0 (mod h?) otherwise.

This follows from the proof of Corollary 2.4.8 and Theorem 2.4.9.

2.5 Restriction of stables basis for T*P

In this section, we extend Theorems 1.1.1 and 2.4.9 to T*P case. In type A, these formulas were also
obtained in [She2013] via abelianization and in [RTV2015] using weight functions.
We need the following lemma from [BGG1973].
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Lemma 2.5.1. Each coset W/Wp contains exactly one element of minimal length, which is charac-

terized by the property that it maps the simple roots in P into R .

Let 7 be the projection map from B to P, and I';; be its graph. Then the conormal bundle to I';:

in B x P is a Lagrangian submanifold of T*(B x P),

Ty (B x P) —=T*B

:

TP,

where py is proper.
Let

Dy = paupy : Hp(T*B) = Hp(T™P),

and

Dy = p1.ps : HA(T*P) = Hi(T*B)1oc

be the maps induced by the correspondence 7% _(BxP). The image for the second map is the localized
cohomology since p; is not proper. The pushforward p;, is defined using torus localization (see the
discussion at the beginning of this chapter).

Recall we have an embedding of H;(T*B) into F(W, Q) by restricting every cohomology class to
fixed points. Since the fixed point set (7*P)7T is in one-to-one correspondence with W/Wp, we can
embed H}.(T*P) into F(W/Wp, Q). Recall we use § to denote the coset yWp, and use v|5 € Hr(pt)
to denote the restriction of v € Hi(T*P) to the fixed point yP.

Define a map

Ay F(W,Q) — F(W/Wp,Q)

as follows: for any v € F(W,Q),

Then as Proposition 2.4.1, we have



24

Proposition 2.5.2. The diagram

Hy(T*B)——— F(W,Q)

Dll lAl

Hy(T*P)—— F(W/Wp,Q)
commutes.

Proof. The proof is almost the same as that of Proposition 2.4.1. We show the two paths agree on
the fixed point basis.

By the definition of Ay,

By localization,

D1(tysl), Lzl
Dy (1ys1) = Z(z((;T)*”P))Lw*l

w
H yo — R)egel,

aGR

where ¢y is the inclusion of the fixed point yP into T*P. Hence

Di(tye)|w = 05.0e(TyT*P) [ (ya—h)

aER;
= A1 (ty«1)(w)
as desired. 0
If we apply this proposition to the stable basis, we get the following corollary.

Corollary 2.5.3. The restriction formula of the stable basis of T*P is given by

stab
stabi (7)o = Z Hi pot

aERJr
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Proof. As in Lemma 2.4.2,

(D1 (stabs(y)), stabg (w))

is a constant, so we can let & = 0. Then stab;(7)|g is nonzero if and only if § = w. A simple

localization gives

D (stabx(y)) = (—1)" stabs (y),
where k = dim B — dim P = |R};|. Applying Proposition 2.5.2 to stab. (y) yields the result. O
As in the T*B case, modulo h? we get

Corollary 2.5.4. Let y be a minimal representative of the coset yWp. Then

h]] «
)i+l c€RT mod h?) if w =7o3 and yog < y for some B € RT,
O e (d 5 and yo
stab (Y)]o = aefr
0 (mod h?) otherwise.

Proof. Assume y = 0105 -+ -0y is a reduced decomposition. Because of Corollary 2.4.12 and Corollary

2.5.3, we only have to show: if i < j, then

01 Gi- O £ 01 G0

Assume the contrary. Then there exists an element w € Wp such that

0'1...O'i...0'l:Ul...o'j...o'lw.

Then

y:o’l...o'i...o'l :Ul...a'i...a'j...o'lw’
which is contradictory to the fact that y is minimal. O

Using the map Ds, we can get another restriction formula for the stable basis of T*P. Define a
map

Ay F(W/Wp,Q) — F(W,Q)
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as follows: for any ¢ € F(W/Wp,Q),

As()(z) =9 (2) [] (za = h).

aER;
Then we have the following commutative diagram.

Proposition 2.5.5. The diagram

Hy(T*P)——— F(W/Wp,Q)

Dzl lAQ

Hy (T B)ioe—— F(W, Q)

commutes.
Proof. The proof is almost the same as in Proposition 2.4.1. We show the two paths agree on the

fixed point basis.

By the definition of Ao,

Az (1l (w) = 65.0e(TyT*P) ] (we — h).

aER;

By localization,

(D2(tgx1), tuws1)
Da(1g:1) = Z W%*l
= 1 Lws L.
2 (-wa)
- aeth
Hence
e(TwT*B)
DQ(L§*1)|M :5?9,@ H (_wa)
aGR;
= Az (15 1) (w)
as desired.

If we apply this diagram to the stable basis, we get
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Corollary 2.5.6. We have the restriction formula for the stable basis of T*P

___staby (w)],
staby ()]z = ZwHy (tzai(h)ﬂ

+
a€ERY,

Proof. As in Lemma 2.4.2,

(Da(stab(g)), stabz (w))

is a constant, so we can let i = 0. A simple localization calculation gives
Dy(staby (7)) = » _ stabz(w).
W=y

Applying Proposition 2.5.5 to staby (y) yields the result. O
Modulo %2, we get

Corollary 2.5.7. Let y be a minimal representative of the coset yWp. Then

h]] «
(fl)l(y)ﬂm (mod %?) if w =7Yyoz and yog <y for some B € RT,
stab_(w)|z = aERp
0 (mod h?) otherwise.

Proof. This follows directly from Corollary 2.4.8 and Corollary 2.5.6 and the proof of Corollary 2.5.4.
O

2.6 Restriction of Schubert varieties

In [Bil1999], Billey gave a restriction formula for Schubert varieties in G/B, and Tymoczko generalized
it to G/P in [Tym2009]. In this section, we will deduce Billey’s formula from Theorem 1.1.1 by a
limiting process and generalize it to G/P case in two ways.

Let us first recall Billey’s formula. Let B~ be the opposite Borel subgroup to B. Then WB/B
is the Schubert variety in G//B of dimension dim G/B — I(w), and as w € W varies, [B~wB/B] form

a basis of H%(G/B). The formula is
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Theorem 2.6.1 ([Bil1999]). Let y = 0102 --- 0y be a reduced decomposition. Then we have

[B-wB/B]|, = E Biy +++ Biy
1<i1 <io< < <l
W=0j Tig...04 reduced

where B; = 01+ 0;_104.

Proof. By the construction of the stable basis, we have

_ tab_
[B-wB/B]|, = £ lim _ stab_(w)ly
h— o0 (_h)dlm B-wB/B
The sign only depends on w, and can be determined by substituting y = w as follows: the left hand
side is
[B-wB/Bllu= [] o
aERTNWR—

whereas the limit on the right is

IT (wa—h) II wa

lim stab_(w)|w iy 2T wa>0 a€RF, wa<0
h— o0 (7h)n7l(w) ey (7h)”*l(w)
= H wa
aERT, wa<0
= (-1)"™)[B~wB/Bls.
Hence the sign is (—1)"®). Now the formula follows from Theorem 1.1.1. O

Remark 2.6.2. The proof of Theorems 1.1.1 and 2.4.9 is inspired by Billey’s proof of Theorem 2.6.1.

Using Theorem 2.4.9 we can also get a restriction formula for [ByB/B]|y.

A similar limiting process for T*P yields the restriction formula for Schubert varieties in G/P.
Recall that if w is minimal, then B~wP/ P is the Schubert variety in G/P of dimension dim G/ P—I(w),

and as w runs through the minimal elements they form a basis of H% (G/P).

Theorem 2.6.3 ([Tym2009]). Let y,w be minimal representatives of yWp, wWp respectively. Then
we have

(B=wP/P)l; = (B-wB/Bll,

Remark 2.6.4. Tymoczko’s generalization in [Tym2009] does not require y to be minimal. We will

give two proofs for it. The first proof only works for minimal y, while the second works for any .
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Proof. Similarly to the proof of Theorem 2.6.1, we have

AT =BTBI . (w1 Stab(0)[y

where m = dim G/P. Then the formula follows from Corollary 2.5.6. O

We give another much simpler proof using a commutative diagram. Define a map

as follows: for any ¥ € F(W/Wp,Q),

Then we have the following commutative diagram.

Proposition 2.6.5. The diagram

H3(G/P)——F(W/Wp,Q)

H3(G/B)——— F(W,Q)
commutes, where  is the projection from G/B onto G/P.
Proof. We check on the fixed point basis.

T gl = LT gl = (T 0 Ly) tgul = Litgel = 0y 5e(TyG/P).

By definition of Ags,

As(tgel)(w) = tgullg = 05.0e(T3G/P),

<
g

)

as desired. 0

Since 7*([B~wP/P]) = [B~wB/B] if w is minimal (see [FA2007]), Proposition 2.6.5 gives

A3([BTwP/P)(y) = [B-wP/Plly = w([B~wP/P])|y = [B-wB/Bll,,

which is just Theorem 2.6.3 without any conditions on y.
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Chapter 3

Quantum Cohomology

In this chapter, we are going to use the stable basis studied in Chapter 2 to calculate the quan-
tum cohomology of the cotangent bundle of the flag varieties T*(G/P), generalizing the result of
Braverman—Maulik—Okounkov ([BMO2011]). We will first calculate the T-equivariant quantum mul-
tiplication by divisors in terms of the stable basis (Theorem 1.1.2), and then deduce the G x C*
quantum multiplications (Theorem 1.1.3) using the restriction formulas for the stable basis in Chap-
ter 2. The main reference for this chapter is [Su2016]. In the end, we construct a regular connection on
the trivial principle G-bundle on P!\ {0, 1, 00}, such that when G is simply laced and P is minuscule,
it is isomorphic to the quantum connection for 7*(G/P). In the case G = GL(n), we prove this
connection is rigid. This last part is not contained in [Su2016].

As in the last chapter, we will use T*P to denote T*(G/P). Recall that T*P is an example of
symplectic resolution ([Kal2009]), which is a smooth algebraic variety X with a holomorphic symplectic

form w and the affinization map
X — Xo = Spec H(X, Ox)

is projective and birational. Conjecturally all the symplectic resolutions of the form 7™M for a smooth
algebraic variety M are of the form T*P, see [Kal2009]. In [Fu2003], Fu proved that every symplectic
resolution of a normalization of a nilpotent orbit closure in a semisimple Lie algebra g is isomorphic

to T*P for some parabolic subgroup P in G.
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3.1 T-equivariant quantum cohomology of T*P

In this section, we compute the T-equivariant quantum multiplication by divisors in terms of the
stable basis.
Any divisors in H}.(T*P) is of the following form. If A is a character of maximal torus, which

vanishes on all &¥ € AY,, it determines a one-dimensional representation Cy of P. Define a line bundle
Ly=GxpCy

on G/P. Pulling it back to T*P, we get a line bundle on T*P, which will still be denoted by L.
Let Dy := ci1(£y) € H?(T*P). Our goal is to determine the quantum multiplication by Dy’s. The
quantum multiplication consists of the classical multiplication and the purely quantum part. We will
deal with the calssical cup product first. To furthur simplify notations, we will use X to denote T*P

in this chapter.

3.1.1 Classical part

Let m denote the dimension of G/P. Since {stab, (g)} and {(—1)™ stab_(g)} are dual bases, we only

need to calculate

(D Ustaby (), (—1)™ stab_(w)) = : : : (3.1)

This will be zero if § < @w. Assume y is a minimal representative. Due to the proof in [MO2012,
Theorem 4.4.1], the resulting expression lies in the nonlocalized coefficient ring. A degree count shows

that it is in HZ(pt). There are two cases.

1. Case y =w

There is only one term in the sum of the right hand side of Equation (3.1). Hence,

_ Dily -staby (9)ly - (=1)™ stab_(9)]y _

(Dx Ustabs(5), (—1)™ stab_ (7)) e "

2. Case §y # w
Notice that (D) U stab (), (—1)" stab_(w)) € HZ(pt), and it is 0 if & = 0, because every
summand in Equation (3.1) is divisible by A. Hence, it is a constant multiple of A. So in

Equation (3.1), only the terms Z = § and Z = @w have contribution since all other terms are
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divisible by A2. Therefore,

stab_ ()| stab ()|w
Stab-\W)ly \) 2P+ ) lw.
s @) W stabs @)l
I part of stab_(w)|; w() h part of staby (7)|w

[I ya 1 wa ’

aE€RHT\RL a€RH\R}

(Dx Ustabs.(5), (—1)™ stab_(w)) = y(A)

=y(\)

where the first equality follows from (stab. (7),stab_(y)) = (—1)"e(T3X).

Corollaries 2.5.4 and 2.5.7 show this is zero if w # yog for any 3 € RT with yoz < y. However,

if w = yo5 for such a 3, then since (—1)!78) = (—1)!®)+1 we have

(D) Ustab (7), (—1)™ stab_(w))

hIl a P o
:y(A)(fl)l(y%Flﬂ+ygﬁ(A)(71)l(y)+1 «ER+

yB I ya yB Il yopa
acERTt acRt
h h
=- yfﬁy()\) + y—ﬁyaﬁ(A)
= h()‘7ﬁv)

Notice that for any 8 € R", yog < y is equivalent to y3 € R™. To summarize, we get

Theorem 3.1.1. Let y be a minimal representative. Then the classical multiplication is given by

Dy Ustab. () = y(A) staby (y) — R Z (A, ) stab.y (77a).
a€Rt ya€R™

3.1.2 Preliminaries on quantum cohomology

Now we deal with the purely quantum multiplication.
Let us recall that the operator of quantum multiplication by o € H(X) has the following matrix

elements

(xy,7) = Y (e, 712)8s.
BEH(X )

where (-, ) denotes the standard inner product on cohomology and the quantity in angle brackets is a
3-point, genus 0, degree 3 equivariant Gromov—Witten invariant of X. Setting ¢ = 0, we get the usual
cup product in cohomology. This deformed product makes H}(X) into a commutative associative
algebra.

Recall the well known divisor equation for Gromov—Witten invariants. If « is a divisor and 3 # 0,
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we have

<Oé, 1, 72>é(:3,5 = (Oé, 6) <’Yl7 72>(§(,2,ﬂ7

where (o, ) is the usual pairing between H?(X) and Ho(X).
Using quantum multiplication by divisos, we can define a flat connection on the trivial vector
bundle on H?(X) with fiber H*(X), which is the so-called quantum connection. It is defined as

follows. Take any divisor A € H?(X), define

and A\x denotes the quantum multiplication by the divisor .

Since X has a everywhere-nondegenerate holomorphic symplectic form, the usual non-equivariant
virtual fundamental class on M, (X, 3) vanishes for 8 # 0. However, we can modify the standard
obstruction theory to get a reduced virtual fundamental class [Mg 2(X, 8)]**¢, whose virtual dimen-
sion increases by 1 (see [BMO2011] or [OP2010]). The virtual fundamental class [Mg 2(X, 8)]"* has
expected dimension

Ky -B+dmX+2-3=dimX — 1.

Hence the reduced virtual class has dimension dim X, and for any 3 # 0,
[Mo2(X, B)]"" = =h- [Mo2(X, B)]", (3:2)

where 7 is the weight of the symplectic form under the C*—action.
Therefore, the computation of the quantum connection is reduced to compute the following gen-

erating function of correspondences between X and itself,

Z qB " EUx [MO,Q(Xv ﬁ)]redv
BEH2(X)
where ev : Mg 2(X, 8) — X x X is the evaluation map. Applying d—d)\ to the above generating function,
we get the quantum multiplication by the divisor A. The image of the evaluation map lies in the

Steinberg variety X X x, X, since the affinization map X — X contracts rational curves. Thus these
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reduced virtual fundamental class gives a lot of correspondence, which are key ingredients in many
constructions in geometric representation theory (see [CG2010]). This explains why the quantum
connection formula for 7%(G/B) (Theorem 3.2.1) is expressed in terms of the elements in the graded
affine Hecke algebra. See [Oko2017] for many other relations between enumerative geometry and
geometric representation theory.

In computations with virtual fundament class, there is a useful technique called virtual localiztion
(see [GP1999] or [HKK™2003]). It turns out in the virtual localization, only some of the fixed compo-

nent have non-trivial contributions. Those component are called unbroken components in [OP2010].

3.1.3 Unbroken curves

Broken curves was introduced in [OP2010]. Let f : C — X be an A-fixed point of Mg 2(X, ) such

that the domain is a chain of rational curves

C=CiUCyU---UC(y,

with the marked points lying on C; and C} respectively.

We say f is an unbroken chain if at every node f(C; NC;11) of C, the weights of the two branches
are opposite and nonzero. Note that all the nodes are fixed by A.

More generally, if (C, f) is an A-fixed point of Mg 2(X, ), we say that f is an unbroken map if it

satisfies one of the three conditions:
1. f arises from a map f: C — X4,
2. f is an unbroken chain, or

3. the domain C is a chain of rational curves

C=CUCiU---Cg

such that Cj is contracted by f, the marked points lie on Cj, and the remaining components

form an unbroken chain.

Broken maps are A-fixed maps that do not satisfy any of these conditions.

Okounkov and Pandharipande proved the following Theorem in [OP2010, Section 3.8.3].
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Theorem 3.1.2 ([OP2010]). Every map in a given connected component of Mo 2(X,3)? is either
broken or unbroken. Only unbroken components contribute to the A-equivariant localization of reduced

virtual fundamental class.

3.1.4 TUnbroken curves in X

Any a € R\ R; defines an SLs subgroup G,v of G and hence a rational curve

Co =Gy -[P)CG/PCX.
This is the unique A-invariant rational curve connecting the fixed points 1 and 7, because any such
rational curve has tangent weight at 1 in R~ \ Rp, and the following lemma in [FW2004, Section 4].

Lemma 3.1.3 ([FW2004]). Let o, B be two roots in RT \ Rf. Then 6, = 65 if and only if a = 3.

If C is an irreducible A-invariant rational curve in X, C must lie in G/P, and it connects two
fixed points ¢ and w. Then its y~!-translate y~1C is still an A-invariant curve, which connects fixed
points 1 and y~lw. So y~'C = C, for a unique « € R* \ R}, and y~'w = &,. Hence the tangent

weight of C' at § is —ya. Therefore, we have
Lemma 3.1.4. There are two kinds of unbroken curves C' in X:
1. C is a multiple cover of rational curve branched over two different fized points,

2. C is a chain of two rational curve C = Cy U Cq, such that Cy is contracted to a fixed point,
the two marked points lie on Cy, and Cy is a multiple cover of rational curve branched over two

different fized points.

For any a € A\ Ap, define 7(0,,) := Bo,P/P. Then
{T(0a)|a € A\ Ap}

form a basis of Ha(X,Z). Let {wq|ov € A} be the fundamental weights of the root system. For any
o € RT\ R} , define degree d(a) of a by

dla)= ) (ws,a")7(0p). (3-3)

BEA\T

Lemma 3.1.5 ([FW2004]). The degree of [C4] is d(e), and d(a) = d(wa) for any w € Wp.
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3.1.5 Purely quantum part

Let Dy*, denote the purely quantum multiplication. We want to calculate

(—1)™(Da #q staby (§),stab_(@w)) = — > (=1)"hg”

B effective

(D, B)(evs[Mo2(X, B)]**?, stab. () K stab_ (w)),

where ev is the evaluation map from Mg 2(X, 8) to X x X. The image of the map ev lies in X x x, X,

where X is the affinization of X. The — sign appears because of Equation (3.2). Since
dim[M 2(X, B)]"°? = dim X,

ev.[Mo2(X, B)]"* will be a linear combination of the irreducible component of the Steinberg variety

X Xx, X. Therefore, the product
(ev, [Mo2(X, )™, stabs (7) K stab_())

lies in the nonlocalized coefficient ring (see [MO2012, Section 3.2.6, 4.6]). A degree count shows it
must be a constant.

Therefore, we can let & = 0. Le., we can calculate it in A-equivariant chomology. Then by the
definition of the stable basis,

staby (§)|a = 5177156A(T7;7))'

And we only need to compute the contribution from the unbroken components.
As in the classical multiplication, there are two cases depending whether the two fixed points ¥

and w are the same or not.
1. Case §y #w
By virtual localization, Theorem 3.1.2 and Lemma 3.1.4,

(eva[Mo2(X, B)]"4, stab, () K stab_ (w))

is nonzero if and only if @ = o, for some a € RT \ R;. Only the first kind of unbroken
curves have contribution to (ev.[Mg (X, 8)]*4, stab (7) Kstab_ (y64)), and only restriction to

the fixed point (g,704) is nonzero in the localization of the product. The A-invariant rational
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curve y[C,] connects the two fixed points § and 3o, and it is the unique one. Because, if y[Cjg]

is also such a curve, then yo, = yos = w. Hence o = 3 by Lemma 3.1.3. Therefore,

(—1)™ (D x4 staby (7). stab_ (75)) = — Y _(=1)"hg" ) (Dy, k - d(av))
k>0

(evu[Mo (X, k - d(c))]**, stab, () K stab_ (y54))-

Let f be an unbroken map of degree k from C' = P! to y[C,]. Then
Aut(f) =Z/k.

By virtual localization,

e(Tg??)e(T;‘%’F’)e’(H1 (C, f*TX))

e/(HO(C, f*TX))

k(evi[Moo(X, k- d(a))]™?, stab, () M stab_ (775)) =

Here €’ is the product of nonzero A-weights.

We need [MO2012, Lemma 11.1.3].

Lemma 3.1.6 ([MO2012]). Let A be a torus and let T be an A-equivariant bundle on C = P!

without zero weights in the fibers To and To,. Then

e'(HY T & T"))

A NPT )] 1\deg T+rkT +=
el(Hl(TEBT*)) ( 1) 6(76@7—00>

where z = dim HY(T @ T*)4, i.e., z counts the number of zero weights in H'(T & T*).

Since

FTX =T®T* with T = fTP,

Lemma 3.1.6 gives

k(ev.[Moo(X, k- d(a))]™d, stab, () M stab_ (7o)

_e(TyP)e(Ty-P)e' (H'(C, f*TX))
a e/(H(C, f*T X))

:(_1)deg T+rk7’+z-
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We now study the vector bundle 7 = f*TP. First of all, k7 = dim P. By localization,

> (~vy) >, (~yoay)

YERT\R}, i YERT\R},

—ya ya

degT =k

=k > (1.0")=k2p—2pp,a")
YERH\R}

=2k Y (wg,aY)
BeEA\I
is an even number, where p is the half sum of the positive roots, pp is the half sum of the

positive roots in R}, and ws are the fundamental weights.

The vector bundle 7 splits as a direct sum of line bundles on C'

T=c

SO

@ﬁib: D o

YERT\R},

where g_,., are the root subspaces of g. Suppose L;|o = g—_,~. Since yo,y~!

maps y to yo,, we
have

£z|oo = O—yoay-
Hence there is only one zero weight in H (T &7*), occurring in H' (£, ®L}), where L£;|o = g_ya-
Le., £; is the tangent bundle of C.

Therefore z = 1 and we have
Lemma 3.1.7.

d(e)

(—1)™(Dx #q stab (7). stab_ (72)) = ¥ hg"“®(Dy, d(a)) = ~h—1—— (X, a").

_ qd(a
k>0 1 q()

Proof. We only need to show
(D)\a d(O[)) = _(Aa av)'
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By definition and localization,

(Dyd@) = 3 (wﬁ’av)/ o)=Y (wﬁ’av)(_kfﬁo?)

BEA\AP 7(o8) BEA\Ap
== > (Wsa)NBY) == (wsav)(NBY)
BEA\Ap BeA
=—-(\aY)

2. Case gy =w

In this case, only the second kind of unbroken curves have contribution to (D y*4staby (), stab_(7)).
Let C = Cy U be an unbroken curve of the second kind with Cj contracted to the fixed point

7, and C1 is a cover of the rational curve yC,, of degree k, where o € R\ R;. Let p denote the
node of C, and let f be the map from C' to X. Then the corresponding decorated graph I' has
two vertices, one of them has two marked tails, and there is an edge of degree k connecting the
two vertices. Hence the automorphism group of the graph is trivial. The virtual normal bundle
([HKK*2003]) is

(H(C, f*TX)) —ya/k _ €'(H(C, f*TX))

e(N") = ¢(HY(C, f*TX)) ya/k € (HYC, f*TX)) (3-4)

where ¢/(H°(C, f*T X)) denotes the nonzero A-weights in H°(C, f*TX). Consider the normal-

ization exact sequence resolving the node of C:

0= Oc — O¢, ® Oc, — O, = 0.

Tensoring with f*T'X and taking cohomology yields:

0— HYC, f*TX) — H°(Co, f*TX) ® H(Ch, f*TX) — Ty X

— HYC, f*TX) — H'(Co, f*TX)® H' (Cy, f*TX) — 0.

Since Cy is contracted to g, H°(Cy, f*TX) = Ty X and H'(Cy, f*TX) = 0. Therefore, as virtual

representations, we have

HY(C, f*TX) - HY(C, f*TX) = H°(Cy, f*TX) — H'(Cy, f*TX).
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Due to Equation (3.4) and the analysis in the last case, we get

viry __ (HO(be*TX))
“WNE) = = E Gy, )

= (=1)"e(TyP)e(Tyz P).-

Then by virtual localization formula, we have

@ (TP
(—1)"™(Dy *q stab (7),stab_(y)) = —h Z (Dy, d(a)) g )ﬁ
+ 6( @P)e( yO’aP)
a€RT\R}, k>0
d( ) 1 +y6
@ BER+\R}
=h 2 ) (*a®) 1-—q““) [ yoof
a€ERT\R} BER*\RJF
H ypB [ youB
—n Z g™ peRr+ BERT
+ d(a) H yaaﬂ H yﬁ
a€RT\Rp BER* BERY
o) [ ouf
q"™®)  BeRrR}
=-hy 2: (A, a”) d(a) T
N 1—g¢ II 8
a€ERT\RY ,HERIt

Here we have used

H yB = (—1)'W H B, and (—1)!w7e) = (—1)lWFlea) — (_1)l)+1,

BERT BERT
Notice that for any root v € R}, o, preserves Rt \ R}. For any a € R\ Rf, d(0, () = d(a),

(Aa¥) = (\,oy(@)") and ] o,8=— ] B. Hence,

BER}, BER],

d(oc
o Z (A aY) d(a) H oaf3

aER+\RE BERL
y d(a)
= Z ()\,CY )1 _qd(a H O'U_Yagryﬁ
a€ERH\R}, BERJr
== Z (A a” 1— i@ H a3
a€RH\R}, BERL

Therefore >, (A aV )12;;)& [1 o0ap is divisible by [] /. But they have the same de-
a€ERH\R} BERS BERS
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gree, SO
d(a) Il oaf
vy 4" peR}
a€ERH\RS i
BERY
is a scalar.

To summarize, we get

Theorem 3.1.8. The purely quantum multiplication by Dy in H3(T*P) is given by:

[T ouB
B v qd(a) v qd(a) BER;
Dy %4 staby (§) = —h Z (A @) ———— staby (yoa) — h E (A aY) yIes
1 — g 1—q¥ I B
a€RT\RE a€R+\R}, BeRY,
Remark 3.1.9.

1. The scalar

d(c) LI 0P
B vy 97" BeR}
h Z (A a )1_qd(a) I 3
a€R+\RS BeRY,

can also be determined by the condition

D)\*q].:O.

2. The element y is not necessarily a minimal representative.

3. The Theorem is also true if we replace all the stab, by stab_.

3.1.6 Quantum multiplications

Combining Theorem 3.1.1 and Theorem 3.1.8, we get our second main Theorem 1.1.2. Taking I = (),

we get the quantum multiplication by Dy in Hi.(T*B).

Theorem 3.1.10. The quantum multiplication by Dy in H5(T*B) is given by:

Dy #staby(y) =y(\)staby(y) =h > (Aa¥)staby (you)
acRt yace—Rt+

qa
—h Z (A aY) T (stabt (yoa) + staby (y)).
a€ERT q

stab (y).
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3.1.7 Calculation of the scalar in type A

We can define an equivalence relation on R \ R} as follows

a~p if dla)=d().

Then w(a) ~ a for any w € Wp. We have

It is easy to see that

is a constant, which will be denoted by Cp(«).
In this section, we will determine the constant Cp(«) when G is of type A. We will first calculate
this number in T*Gr(k,n) case, and the general case will follow easily. Now let G = SL(n,C) and let

x; be the function on the Lie algebra of the diagonal torus defined by x;(t1,- - ,t,) = ;.
T*Gr(k,n) case

Let P be a parabolic subgroup containing the upper triangular matrices such that T*(G/P) is
T*Gr(k,n). Then

Rpy={z;—zj1<i<j<k, ork<i<j<n}, R\Rb={z;—zj]1<i<k<j<n}

and all the roots in R\ R}, are equivalent. The number Cp() will be denoted by Cp. By definition,

S () ( M @-z) T (- wq>>
C’P _ 1<r<k<s<n 1<i<j<k 1+k<p<g<n (36)
I[I (@i—z;) JI (2p—2q) ’

1<i<j<k 1+k<p<g<n

where (rs) means the transposition of x, and .
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Observe that

1 = aht
1 x xk_l
H (zj — @) H (zg — ap) = det et
1<i<j<k 1+k<p<q<n L @y 0 @)
—k—1
1 =z, zn
n—k—1

Then it is easy to see that the coefficient of zo23 -2} 'apy02?, 5 a

Z (rs) H (zj — @) H (zq — ap)

1<r<k<s<n 1<i<j<k 1+k<p<qg<n

1<i<j<k 1+k<p<q<n

is min(k, n — k), since only when s —r = k, (rs) < 1 (zj—x) I (xq — 9:,,)) has the term

k

221} ) pp0a? 52 R and the coefficient is 1. Hence

Proposition 3.1.11.
Cp = min(k,n — k).

General case

Let A = (A1, ,An) be a partition of n with Ay > --- > Ay. Let
Fa={0CcVi C Vo - CVN|dimV;/V;1 = A}
be the partial flag variety, and let P be the corresponding parabolic subgroup. Then
R]ﬁ:{xi—xj\)\1+-~~+)\p <i<j< A+ 4+ Apga, for some p between 0 and N — 1}.

Two positive roots x; — x; and x;, — x; are equivalent if and only if there exist 1 < p < ¢ < N such
that

Mot A Ay ik < A4 A A, A Ag < 4TS Ao+ Mg,

So the set (R* \ R})/ ~ has representatives

{Zai+42, = Ta4et2,[1 SPp<g < N}
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The same analysis as in the last case gives

Proposition 3.1.12. Forany 1 <p<qg< N,

Cp($A1+...+Ap - ZC)\1+...+)\G) = )\q.

3.2 (G x C*-equivariant quantum multiplication

Let G = G x C*. In this section, we will first get the G-equivariant quantum multiplication formula
in T*B, which is the main result of [BMO2011]. Then we show the quantum multiplication formula

in T*P is conjugate to the conjectured formula given by Braverman .

3.2.1 T*B case

Let us recall the result from [BMO2011] first. Let a be the Lie algebra of the maximal torus A. Then
HA(T*B) ~ Hi(T*B)Y ~ Hj(pt) ~ sym a*[h].

The isomorphism is determined as follows: for any 8 € HE(T*B), lift it to H}.(T*B), and then restrict

it to the fixed point B. Similarly, we have
HA(T*P) ~ Hi(T*P)V ~ (syma*)"7[h).
Let us recall the definition of the graded affine Hecke algebra Hy ([Lus1988]). It is generated by
the symbols x) for A € a*, Weyl elements @ and a central element £ such that
1. z) depends linearly on A € a*;
2. xAT, = TpTN;
3. the w’s form the Weyl group inside Hy;

4. for any o € A, X\ € a*, we have

&Q$A — :E(Tao\)(}a = h(OLV,A).
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According to [Lus1988], we have a natural isomorphism

HE(T*B x5 T*B) ~ Hp,

where N is the nilpotent cone in g. Since the left handside acts on H(T™*B) by convolution ([CG2010]),
Hy, acts on sym a*[fi]. The action is defined as follows: x acts by multiplication by A, and for every

simple root «, the action of 7, is defined by

- h
Gof = (= + oa)f

a
where f € sym a*[A], and o, f is the usual Weyl group action on sym a*[A].

Having introduced the above notations, we can state the main Theorem of [BMO2011].

Theorem 3.2.1 ([BMO2011]). The operator of quantum multiplication by Dy in HE(T*B) is equal

to

4

zx+h Z (/\70‘\/)13 Py (5—04_]-)'
aER* q

We can now deduce Theorem 3.2.1 from Theorem 3.1.10 and Theorem 2.4.9. The classical multipli-
cation is obvious. We only show that the purely quantum part matches. Let f € sym a*[h] correspond
toy € HE(T*B). We also let y denote the lift in H}.(T*B). Then 7|, = w(f) for any w € W. Since

the stable and unstable basis are dual basis up to (—1)", where n = dim 3, we have

¥ =) (~1)"(y,stab. (y)) stab_(y).

Due to Theorem 3.1.10, we have

Dasyy==h 3 (ha) T 30 (<1 stabs (5) (stab- (ym) + stab- (y).

a€Rt

Notice that stab_(y)|1 = 0,,1e(T} B). Restricting to the fixed point 1, we get

\2

qa
Dyxgli==h Y (\a')7——h
a€ER*t a

1 Y e ) (3 (1) b (00)e( T B,
a€ERT
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Hence we only need to show

— (7, (=1)" staby (04))e(TyB) = Gaf. (3.7)

To prove this, we need the following lemma.

Lemma 3.2.2. If w = 0,04, ...0;,, then

k
H 01045 .aijflaij —h . e(Tl*B)
=1 031045 « - - O'ijaij —h G(TJJB)

Proof. If w = 04,04, ...0;, is reduced, then this follows from the fact
{wp|B € RT,wB € R™} = {0;,04, . oo |1 < g <1}

If w= (0,05)™®#) =1 for some simple roots a and 3, where m(a, 8) is the order of 0,03, we can
check it case by case easily. If w = 02, then it it trivial. In general, w will be a composition of these

three cases. O

If 0, =04, -+ 04, is a reduced decomposition, then

L h T
6af = H(OT + “ Ua'i)f'

O
i=1 v

Expanding this and using Theorem 2.4.9, Lemma 3.2.2 and the fact (—1)l("“) = —1, we get

alf) = 3 T () eI = (0 (1) b (caeTB), (39

which is precisely Equation (3.7).

3.2.2 T%*P case

In the parabolic case, Professor Braverman suggests (through private communication) that the quan-

tum multiplication should be

d(a)
Dyx=x\+h Z ()‘70‘\/) 1 +eee (39)

————0
(),GR+\R+ 1-— qd(a) (e
g P
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where --- is some scalar. Recall we have
HE(T*P) ~ Hi(T*P)Y ~ (syma*)"V7[h).

It is easy to see that classical multiplication by D) is given by multiplication by .
Now we do the similar calculation as in the T*B case. We need the following restriction formula
from Corollar 2.5.3:

tab
stab (7)|w = Z i aHi e (3.10)

ozGRJr

Take any v € H(T*P), and assume it corresponds to f € (syma*)"»[h]. We still let y denote the

corresponding lift in H;(T*P). Then v|; = yf. Recall m denotes the dimension of P. Then we have

v= Z (7, staby () stab_(y).
By Theorem 3.1.8,
m ~ y g L
Dyxqy = Z(% (=1)" stab.(7))(—h) Z (A a )m stab_ ()
¥ a€RH\RE ¢
[I oaB

d(a) +
_ Vi q BERE

a€ERT\RE
\Rp BER;

Notice that

e(TzxP) if yo,=1;
stab_ (70)|1 = 1P) Y

0 otherwise .
Restricting Dy x, v to the fixed point 1, we get
qd(a)
D)\ *q ’yh = —h Z ()\,av)m(’y7<_l)m Stab+(6‘a))€(TikP)
a€RT\RE ¢

1@ L1, o8

*)  BeRL
—h Z l_qd(a) 11 ﬁf
aeR+\R+

BER}



48

Due to restriction formula (3.10) and Equation (3.8), we have

golf I (B =)

(3, (~1)™ stab (7)) (T} P) bt
s\ Oq))E\1L7 = -
! * ! TRCED)
BERS
Hence, we obtain Theorem 1.1.3.
Since
[I ouf

d(a) +
vy 4 BERP
e (A,a)l_qd(a) 7 (3.11)

a€RT\R}
\Ep BERL

is a scalar, the quantum multiplication formula in Theorem 1.1.3 is conjugate to the conjectured

formula (3.9) by the function

II B-n).

BERL
This factor comes from geometry as follows. Let 7 be the projection map from B to P, and I',; be its

graph. Then the conormal bundle to 'z in B x P is a Lagrangian submanifold of T*(B x P).

Ty (Bx P) —=T*B.

.

TP

Let D = p1.p3 be the map from HE(T*P) to HE(T*B) induced by this correspondence. Then under

the isomorphisms
H{(T*B) ~syma*[h] and HE(T*P) ~ (syma*)"V» [h],

the map becomes multiplicaiton by the above factor (see the proof in Corollary 2.5.5). The scalar in
the conjectured formula (3.9) is just the one in Equation (3.11). By the calculation in the Subsection

3.1.7, it is not equal to
d(a)

vy ¢4
oy ()\,oz)il_qd(a)

+
aERT\R}

in general. It can also be determined by the condition Dy *, 1 = 0.
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3.3 A regular connection on P!\ {0,1, cc0}

In this section, we first review the work of Lam and Templier relating the quantum connection of G/P
to the other connections. Then we construct a regular connection V on a trivial principle G bundle
on P\ {0, 1,00}, such that it will be isomorphic to the quantum connection of T*(G/P), when G is

simply laced and P is maximal and minuscule.

3.3.1 G/P case

Let us first recall the work of Lam and Templier. Let 8 be a simple root of GG, such that the
fundamental weight s is a minuscule weight of G. Le., (wg,a") € {0,1} for any positive root
a. Let P be a maximal parabolic subgroup of G with simple roots Ap = A\ {8}. Then G/P is
called a minuscule partial flag variety. Let G¥ and PV be the corresponding Langlands dual groups.
Then the main theorem of Lam and Templier is the following, which proves the mirror conjecture of
Rietsch ([Rie2008]) for the minuscule case. We refer the readers to their paper for the meaning of the

notations.

Theorem 3.3.1. [LT2017] The geometric crystal D-module Crgv pv is isomorphic to the quantum
cohomology D-module for G/P.

The idea of the proof is the following. They first use quantum Chevalley formula ([FW2004])
to identify the quantum D-module of G/P with the Frenkel-Gross connection ([FG2009]) for the
minuscule representation of G. Then by a theorem of Zhu ([Zhu2017]), the latter is isomorphic to
the Kloosterman D-module constructed by Heinloth, Ng6 and Yun ([HNY2013]). Finally, they show
directly that the Kloosterman D-module is isomphic to the geometric crystal D-module Crgv pv. To

summarize, they identify the following four D-modules on P!.

Rietsch’s conjecture

quantum D-module —————— crystal D-module Crg.//pv (3.12)

quantum Chevalley

2 Kloosterman D-module for G

Frenkel-Gross connection for G

Since we are going to generalize the first step to the cotangent bundle case, we give more details
for the first step.

The cohomology H*(G/P) has a Schubert basis {Y; := [B—yP/P]|g € W/Wp} indexed by the
coset W/Wp. Since wg is minuscule, the weights for the highest weight representation V5, of G are

just the orbits of the minuscule weight wg under the Weyl group W action, and each weight space is
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one-dimensional (see [Gro2000]). So dim Vg, = [W/Wp|. There is a weight basis {vyew,|w € W/Wp}

satisfying the following properties.

Lemma 3.3.2. For any simple root B;, let e; and f; denote the root vectors corresponding to the roots

B; and —0;. Then

vo‘g,u;mg Zf <w)‘751> =-1 Udiww/3 Zf <w)‘a 61) =1
ei(Vwwy) = [i(Vwws) =
0 otherwise, 0 otherwise.

This weight basis can be constructed directly form the highest weight vector by applying the
operators f;’s.

Recall the Frenkel-Gross connection V p¢ is a irregular connection on the trivial principle G bundle

on P!\ {0,000}, which is defined as follows
dgq
VrG = d+Zfi; + wody, (3.13)

with zy an element in the hightest root space. The main result of [FG2009] is that V¢ is rigid (see
Section 3.3.4 or [Kat2016]). This connection has an oper structure in the sense of Beilinson and Drin-
feld. It is the characteristic 0 counterpart of a family of f-adic sheaves, which parametrize a specific
automorphic representation under the global Langlands correspondence and is constructed by Hein-
loth, Ngé and Yun ([HNY2013]). It provides an example of the geometric Langlands correspondence
with wild ramification.

Recall the quantum connection of G/P is a connection on the trivial vector bundle on H?(G/P)
with fiber H*(G/P). Since P is maximal, H?(G/P) has dimension 1. And it is easy to see from
the quantum Chevalley formula that the quantum connection has singularities at {0, co}. Hence, the
quantum connection and the Frenkel-Gross connection have the same base P! \ {0, c0}.

Then the first step Lam and Templier established is

Theorem 3.3.3. [LT2017] Choose the isomorphism H*(G/P) ~ Vg, sendind Yg 10 Vyw,. Then the
quantum connection of G/P is isomorphic to Vra(Vw,), i.e., the Frenkel-Gross connection applied

to the representation Vwﬂ.

It is this theorem we want to generalize to the cotangent bundle case.
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3.3.2 Cotangent bundle case

In this section, we assume our group is simply-laced, and P is a maximal minuscule parabolic subgroup

as in the last section.

3.3.3 A connection on P} \ {0,1,00}

Let us first define an analogue of the Frenkel-Gross connection V pg.

We define the following connection on a trivial G principle bundle on P \ {0, 1, 00}

d d d
Vimd= 3 @maha R ca” L HAY (eat fu)o (3.14)

« simple roots a>0 a>0

where e, and f, are root vectors and h, = [eq, fa]- According to Lurie, we can choose the e, and f,

such that the following is true.

Lemma 3.3.4. [Lur2001, Theorem 3.4.1] There is a basis {vyw,|w € W/Wp} for Vo, such that

ha(”ww;s) = (wa, av)vw(wﬁ)’

Vogwws if (wwg,a¥) = —1
ea(“ww;g) = P
0 otherwise
and
Voqwwy If (Wwg, ") =1
fa (’wa5) =

0 otherwise

If we take our base field to be Frac Hy(pt), then dim H7.(T*(G/P))ioe = |W/Wp| = dim V.
Therefore, we can choose an isomorphism from H7(T*(G/P))ioe to Vo, By sending stab(w) to

Vwws- Lhen we can show
Theorem 3.3.5. The T'-equivariant quantum connection for T*(G/P) is isomorphic to V'(V,).

Proof. The base for the quantum connection V44" hag dimension one, and it has a canonical
generator D ,. Since dim Ho(T*(G/P)) = 1 with a canonical generator d(3) (see Equation (3.3)),

we can just use ¢ to denote ¢*#). Therefore, the quantum connection has the following formula

vquantum =d— @ . Dwg % .
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Notice that for any o € RT, (wg, ") = 1 if and only if « € RT \ R}. So the quantum multiplication

by Dy, in Theorem 1.1.2 takes the following form

Do, * stab (7) =y(ws) staby () — h > stab, (7o4) (3.15)
a€RFT\Rf,yacR~
q S— q _
- hlfq Z staby (904) — Cphl h stab (), (3.16)
a€RFT\R},

where C'p is a scalar does not depending on g,
Since y(@p) = 3_, simpie(¥(@p), @) wa, the term y(wps) staby (y) in Equation (3.15) correspond-
ing to the second summand in Equation (3.14).

By Lemma 3.3.4, we have

§ €alyws = E Vo, ywgs

a>0 a>0,(ywg,aV)=—1

= E : Vyo, 1,5

a>0,(wg,y~taV)=—1

= g Vyoawgs

aGR*\R;,ya<O

Lo to be a.. This shows the term A > stab, (¥04)

a€ERT\R},ya€R~

where in the last equality, we rename —y~

in Equation (3.15) matches the third summand in Equation (3.14).

Similarly, we can show

Z(ea + fo)Vyws = Z Vyoaws-

a>0 a€RFT\R}S

Hence, the term At 3 < pi\ gt staby (Yoa) in Equation (3.16) matches the last summand in Equa-
P

tion (3.14).

Therefore, we have
dgq
1—gq°

vquantum — V/(Vw5) 4 hOP

Let g := (1 — ¢)°?". Then
g—lvquantumg — V/(VW[-;)

This finishes the proof. O

The second summand in Equation (3.14) is a weight-recording operator. It appears since we

are considering T-equivariant quantum cohomology. If we instead consider Cj-equivariant quantum
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cohomology, i.e., if we let the A-equivariant parameters be 0, then we get the following connection:

_d+hZeadq+hZ ot fa) _q. (3.17)

a>0 a>0

Notice that {stab (g)|y € W/Wp} still form a basis for the localized cohomology He« (T*G/ P)ioc,
since their pullback to the zero section form a basis for H.(G/P)ioe. And the quantum multipli-
cation formula in He«(T*G/P)joc can be obtained from Theorem 1.1.2 by setting the A-equivariant

parameters to 0. Therefore, Theorem 3.3.5 implies
Theorem 3.3.6. The Cj-equivariant quantum connection for T*(G/P) is isomorphic to V(Vg,).

This should be seen as an anologue of Theorem 3.3.3 in the cotangent bundle case. Notice that if
we also let /i equal 0, then the quantum connection for T*(G/P) will have no quantum part, as the
non-equivariant vitual fundamentcal class vanishes due the existence of the symplectic form.

In [Yun2014a], Z. Yun also constructed certain interesting local systems on P!\ {0, 1, 0o} to answer
Serre’s question about motivic Galois groups. There are some conjectural description about the
monodromy of these connections in [Yun2014a, Section 5.5], which are proved in [Yun2016, Remark
4.19]. From the description, our connection V has different local monodromies. So they are different

local systems on P!\ {0, 1, co}.

3.3.4 Rigidity

From the definition of V in Equation 3.17, V is a regular connection with three singularities {0, 1, co}.
The connetion has principal unipotent local monodromies at the poins 0 and oo, and semisimple
monodromy at 1. And it does not admit a structure of an oper. Recall the Frenkel-Gross connection
is rigid. It is natural to ask whether our connection V is rigid or not. We show V is rigid when
G = GL(n).

By Riemann—Hilbert correspondence, there is an equivalence between the category of flat connec-
tions on algebraic vector bundles on X with regular singularities and the category of local systems of
finite dimensional complex vector spaces on X. So we will not distinguish these two.

Recall a G-local system JF on an open curve j : U < P! is cohomogically rigid (see [Yun2014b,
Definition 3.2.4]), if

Rig(F) := H*(X, ji. Ad(F)) = 0,

where ji, is the middle extension functor and Ad(F) is the adjoint vector bundle associated to F.

There is also a notion of physically rigidity (see [Kat2016, Section 1.0]) defined as follows. We say
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that a local system F on U is physically rigid if for every local systam G on U such that F and G have
isomorphic local monodromy, then F and G are isomorphic. The relation between these two notions is
that cohomological rigid GL(n)-local system are also physically rigid (see [Kat2016, Theorem 5.02]).
Besides, Katz shows ([Kat2016, Theorem 1.1.2]) an irreducible local system on U is physically
rigid if and only if
xX(P', j.EndF) = 2.

By the Euler—Poincaré formula, we have
X(P,ju&ndF) = (2 — k)n® + > dim Z(4,),
i

where k = |P*\ U|, 4; is the local monodromy at the i-th point in P!\ U, and Z(A;) is the centralizer
of A; in GL(n,C) (see the proof of [Kat2016, Theorem 1.1.2]).
In the case of GL(n, C), our regular connection V has principle unipotent monodromy at 0 and co.

Hence dim Z(4y) = dim Z (A ) = n. And it is easy to compute dim Z(A4;) = 1+ (n — 1)2. Therefore,
X(PYjEndF) =2 -1)n?+n+n+1+(n—-1)>%* =2

Hence, our connection is physically rigid.

We also have the following criterion for cohomological rigid G-local system.

Proposition 3.3.7. [Yun2014b, Proposition 3.2.7] Let p be a G-local system on an open curve U =

X — 5. Let gx be the genus of X. Then p is cohomologically rigid if and only if

1 : s u 3
5 O a(Ad(p)) = dimg/(g)™ ) — gx dimg.
€S
Here a,(Ad(p)) is the Artin conductor of the action of the inertia group I, on g.
Recall
az(Ad(p)) := dim(g/g™) + Sw(Ad(p)),

where Sw(Ad(p)) is the Swan conductor.
Now we can prove our connection is also cohomological rigid when G = GL(n,C). Since our

connection is regular, the Swan conductor is 0. Therefore, by Proposition 3.3.7, V is rigid if and only
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if

dimg +2dimg™ ™ = 3" dimg™ = Y dimZy(4,),
z€{0,1,00} z€{0,1,00}

where A, are the local monodromy around the singularity z. We already know dim Z3(Ag) =

dim Z4(Aw) = n, and dim Z4(A1) = 1+ (n — 1), So the above is equivalent to

dim g™ (V%) = 1.

It is easy to see from linear algebra that the above is true. Because of the following two points.

w1 (U,u)

1. The invariant space g contains the scalar matrices.

2. For our connection V, the image of 71 (U,u) in GL(n,C) contains the matrices exp(}_ - €a)

and exp()_,~¢ fa). Only scalar matrices commute with both of them.
In conclusion, we get
Theorem 3.3.8. For G = GL(n,C), V is a cohomological rigid connection on P{ \ {0,1,00}.

It would be interesting to consider the corresponding automorphic sheaf on the moduli space of

rank n vector bundles on P*.
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Chapter 4

Chern-Schwartz-MacPherson

Classes

In this chapter, we study the Chern—-Schwartz—MacPherson (CSM) class of flag variety and its relation
with the stable basis. Using the duality between the stable basis, we find the dual classes of the CSM
classes. Finally, we give a formula for the CSM class of a general variety in terms of the characteristic
cycles of constructible functions. The main reference for this chapter is [AMSS]. However, in this

thesis, we take a localization approach, which is different from the one in [AMSS].

4.1 Preliminaries on Chern-Schwartz-MacPherson classes

The conjectured Chern class theory for singular varieties associates a class ¢, () € H.(X) to every
constructible function ¢ on X, and satisfies ¢, (1x) = ¢(T'X) N [X] if X is a smooth compact complex
variety and the map c, is functorial. Funtoriality means that if f : Y — X is proper, then the

following diamgram is commutative:

where CF(X) denotes the constructible functions on X. The map f. : CF(Y) — CF(X) is defined by
the following formula

F(12)(x) = x(fT'(x) N 2),



o7

where Z is a constructible subvariety in Y, and x denotes the topological Euler characteristic.

The existence of such a theory was established by MacPherson [Mac1974]. If X is a compact
complex variety, then c,(1x) is the same class defined by Schwartz [Sch1965] independently. This
class is called the Chern—Schwartz—MacPherson (CSM) class of X. We denote the class c.(1y) by
csy (W) for any constructible subvariety W of X.

The equivariant version is developed by Ohmoto in [Ohm2006]. Let X be a variety with a torus
T-action. Ohmoto proved that there is a MacPherson transformation ¢! : CF?(X) — HI(X) from
T-equivariant constructible function to equivariant homology of X, satisfying similar properties as

above.

4.2 A formula of Aluffi and Mihalcea

In this section, we review a formula of Aluffi and Mihalcea for the CSM classes of Schubert cells
([AM2015]), which is the starting point for [AMSS].

Let X := G/B = B denote the flag variety. Recall A denotes the maxiaml torus of G inside the
Borel subgroup B. For any w € W, let X(w)°® := BwB/B (resp. Y (w)° := B~wB/B) denote the
corresponding Schubert cell (resp. opposite Schubert cell), with its closure X (w) = BwB/B (resp.
Y (w) := B-wB/B) denoting the Schubert variety (resp. opposite Schubert variety). For any A-
invariant constructible subvariety Z C X, the CSM class cgas(Z) lies in HA(Z). We push it forward
along Z — X, use Poincaré duality for HA(X), and consider css(Z) as a cohomology class in H (X).

For each simple root «, we have the BGG operator ([BGG1973])
0u + HAX) = HA(X)

defined as follows. Let P, be the corresponding subminimal parabolic subgroup containg B. Let 7,

be the projection from G/B to G/P,. Then
O 1= T © Ta .

There is also a right action of W on X, inducing an action of W on HA(X) (see [Knu2003]).

Therefore, we can define the following operator

To :=0q — 00 : Hy(X) = Hi(X). (4.1)
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Then we have

Theorem 4.2.1. [AM2015] The operator T, acts on the CSM classes of Schubert cells as follows:

Talcsm (X (w)°)) = esmr (X (woa)®). (4.2)

In particular, if w = 04,0y, ... 0;, is reduced, then

CSM(X(U})O) = 7;k U 7;1CSM(X(id)O) = 7;k T 7;1 [X(Zd)],

and this does not depend on the choice of the reduced expression. There are explicit formulas for the
action of these operators on the Schubert classes (see [AM2015]). Therefore, Theorem 4.2.1 gives an

algorithm to compute all the CSM classes of Schubert cells.

4.3 CSM classes and stable basis

In this section, we give a proof proof for Theorem 1.1.4. All the results in this section can be easily
generalized to the partial flag variety G/P case. We refer the interested reader to [AMSS] for this
direction.

Recall both the fixed loci B4 and (T*B)4 are both indexed by the Weyl group. We use 7, to
denote the inclusion of the fixed point wB into X. For any cohomology class v in H} (B) or H}(T*B),
we use 7|, to denote the corresponding restriction of v to the fixed point corresponding to w. We

hope this will not cause confusion.

4.3.1 Proof of Theorem 1.1.4

By localization, H(X) embeds into functions from the Weyl group W to @ := Frac H (pt). Define
an operator

Ao FW,Q) = F(W,Q)

by the formula
P(woa) — Y (w)

wo

(Aat)(w) = — ¢Y(woa).

Then we have the following commutative diagram.
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Proposition 4.3.1. The diagram

H3(X)——F(W,Q)

.| lAu

HL(X)—— F(W,Q)
commutes.

Proof. By [FA2007, Proposition 4.1, Lectur14], the term 9, in Equation 4.1 accounts for the first term

in A,. For the remaining terms, we only need the following easy fact

Ua(jw*l) = 7jwaa,*1~

Applying this diagram the CSM classes, we get

Corollary 4.3.2. The equivariant CSM classes cspr (X (y)°) are uniquely characterized by the follow-

ing properties:
1. csm(X(y)°)|w =0, unless w < y.

2 csm(X @)y =D * T (a1 I ya
a€RT,ya<0 a€ERt ,ya>0
3. For any simple root o, and l(yoy,) = L(y) + 1,

o 1 o 1 —wa
csm (X (ysa)?)|w = —@CSM(X(?J) )w +

csm (X (Y)%) o -

Proof. The first property follows from the fact that cga (X (y)°) is supported on U,<, X (u). Since
X (y)° is smooth, and cgar (X (y)°) is understood as a class in H}.(X) via pushforward along X (y)° —
X ,the second one follows from [Ohm2006, Theorem 1.1]. The last one follows directly from Theorem
4.2.1 and Corollary 4.3.1. The uniqueness can be obtained via induction on ¢(y) as in Corollary

2.4.4. O

Comparing Corollaries 2.4.4 and 4.3.2, we get the first identity in Theorem 1.1.4. The second one

can be proved similarly.
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4.3.2 Homogeneous class

In Theorem 1.1.4, there is a specialization & = 1. In fact, we can upgrade it to a homogeneous version,
so that no such specialization is needed.
Since the homology of the flag variety only has even degree component, any homology class v €

HA(X) can be written as
Y= Z Vi
i

with 7; € Hs(X). Recall the torus Ci acts trivially on X, and the equivariant parameter /i has

cohomology degree 2. Therefore, we can define the following homogeneous class associated to :
Y=Y k' € Hy(X) =) Ha (X,
i i

where T' = A x Cj is the bigger torus.

The homogeneous version of Theorem 1.1.4 is

Theorem 4.3.3. Let v : G/B — T*(G/B) be the inclusion, we have
U (staby (w) = (=1) TPl (X7),

and

c(stab_(w)) = (1) Bl (V).

Proof. Tt follows immediately from Theorem 1.1.4 and the fact that (*(staby(w)) € HI'(X) (see

Remark 2.2.2(2)). O

We also have a homogeneous version of Theorem 4.2.1. Define the homogeneous version of the

operator T, in Equation (4.1) as
Th = h0s — 00 : Hp(X) — Hp(X).

This operator preserves homogeneous degree, and we have

Theorem 4.3.4. The operator T* acts on the homogeneous CSM classes of Schubert cells as follows:
Ta (s (X (w)?)) = cpr(X (woa)®). (4.3)

We refer interested readers to [AMSS] for more about the homogeneous classes.
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4.4 Dual CSM classes

In this section, we study the dual class of the CSM classes. There are two approaches to it. The first
one is suggested by Prof. Aluffi. The second one comes from localization. Both proofs in this thesis

depend on the duality between the stable basis. In [AMSS], a much more conceptual proof is given.

4.4.1 Alternating class

By the discussion in Section 4.3.2, we can write cgar (Y (w)°) = >, com (Y (w)°)s, with cgar (Y (w)°); €

H3i(X). Prof. Aluffi suggests to look at the following alternating class’

char(Y(w)?) ==Y (=1) esa (Y (w)°);.

i

By Theorem 4.3.3, we have
(Y (w)°?) = (1) X (stab— (w)) | p=—1.

Then we have the following duality statement.

Theorem 4.4.1. The paring between the CSM class and the alternating one is

(esar (X (9)°), g (Y (w)°)) = (=1) @+ X5, TT (1 +6).
BeERt

Proof. From the localization formula for stab_(w) in Theorem 1.1.1, we have

T (a+1) I (a+1)
stab-(W)ln=-u _ (_pyeu) e 2SRARE — (—1)fw) ecRt
stab_ (w)|r=1,u (a—1) e(T;G/B)|n=1

a€ERT\R(u)

Here we have used the fact

R(u) = {-uB € RT|pe€ R",uB € R™}.

IThe definition in this thesis is equal to the one in [AMSS] up to a sign.
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Therefore, by localization on G/B, we have

(esm (X (y)°), cspr (Y (w)?)) = (i" (staby (y) =1, " (stab_ (w)) r=—1)

i (staby (1) 1. (stab ()1,
=2 : e(T.G/B)

_ Z stabi (y)|n=1,u stab_ (w)|r=—1u
" e(T,G/B)

— (_1)tw) stab (y)|n=1,u stab_(w)|p=14
Y ﬂg+(6+1)2u3 e(TiG/B)|h=1e(TuG/B)

= (=)™ TT (8 + 1)(staby (y),stab_ (w))7«x |n=1
BeERT

_ (_l)é(w)—&-dimX H (ﬁ-’-l)

BERT

The last but one equality follows from the localization pairing on 7* X, while the last one follows from

Remark 2.2.2(3). O

4.4.2 Another dual class

We need the following formula relating the pairing in H*(T*Y") and the one in H*(Y) for a general
smooth projective variety Y. Let C; act on T*Y by dilating the cotangent fiber of T*Y by a weight
of Lie C} equaling —h. Let Cj act trivially on Y. Let ¢ : Y — T™Y be the inclusion of zero section.

We have

Lemma 4.4.2. For any v1,v2 € HE (T*Y), the following identity holds

(y1,72)7-y = (' ﬁihﬂ
’ TeC(THY)
Remark 4.4.3. 1. In fact, e© (T*Y) = [[(=h — x;), where z; are the first Chern classes of TY.
Therefore ¢ (T*Y ) |p=1 = (—=1)3™Y ¢(TY), where ¢(TY) is the total Chern class of the tangent
bundle of Y.

2. This is also true if Y admits a nontrivial torus action, provided e®" (T*Y) is replaced by the full

torus equivariant Euler class.
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Proof. Since Y is the only fixed component of 7Y under the torus Cj, localization gives

<71,72>T*Y =/

:/ 'y Uty
Y ec*(NY)
% L*’YQ
=", 76@(T*X)>y,

Y1 U2
y

where Ny in the second line is the normal bundle of Y in T*Y, which is the same as the cotangent

bundle 7Y on Y. O
Now let us consider the flag variety case. Remark 2.2.2(3), Theorem 1.1.4, and Lemma 4.4.2 gives

Theorem 4.4.4. We have the following duality relation

<CSM(X(y)O)a W) = (—1)MmXs, .

Combing with Theorem 4.4.1, we get

csm(Y(w)°?) 1)ew) cgur (Y (w)°)

Ty~ Toen (15 € Hj(X).

Specializing all the A-equivariant parameters to 0, this becomes
csm (Y (w)°?) = (=1 X (T X ) egy, (Y (w)°) € H* (X). (4.4)

This gives some constraint on the different components of cgps (Y (w)°), which are conjectured to be
effective by Aluffi and Mihalcea (see [AM2015]). We expect the above identity can shed some light

on this conjecture.

4.5 CSM classes and characteristic cycles

Recall that for a smooth variety, we have the following commutative diagram (see [Gin1986]),

constructible complexes <22 holonomic modules (4.5)

] o

constructible functions — =% Lagrangian cylces in T* X,
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where DR is the De Rham functor defined by
DR(M) = RHomp,, (Ox, M)[dim X],
x is the stalk Euler characteristic
(@, ) = S (~1)F dim HE ().

CC is the characteristic cycle map associated to constructible functions, and Ch is the characteristic
cycle map for D x-modules.

Let us consider the flag variety case. Let M,, be the Verma module with highest weight —p — wp,
where p is half sum of the positive roots. Through localization ([BB1981]), we have the corresponding

Dx-module M, := Dx ®ug M,,. Recall the following famous result ([BB1981, BK1981])
DR(Mw) = (CX(w)O[g(w)]'
Combing with [MO2012, Remark 3.5.3], we get

staby (w) = (—1)3 X =) Ch(M,,).

The sign is determined by looking at the coefficients of the leading term T'x (.o X on both sides (see
[AMSS] for another proof.).

Due to the commutative diagram 4.5, we get
Ch(M,) = (~ 1)) CO(Lx(ue)-

Therefore,

Cc(lx(w)o) = (71)dimX stab_,.(w).

Theorem 4.3.3 gives
(CC(Lx(wye)) = " (Lx(uye) € Hy (X). (4.6)

It is this formula we generalize to general varieties.

Let X be a smooth projective variety with a torus A-action. Let C; act on T*X as before. For
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any constructible function ¢ on X, define

(@)= Reailp) € HC (X),

where c,(p) = >, cii(p), with ¢, (@) € Hai(X). The following is one of the main theorems in
[AMSS].

Theorem 4.5.1. [AMSS] Let ¢ : X — T*X be the inclusion of the zero section. Then for any

constructible function ¢ on X, we have
[CO(p)] = ci(p) € Hy ™ (X).

The proof uses Aluffi’s shadow construction ([Alu2004]). We refer the readers to [AMSS] for the
details.
As an application, we give another proof for following index formula (see [Gin1986] for various

generalizations).

Theorem 4.5.2. For any constructible sheaf F on X,
X(X, F) = CC(F) - [Tx X],

where the intersection on the right hand side is the usual non-equivariant intersection.

Proof. Since both sides are additive on F, it suffices to prove it in the case F is a local system on X.
Then
X(X,F) =rank F - x(X,Cx) = rank F - x(X),

where x(X) is the topological Euler characteristic of X. For any constructible sheaf F, we can
define a constructible function yz(z) := dim F|,. Therefore x = rank F - 1x. By functoriality,

degc,(1x) = (1 x)|n=0 = x(X). Hence

X(X,F) =rank F - x(X) = rank F - degc.(1x)

= cu(xF)In=0 = t"[CC(xF)]ln=0

= CC(F) - [TLX].
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