
Automated Tutoring in
Interactive Environments:

A Task Centered Approach

Ursula Wolz"
Kathleen R. McKeown+

Gail E. Kaiser++

Technical Report CUCS-392-88

Columbia University
Departtnent of Computer Science

New York, NY 10027

Abstract

Tutoring in interactive computing environments is sometimes more properly understood as
consulting. A tutor's implied curriculum may be adaptable to the user's knowledge and
experience but still not meet the user's immediate needs - to get some task done. A consultant
however, can dynamically adapt to address the task at hand. We present a user's goal-centered
approach to tutoring in interactive environments, and describe how we automate certain tutoring
strategies appropriate for consulting behavior. We have implemented our approach in GENIE, a
question answering system for the Berkeley Unix Mail system. We focus on the pedagogical
strategies employed by Genie to best meet the user's immediate needs.

keywords: Automated consulting, help systems, intelligent tutoring

systems, interactive computing environments.

Copyright © 1989 Ursula Wolz, Kathleen R. McKeown and Gail E. Kaiser

·Supported by ONR grant NOOOI4-82-K-0256. +Supponed by NSF grant IST-84-51438, by
ONR grant NOOOl4-82-K-0256, by a grant from Bell Communication Research, and by the
Center for Advanced Technology. ++Supponed by NSF grants CCR-8858029 and
CCR-8802741, by grants from AT&T, DEC, IBM, Siemens and Sun, by the Center of Advanced
Technology and by the Center for Telecommunications Research.

1

1. Introduction

Interactive computing environments are designed to provide supportive resources for a

range of users with different expertise and computational goals. Such environments may be as

simple as mail systems and word processors, or encompass sophisticated data bases, design tools

or programming languages. Yet all such environments contain an underlying set of functions or

constructs with which users accomplish tasks. A problem arises in providing resources through

which users can initially learn about the environment and then later extend their expertise.

Standard curricula - even those provided on-line - require users to subordinate their

immediate needs to the agenda embedded in the curriculum. We have developed a solution

through the implementation of GENIE (GENerated Infonnative Explanations), an answer

generating system that tutors specifically to the current needs of the user in the domain of

Berkeley Unix 1M Mail.

Automatic consulting provides a valuable test bed for theories about personalized tutoring

because of the unique relationship between the consultant and the user. The knowledge

conveyed in a consulting session is determined by the current task or goal of the user and the

user's questions about that task. By contrast, in most tutoring, both on and off the computer, the

teaching agenda is predetermined by an implied curriculum chosen by the tutor. This is not

appropriate for a consultant since users have a multitude of different needs, backgrounds. and

deficiencies in what they know. Furthermore, most tasks can be done in more than one way, and

the core functions can be used in more than one task. A curriculum may cover all the tasks and

functions, but will rarely capture the richness of the relationships between them. Although we

focus on task centered environments, exploratory learning environments that encompass a

curriculum can benefit from consulting. In task centered settings, consulting is based on tasks

initiated by the user. In a learning centered setting, a tutoring agent initiates the task, but the

student may still require consultation in order to accomplish it.

We take a user's goal-centered approach to consulting in which help given is a direct

function of users' goals, their knowledge and the current context. Specific tutoring strategies

detennine the fonn and content of an answer to the user's questions. A user model represents

what plans the consultant thinks the user has for achieving goals. An expert domain model

2

provides a representation for a consultant's knowledge of computational goals, plans to

accomplish them, and functions of the environment that can instantiate plans.

We abandon both the classification of aspects of the environment according to level of

expertise and the categorization of users as "novice", "intermediate" or , "expert" . Instead,

information on a user's exposure to the environment influences the pedagogical agenda of the

consultant. Decisions about how to answer to a user's question are based on an analysis of the

discrepancies between the expert domain knowledge and the user model, as well as the current

situation.

Consulting can be characterized as a three stage process of question understanding, problem

analysis and answer generation. We concentrate on the latter two components: analysis, through

an algorithm called the Plan Analyst; and generation, through an algorithm called the Explainer.

GENIE attempts to answer a question by doing a two phase search of the knowledge base, first

trying to construct a coherent relationship between the user's question and computational goal in

an attempt to find the most appropriate information for a response; then trying to construct a

coherent textual explanation that takes into account what the user already knows.

In this paper, our focus will be on the tutoring strategies GENIE employs in various settings.

These include:

• Introducing: Presenting functions and goals that the user has not encountered
before.

• Reminding: Briefly describing functions and goals that the user has been exposed
to but may have forgotten.

• Clarifying: Explaining details and options about functions and goals to which the
user has been exposed.

• Elucidating: Gearing up misunderstandings that have developed about functions
and goals to which the user has been exposed.

We will also show how the content of the answer GENIE provides depends on the type of

question asked and on an analysis of discrepancies between the user model and the expert

domain knowledge.

The next section presents our perspective on tutoring and consulting in interactive

3

environments. Section 3 introduces the tutoring strategies we use. Section 4 describes the

knowledge required to choose a tutoring strategy. Section 5 summarizes when different

strategies are chosen. Section 6 presents GENIE, our experimental consultant system, and gives

examples of how the strategies are used. Section 7 summarizes related work and section 8

presents conclusions and directions for future work.

2. Tutoring in Interactive Environments

Interactive computing environments are sometimes characterized as workbenches of tools

with which a user can accomplish tasks. In this respect they are procedural environments in

which learners develop skills rather than learn facts and associations between facts. In these

environments, sophistication and complexity, and consequently power, are built upon simple

interfaces. Good environments are often characterized as customizable - in which users can

bend the tools to their own personal needs, and extensible - in which users can build new tools

from those that already exist.

Expertise in a procedural environment is not simply a matter of knowing what functions

allow you to perform simple tasks. One must know how functions interrelate or interfere with

each other when attempting to achieve more complex goals. In other words, one must know

plans for accomplishing goals where plans may be broken down into sub-goals or directly

executed by functions. A particular plan is directly related to a particular goal, but the

components of a plan, the steps or sub-goals, may occur in many different plans. Furthermore,

in most computing environments there is often more than one plan to achieve a goal.

As in real workshops, learning skills and doing real tasks are intimately woven together.

While initial learning may require extensive supervision, once the key concepts have been

learned, users are expected to initiate their own goals, and solicit expertise from others only

when necessary. Within such an environment, lending expertise is often thought of as

"consulting" rather than tutoring.

It is important to articulate some of the differences between consulting behavior and

tutoring. In more classic settings a tutor has an agenda based on an externally prescribed

4

curriculum and diagnosed student deficiencies. The tutor assumes some external force motivates

the student to learn, or the tutor must find incentives to motivate the student. A consultant. on

the other hand, has a limited agenda based on showing the user how to accomplish a task.

Motivation for learning is a matter of being able to do the task independently of the consultant.

Brown and VanLehn [5] introduced the notion ofJelicity conditions under which new learningis

most likely to take place. Within a procedural setting, two situations are extremely motivating.

The user attempted to do something and it didn't work. The user finds a task tedious and

suspects there is a more efficient way to do it.

Since the user's current task initiates the tutoring dialogue, in the student's mind whatever

learning takes place is secondary to actually accomplishing the task. A prescribed curriculum

may not always be appropriate for a particular task. In a traditional curriculum it is often

assumed that a set of skills must be learned in a particular order, and to a specified level of

mastery. Within the context of consulting this is not necessary, since the user can always ask for

help again later. Users' knowledge of the functions available within the environment may vary

considerably depending on the tasks they do regularly and how much they attempt to customize

the environment to their needs.

We do not claim that consulting behavior is appropriate to all kinds of tutoring; only that

interactive environments provide a potentially rich metaphor for creating procedural learning

environments. Even within these environments there is a place for more traditional tutoring.

During the initial stages of using the environment, it seems imperative that the basic concepts

and functionalities of the environment are introduced. Here a didactic approach would be more

expedient. Later however, when users take off in different directions, consulting behavior is

more appropriate, providing truly individualized instruction.

3. Tutoring Strategies

It is clear that automated consulting in interactive environments requires complex

interactions between sophisticated processes and knowledge bases. We have chosen to carve a

niche within this larger domain that has not been explored as fully as others - namely how best

to choose what to say and how to say it. In order to prevent further clouding of the pertinent

5

issues we have chosen not to concern ourselves with when to say it. At the present time we view

consulting as passive in which infonnation is only presented after it is explicitly solicited

through a user's question. Obviously a feedback loop through which the user can rephrase or

expand on the question is necessary. We discuss this briefly in section 8.

Our narrow view of tutoring is therefore concerned with understanding a user's question

about how to do something, deciding what skills are necessary to do it, and choosing the

appropriate way to present the skills to the user. We will focus here on the last of these. Others

[26; 21] address understanding the question, and we describe how to detennine what to skills to

present elsewhere [28; 29].

We have identified four necessary tutoring strategies in computing environments through an

analysis of various types of help. They specify the kind of information that is typically included.

Two of the strategies we posit, introducing and reminding, are found as part of written reference

material. whether on-line or off. They can be used to provide help about a function or goal the

user has, either by introducing details about a function or plan that can accomplish the goal or by

simply reminding the user of forgotten functions and plans. If a user already has some

information about a function or plan, but it is incomplete or incorrect, then one of two other

strategies, clarifying or elucidating is more appropriate. These strategies are corroborated

primarily by informal observations of human consulting situations.

Our analysis of on and off-line help for Lisp, UNIX, Pascal, BASIC, Logo, and a number of

word processing programs reveals that reference material tends to fall into three categories:

• Reference manuals that provide details and definitions of the environment. The
material is either alphabetically ordered or grouped according to the function of the
constructs.

• Support manuals that provide more explanation about how to use the functions.
These are organized according to the function of the constructs.

• Tutorials and textbooks that introduce the concepts behind the functions. These
tend to be much more explanatory and less definitional than reference or support
material. Although they may be or:ganized according to the function of the
constructs, there is a greater emphasis on how constructs are combined.

Tutorials and to some degree support manuals are intended to introduce new material, while

6

the concise definitions in reference manuals can efficiently remind users of how functions work.

All three kinds of material may help users clarify details or clear up misunderstandings of

junctions, but the user must possess strategies for locating the relevant information. Clarifying

or elucidating goals only occurs in a limited way in tutorials and textbooks. The user's goal may

not occur in a written text. Even if it does, texts tend to introduce the simplest techniques for

accomplishing a task. Although the information necessary for learning a better way may exist,

the user is responsible for fmding that information and must often piece it together from various

points in the book.

Evidence for two of our strategies, introduce and remind is also provided by Magers

[16] and Borenstein [3] who have drawn a distinction between information that is definitional

and instructional. DefInitional information is more appropriate for reminding someone about

something they have previously learned, while instructional information is more appropriate for

introducing new information. These types differ not only in their fonnat and level of detail, but

also in their emphasis and the degree to which related information is included. We therefore

choose to remind or introduce depending on the user's knowledge and goals. We further refme

the distinction of Magers and Borenstein, however, by including the possibility of elucidating or

clarifying.

We also extend our strategies by using them differently to satisfy distinct tutoring needs: the

need for tutoring that is in direct response to the question and tutoring that is intended as

enrichment. The former prevails in order to satisfy principles of informativeness: answer the

question that was asked. But it is also possible to present new skills to the user opportunistically.

For example if the user asks whether a panicular plan will accomplish a particular goal, the

consultant must respond informatively that it does or does not. However, if the consultant knows

of a better way to accomplish the goal, the opportunity should be taken to mention it. Each

strategy can be used both responsively and as enrichment.

In the following sections we describe each strategy in more detail and show examples of

their use in reference material. Steps within a strategy that occur in response but not as

enrichment are marked with '*'.

7

3.1. Introducing

Introducing is used to provide generic details about a function or plan assuming no previous

background about it In the reference materials, we found certain kinds of information

consistently being presented in the support manuals, tutorials and textbooks. We have identified

the kind of information used for introduction and provided an ordering on the information that is

often, but not always, used in the texts. Informally, the process of introducing a goal consists of

1. Stating the goal. *
2. If the skill maps to a function, introducing the function, otherwise:

3. Summarizing the sub-goals for the plan for the goal.

4. For each sub-goal either introducing or reminding the sub-goal depending on
whether the user model does or does not contain the sub-goal.

5. If it is a top level goal, reviewing the steps in the plan through an example.

6. Relating each step in the example to a sub-goal. *

Introducing a function consists of:

1. If not in the context of introducing a goal, stating the goal.

2. Presenting the syntax.

3. Describing the parameters.

4. Describing any preconditions that must exist for it to work.

5. Describing the effects (which is not the same as stating the goal.)

6. If not in the context of introducing a goal, giving an example. *

This strategy can be seen in the example shown in Figure 3-1 taken from a text book on Lisp

[27]. In the first paragraph, the goal is stated ("define procedures such as COUNT-ATOMS")

and a summary of the steps (mapcar and apply) provided. The remaining paragraphs introduce

the first sub-goal (following step 4). The second paragraph equates the sub-goal "iterate" with

the function "mapcar" and the remainder of the section recursively uses the introduce strategy

for the function (step 2). Following the second strategy for introducing functions, the third

paragraph presents the syntax of the function (' 'supply the name of the procedure together with a

list of things to be handed to the procedure one after the other") and describes the parameters

("a list of things"). Preconditions are provided out of order in the last paragraph and the effects

8

are provided in the immediately preceding sentence ("MAPCAR is said to cause iteration of

ODDP, because the MAPCAR causes ODDP to be used over and over again."). Since this is not

the top-level goal, we skip step 5, finishing introduction of the function and pop back to

introduction of the sub-goal "iterate" continuing with step 5, reviewing through an example.

There is only one step in the plan for this goal, MAPCAR, and an example is provided (again,

out of order) through ODDP. Step 6 is not needed since there is only one step in the plan.

Dealing with Lists May Call for Iteration Using MAPCAR
A somewhat more elegant way to define p~ocedures like COUNT-ATOMS is by ~eans

cf the primitives MAPCAR and APPLY, two new procedures that are very useful and very
special in the way they handle thei~ argume~ts.

Ite~ate is a technical term meaning to repeat. It can be used to ite~ate when
the same procedure is to be perfo~ed over and over again on a whole list of things.
Suppose, for example, that it is to record which numbers in a list are odd. From
:he list (1 2 3), we expect to get (T NIL T).

To accomplish such transformations wi~h MAP CAR , you supply the name of the
procedure together with a list of things to be handed to the p~ocedure one after the
other. Consider the following, for exam~le, ..,here the primitive 'ODDP has the
obvious definition:

(MAPCAR 'OODP
'(123»

(T NIL T)

:Procedure to work wi:h.
:Arguments to be fed to the
procedure.

MAPCAR is said to cause iteration of ODDP, because the MAPCAR causes
ODDP to be used over and over again.

There is no restriction to procedures of one parameter, but if the procedure
does have more than one parameter, there must be a corresponding number of lists of
things from which to extract arguments that can be fed to the procedure.

As shown in the following example, I-IAPCAR works like an assembly machine,
taking one element from each list of arguments and assembling them for the
procedure.

Figure 3-1: An example of Introducing

The strategy introduce as shown here provides a high level characterization of the type of

infonnation provided in the naturally occurring example. This use of strategies is quite similar

to the use of schemas in work by McKeown [18], Paris [20] and McCoy [17].

9

3.2. Reminding

Reminding is used to present the bare minimum of information about a function or plan

under the assumption that the reader has some knowledge about it from previous experience.

Manuals most often use this strategy.

Reminding about a goal consists of

1. Stating the goal.

2. If the skill maps to a function, reminding about the function, otherwise:

3. Summarizing the sub-goals for the plan for the goal.

4. If this is the top level goal, reviewing the steps in the plan through an example.

Reminding about a function consists of:

1. If not in the context of introducing a goal, stating the goal.

2. Presenting the syntax.

3. Describing the parameters.

4. If not in the context of introducing a goal, giving an example.

5. If not in the context of introducing a goal, relating the function to other pertinent
information.

An example of reminding is shown in Figure 3-2 taken from a Lisp reference manual [14].

The first sentence provides a general description of the action (step 1, strategy for functions).

The syntax and parameters are then presented (steps 2 and 3) followed by an example (step 4).

Additional information about side-effects is also provided (step 5).

3.3. Clarifying

Clarifying is used to compare two functions or two plans for a goal. This is done

occasionally in tutorials and textbooks, but is essential for face to face consulting and questions,

when the user often queries about the difference between two plans or specifically asks for a

better way to achieve a goal.

To clarify a goal, we assume that between two alternative plans, one of them is clearly

better. Which one is bener can vary depending on context. Clarifying a goal consists of

10

M.<\PCAR Function

The mapcar function applies a function to each element of each list in a series of
lists.

(mapcar /wtctioll lut &rest mou-lists)

Examples

{mapcar 11'1+ '(I 2 3» => (2 3 4)
{mapcar ~'Est '(smith) '(sue janie mary» => {(S~rrH SUE»

Comments

The iterat~on of mapcar applies to the elements of the shortest list in the series
of lists; excess elements in longer lists are ignored. mapcar returns a list whose
elements are the values returned by calls to function.

See also, Steele: 7.8.4. - p. 128.

Figure 3-2: An example of Reminding

1. Stating that a best way (B) exists for the goal.

2. Summarizing an alternative plan (P)

3. Summarizing B.

4. Describing the relationship between B and P.

5. For steps in B that differ from P, introducing or reminding those sub-goals based
on whether those goals exist in the user model, and describing the relationship
between this step and the corresponding step in P.

6. Summarizing the steps of B through an example.

Examples from texts do not correspond exactly to our strategy as there is generally no

context for identifying which of a set of alternatives is the bener plan. In some cases, a context

may be hypothesized and one of the alternatives is labeled as better for this case. An example in

which context is not hypothesized is shown in Figure 3-3 taken from a Lisp support manual [25].

The goal is mapping over lists and is described in paragraphs I and 2. Several alternative plans

(single step plans that map directly to functions) are then given (step 2 of the strategy).

Although it is not explicitly identified as a best plan, because of the detail given, we can assume

the author intends to identify mapcar as a best, or at least default, plan. A more detailed

summary of mapcar follows in paragraph 3 (step 3), followed by an example (step 5). Following

11

this, each alternative function is compared with mapcar and differences noted (step 4).

7.8.4. Mapping
Mapping is a type of iteration in which a function is successively applied to

pieces of one o~ more sequences. The result of the iteration is a sequence
containing the respective results of the function applications. There are several
cpt ions for the way in which the pieces of the list are chosen and for what is done
with the results returned by the applications of the function.

The function map may be use to map ever any kind of sequence.
functions operate only on lists.

mapcar funclio1l lUI & rest more·luts
maplist jwu:lio1l lisl &rest more.lisls
mapc jwu:lio1l lisl &rest more·lists
mapl jwu:lio1l lisl 'rest more· lists
!:\apcan jwu:lio1l lUI &rest more·lists
mapcon /unclio1l lisl & re s t more·lists

The following

[function]
[function]
[function]
[function)
[functi.on]
[function]

For each of these mapping functions, the first argument is a function and the
rest :r.ust be lists. The function must take as many arguments as there are lists.
mapcar operates on successive elements of the lists. First the function is applied
~o the car of each list, then to ~he cadr of each list, and so on. (Ideally all the
lists are the same length; if not, the iteration terminates when the shortest list
runs out, and excess elements in other lists are ignored.) The value returned by
mapcar is a list of the results of the successive calls to the function. For
example:

abs ' (3 -4 2 -5 -6» => (3 ~ 2 5 6) (mapcar
(mapcar cons' (a b c) '(1 2 3» -> «(a. 1) (b . 2) (c . 3»

maplist is like mapcar except that the function is applied
successive cdr's of that list rather than :0 successive elements
example:

("-'Iaplist '(lambda (x) (cons 'foo x»
, (a b c d»

=> «foo abc d) (foo b c d) (faa c d) (faa d»
(maplist '(lambda (x) (if (member (car x) (cdr x» 0 1»)

, (a b a c d b c»
=> (0 0 I 0 1 1 1)

;An entry is 1 if the corresponding element of the input

to the list
of the list.

list was the last instance of that element in the input list.

and
For

:l'apl and mapc are like maplist and mapcar respectively, except that
accumulate the results of calling the function.

they do not

Compatibility note: In all LISP systems since LISP 1. 5, mapl has been called
map. In the chapter on sequences it is explained why this was a bad choice. Here
the name map is used for the far more useful generic sequences mapper, in closer
accordance to the computer science literature, especially the growing body of papers
on funct:onal programming.

Figure 3-3: An example of Clarifying

12

3.4. Elucidating

Elucidating is used to clear up misconceptions and will be used most often when dealing

with an individual's problems. Because most texts do not specifically address an individual

reader, elucidating is found even less often in texts than clarifying. However, some texts

(particularly tutorials) sometimes will posit a possible misconception that can occur. Figure 3-4

identifies 5 kinds of invalidities that can be diagnosed based on work by Joshi, Webber, and

Weischedel [10].

• A step in the plan has missing preconditions.

• A step in the plan is missing.

• A step in the plan is extraneous.

• A step in the plan that has missing preconditions is related to a step that is missing.

• A step that is missing is related to a step that is extraneous.

Figure 3-4: Types of invalidities found in plans

Elucidating a goal consists of

1. Stating that the plan does not work for the goal.

2. Summarizing the plan, identifying the problem.

3. If the problem is missing preconditions either state that no plan exists to satisfy
them, or introduce or remind about a plan to satisfy them depending on whether the
plan exists in the user model.

4. If the problem is a missing step, introduce or remind about it depending on whether
it exists in the user model.

5. If there is an extraneous step, identify it, and describe why it is extraneous - what
effects does it have that are redundant with some other step.

6. If missing preconditions are related to a missing step, identify the relationship
between the two, and introduce or remind about the missing step depending on
whether it exists in the user model.

7. If a missing .step is related to an extraneous one, clarify the difference between
them.

Two examples taken from a Logo tutorial are shown in Figure 3-5 [15]. In both cases the

13

fIrst sentence identifies that there may be a problem with the plan "typing POTS." The fIrst

example illustrates a missing precondition - the workspace must contain procedures (step 2).

The second sentence suggests a plan for viewing procedures (" ... retype the ones you want",

step 3.) The second example illustrates a missing step, namely to pause when the screen is full.

The discussion of Ctrl-NumLock provides the missing skill (step 4.)

Printing Out Procedures - POTS Command
Possible Bugs:

1. If you don't see anything when you type POTS, you have no procedures in your
workspace. You can review the previo·.ls chapters and retype the ones you want.

2. If you have many procedures in your workspace, you may find that the titles go
by too quickly on the screen and disappear as more titles come on. Z: this
happens, repeat the command POTS and press Ctrl-NumLock as soon as yo'.) see the
title or titles you're looking for. Ctrl-NumLock will pause whatever is on the
screen. Press any key to see the rest of the titles.

Figure 3-5: An example of Elucidating

4. Knowledge that Affects the Choice of Strategy

Strategies dictate the type of information to include in a response, but they will be used and

combined differently depending on circumstances. Four kinds of knowledge influence how a

consultant decides what to say and how to say it:

• The Expert Model. The consultant's expertise influences the choice of what should
be presented.

• The User Model. The consultant's beliefs about what the user knows affect both
what should be presented and the form in which to present it.

• The Current Context. The context in which the question was asked provides a
basis for both content and fonn.

• The Question Intent. The intention of the user's question influences the focus of
the response.

4.1. Representing Expertise

Expertise includes knowing which plan is most appropriate in a given situation, and

therefore requires knowing the relationships between alternative plans for accomplishing a goal.

For example, there are at least two ways in most mail systems to send a message to a set of

14

people. One can type each address in turn when prompted for the receiver of the message. One

can also create an alias which is a named list of addresses that can be reused, and type the alias

name at the prompt. The fIrst method is most appropriate when the set occurs only in this

instance, or is very small and easy to remember. The second method is more appropriate if over

a period of time many messages will be sent to this set of people.

Procedural knowledge can be characterized as a web of interrelated goals for doing tasks,

plans for accomplishing those goals, steps within plans that are either goals themselves (sub­

goals), or functions that describe the actions available in the environment. Choosing the

functions that will execute the plan for a goal is a matter of navigating the web, making decisions

about what plans, sub-goals and ultimately functions to use.

4.2. The Expert Model and The User Model

The web is the basis of both our Expert Model and User Model. Presumably the former is

considerably richer than the latter. The Expert Model is traversed in order to locate relationships

between goals, plans and functions. Encoded within it is the knowledge to present choices

between plans. For our purposes we view the expert model as a static declarative structure that

is searched in order to locate information. Extending, updating and modifying the Expert Model

is discussed in section 8.

The User Model is also a web of relationships between goals, plans and functions. It is used

both to decide what to present and how to present it. In the example above, if a consultant

knows that a user has a very sparse knowledge of sending mail, it may decide to describe how to

type the list of addresses rather than create an alias, since the latter will require introducing yet

another unknown function. On the other hand. if the consultant thinks the user has a number of

inefficient plans l for this goal, it might introduce aliasing. The User Model also affects the

choice of strategy in answering the user's question. The form of an answer will depend on

whether the consultant thinks the user does or does not already know something, or whether it

thinks the user has a misconception. Constructing and maintaining a User Model is also

1 In some contexts our first plan is less efficient than the second. Another less effecient plan is to laboriously
retype the message to each addressee.

15

discussed in section 8.

From this perspective, expertise and complexity of functions can be characterized by the

richness of the web, rather than as simple spectra as described by Chin [6]. Although spectra

give the illusion of quantifiable criteria, the methods used to develop and validate them are often

superficial at best. In our model, functions that would be classified as "hard" or "advanced"

can be better characterized as requiring an understanding of complex interactions in order to

navigate the web. Those that are "simple" or "basic" have more straightforward paths.

Similarly, classifications such as "novice", "intermediate" and "expert" are hard to quantify.

It our approach they are unnecessary because users are judged by what they know about the

current task, rather than how much they know about the entire environment. It is perfectly

plausible for a user to have an extensive web of knowledge about a portion of the environment,

and almost no expertise about others. Like a spider web, density and strength of paths occur

where they are most useful in accomplishing specific tasks.

4.3. Current context

Although the User Model provides a means for choosing the most appropriate plan for a

goal, the current context is also relevant. For example, if the user wants to reply to a message

sent to a group of users, rather than initiate correspondence to the group, his or her current

collection of old mail may contain a message that was addressed to all members of the group.

Many mail systems contain a function for replying only to the individual who sent the message

and a similar function for automatically "carbon copying" the reply to all who received the

original message. The choice of how to reply to the group may be mitigated upon whether the

collection of old mail contains such a message.

The context also plays an important part in the content of the answer. Rather than using

"canned" examples, the explanation of what to do can be based on actual objects in the

environment. In an electronic mail environment the objects include messages, users and named

collections of both.

16

4.4. Question Intent

The last kind of knowledge that influences tutoring in a procedural environment is the intent

of the user's question. This is often termed the discourse goal, since it is the goal of constructing

some expression to elicit some information. It is distinguished from the computational goal of

trying to accomplish some task in the environment. In order to decrease confusion between the

two, we refer to the computational goal about which help is sought as the "goal", and the

discourse goal as the question intent.

Within a procedural environment it is possible to reason about, and consequently ask

questions about, the relationship between goals and plans, goals and functions, plans and

functions, goals and other goals, plans and other plans, functions and other functions. The range

of question intentions reduces to those in figure 4-1. The utterance identifies a goal or plan (or

function) or both, and implies an assumption about their validity. Its form also implies an

expected answer. Therefore, in order to reply informatively, a consultant system must provide

the information users expect, namely a goal, plan, function or relationship. It must also confmn

or deny their assumptions about the validity of the goal, plan or function mentioned in the

question.

5. Choosing a Tutoring Strategy

The knowledge described in the previous section provides four basic parameters for

choosing a tutoring strategy. These are:

• A question intent - QI, that provides an expected discourse focus of a goal, plan
andlor function.

• A computational goal - G, which is either identified by the user in the question, or
is inferred by the consultant from the plan or function specified in the question.

• A stated plan - S, which only exists if the user identifies it in the question. If it
does exist it may not be the same as a plan in the User Model - the user may have
just learned it from someone else.

• A User Model plan - U, for the computational goal, which is the plan that the
consultant thinks the user has used in the past for accomplishing the goal.

• A best plan - B, for the computational goal which is inferred by the consultant from
the Expert Model given the current context and the goals, plans and functions in the
User Model. It mayor may not be the same as S or U.

17

Question Intent Question Question Question Expects Intuitively
Identifies Assumes in Reply

What plan/function is Goal Goal is Plan or How do I do it?
required to satisfy the goal? possible Function

What goal is satisfied by Function Function A goal What does it do?
this function or Plan or Plan
or plan? satisfies

some Goal

Does this plan satisfy this Function or Plan or Confmnation Does it do it?
goal? Plan Function of assumption

and Goal satisfies Goal or explanation

This plan doesn't work, for Function or Plan or Confumation What's wrong with it?
this goal, what's wrong? Plan and Function of assumption

Goal does not or
satisfy Goal explanation

Is there a better way Function or Plan or Confmnation What's a better way?
for this goal? Plan and Function is of assumption

Goal not best way or
to satisfy goal explanation

How are these Goals, Plans Pair of Plans, Goals Relationship What are the
or Functions similar or Functions, or Functions between the similarities or
different? Plans or exist pair differences between

Goals them?

Figure 4-1: Infonnation imbedded in the question intention

Each subsection below will describe how these parameters affect the choice of strategy and

whether the strategy is used responsively or as enrichment When the distinction is not

imponant we will refer to both goals and functions as sldUs.

5.1. Introducing

A skill is intrcxluced responsively when the consultant thinks the user has no previous

knowledge of it, doesn't know the best plan for the goal, or has a faulty plan for the goal. An

exception is when the question intent specifically asks for a better way, in which case the clarify

strategy is used. More fonnally:

Introduce responsively when:

18

(AND (QI <> get a better plan B than 5)
(OR (U does not exist)

(AND (U exists)
(OR (U is invalid)

(U <> B) 1

For example in the domain of Berkeley Unix Mail, if the user knows nothing about replying

to a message and asks "How do I answer a message" (Le. specifies a goal), the function Reply

is introduced. Conversely if the user asks "what does Reply do?", (Le., specifies a function)

the goal reply to a message is introduced.

Introducing as enrichment occurs when the plan stated by the user does work and none of

the plans the consultant thinks the user knows is the best plan. As shown later in section 5.4

when the stated plan does not work, the consultant must respond to the question by elucidating

why it doesn't. Only then may the consultant provide enrichment and introduce the best plan.

More formally:

Introduce as enrichment when:

(AND (U exists)
(U <> B)
(5 exists)
(5 is not valid»

For example if the user asks "To send mail to a group of users, do I type alias at the TO:

prompt?", and the consultant believes this is the only plan the user knows (it is also the plan in

U), then the consultant will first elucidate why the plan does not work, and will then introduce as

enrichment the best plan, which may not require the alias command at all.

5.2. Reminding

A skill is reminded responsively when the user does not state a plan and the consultant

thinks the user already knows the best plan. Reminding is also used when the stated plan is a

plan the consultant thinks the user already knows. More formally:

Remind responsively when:

(AND (Qr <> get a better plan B than 5)
(OR' (AND (5 does not exist)

(U exists)
(U .. B»

(AND (5 exists)

19

(U exists)
(U = 5»»

For example, if the consultant has seen the user reply to messages in the past and the user

asks, "How do I answer a message?", (no S is stated), then the user just needs to be reminded

about the command; a long introduction is not necessary. Similarly, if S is stated: "Does reply

let me answer a message?", then a terse affirmative answer is appropriate.

We have not found a reason to use reminding as enrichment In fact it seems rather

pedantic.

5.3. Clarifying

A skill is clarified responsively when the intent of the question is specifically for a better

plan for the goal. A plan must be stated, and clarification occurs if it is not the best plan. More

formally:

Clarify responsively when:

(AND (Qr = get a better plan B than 5)
(5 <> B»

For example the user asks "Normally, to send mail to a group of users, I just type all the

addresses at the TO: prompt, is there a better way?" The consultant may decide that it is time to

introduce aliasing, and will clarify the difference between using a new plan that includes the

alias function and the user's stated plan2.

Clarifying as enrichment occurs whenever the question intent is not specifically asking for a

better way, but the plan stated is not the best plan. More formally:

Clarify as enrichment when:

(AND (Qr <> get a better plan B than 5)
(S exits)
(OR (U <> B)

(S <> B»)

For example, the user asks "Can I type more than one address at the TO: prompt" and the

2Note that asking "What's the best way?" is not the same as asking "What's a better way?" The fonner is
actually a fonn of "How do I do it?"

20

context suggests that the best way would be to create an alias. First since the plan is the focus of

the question, the consultant must responsively introduce or remind about the plan depending on

what it thinks the user knows. Only then would it say, "by the way ... " and clarify aliasing as

enrichment.

5.4. Elucidating

A skill is elucidated responsively when the user states a plan for a goal that the consultant

does not think is valid. Five invalidities were presented in figure 3-4, section 3. More formally:

Elucidate responsively when:

(AND (5 exists) (5 is not valid»

For example if the user asks "To send mail to a group of users, do I type alias at the TO:

prompt?", the consultant notices that a precondition to using the al ias command is that one be

at the Mail> prompt. The consultant provides a solution: return to the Mail> prompt, create

the alias, then begin to compose the message.

Elucidating for enrichment occurs when the consultant thinks the user has a plan for the goal

that is not valid - (U is not valid). Since the plan in the User Model is never the focus of

discourse (unless it is equal to the stated plan, in which case the stated plan is still the focus of

the discourse) it can never be elucidated in response. However under some circumstances it may

seem opportune to address what the consultant thinks the user knows. This must proceed in a

delicate manner since it is based on knowledge the consultant believes rather than knows.

6. The Use of Tutoring Strategies in GENIE

In order to answer a user's question, a consultant must understand the question, analyze the

problem phrased in the question to find the best solution, and generate an answer that is

informative. GENIE consists of three processes, and Understander, a Plan Analyst and an

Explainer, that operate on three knowledge bases, a World Model, and Expert Model and a User

Model. Since the focus of this paper is on tutoring strategies, this section will show how the

fonn and content of an answer is developed by the Explainer. The other processes, as will the

21

knowledge bases will be described briefly.

The Explainer uses the rules in section 5 to choose a strategy and the schema from section 3

to flush out an answer. We have focused on issues of deep structure generation: that is, what to

say rather than the surface level wording through which to say it. Consequently, this discussion

will describe the directives produced by the Explainer, but will not show in detail how actual

English text is produced. Issues pertaining to surface generation are addressed in section 8.

Four example questions will show how seven different answers occur depending on the

user's knowledge and the context in which the question was asked. Through the first question

we will show how the form of an answer varies depending on the tutoring strategy chosen, while

the skill chosen remains the same. The second shows how the answer varies with the skill that is

described, while the tutoring strategy remains the same. Finally, through two more questions we

show how the intent of the question itself influences both the form and content of the answer.

6.1. Understanding and Analysis in GENIE

The Understander must be able to parse a user's question and identify the components listed

in figure 4-1. It must identify the goal, plan or function to which the user is referring. It must

detennine what the user assumes; for example, that the identified plan does or does not satisfy

the identified goal. It must also detennine what the user expects as an answer: either a goal, plan

or function, or a relationship between them. From this it must identify the intent of the question.

Since research by Wilensky [26] and Pollack [21] has been devoted to question understanding,

building a robust understander in GENIE is currently a low priority. At the present time, we

produce the stated goal, plan or function, and the user assumptions, expectations and question

intent by hand, and provide these as input to GENIE.

Given a plan or function and a goal, the Plan Analyst uses the Expert Model to find a

"match" between them A match is defined as confirmation that a plan or function satisfies a

goal. Given a function and goal the Plan Analyst confirms or denies that they match. Given a

plan and a goal, it tries to find a match. If it is unsuccessful it uses the cases in figure 3-4 to

id.entify the mismatch. Given a plan, the Plan Analyst attempts to locate the goal it satisfies. If

22

no actual match emerges from a list of candidates, then the goal with the least complex mismatch

is chosen, but is marked as a mismatch along with its causes.

Given a goal, the Plan Analyst searches the Expert Model for the "best" plan for the goal

using two sets of heuristics. First it tries to choose steps in plans using "world knowledge" such

as efficiency and temporality based on the current context or World Model. For example, users

normally prefer plans that accomplish goals now rather than later, or that require fewer rather

than more steps. As will be seen in section 6.4 in a mail environment the choice may be affected

by whether a message, address or alias already exists. The second set of heuristics compares the

candidate plans to knowledge in the User Model. The plan whose substeps occur most

frequently in the user model is considered the best plan.

6.2. Knowledge Bases in GENIE

The Expert Model is a network of the computational goals that can be satisfied in the

computing environment. Figure 6-1 shows the structure of this frame-based knowledge

representation. Computational goals contain links to alternative plans for satisfying the goal. A

plan can be linked to a sub-goal or an ordered sequence of sub-goals that describe how it can be

executed, or to a function that executes it directly. Encoded within a computational goal are

links that describe the relationship between plans.

Functions describe the operators of the environment. Their representation includes

information about the correct syntax of the function, any preconditions and effects, and the

actions associated with parameters. Preconditions define a state that must be true before a

function can be correctly executed. They may also contain a link to a goal that could satisfy it.

Effects encode the actions of functions when applied to the World Model. Currently the World

Model is represented as a simple add/delete list that describes possible states in the mail

environment. Therefore effects are encoded as directives to add or delete a state from the World

Model.

The User Model has the same representation as the Expert Model. It contains a history of

what the user has done in past sessions in terms of what goals have been accomplished and what

23

plans and functions were used to accomplish them. Its goals may contain plans that were

attempted, but didn't work, or plans that do not exist in the Expen Model.

Plan Plan

Subgoal Subgoal

Subgoal

Subgoal

Figure 6·1: GENIE's frames for knowledge representation

6.3. The User Model Affects the Choice of Strategy

We flrst present an example where the best plan (B) chosen by the Plan Analyst is described

by the Explainer through three different tutoring strategies depending on what the user knows.

Consider the question "How can I answer a message?". The question identifles a goal (reply to

a message) and has a question intent (Qn to receive a plan in response. Assume that the World

Model contains a message that the user is currently reading that was sent only to the user, not to

some group that included the user. Figure 6-2 is a graphic representation of the Expert Model

required to answer this question. The World Model dictates that the Plan Analyst choose as the

best plan B:

Goal: reply.to.message (satisfied by)
P2: (through steps)

Goal: reply.now (satisfied by)
I?l: (through steps)

Goal: reply.only.to.sender (satisfied by)
p2: (through steps)

Goal: start.single.reply (satisfied by)
Goal: compose.message (satisfied by) ...

Three different tutoring 'strategies are invoked depending on what is in the User Model. In

all three cases we assume that the user has a plan for compose message.

24

P1

s\atl.lingle.reply

Figure 6-2: GENIE's expert model knowledge of replying to a message

UPIlerC&M
low.rc •••

In the first case the User Model contains no plan for the goal, that is GENIE has no

knowledge that the user has a plan like B to reply to a message. The Explainer chooses to

Introduce Responsively because no plan U exists in the User Model for the goal. Figure 6-3

shows botha process trace of the directives that are assembled for producing text and the

resulting text

In the second case the User Model contains a plan U that is identical to B, that is, GENIE

believes the user hal replied to messages correctly in the past. The Explainer chooses to Remind

Responsively because U exists and is equal to B. Figure 6-4 presents a portion of the process

trace.

In the third case, the User Model contains a plan that does not exist in the Expert Model, but

that is valid:

Introducing: reply.to.message
STATEGOAL: reply.to.message

SUMMARIZE: reply.to.message.P2
Introducing: reply.now

STATEGOAL: reply.now
SUMMARIZE: reply.now.Pl

25

Introducing: reply.only.to.sender
STATEGOAL: reply.only.to.sender
SUMMARIZE: reply.only.to.sender.Pl

Introducing: start.single.reply
STATEGOAL: start.single.reply

IntroducingFunction: Reply
PRESENT-SYNTAX: [Reply]
DESCRIBE-PRECONDITIONS:

(mode = reading.messages)
DESCRIBE-EFFECTS:

Delete (mode = reading.messages)
Add (addressee = current.sender)
Add (interrupt.mode = compose.message)

Reminding: compose.message

EXAMPLE: (FN: Reply, Compose.message)

In order to reply to a message it is assumed you want to reply right
away. In order to reply right away it is assumed you want to reply
only to the sender. To do this, you must indicate you wish to reply
and compose a message. You can indicate you wish to reply by using
the command 'Reply'.

The syntax is: Reply

To use this command you must be in read mode. The
command removes you from read mode, makes the addressee of your
message the current sender and temporarily puts you in write mode.

To compose a message just type your message and end with <esc>.
For example,

Type the command: Reply
Then just type your message and end with <esc>.

Figure 6·3: Reply to a message when User Model contains no plan for the Goal

Reminding: reply.to.message
STATEGOAL: reply.to.message
SUMMARIZE: P2
EXAMPLE: (FN: Reply, Compose.message)

Figure 6·4; Reply to a message when User Model contains a plan for the goal

26

Goal: reply.now (satisfied by)
P: (through steps)

Goal: save.message (satisfied by)
Goal: leave.read.mode (satisfied by) .,.
Goal: send.message (satisfied by) ...

The Explainer chooses to Clarify Responsively because the user has a valid plan for the goal,

but that plan isn't best. Figure 6-5 presents a portion of the process trace.

Reminding: reply.to.message
STATEGOAL: reply.to.message
SUMMARIZE: U
EXAMPLE: (FN: Reply, Compose.message)

Clarifying: reply.to.message
SUMMARIZE: B
COMPARE_STEPS (send.message, reply.only.to.sender)

SHOW-RELATIONSHIP: (initiate addressee) (sender is addressee)
Introduce: Reply

Figure 6-5: Reply to a message when user model does not contain best plan

6.4. Content Varies Within A Strategy

We now show how the Plan Analyst's choice of a plan for a goal varies the content, but not

the fonn of the answer. Consider the question "To reply to a group of users I reply to each

individually - is there a better way?". The question identifies a goal - reply to all and a plan

(S) - Forall (x in group) send.message.to.individual. It has a question intent (QI) to get the best

plan. Assume that the User Model contains the goals compose.message and send.mail, but does

not contain create.alias or stan.group.reply.

For the first case, assume the World Model contains a message that was addressed to a

group. The Plan Analyst determines that reply.group.known is the best plan since the group is

known and it is less work than the stated plan S. Since QI = get a better plan B than S, and S <>

B, the Explainer chooses to Clarify Responsively. Figure 6-6 presents a portion of the process

trace.

In the second case, assume the World Model contains a message sent only to the user. The

PI?l1 Analyst determines that the best plan is reply.create.alias since no group message exists

27

Clarifying: reply.to.group
STATE-BETTER-WAY-EXISTS: reply.to.group
SUMMARIZE: U
SUMMARIZE: B
SHOW-RELATIONSHIP: (group known) (group not known)
COMPARE-STEPS: (start.group.reply, ForAll(x in group))

Introducing: start.group.reply
COMPARE-STEPS: (compose.message, send.message.to.indivdual)

Reminding: compose.message ...
EXAMPLE: B

Figure 6·6: Clarifying that the best plan is reply group known

and it is less work than the user's plan. Since QI = get a better plan B than S. and S <> B, the

Explainer still chooses to Clarify Responsively. Figure 6-7 presents a portion of the process

trace.

Clarifying: reply.to.group
STATE-BETTER-WAY-EXISTS: reply.to.group
SUMMARIZE: U
SUMMARIZE: B
SHOW-RELATIONSHIP: (send same message) (send different message)
COMPARE-STEPS: (reply.create.alias, ForAll (x in group))

Introducing: start.group.reply ...
COMPARE-STEPS: (send.mail, send.message.to.indivdual)

Reminding: send.mail '"
EXAMPLE: B

Figure 6·7: Clarifying that the best plan is reply create alias

6.5. Question Intent Influences Form and Content

The two questions in the previous sections generated five different answers even though

they were asking essentially the same thing - "How to reply". We believe this illustrates the

fundamental difference between generated answers and canned text The fonner provides

flexibility in answers the latter cannot We illustrate this point funher with two more questions

that also ask about reply.to.message. Both questions require Elucidating Misconceptions, but the

fonn and content differs because the stated plans fail in different ways.

In the first case, consider the question "I'm trying to reply to a group of users using reply

28

but I only seem to be able to reply to the sender of the message. Why?" The stated goal is

reply.w.ail and the plan implied in the question is (FN: reply, compose.message). Assume

that the message in the World Model was only sent to the user, and the user knows about the

alias function. The fault lies in the fact that there are no other group members in the message

header, causing a precondition of the function reply to be violated. The Plan Analyst fmds the

fault and suggests using the reply.create.alias plan. Given that S is invalid, the Explainer

chooses to Elucidate Responsively and expands on a missing precondition. Figure 6-8 presents a

portion of the process trace.

Elucidating: reply.to.all
STATE-BROKEN-PLAN: reply.group.known.Pl

ProblemIn: MissingPrecondition (exists group)
IN start.group.reply

Fix: reply.create.alias.Pl
Reminding: reply.create.alias

Figure 6-8: Elucidating when a precondition is missing

In the second case consider the question "I'm using reply to reply to the sender of a

message, but seem to send mail to everyone else to whom the message was addressed. Why?"

The stated goal in this case is reply.only.w.senlier and the implied plan is (FN: reply,

compose.message) with the sub-goal start.single.reply being satisfied by the function reply.

Assume that the message in the World Model was sent to a group of users. Given the knowledge

in figure 6-2 the Plan Analyst notices that FN: reply seems to be an extra step while FN:

Reply is a missing step3. From the figure these steps are related both at the level of the function

- by the case of the first letter and two levels up in the distinction between reply.to.ail and

reply.only.to.sentier. Since S is again invalid, the Explainer chooses to Elucidate Responsively

expanding on an extra step related to a missing one. Figure 6-9 provides a portion of the process

trace.

3For the Unix uninitiated character case matters, so Reply and reply are indeed two different functions. We
admit this is grossly user unfriendly and should not occur in the flrst place, but the example is too good to resist.

29

Elucidating: reply.only.to.sender
STATE-PLAN-BROKEN: reply.only.to.sender.Pl

Problernln: ExtraMatchesMissingStep
Extra: start.group.reply

Missing: start.single.reply
DescribeMatch: Extra: FN: Reply (uppercase)

Missing: FN: reply (lowercase)

Extra: reply.to.all (all)
Missing: reply.only.to.sender (one)
Introducing: reply.only.to.sender

Figure 6-9: Elucidating when a missing step matches an extra step

7. Related Work

The represention of our Expert and User Models is based on work by Goldstein [9],

Genesereth [8] and Clancey [7]. Goldstein introduced the notion of a network, a genetic graph

of knowledge that represents stages of development of a student's understanding of a domain.

Rather than overwhelm the beginner with an optimal method, the genetic graph provides a basis

for choosing what to say. Its structure however, is based on degrees of student development

which, as we argued earlier, is very hard to quantify and evaluate. Since our web is task

connected as well as knowledge connected we should have less difficulty approaching a problem

from a novel perspective. Genesereth' s dependency graph of goals and plans suggests that this

is the case. Genesereth focused primarily on diagnostics. He was therefore not concerned with

encoding semantic information about the relationships between plans, which we see as crucial to

explanation. Clancey first articulated the need for the separation of domain expertise from

tutoring knowledge. Although he implicitly captures goaVplan knowledge in his rules, unlike

GENIE his tutors can not reason abstractly about relations between goals and plans. Finally, none

of these researchers seriously addressed the problem of generating a coherent response.

Constructing and maintaining a User Model has proven to be a difficult task in building

Intelligent Tutoring Systems. One problem is reliably determining what the user knows. A

second is choosing how to represent the user's knowledge. A third is updating the User Model

dynamically. Although we will not try to justify it here, we believe that the web paradigm of

30

goals, plans and functions offers insight into solutions to the first two problems. The third, like

updating the Expen Model, falls within the domain of knowledge acquisition and learning.

Research by Brownand Burton [4] and by Sleeman and Smith [24] illustrate the difficulty in

determining what the student knows in unguided settings. The difficulty lies in diagnosing what

the student doesn't know based on unexpected behavior. Since we do not expect any behavior in

the fIrst place, we avoid this problem by waiting for the user to notice that something is wrong.

Our user model is a reference point for choosing the fonn and content of the consulting dialogue,

but is rarely the focus. In only one instance, elucidating as enrichment, does GENIE expect to

fInd a "buggy plan" in the User Model. This case is a byproduct of our representation rather

than its focus and therefore does not playa significant role in how GENIE works.

We address the second problem by restricting our representation to knowledge of what the

user knows how to do rather than the larger domain of what the user knows. For example we do

not attempt to draw analogies to knowledge the user might have of things outside the

environment. The second problem is also addressed by the nature of the domain. Since the user

is engaged in using an environment, it should be possible to build a system to monitor his or her

actions. For example, our Marvel software development environment [11] monitors all

commands entered by the programmer. Inferences could therefore be drawn on whether

particular goals have been attempted and successfully accomplished and through what plans or

functions. Selker [23] and Quilici [22] among others have demonstrated how such plan

recognition is possible and useful for developing a User Model.

Other research on User Modeling and natural language generation falls into two categories:

either stereotypes are used to represent large categories of users and answers are geared to a

category, or explicit beliefs and goals of the user are represented and reasoned about to

determine an answer. Chin's work [6] on the UC system [26] best exemplifies the stereotype

approach and is most relevant to our system. Chin's system provides help within the Unix

environment based on a dual set of stereotypes. Users are classified as novice, intermediate, or

expert and functions are classified as easy, intermediate4, and hard. The system uses rules

4chin actually uses two levels of imennediate.

31

stating how much detail to provide about the different classes of functions depending on which

class the user falls into. Our approach is in direct opposition to Chin's: it is based on the

assumption that knowledge cannot be quantified in discrete chunks and users are unlikely to

learn and progress from one neat division to another. Rather, they are likely to learn functions

based on tasks they have performed and this will vary substantially depending on the tasks.

A second body of work by Allen and Perrault [1], Pollack [21] and Appelt [2], uses detailed

information about user beliefs and plans in combination with a formal reasoning system to

determine what to include in an answer. Because they have relied on such detailed formal

models in combination with a theorem prover, they have tended to operate in limited, well

constrained domains, producing shorter responses than those at which we aim. Pollack is an

exception, although she has focused more on the representation required to produce helpful

responses for plan invalidities and less on the generation of the responses themselves. Like

Pollack, we also represent details about beliefs. plans and goals. However, we combine the

representation of beliefs with the use of tutoring strategies rather than a theorem prover, to allow

us to produce more complex responses as part of a less well constrained domain.

8. Summary and Conclusions

The great hope of educational computing, that computer technology can deliver

unprecedented individualized instruction, remains to be fulfilled. This paper describes a step in

that direction, through the development of GENIE, an automated consultant for interactive

environments. We have demonstrated how the form and content of an answer are chosen based

on the current needs and knowledge of the user. Our knowledge representations and the

algorithms and heuristics used to traverse them allow us to abandon spectra of user expertise and

functional difficulty. We therefore circumvent the need for a broad sequential curriculum and

have much greater flexibility in when, what and how to present skills to users.

Our demonstration system GENIE is by no means as sensitive as a skilled human tutor. At

the present time, it cannot handle certain aspects of context, one cannot ask questions in any

natural way, the knowledge bases must be updated by hand, and the answer that is generated

could stand stylistic improvement. These are all primarily implementation issues, and in the

32

paragraphs that follow we address each of them in tum.

One major goal of this work was to answer questions within the current context. We

provide the context in symbolic fonn as input to GENIE. Our assumption is that it can be derived

by a subsystem that observes users' actions. In order to answer "what if" questions where the

user presents a hypothetical context, a different subsystem would be required that allows users to

construct a context in some friendly way such as natural language. Furthennore in human

discourse a question is rarely answered fully through a single utterance. Often a user's initial

question spawns other questions that may be combinations of question types and require a

mixture of answering strategies. Here too, a different subsystem, that monitors a discourse

history, would contribute to the construction of the current context.

At the present time we make the simplifying assumption that the user either knows or does

not know about things in the domain. By definition, if something exists in the User Model, even

if it is wrong, then it is known. If it does not exist, then it is not known. In practice this

assumption is inadequate first because knowledge is not binary, and secondly because tutoring

can occur across a broader continuum. Rather than fall for the seduction of simple categories of

levels of mastery, we would like to evaluate and record knowledge in a less quantified manner.

This in turn will affect how GENIE's heuristics and strategies must be changed.

We have thus far avoided consideration of a "front end" for asking questions. Our

justification has been that our interests lie in generation rather than understanding of language.

We are now at a stage where we have a clearer picture of what infonnation we must get from the

user and are in a better position to design an understanding component for demonstration

purposes. We have begun work on a simple Augmented Transition Network [30] parser that will

be able to extract the infonnation described in figure 4-1.

Clearly, all possible goals and plans for those goals cannot be known when a computing

environment is set loose on users. Furthennore, if the environment is extensible, even the

relationships between functions cannot be fixed. We view the problem of extending, updating

and modifying both the Expen and User Models as one of knowledge acquisition and learning

and therefore not within the immediate scope of this research. Work on machine learning by

33

Lebowitz [13] has influenced the design of our knowledge representations, and we are confident

that both can be updated automatically in the future.

Finally, the current version of GENIE relies on textual templates to produce actual text. We

have discovered that the prose generated is stylistically stilted, referentially awkward, often

redundant and therefore inadequate. We are currently exploring the use of a functional

unification grammar [12; 19] that should allow us to produce more graceful text.

To summarize, GENIE is an automated consultant that attempts to meet the contextual needs

of the user by basing its answers on the user's current task, and those tasks the user has

successfully accomplished in the past. Our current plans are to develop a front end for

demonstration and testing purposes, to make use of a functional unification grammar to produce

better text, and to expand both the analysis and explanation facilities to handle a wider variety of

consulting situations. Through these projects we hope to shed more light on the complex

tutoring that occurs during consulting in interactive environments.

34

References

1. Allen, J. F. and Perrault. C. R. "Analyzing Intention in Utterances". Artificial Intelligence
15, 1 (1980), pages 143-178.

2. Appelt, D. E .. Planning Natural Language Utterances. Cambridge University Press,
Cambridge, England. 1985.

3. Borenstein, N.S. The design and evaluation 0/ on-line help systems. Ph.D. Th., Carnegie
Mellon University, April 1985.

4. Brown, J.S. and R.R. Bunon. "Diagnostic Models for Procedural Bugs in Mathematics".
Cognitive Science 2 (June 1978), 155-192.

5. Brown, J.S. and K. VanLehn. "Repair theory: A Generative theory of bugs in procedural
skills". Cognitive Science 4 (1980), 379-415.

6. Chin, D. N. Intelligent Agents as a Basis/or Natural Language Interfaces. Ph.D. Th.,
University of California, Berkeley, 1988.

7. Clancey, W.J. Tutoring rules for guiding a case methcxl dialogue. In Intelligent Tutoring
Systems, Academic Press, London, 1982, pp. 201-225.

8. Genesereth, M.R. The role of plans. In I nrelligent Tutoring Systems, Academic Press,
London, 1982,pp. 137-155.

9. Goldstein, I.R. A genetic graph mcxlel for tutoring. In I nte/ligent Tutoring Systems,
Academic Press, London, 1982, pp ..

10. Joshi A., B. Webber and R. Weischedel. Living up to expectations: Computing expen
responses. Proceedings of AAAI-84, American Association of Artificial Intelligence, 1984, pp.
169 - 175.

11. Kaiser G. E., P. H. Feiler and S. S. Popovich. "Intelligent Assistance for Software
Development and Maintenance". IEEE Software (May 1988),40-49.

12. Kay, M. Functional Grammar. Proceedings of the Sth meeting of the Berkeley Linguistics
Society. 1979.

13. Lebowitz, M. An experiment in intelligent information systems: RESEARCHER. In
R. Davies. Ed., Intelligent Library and Information Systems, Ellis Horwocxl, London, 1986.

14. USP lAnguage Reference (M-Z). Hewlett-Packard Company, Fon Collings, CO, 1986.

IS. Logo: Programming with Turtle Graphics. International Business Machines Corporation,
Boca Raton, Rodda 33432, 1983.

16. Magers, C. S. An experiemntal evaluation of On-line HELP for non-programmers. CHI'83
PToceedings, 1983,pp.277-281.

17. McCoy, K. F. The ROMPER System: Responding to Object-Related Misconceptions Using
Perspective. Proceedings of the 24th Annual Meeting of the ACL, Association of Computational
Linguistics, New York City, New York. June, 1986.

35

18. McKeown, K.R .. Text Generation: Using Discourse Strategies and Focus Constraints to
Generate Natural Language Text. Studies in Natural Language Processing. Cambridge
University Press, Cambridge, England. 1985.

19. McKeown, K. R. and C. L. Paris. Functional Unification Grammar Revisited. Proceedings
of the 25th Annual Meeting of the Association for Computational Linguistics, Association for
Computational Linguistics, Stanford, Ca., July, 1987.

20. Paris, C. L. The Use of Explicit User Models in Text Generation: Tailoring to a User's
Level of Expertise. Ph.D. Th., Columbia University, 1987.

21. Pollack, M. Inferring domain plans in question-answering. Ph.D. Th., Moore School,
University of Pennsylvania, May 1986.

22. Quilici, A.E., G. Dyer and M. Flowers. Understanding and advice giving in AQUA. UCLA
Artificial Intelligence Laboratory, Los Angeles, CA, 1985.

23. Selker. T. Cognitive Adaptive Computer Help - A Research Overview. TJ. Watson
Research Center, IBM, T.J. Watson Research Center, Yorktown Heights, N.Y., 1988.

24. Sleeman, D.H. and M.J. Smith. "Modelling student's problem solving". AI Journal (1981),
171-187.

25. Steele, G. L .. C017llTl()n Lisp, the language. Digital Press, Bedford. MA, 1984.

26. Wilensky, R., Y. Arens, and D. Chin. ''Talking to Unix in english:An overview ofUC".
Communications of the ACM 27, 6 (June 1984), 574-593.

27. Winston, P.A. and B.K. Hom. Lisp, second edition. Addison Wesley, Reading, MA, 1984.

28. Wolz. U. Analyzing user plans to produce informative responses by a programmer's
consultant CUCS-218-85, Department of Computer Science, Columbia University, New York,
NY,1985.

29. Wolz, U. and G.E. Kaiser. A Discourse-Based Consultant for Interactive Environments.
Proceedings of the Founh IEEE Conference on Artificial Intelligence Applications, 1988, pp. 28
- 33.

30. Woods, W. An Experimental Parsing System for Transition Network Grammars. In
Natural Language Processing, Rustin, R., Ed., Algorithmics Press, New York, 1973.

