Academic Commons


Recognition of micro-array protein crystals images using multi-scale representations

Wang, Ya; Kim, David H.; Angelini, Elsa D.; Laine, Andrew F.

Micro-array protein crystal images are now routinely acquired automatically by CCD cameras. High-throughput automatic classification of protein crystals requires to alleviation of the time-consuming task of manual visual inspection. We propose a classification framework combined with a multi-scale image processing method for recognizing protein crystals and precipitates versus clear drops. The main two points of the processing method are the multi-scale Laplacian pyramid filters and histogram analysis techniques to find an effective feature vector. The processing steps include: 1. Tray well cropping using Radon Transform; 2. Droplet cropping using an ellipsoid Hough Transform; 3. Multi-scale image separation with Laplacian pyramidal filters; 4. Feature vector extraction from the histogram of the multi-scale boundary images. The feature vector combines geometric and texture features of each image and provides input to a feed forward binomial neural network classifier. Using human (expert crystallographers) classified images as ground truth, the current experimental results gave 86% true positive and 94% true negative rates (average true percentage is 90%) using an image database which contained over 2,000 images. To enable NESG collaborators to carry our crystal classification, a web-based Matlab server was also developed. Users at other locations on the internet can input micro-array crystal image folders and parameters for training and testing processes through a friendly web interface. Recognition results are shown on the client side website and may be downloaded by a remote user as an Excel spreadsheet file.


Also Published In

Medical imaging 2005 : Image processing : 13-17 February 2005, San Diego, California, USA ; Proceedings of SPIE, vol. 5747

More About This Work

Academic Units
Biomedical Engineering
Published Here
August 25, 2010
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.