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MOMENT SPECTRA IN A SIMPLE MODEL OF AN EARTHQUAKE FAULT

Bruce E. Shaw
Institute for Theoretical Physics, University of California, Santa Barbara , CA 93106

Abstract The behavior of a simple one-dimensional, homoge-
neous, deterministic model of an earthquake fault is examined on
the timescale of the rupture process. The model generates a complex
spatial and temporal distribution of events from a frictional insta-
bility. I measure the frequency spectra of the moment release rate
for events of different sizes, and observe power laws for the spectra.
A bend in the spectra of large events is also observed. The paper
concludes with a discussion of how these results may be relevant to
real earthquake faults.

I. Introduction

An important goal in seismological research is the reconstruc-
tion of the earthquake source from seismographic signals. To obtain
a set of source parameters, such as the location, seismic moment,
and rupture length scale, measurements are averaged over a num-
ber of stations. The problem is made difficult by path effects as the
signal, traveling through the inhomogeneous earth, is reflected and
attenuated. A more fundamental problem confronts the seismologist
seeking to reconstruct continuous fields defined on the rupture sur-
face, such as the slip as a function of position on the fault: the set
of one-dimensional time series measurements from seismograms con-
tains less information than the two-dimensional source one would
like to obtain. The problem is necessarily underdetermined. To
obtain any kind of answer, therefore, one must assume certain con-
straints on possible source functions. Theoretical models of dynamic
ruptures thus play a crucial role in guiding our assumptions. These
models, or course, have their own built-in assumptions, and so it is
useful to examine behavior of the simplest models. In this paper, I
study the dynamics of a minimal earthquake model on the timescale
of the rupture process. We have the advantage of complete knowl-
edge of the entire history of each event, and of a complete catalogue
which spans thousands of loading cycles. I take advantage of the
large catalogue to measure the average moment spectra for events of
different sizes; this is a measurement one would ideally like to make
in the earth, but are hindered by errors due to path effects, and
the limited number of events one can average over due to the long
timescales— of order hundreds of years— of loading cycles. I observe
a bend in the spectrum of large events which corresponds with the
transition length scale from small to large events. I then use the
privileged position of being able to view absolute displacements, and
their time evolution in the model- something that cannot be done
in the earth— to gain insight into the rupture process. It is seen that
the large events are particularly simple; they involve one or two out-
going narrow pulses which travel down the fault at nearly constant
speed, and roughly invert the displacement configuration.

The work presented inthis paper is important for another reason.
Previous work on self-organizing models [Bak, Tang, and Wiesenfeld,
1987] has focussed on complexity on longer timescales. The distri-
bution of sizes of events [Carlson and Langer, 1989 (CL); Chen, Bak,
and Obukhov, 1991; Nakanishi, 1990; Brown, Scholz, and Rundle,

1991], the time intervals between large events [Carlson, 1991], and -

the cycle of small event activity preceding large events [Shaw, Carl-
son, and Langer, 1992], have, 4mong other things, been studied. In
this paper I study model events on the timescale of the rupture pro-
cess itself. Understanding the source on this timescale is important,
both because of potential applications to hazard estimates of what
kind of shaking may occur, and because of the possibility of com-
- paring with the wealth of information available from seismograms.

*

Copyright 1993 by the American Geophysical Union.

Paper number 92GL02437
0094-8534/93/92GL-02437$03.00

643

\

The paper is organized as follows. Section II introduces the model.
Section III presents the new work from numerical simulations of the
model. Measurements of the average moment spectra, the time his-
tory of an individual event, and the roughness of the displacement
field are shown. The paper concludes in section IV by discussing
how these results may apply to real earthquakes.

II. The Model

The simplest differential equation with the minimal ingredients
of elastic coupling, a loading mechanism, and a frictional instability
is given by [CL) L S -
U=U"-U-¢(U+v) L @
U is the displacement field. Dots denote differentiation with respect
to dimensionless time ¢, while primes denote differentiation with re-
spect to space s. Time has been scaled by the slip time of a uniformly
slipping fault. Distance has been scaled so that the speed of sound is*
unity. The plate loading rate is v, which is a very small number. All
the nonlinearity is in the friction function ¢, which depends only on
the velocity. It is a stick-s]ip velocity-weakening function. Equation
(1) says that the acceleration of the displacement field is the sum of
three forces acting on it: a compressional stress, a shear stress, and
friction. _

The form of the friction function ¢ used in this paper is shown
in Figure 1, and is given by

~o0,1), =0, -
¢(z)=¢o+{(l+:3;-.(__5¢’)l_;, >0 . @

The difference between the maximum sticking friction and the min-
imum sliding friction sets the scale of the change in U during an
event. This is set to unity. The minimum sliding friction $q_sets the
zero of U; note that there is a symmetry in the equation of motion
(1), that ¢ — ¢ + constant and U — U — constant leaves the equa-
tions unchanged. If ¢ is large enough compared to unity, the fault
will never overshoot, and backward motion will not occur. This is
the situation considered in Eq. (2), and is represented by the sticking
friction being unbounded from below. The constant ¢ plays no role-
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Fig. 1. The velocity-weakening slip-stick friction force ¢(z), given
in Eq. (2). The friction ¢ depends only on the velocity z. When
sticking, the friction $(0) satisfies #(0) s ¢o + 1 , while slipping
friction drops to an initial value of $(0%) = o+ 1 — & and then gets’
smaller with increasing velocity. Note that the equations of motion
(1) and (3) are invariant with respect to adding a constant to the
friction 4, and subtracting that same constant from the displacement
U. Without loss of generality, then, o can be set to zero. ,
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in the dynamics, and can be set to zero without loss of generality.
The parameters & and o which represent how the friction changes,
and are described below, are thus the only relevant parameters in
(2). Physically, what all this means is that stress drops are set by
the difference between sticking and sliding friction, and the absolute
stress, set by ¢o, does not affect anything. The ratio of the minimum
sliding friction to the maximum sticking friction, ¢o/(¢o + 1), can
thus be an arbitrarily large fraction, depending on how big ¢ is,
and the model gives the same results.

Friction keeps the field stuck, with z = 0, until its maximum
value ¢o + 1 is exceeded. During the sticking phase, the multival-
ued friction exactly balances the other two forces, and the fault is
uniformly loaded with U = —v. Once the threshold is exceeded,
slipping occurs. Slipping events start with acceleration ¢, which sets
the scale of the smallest events [Carlson, Langer, Shaw, and Tang,
1991 (CLST)). The parameter « represents the amount of velocity
weakening; this is the crucial instability in the problem, and a linear
stability analysis shows all Fourier modes grow exponentially while
slipping in the velocity weakening regime dg¢(z)/dz < 0 [CL]. There
is one other important parameter, the smallest lengthscale 1/£. The
nonlinearities in the friction develop shock-like waves which depend
on a cutoff lengthscale in the problem [Langer and Tang, 1991}. This
smallest lengthscale shows up in the statistics of even the largest
events [CLST].

The simplest spatial discretization of this partial differential equa-
tion gives the classic block and spring model in seismology of Bur-
ridge and Knopoff [1967], shown in Figure 2. The coupled ordinary
differential equations for this system are .

Uj = €(Uj41 ~ 2U; + Uj—1) = Uj ~ 6(U; +v) . )
The smallest lengthscale 1/£ is now the average spacing of the blocks
a. This is the model I study numerically in this paper.

.An event occurs when a block reaches the threshold for slipping.
It may or may not cause its neighbors to slide. The size of the event,
the ‘moment’, is then the sum of the change in the displacements of
all the blocks that moved:

M= Z 8U;,
j

The magnitude of an event is the logarithm of this moment. Be-
ginning from any nonsmooth initial condition, the system reaches a
statistically steady state where a ‘noisy’ sequence of events is ob-
served, with a distribution of sizes of events which is consistent with
what is seen for single faults. A typical distribution of sizes of events
for small o and a > 1 is shown in Figure 3. Two different types
- of events, small and large, are seen. The small events satisfy the
Gutenberg-Richter law [1954], showing a power law distribution of
rate R of events with moments between M and M + §M of the
form R(M) ~ M~(+%), where b is the “b-value” of the distribu-
tion. The large events occur at a rate in excess of what would be
expected from extrapolating the small event scaling rate [CL]. This
is also seen along certain major faults where sufficient data is avail-
able [Wanousky, Scholz, Shimazaki, and Matsuda (1983); Singh,
Rodriguez, and Esteva (1983); Schwartz and Coppersmxth (1984);
Davison and Scholz (1985)]. In this paper, we examine the param-
eter regime o small and @ > 1 since there, the small events show a
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Fig. 2. The block and spring model, given in Eq. (3), consists of
a one dimensional chain pf equal masses. Each block is joined to
its nearest neighbors by coupling springs of equal strength. Pulling
aprings of equal strength attach the blocks to a fixed plate. They are
in contact with another plate which is moving at constant velocity
v. Between each block and the moving plate there is a friction force
¢ which depends only on the velocity of the block. The eq\uhbnum
spacing between the blocks is a.
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Fig. 3. The distribution of sizes of events. The vertical axis is
rate of events having moments between M and M + éM, and the

horizontal axis moment M . The arrow in this figure marks the ..
calculated transition moment M, given by Eq. (5). The parameters

in the model used for this figure are l = 10 a= 2 and o=.01.

generic b-value exponent of 1. For smaller a, the exponent cha.nges

continuously with a.
The transition between large and small events can be calculated
approximately, and is discussed in references [CL] and [CLST] Here,

I simply quote the results. The transmon moment M is
=2
a

and the corresponding lengthscale E where the transition between
small and large events occurs is

©)

In addition to the distribution of sizes of events, a number of other
propertiu have been obsérved to change between small and large
events in the model [CLST]. In what follows, further dxfferences will
be seen.

II1. Numerical Results :

The work in this paper concerns the dynamics of events on the
timescale of the rupture process. We look at the coherent motion of
the blocks, studying the time evolution of the moment rate

M) = Z U;(2).

®)

0

The moment spectrum of an mdlvu:lual event is obtained by Founer

transforming the moment rate:

M(w) = / M(t)e“"‘dt

These events are divided into groups of simila.r sizes, and then the -

absolute value of the amplitudes M(w) are averaged. Figure 4 shows
average moment spectra The 7 different curves are for groups ¢ of

events of different sizes; the zero frequency moment M (0) corre- -

sponds with the moment plotted in Figure 3. The two different

types of events, large and small, show different spectra.” For the"

,‘ (3) :

large events, the top 3 curves in Flgute 4, we numerlcally observe‘

three power law regxons

w?, w3

M) ~ w1, %su<.’.€3 ) M>Xi
W, 3?<w

'~ When o is small and a »'1, the exponent 1 has been observed»

numencally to have the value ¥ = 5/2. The reason this value occurs

is not clear. An explanation of the other two exponents will be given~
shortly. The first bend, where the amphtude changes from w® to”

w1, occurs at the “corner frequency”, given roughly by the sound’

speed divided by the rupture length A. The second bend, where
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Fig. 4. The average moment spectra {(|M(w)}) versus w/2x is plot-
ted on a log-log scale, showing 7 different size groups. The zero
frequency moment M(0) corresponds to the moments M in figure
3. The parameters used for this figure are £ = 10 , @ = 2, and
o = .01 . For these parameters, the calculated transition frequency
between small and large events is @/2r = .095, somewhat underes-
timating where the bend in the large events spectra occurs. Dashed
lines with slope —1 bending to —5/2 , and with slope —2 are drawn
on the figure.

the amplitude beg_ms to drop off as w™7 , occurs at the frequency
o= 27r/£ where £ is the length scale markmg the transition between
large and small events.

Looking towards the highest frequencies, we see a peak in the
spectrum. This peak corresponds to the sound speed divided by the
smallest lengthscale a , the block size, and occurs at wo/2r =£. A
smaller peak at the two block frequency can also be seen,

A different scaling is observed for the small events, the 4 bottom
curves in Figure 4:

M< M. (10)

For the small events, the amplitudes of the high frequencies falls
as w~2 . Also, there is only one bend in the curve, at the corner
frequency, which is related to the rupture length. When o.is large,
the corner frequency is just the rupture length divided by the sound
speed, as in the large events. When ¢ is small, however, the rupture
typically remains open across the width of the rupture zone, and, by
closing back up from the edge of the rupture, can last up to twice as
long. This effect, of a relatively longer event duration for small o,
was noted in [CLS’I‘]

Let’s examine the rupture process by followmg the dlsplacements
in time. Figure 5 illustrates a typical large event. Away from the
epicenter, large events consist of one or two narrow pulses traveling
out from the epicenter at approximately the sound speed. Only a
small portion of the fault is slipping at any given time. This behavior
is not seen in the classic fault-slip models [e.g. Kostrov, 1964, and
Madariaga, 1976] but is similar to what is seen in the model of
Heaton [1990). Each pulse basically inverts the U field; potions of
the fault that were initially farther back move more, while parts
that were less far back move less. (Recall that the constant value
of the friction ¢o was subtracted from U in the normalization, and
that really there is no overshoot in the sense that the shear stress
is always pointing in the same dlrectlon)

Figure 5 also shows large fluctuations in the moment release rate;
the variations in the rate are of rder the rate itself. This produces
a signal with “subevents”, as they are known in the sexsmologlcal
literature.

- -..Another thing that can be seen in Figure 5 is that the rupture
velacity Varies as the pulse travels over regions that are more and
less stuck. Langer and Tang [1991] have calculated analytically the
velocities in the case of pulses traveling into uniformly stuck regions.
While variations in the rupture velocity can be seen, the variations
are only a small fraction of the average rupture velocity, and varia-
tions in the moment rate are dominated by variations in the particle

velocities. A plot of final slip and maximum particle velocity along
the fault show the two quantities to be roughly proportional to each
other.

The fluctuations in the moment rate are caused by the roughness
of the U field. How are they related? To quantify the roughness of
the U field, we measure the spatial Fourier transform of U, averag-
ing the absolute value of the amplitudes over a number of dlfferent ’
configurations. Figure 6 is a plot of the transform U/ (k), where k
is the wavenumber. For k > 2r/€, U(k) ~ k=2 . This scaling cor-
responds to discontinuous changes in the derivative of U along the
fault. The w=? high frequency falloff of the small events is a re-
sult of the discontinuous velocities the small pulses respond with as
they pass over the discontinuous stresses on the model fault. For
the large events, having the high frequency falloff being faster than
w=? means the large pulses are responding more continuously, in a
more averaged way. Turning towards length scales larger than ¢, for
2n/€* < k < 2r[€, where £ is the length of the largest events, we
have U (lc) scales as k! only roughly— less well than M (w) seems
to scale in that range. The origin of the w™! intermediate region
of the large events is therefore probably due to the finite duration,
and steep rise of M (t); approxxmatmg the moment release raté by a
square pulse in M(t) gives an w™ scahng for frequenclw above the .
corner frequency. : : ‘ -

Fig. 5. A large event rupture. I have superposed a series of snap-
shots taken at equally spaced times during the rupture, showing the
displacement U of the blocks as a function of position j in each
snapshot. The steeply inclined lines are the blocks that are moving
between the. initial conﬁguratxon below and the final conﬁguratxon
above. The epxcenter is marked with an arrow. There are two outgo-
ing narrow pulses emanating from the epicenter. The two opposite
pointing arrows emphasize the directions of the outgoing pulses. The
parameters used in the figure are £ =3, @ = 1.2 , and o= .01, A
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Fig. 6. The average spatial Fourier spectra of the dxspla.cement field
U. The vertical axis is {|U(k)|) and the horizontal axis is k. The
dashed line has slope —1 bending to —2 (the bend is put at .2, which
appears to fit the data better than the calculated transition of .095).

. The parameters used for this figure.are £=10, a2 =2, and ¢ = .01



- 1IV. Conclusion

How do the results for the model compare with the real Earth,
and what questions are posed by this work? The first result to
compare is the moment spectra. At the most basic level, power laws
are seen in both the model and in the Earth. At the next level, we
want to compare the values of the exponents. For the small events
in the model, the high frequency falloff is w~2, While seismological
measurements of the exponent of the high frequency falloff depend
on assumptions about the frequency dependence of attenuation, a
falloff of w™2 is most often what is reported to be observed [see,
e.g., Hanks and McGuire, 1981]. It is interesting to note that in the
model, the high frequency falloff for large events is actually slightly
steeper’ than w2 . While the reason this occurs in the model is not
entirely clear, it would be very interesting if this were also true in
the earth. One way to test this might be to compare the falloff of
small events with the falloff of large events, to see if the falloff of

large events might be systematically steeper.
A second result from the model that seems likely to hold in the
~ Earth, is the inversion of the displacement field during large events;
places that were initially farther back move more, while places that
were less far back move less. One consequence of this that might
be observable is that for faults where there is no aseismic creep,

places that moved far in the last large event would be the places:

that would tend to move less in the next large event, and vice versa.
The problems with observing this in practice is the long repeat time
between large events, and the need for a nearby array of instruments
to do accurate reconstruction of slip along the fault.

A third result is the bend in the spectra of large events that
occurs at the lengthscale corresponding to the transition between
small and large events in the model. At this lengthscale, many prop-
erties have been seen to change, including the distribution of sizes
of events. Might there also be a similar bend in the spectra of large

. events in the Earth at a lenghtscale corresponding to a change.in the
distribution of sizes of events? Recent measurements have suggested

that there may be a change in the distribution of sizes of events 6¢-

curring at the lengthscale corresponding to the brittle crust width
" (15 kilometers on strike-slip faults, and around 50 kilometers on sub-
duction zones) [Pacheco, Scholz, and Sykes, 1992}.- Boatwright and
" Choy [1989] have reported observations that suggest there may be a
bend in the spectrum at these brittle crust lengthscales, though it is
currently an open question [for other data, see Hartzel and Heaton,
_ 1985; Houston and Kanamori, 1986]. Bends are particularly impor-
tant to look for observationally, as they are robust features which do
not depend on smooth Corrections due to attenuation.

" Finally, this work has examined motions in the far-field. By in-
cluding retardation effects, the’model can also generate near field
. motions. One great advantage of this model is that source motions
and rupture velocities do not have to be assumed, but rather arise
from the dynamical equations. Success in producing a realistic syn-
thetic radiation source could have a nimber of apphcatlons in fields

- such as inversion 5e1§mology and earthquake engineering.
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