Estimation of Time-dependent Reliability
of Suspension Bridge Cables

Bin Liang

Submitted in partial fulfillment of the
requirements for the degree
of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2016



©2016
Bin Liang
All Rights Reserved



ABSTRACT

Estimation of Time-dependent Reliability
of Suspension Bridge Cables

Bin Liang

The reliability of the main cable of a suspension bridge is crucial to the reliability
of the entire bridge. Throughout the life of a suspension bridge, its main cables are
subject to corrosion due to various factors, and the deterioration of strength is a
slowly evolving and dynamic process. The goal of this research is to find the pattern
of how the strength of steel wires inside a suspension bridge cable changes with
time. Two methodologies are proposed based on the analysis of five data sets which
were collected by testing pristine wires, artificially corroded wires, and wires taken
from three suspension bridges: Severn Bridge, Forth Road Bridge and Williamsburg
Bridge.

The first methodology is to model wire strength as a random process in space
whose marginal probability distribution and power spectral density evolve with time.
Both the marginal distribution and the power spectral density are parameterized with
time-dependent parameters. This enables the use of Monte Carlo methods to estimate
the failure probability of wires at any given time. An often encountered problem
— the incompatibility between the non-Gaussian marginal probability distribution
and prescribed power spectral density — which arises when simulating non-Gaussian
random processes using translational field theory, is also studied. It is shown by copula

theory that the selected marginal distribution imposes restrictions on the selection of



power spectral density function.

The second methodology is to model the deterioration rate of wire strength as a
stochastic process in time, under Ito’s stochastic calculus framework. The deterio-
ration rate process is identified as a mean-reversion stochastic process taking non-
negative values. It is proposed that the actual deterioration of wire strength depends
on the deterioration rate, and may also depend on the state of the wire strength it-
self. The probability distribution of wire strength at any given time can be obtained
by integrating the deterioration rate process. The model parameters are calibrated
from the available data sets by matching moments or minimizing differences between

probability distributions.
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1.1 Reliability of suspension bridge cables

A suspension bridge is a structural type of bridge where the roadway is supported
by hanging on the suspension cables. The key components of a suspension bridge
are suspension cable, bridge towers, cable anchors, vertical suspenders and deck. The
cables, which are the most iconic component of a suspension bridge, are suspended
between bridge towers, and anchored on both ends of the bridge. The traffic load
and the self-weight of the deck is transferred to the suspension cable through vertical
suspenders. Such design makes the bridge light-weighted and strong, able to span
far longer than any other kind of bridges. Modern suspension bridges have been
built all over the world since late 19th century. As shown in Figure the George
Washington Bridge is a typical suspension bridge, which connects New York City and

New Jersey.

Figure 1.1: Aerial look of George Washington Bridge. By Gryffindor (Own
work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL
(http://www.gnu.org/copyleft /fdl.html)], via Wikimedia Commons
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The suspension cables are subject to huge tensile force, which is eventually trans-
ferred to the towers and the anchors. The suspension cable can be considered as the
most critical structural component to a suspension bridge as it connects all other
load-bearing components. Over the years of service, the suspension bridge cable
is subject to environmental degradation and intensive loads, which reduce its load-
bearing capacity. The deterioration of the main suspension cable is the major concern
in practice, and studying the reliability of the suspension cable is of great importance
to assessing the safety of the entire bridge.

The suspension bridge cable is made of thousands of small-diameter high-strength
steel wires. For example, the main cable of George Washington Bridge is made of
26,474 steel wires, each of about 5 mm in diameter. It has been observed in past
inspections that the strength of the wires deteriorates over time to different extends,
and it is possible to find wires in pristine condition and broken wires within the
same cross-section|Shi et al., 2007]. This is because many contributing factors to
deterioration, including environmental conditions and dynamic loads, have inherent
uncertainties. This prompts for probabilistic models for studying the deterioration
process, and for capturing the statistical characteristics of the entire population of

wires in a suspension cable.

1.2 Literature review

The quantification of uncertainty of wire strength are usually achieved from two
aspects. One is to directly study wire samples and the other is to study the ran-
domness of the deterioration process. This section briefly reviews researches in both

approaches, as well as challenges and unsolved problems.
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1.2.1 Random wire strength

The strength of a steel wire of a certain length is usually referred to as the minimum
strength along its length direction. This is based based on the weakest link model,
which states that the minimum strength along its length determines the strength of
the entire wire, as the wire is mostly likely to fail at its weakest point under tensile
loads.

Methods for quantifying the uncertainty of wire strength can be further catego-
rized into two types. Methods of the first type model the strength of each unit-length
segment of the wire of prescribed length as discrete random variables, while methods
of the second type model strength of the entire wire as a continuous random process.
Both types of methods aim to establish the probability distribution of the strength
of a wire of prescribed length. To achieve this goal the probability distribution of the
strength of wire segments of unit length must be established first. In the following
context we call it unit-length distribution for short.

In practice the unit-length distribution is established by extracting and testing
wires from real bridge cables or experimental devices, following the common steps

listed below:

1. Select a number of wire within the cable’s cross-section to form a representative

pool of all wires;
2. Remove selected wires of a length of 6-12 m (20-40 ft) from the cable;

3. Cut wires into a series of segments with unit length, usually 1 30.48 cm (1 ft)

long, and the location of the each segment in the cable is also recorded;

4. Conduct tensile testing on each unit-length segment to obtain samples of tensile

strengths.



CHAPTER 1. INTRODUCTION )

The unit-length distribution is established from these samples.

1.2.1.1 Random variable approach

Suppose the wire of prescribed length is discretized into n segments of unit length:

prescribed length
n =

(1.1)

unit length

Methods based on random variables consider the strengths of n unit-length wire seg-
ments as n random variables, and the overall strength of the wire is determined by
the minimum of the n random variables. It is implicitly assumed that the strengths
of wire segments are independent of each other, which is a good assumption for
brittle materials, but not necessarily a good one for ductile materials like steel. How-
ever, the validity of this assumption improves as wire deteriorate and become more
brittle|Camo, 2003]. Once the unit-length distribution is determined, the distribution
of the strength of the entire wire can be estimated numerically by Monte Carlo simu-
lation, or approximated analytically as Type I or Type III extreme value distributions
(EVD).

In the technical resort of cable investigation program of Williamsburg Bridge[Stein-
man et al., 1988|, the strength of unit-length wire segments was assumed to follow
Gaussian distribution. The Monte Carlo simulation for estimating the distribution
of the entire wire takes the following steps. First, realizations are generated for the
n random variables representing the n wire segments. Then, by taking the minimum
of these n realizations, one realization of the strength of the entire wire is obtained.
Finally, repeat these two steps to obtain many realizations of wire strength and es-
timate its distribution. Strictly speaking, Gaussian distribution may not be suitable

for modeling strength as it allows strength to take negative values, however, it is often
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found to match the unit-length distribution well. [Camo, 2003] also used Gaussian
distribution for modeling strength of unit-length wire segments based on Ben Franklin
Bridge and Bear Mountain Bridge testing data.

As the number of wire segments n becomes large, the distribution of the strength of
the entire wire converges to extreme value distribution (EVD). When the strength of
unit-length segments has exponential tails, e.g., Gaussian distribution, the strength
of the entire wire follows Type I EVD; when the strength of unit-length segments
has exponential tails and also a lower bound, the strength of the entire wire follows
Type III EVD (Weibull distribution). [Matteo, 1994] used Type I EVD based on the
same data and Gaussian distribution assumption as in [Steinman et al., 1988, and
compared results with Monte Carlo simulations. [Haight et al., 1997 further applied
Type I EVD estimate the reliability of four suspension bridges: Williamsburg Bridge,
Bear Mountain Bridge, Triborough Bridge and Golden State Bridge. [Perry, 1998]

proposed using Type III EVD based on Williamsburg Bridge data.

1.2.1.2 Random process approach

The methods based on random process recognize the correlation among the strength of
wire segments and eventually model the wire strength as a continuous random process.
A framework of suspension cable reliability assessment was established in [Shi, 2006],
based on modeling the variation of the strength of a single wire along its length
direction as a random process. To estimate the strength of the entire wire, realizations
of the random process must be generated by Monte Carlo simulation. Since the
marginal distribution of the wire strength is not Gaussian by nature, techniques for
simulating non-Gaussian random processes were developed such as [Grigoriu, 1998].
To estimate the strength of the suspension cable, the correlation of strength among

adjacent parallel wires must also be considered. |Montoya, 2012] studied the variation
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of mean of such random processes across the cross-section of a cable.

1.2.2 Simulation of random processes

Various methods have been proposed for simulating random processes, among which
the Spectral Representation Method (SRM) is the most widely used one. Besides,
also available in the literatures are ARMA methods|Gersch and Yonemoto, 1977]
and methods based on K-L decomposition [Karhunen, 1947]|Loeve, 1978]. Aforemen-
tioned random process simulation methods used for simulating wire strength are all
based on SRM.

The spectral representation method was first introduced in [Shinozuka and Jan,
1972] for simulating homogeneous multivariate processes in civil engineering with
various applications such as wind field and material properties. Given the marginal
distribution and the spectral density function of a random process, SRM synthesizes
realizations of the random process by summing up trigonometric basis functions with
random phases and weights specified by the spectral density function. The SRM
was extended to simulating non-stationary multivariate random processes with appli-
cation in earthquake engineering|Deodatis, 1996a]. The SRM was also extended to
simulating non-Gaussian random processes based on translation process theory|Ya-
mazaki and Shinozuka, 1988||Grigoriu, 1995 which maps the underlying Gaussian
random process to the desired non-Gaussian process. A challenging issue is the “in-
compatibility” between the marginal distribution and the spectral density function
of the non-Gaussian process, as they can be prescribed arbitrarily. Efforts have
been made to remedy this issue, such as |[Deodatis and Micaletti, 2001a|[Shi et al.,
2007][Shields et al., 2011]|[Benowitz, 2013]. A comprehensive review of non-Gaussian

random process simulation techniques can be found in [Bocchini and Deodatis, 2008].
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1.2.3 Random deterioration process

The uncertainty of wire strength can also be quantified by studying the wire de-
terioration process. This also needs to be combined with knowledge of initial wire
strength. The deterioration of wires includes two important aspects: corrosion and
hydrogen embrittle, both of which are subject to many environmental factors such
as temperature, moisture and pH level[Betti et al., 2005|[Barton et al., 2000], which
makes the deterioration process of the wires difficult to model. In order to observe
the effect of each factor a nondestructive corrosion monitoring system was developed
at Columbia University|Deeble Sloane et al., 2012]. The device was a full-scale sus-
pension bridge cable model placed inside an environmental chamber which was able
to simulate cyclic changes in temperature, relative humidity and pH level. Corrosion
rate sensor placed at different locations revealed that corrosion rate may be different
at different depths within the cable.

Since the deterioration rate has inherent fluctuation over time and the resulting
wire strength has uncertainty among the population, the deterioration rate is also
modeled as stochastic process in time. The deterioration process is treated as a
gamma process, whose increments are independent and follow gamma distribution
[Heutink et al., 2004], A comprehensive of review of the properties of gamma process

and its applications can be found in [van Noortwijk, 2009].

1.3 Research scope and objectives

The two key components to uncertainty quantification of random wire strength as
random process, i.e., the marginal distribution and the power spectral density func-
tion, are studied first. The objective is to demonstrate a procedure for estimating

the two from wire testing data. First, the marginal distribution as the best fit to the
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data is selected by various criteria such log-likelihood, Bayesian information criterion
(BIC), Akaike information criterion (AIC). Then power spectral density function is
constructed using Clough-Penzien spectrum with five parameters. Finally, both the
marginal distribution and the spectral density function are extended to be time-
dependent.

The incompatibility issue between the prescribed marginal distribution and power
spectral density function which arises when simulating non-Gaussian random pro-
cesses is also addressed in the dissertation. The objective is to alleviate, if not com-
pletely avoid this issue in the first place — by selecting an appropriate marginal distri-
bution and power spectral density function for the random processes when processing
data. It can be shown that based on copula theory the selected marginal distribution
actually imposes limitation on the selection of autocorrelation function and spectral
density function.

This research also aims to establish an innovative framework for modeling the dete-
rioration rate process using Ito’s stochastic calculus. Under this framework only mini-
mum assumptions must be made regarding the actual deterioration process, which are
non-negativity and mean-reversion. Once the dynamics of the deterioration rate pro-
cess is determined, then its statistical properties can then be derived analytically. In
addition to the stochastic deterioration rate, the actual deterioration of wire strength
may also depend on the state of the wire. Model calibration methods based on mo-
ment matching are also proposed and demonstrated using the observed probability

distribution of wire strengths.
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1.4 Outline of the dissertation

The dissertation is organized in the following way. Chapter 2 briefly introduce the
sources of data used throughout the dissertation. A total of five data sets are used.
Laboratory testing methods for accessing wire conditions are briefly introduced. The
sampling method for selecting wire samples is also introduced.

Chapter 3 aims to establish the pattern of evolution for the key statistical proper-
ties of wire strength based on the five data set. Descriptive statistics of the five data
sets of wire strength are shown first. A method for selecting the proper distribution
is developed based on criteria. Parameters of the selected distribution are then esti-
mated and made into functions of time. The wire strength is also modeled as random
fields, where consistent change of spectral density functions in time was observed,
including rising peak values and increasing areas under the curve. The parameters
of the PSD are also modeled as functions of time. This chapter finishes with an
attempt to provided a theoretical explanation to the incompatibility issue between
the marginal distribution and the PSD, which may arise when applying translation
process theory for simulating non-Gaussian process.

Chapter 4 establishes a theoretical framework for modeling the deterioration pro-
cess as a stochastic process defined under Ito’s stochastic calculus theory. The square-
root process is suggested for modeling the deterioration rate, which has nice properties
such as mean-reversion and non-negative (under certain conditions) that fit the phys-
ical law of deterioration well. The probability distribution of the deterioration rate
at any given time can be obtained by solving the Kolmogorov forward equation or
by Monte Carlo methods. Simulation methods of squared-root process are reviewed.
The deterioration of wire strength is a function of the deterioration rate and option-

ally the wire strength itself. Methods for calibrating the model are developed, based
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on matching moments or matching the distribution function.

Chapter 5 discusses a few loose topics. The first is about quantitatively estimating
the equivalent age of artificially corroded wires. The second is a comparative study
between methods developed Chapter 3 and Chapter 4, where both are able to predict
the distribution of wire strength at any given time. The third is an extension of
the stochastic deterioration model developed in Chapter 4, to account for spatial

correlation. This chapter also summarize the contributions and suggests future works.
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Chapter 2

Tensile testing of suspension bridge

cables
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2.1 Chapter summary

This chapter mainly focuses on the collection of five data sets of wire strength that
are used in this research from real bridges and from experimental devices. The past
suspension bridge cable inspection programs are first reviewed, during which three
data sets were collected from real bridges, which are Severn Bridge and Forth Road
Bridge in the United Kingdom, and Williamsburg Bridge in the City of New York.
The other two data sets were collected in the Carleton Lab at Columbia University:
one of them was from pristine wires, which serves as a baseline; the other one was

from a full-scale suspension cable model which was subject to artificial corrosion.

2.2 Testing of cable wires

Various laboratory testings can be conducted on wire samples to collect necessary
information to study its strength and degree of corrosion. These testings include

visual inspection, tensile testing, zinc coating testing, and chemical analysis.

2.2.1 Visual inspection

The visual inspection must be performed ahead of all other tests, which includes
assessing the condition of the wire, taking measurements of dimensions, such as length
and diameter. The condition of a wire sample can be categorized into the following

four stages of corrosion:
Stage 1 - spots of zinc oxidation on the wires;

Stage 2 - Zinc oxidation on the whole wire surface;
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Stage 3 - spots of brown rust covering up to 30% of the surface of a 3 to 6 inch

length of the wire;

Stage 4 - brown rust covering more than 30% of the surface of a 3 to 6 inch length

of wire.

2.2.2 Zinc coating test

Wire samples of Stage 1 and 2 are first selected and then tested following 1) Preece
test according to ASTM A239, which finds the thinnest spot of zinc coating; and/or
2) Weight of zinc coating test according to ASTM A-90, which is then compared
with specification requirements. The samples selected for zinc coating tests should
be spreaded over the length of the sample wire. Note that the zinc coating tested

samples is destroyed after each testing.

2.2.3 Chemical analysis

A chemical analysis is usually performed on selected samples to measure the percent-
ages of C, Si, Mn, P, S, Cu, Ni, Cr and Al. The result may be used for analyzing the

cause of corrosion.

2.2.4 Tensile testing

Tensile tests are in accordance with ASTM A586 and ASTM A370 to include yield
strength (0.2% offset method), stress at 2.5% strain, tensile strength, reduction of
area, and modulus of elasticity. Each cut specimen will have a length of 18 inches,
and the zinc coating is removed using hydrochloric acid on both ends around the

gripping area to avoid slipping.
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2.3 Suspension bridge cable inspection programs

2.3.1 Williams Bridge

In 1988, an assessment for evaluating the strength of the main cable of Williamsburg
Bridge was conducted by the Williamsburg Bridge Cable Investigation group, which
was form by engineering firms of Steinman, Boynton, Gronquist, and Birdsall in
association with Columbia University. The main cable was opened by wedging and
a total of 32 cable samples were extracted. These 32 samples are symmetrically
distributed across the cross-section area, and the sample have length ranging from
22.5ft to 36ft. Each sample was cut into 18-inch segments and tensile testing were
performed for each segment. At the end testing results of a total of 330 segments

were recorded. At the time of the testing, the bridge had been in service for 85 years.

2.3.2 Severn Bridge

In 2010, AECOM (as Faber Maunsell) in association with Weidlinger Associates
Inc. conducted inspection for the main cables of Severn Bridge |Cocksedge et al.,
2010][Fisher and Lambert, 2011]. A total of 1029 segments of wire samples were ex-
tracted and tested. At the time of the testing, the bridge had been in service for 41

years.

2.3.3 Forth Road Bridge

In 2003 Faber Maunsell of London in association with Weidlinger Associates Inc.
recommended and carried out the first internal inspection of the main cables of Forth
Road Bridge [Mahmoud, 2006]. A total of 620 segments of wires were extracted and

tested. At the time of the testing, the bridge had been in service for 44 years.
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2.4 Wire testing in Carleton Lab

As part of this research, tensile testings of pristine wires and artificially corroded wires
were performed in the Carleton Lab at Columbia University. A total of 65 pristine
wire samples and a total of 1209 artificially corroded wire samples were tested, and
the results are presented in Appendix [A]

Each wire was 20 foot long and cut into thirteen 18 inch samples for tensile testing
and one 6 inch sample for chemical component testing. The samples were required to
have 18 inches to allow for the grip length (3 inch on each end) and the strain gauge
length (10 inch). The zinc coating was removed around the gripping area to avoid
slipping. Measurements of wire diameter were taken at areas with and without zinc
coating (which are referred to as gross and net diameters in the results), as well as at
the necking area. Photos were taken for all tested samples before and after testing,
as shown in Figure [2.1]

Both the stress-strain curve and the loading curve of each sample were recorded.
As an example, Figure shows a typical stress-strain curve of a tested wire sample.
The straight line between the two “X” markers was used to estimate Young’s modulus.
Since the wire is made of hard steel so that the stress-strain curve does not show
obvious yielding point. The yield stress was calculated using the 0.2% offset method,
shown as the “0” marker in the figure. The stress at 2.5% strain is also shown in the
figure as an triangle marker, beyond which the strain measurement is considered not
accurate since necking might occur outside the wire segment that the strain gauge

measures.
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(a) Before testing.

(b) After testing.

Figure 2.1: Thirteen samples from one of the wires extracted from artificially corroded
cable.
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Figure 2.2: Typical stress-strain plot of a sample wire from tensile testing.

2.4.1 Pristine wires

A total 65 samples from 5 pristine wires were tested to serve as a baseline.

2.4.2 Artificially corroded cable

To study the deterioration of suspension bridge cable subject to weather conditions,
researchers in the Carleton lab at Columbia University placed a full-scale cable spec-
imen in an accelerated corrosion chamber |[Deeble Sloane et al., 2013] and exposed
the cable to simulated environment for a period of approximately two years. The
corrosion chamber was able to simulated various weather conditions, with different
temperature, humidity and pH level. These conditions were cycled multiple times per
day, so as to accelerate the deterioration speed. These wires are estimated to have an
equivalent age of 10 years base on observing their corrosion stages. This estimation

is used as given in Chapter 3 and Chapter 4, but in Chapter 5 a quantitative method
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is developed for better estimating the equivalent age.

2.4.2.1 Sampling of wires

The entire cable consists of 61 hexagonal wire strands, as well as loose wires filling
the gap to make the cross section a full circle. In order to re-use the cable after
the testing, each hexagonal strands must be preserved, so that the cable can be re-
assembled afterwards. To achieve this goal, only wires in the middle of each side of
each strand should be extracted for testing.

A space-filling design of experiment (DOE) based on maximizing the minimum
distance between samples[Santner et al., 2013] was applied to draw samples from the
strands of the cable. Let X be the entires pool of accessible wires and D be the

desired samples. Then D is selected by solving the following optimization problem:

max min ||z, — xs| (2.1)
DCX x1,x2€D

where || ]| is a measure of distance. Using this method, 81 wires were selected among
all stranded wires. Besides, 12 wires were selected on the surface of the cable, making
the total number 93. The locations of all accessible wires and selected wires are shown

in Figure [2.3



CHAPTER 2. TENSILE TESTING OF SUSPENSION BRIDGE CABLES 20

Figure 2.3: Locations of accessible and selected wires. X: accessible wires; O: selected
wires.
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3.1 Chapter summary

In this chapter statistical analysis is performed on tensile testing data obtained from
wires of different ages and conditions. The statistical analysis includes fitting various
probability distributions to wire strength data and selecting the best fits, and fitting
autocorrelation functions and power spectral functions. First, descriptive statistics
such as moments and histograms are presented for all five data sets which were col-
lected from three suspension bridges including Williams Bridge, Severn Bridge, Forth
Road Bridge, as well as pristine wires and artificially corroded wires.

This chapter is organized in the following order. First, the mathematical defini-
tions of random variable and random process are given, as well as their various prop-
erties. Then the copula theory is also introduced in order to explain puzzle of the
incompatibility between marginal distribution and power spectral density function
which arises in the simulation of non-Gaussian random processes using translation
field theory. The foundation of this section is the measure theory and probability
theory, interested reader can refer to [Kolmogorov and Fomin, 1975 for a good intro-
duction.

The main contribution of this chapter is the recognition of time-dependency of
probably distribution and power spectral density function of cable wires as the corro-
sion and deterioration is a constantly evolving process. This is done by fitting simple
analytical functions to the model parameters by regression analysis. Another major
contribution is to demonstrate that the aforementioned incompatibility issue which
arises in the simulation of non-Gaussian processes can be partially avoided by fitting

appropriate marginal distribution and power spectral density function to the data.
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3.2 Wire strength as random variables

We start our statistical analysis by modeling the tensile strength of wires as random
variables. This section first covers the definition of a random variable as well as its
various properties, especially the distribution functions. Then the discussion contin-
ues with how to select the appropriate distribution for tensile testing data and how
to estimate the parameters of selected distribution. Finally this section finishes with

the proposed evolutionary distribution functions.

3.2.1 Definition of random variable

To define a random variable we need to first define the probability space. The prob-
ability space is defined by a triple (€2, F,P), in which each component in the triple is

given below:
1. Sample space €2: it is a given set of all possible outcomes;

2. o-algebra F: it is a o-algebra define on ). Each element of F is a subset of 2,

which are called events;

3. Probability measure P: it defines a measure over F, which maps each B € F

to [0,1]. And the mapping is countably additive.

A random variable is a (real-valued) measurable function X : Q — R such that for

any B € B, which is a Borel set of R, we have

{we: X(w)e B} eF (3.1)
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Then for any B € R we can define the probability measure px(B) in terms of the
measure P in {2

px(B) =P(X(B)) (3.2)

In practice we often “forget” about the probability space which is used to define X
and only concern about the probabilities that X taking certain values in R. Formally
such probabilities can always be represented by the cumulative distribution function
Fx(z) of X:

Fy(z) = P(X < 2) = /B ix (2) dz (3.3)

Furthermore we define the derivative of Fx(z) with respect to x as the probability
density function:
0

fx(@) = 5 Fx(@) (3.4)

In theory all real-valued continuous random variable can be uniquely defined by its

probability density function.

3.2.2 Statistical Moments

Moments are quantitative measures of the distribution of a random variable. A
random variable X is often characterized by its first and second moments, known as
the mean and variance. The mean denoted as px, is the average value that X takes.

It is defined as
ix = B[X] = / 2 fx(z) da (3.5)

R
And the variance of X, denoted as oy, is the degree that X may vary around its

mean value. It is defined as

ox = Var[X] = E[(X — E[X])?] = / (2 — i) f () da (3.6)

R
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In practice if we had observed n realizations xi,xo, ..., x, of a random variable X,

then we can also estimate its mean and variance of the following

1 n
( - — i 37
Hx n EZ T (3.7)

n

ox = = 3 (i~ )’ (3.9

n—1

(2

Here iy and 6x are called unbiased estimator of ux and ox since we have
lim /_LXZIU)(, lim Ox =0x (39)
n—oo n—oo

In addition, we may also be interested in the third and fourth moments in order to
describe the random variable in greater details. To be more precise, the moments
here are all referred to as the central moments, i.e., centered at its mean value. The
third moment, also known as the skewness, is a measure of asymmetry of a probability

distribution function about its mean. It is defined as

sy = skew(X) = E [(X — “X)3] (3.10)

0x

General speaking, a unimodal distribution with a longer or fatter left tail would have
negative skew, and that with a longer or fatter right tail would have positive skew.

This is illustrated in Figure[3.1]
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Figure 3.1: Probability distributions with negative skew (left) and positive skew
(right).

Unlike mean and variance, the estimators for sample skewness are biased in
general|[Doane and Seward, 2011]. A commonly used estimator is the adjusted Fisher-

Pearson standardized moment coefficient (G1, which is computed as

n2

(n—1)(n—2)c%

Gy = (3.11)

where mz = £ 3" | (z; — fix)®. Or equivalently

G = nn—1) | ;3@ —ax)® (3.12)

n=2 (A (- )Y

Finally, the Kurtosis, which is derived from the fourth moment, is a measure of
the peakedness of the shape of a probability distribution function. The kurtosis is

commonly defined as the fourth standardized moment minus 3,

Yo = E[(Xa;fm ~3 (3.13)

The “minus 3” sets the kurtosis of the normal distribution to be zeros (since the

fourth standardized moment of the normal distribution is always 3), and therefore
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it is also referred to as excess kurtosis. Compared to the normal distribution, a
distribution with a positive kurtosis (leptokurtic) has a higher peak and fatter tails,
while a distribution with a negative kurtosis (platykurtic) is has a flatter peak and

thinner tail. A commonly used estimator of sample kurtosis is defined as

(n+Dn(n—1) 30 (x: — ix)t 5 (n—1)?

C = )3 i) -2 3)

(3.14)

Like the estimator of sample skewness (G1, this estimator of sample kurtosis is also

biased in general.

3.2.3 Commonly used probability distributions

Several probability distributions are extensively used in the rest of this dissertation.

A brief introduction to each of these probability distributions is given below.

1. Uniform distribution. It has two parameter a and b which specify the bounds
between which the random variable is distributed uniformly. Its PDF is given

by

fx(x) = . (x € [a,b]) (3.15)

A random variable X following uniform distribution is denoted as X Ul(a,b).
Especially, U(0,1) is often used as a bridge for transforming random variable

from one distribution to another.

2. Gaussian distribution. Also named normal distribution, it is another
important distribution is statistics. It has two parameters g and o, which

specify its mean and standard deviation. It PDF is given by

(3.16)
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3. Weibull distribution, also known as the Type III extreme value distribution,

has the following PDF

b b—1
fx(@i,a,b) == (g) e~ @D (2> 0,a>0,b> 0) (3.17)

where a is the scale parameter and b is the shape parameter. And its CDF is
given by
Fx(z:a,b)=1—¢ @ (z>0,a>0,b>0) (3.18)

The mean and variance of a Weibull random variable X is given by

b

(-]

where I'(+) is the gamma function.

E[X] = ol (1 + 1) (3.19)

and

Var[X] = a®

3.2.3.1 Connection with uniform random variables

A random variable of any distribution can be mapped and from to a uniform random
variable through its cumulative distribution function and its inversion function. Let
X be a random variable whose cumulative distribution function is Fiy(x). Let Y =
Fx(X) then we have Y ~ UJ0, 1]. Such mapping of a random variable of an arbitrary
distribution to a random variable of uniform distribution is called probability integral
transform. Conversely, the mapping a uniform random variable to a random variable
of an arbitrary distribution is called inverse transform sampling: let Y ~ U[0, 1], then

X = F¢'(Y), has cumulative distribution function Fy(z). This connection between
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any random variable and a uniform random variable plays an important role in the

copula theory, as we may see in the following chapters.

3.2.4 Wire tensile testing data

Preliminary statistical analysis are perform on the wire strength data including com-
puting statistical moments and plotting histograms. Table lists the first four
moments for each of the five data sets, as well as sample sizes and ages. Figure |3.2
plots the histogram of wire strength of the five data sets. Here the number of bins in

each histogram is computed by the Freeman-Diaconis Rule.

Table 3.1: Statistical moments of wire tensile testing data

Age Sample Size Mean Variance Skewness Kurtosis

New Wires 0 65 254.62 3.82 -0.29 -0.28
Carleton Lab 10 1209 251.45 18.94 -4.25 43.62
Severn Bridge 41 1029 247.99 54.16 -1.12 3.93
Forth Road Bridge 44 620 245.62 84.58 -2.34 18.57

Williamsburg Bridge 85 330  216.53 149.18 -0.68 -0.00




CHAPTER 3. TIME-DEPENDENT STATISTICAL MODELS OF WIRE
STRENGTH 30

New Wires (65 samples)

Carleton Lab (1209 samples)

20 140
120
15 t
100 r
> >
= & g0t
5 10 ¢ 2
3 g 60t
(i i
5| 40 t
20 t
0 ‘ ‘ : — L 0 ‘ : o
160 180 200 220 240 260 160 180 200 220 240 260
Max. stress (ksi) Max. stress (ksi)
140 Severn Bridge (1029 samples) 100 Forth Road Bridge (620 samples)
120 M M
80
100 r _
> I > L
© 80t 18 60 -
) H o) u
o 3
g 60 18 40!
L L
40 t
20 t
20
0 L L n 0 I =
160 180 200 220 240 260 160 180 200 220 240 260
Max. stress (ksi) Max. stress (ksi)

0 Williamsburg Bridge (330 samples)

Frequency
N w B (¢}
o o o o

—_
o
T

0
160 180 200 220 240 260

Max. stress (ksi)

Figure 3.2: Histograms of wire strength of five data sets: new wires, Carleton Lab
arificially corroded wires, Forth Road Bridge wires, Severn Bridge wires, Williamsburg

Bridge wires.
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3.2.5 Distribution fitting

With the presence of negative skew and/or non-zero kurtosis, the sample of wire
strength are unlikely to follow normal distribution. Two hypothesis test for normality,
i.e., skew test and kurtosis test, both give extremely small p-values for each data
set, which further suggest that the data does not strictly follow normal distribution.
The same exercise can be conducted for logarithm of the data to test if the data
follows lognormal distribution. Again, it turns out that the data are unlikely to
follow lognormal distribution either.

Therefore, a proper distribution must be found for wire strength, as it determines
the statistical properties of the data set. A good fitted distribution must be faithfully
representing the nature of the data and yet mathematically convenient. A large
sameple size of the data set is desired, as many of the statistical properties, especially
the subtle ones such as excess kurtosis, tail behavior will become more apparent as
sample size gets larger. Fitting a proper probability distribution to a given data set
can be achieved in two steps: first is to choose the best type of distribution, and
second is to estimate the parameters of the chosen distribution. In the following

sections the second step is discussed first.

3.2.5.1 Maximum likelihood estimation

Suppose a distribution with PDF fx(x;p) is selected to represent a data set of n
samples x1, Xa,...,T,, where p = {p1, pa,...,Pm} are the parameters of the distri-
bution to be determined. For distributions whose parameters are closely related to
statistical moments, the method of moments can be used to estimate the distribution
parameters. For example, the two parameters p and o of normal distribution can

be estimate using the first two moments of the data. However, if the relationship
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between distribution parameters and its moments is not straight-forward, another
commonly used method for estimating these parameters is the mazimum likelihood
method. Generally speaking, the likelihood is a measure of probability that the data
samples are produced by the given distribution. The parameters of the distribution
are so chosen that the likelihood is maximized.

Assuming the samples are independent to each other. Since the likelihood of
observing a sample x; is proportional to its PDF fx(z;;p), and the PDF’s are mul-

tiplicable by its nature, the likelihood function of the data set is defined as

L(x1, Tay ...y xn;P) = fx(z1;0) fx(x2;p) - .. [x(T0; D) (3.21)

The parameters p which are found by maximizing the likelihood function are called
the maximum likelihood estimator (MLE) p. Formally it can be formulated as an
optimization problem:

p C argmax L(x; p) (3.22)
p

In practise, the likelihood function is replaced by the log-likelihood function

l(xly Lo, ... 7$n7p) = hlL(Dj'l, Lo, ... 7$nap) = Zlan(xup) (323)
=1

which turns the multiplication into a summation, making the problem much easier to
tackle numerically. The solution obtained by maximizing the log-likelihood function
also maximizes the origin likelihood function since logarithm is a strictly monotoni-
cally increasing function. In practise the solution is often unique, and therefore they

can be estimated by equating the first order derivative of [ with respect to p to zeros,
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which is equivalent to solving the following system of equations

0
2 e ap) =0, j=1,2,..., 3.24
ap] (‘rly T2, y L p) J m ( )

3.2.6 Distribution selection

Determining the best distribution for a given data set is often achieved by trying out a
series of different distributions. Fach of the candidate distribution is first fitted to the
data set either by method of moments or maximum-likelihood method, and then the
best distribution is selected according to a certain measure of goodness of fit. Three
commonly used measures are negative log-likelihood (NlogL), Bayesian information
criterion (BIC) and Akaike information criteron (AIC). These three measures are

defined as the following:

1. Negative log-likelihood (NlogL). Smaller value indicates a bigger likelihood

and hence a better fit.

2. Bayesian information criterion (BIC). It is based on likelihood, and it is
given by
BIC=—-2InL+klnn (3.25)

where n is the sample size and k is the number of parameters in the distribu-
tion. For example £ = 2 for normal distribution. Increasing number of model
parameters may increase likelihood but may also result in overfitting, and hence
the second term is added to penalize for the number of parameters in the model.

Like Nlogl, a smaller BIC indicates a better fit.

3. Akaike information criterion (AIC). Similar to BIC, but the penalty is
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smaller. It is given by

AIC=2k—2InL (3.26)

The AIC is derived based on information theory. It is the Kullback-Leibler
divergence between the assumed “true distribution” and the fitted distribution
with k£ model parameters. The K-L divergence can be considered as the infor-
mation loss for using the fitted model to represent the true model. A detailed
introduction to KL divergence in given in Sec. [£.5.2.1] Since the true distribu-
tion is not known, the AIC is only valid in a relative sense, i.e., it can only be
used for comparing two fitted distributions. Again, a smaller AIC indicates a

better fit.

A pool of 14 commonly used probability distributions are fitted to the data sets
except for the new wires. These candidates are beta distribution, exponential distribu-
tion, extreme value distribution, gamma distribution, generalized extreme value dis-
tribution, generalized Pareto distribution, inversegaussian distribution, logistic distri-
bution, log-logistic distribution, lognormal distribution, normal distribution, Rayleigh
distribution, t location-scale distribution and Weibull distribution. Table [3.2] [3.4]
and list the the first four distributions of best fits, ranked by NlogL. measure. In
the tables also listed are BIC and AIC measures. These two measures both concur
with NlogL regarding the goodness of fit in all cases. The results show that the
Weibull distribution is the only distribution included in the top four best fit distri-
butions for each date set. Therefore in the following context Weibull distribution is
chosen for all data sets, including for the new wires. The fitted parameters of Weibull

distribution for all five data sets are summarized in Tabel B.6



CHAPTER 3. TIME-DEPENDENT STATISTICAL MODELS OF WIRE
STRENGTH

Table 3.2: Distribution selections for Carleton Lab

Distr 1 Distr 2 Distr 3 Distr 4
Distr Name | extreme value Weibull t location-scale logistic
# params | 2 2 3 2
NlogL 3187.0248 3192.5564 3219.9858 3279.3044
BIC 6388.2447 6399.3079 6461.2643 6572.804
AIC 6378.0496 6389.1128 6445.9716 6562.6089

Table 3.3: Distribution selections for Severn Bridge

Distr 1 Distr 2 Distr 3 Distr 4
Distr Name | Weibull t location-scale extreme value logistic
# params | 2 3 2 2
NlogL 3456.1187  3453.406 3459.9624 3460.5418
BIC 6926.1102 6927.621 6933.7976 6934.9564
AIC 6916.2375 6912.812 6923.9249 6925.0837

Table 3.4: Distribution selections for Forth Road Bridge

Distr 1 Distr 2 Distr 3 Distr 4
Distr Name | t location-scale logistic log-logistic ~ Weibull
# params 3 2 2 2
NlogL 2189.4337 2198.7343 2205.9773  2206.1689
BIC 4398.1565 4410.3281 4424.8139  4425.1973
AIC 4384.8673 4401.4687 4415.9545  4416.3378
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Table 3.5: Distribution selections for Williamsburg Bridge

Distr 1 Distr 2 Distr 3 Distr 4
Distr Name | Weibull extreme value generalized extreme value normal
# params | 2 2 3 2
NlogL 1286.3252 1286.6686 1289.1133 1305.7358
BIC 2584.2487 2584.9353 2595.6238 2623.0698
AIC 2576.6505  2577.3372 2584.2265 2615.4716

Table 3.6: Parameters of fitted Weibull distribution

Data Set Age a (scale) b (shape)
New wires 0 255.567  145.455

Carleton Lab 10 253.1128 88.37854
Severn Bridge 41 251.2461 40.70697
Forth Road Bridge |44  249.5643 32.93703
Williamsburg Bridge | 85 222.0711  21.35886

3.2.6.1 Probability plot

A probability plot can be used to visually assess how well a given data set follows

the specified probability distribution. A probability plot is constructed such that a

reference line which represents the specified distribution as a straight line. If the data

closely follows the specified distribution, then it falls on this reference line on the

probability plot. There are two types of probability plot: the Q-Q plot which plots

the quentiled’] of the data against that of the specified distribution; and the P-P plot

!By a quantile, we mean the fraction (or percent) of points below the given value. That is, the
0.3 (or 30%) quantile is the point at which 30% percent of the data fall below and 70% fall above

that value.
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which plots the cumulative densities. The P-P plot has good resolution in the center
but less in the tails, and vice versa for the Q-Q plot. In the following context the
probability plots are referred to as the P-P plots.

The scales of the axes of a probability plot can be set up such that the CDF of
the specified distribution becomes a straight line. However, in general there isn’t a
universal procedure that works for all distributions, as all probability plots customized
for each distribution, although there are commonly used techniques such as shifting,
scaling and take log scale. As an example Weibull probability plots are constructed
for the five data sets. Recall the Weibull CDF in Eq. , which can be rewritten

as

1
hlhl <TX($)> = bhll’ — blna (327)

Let ¢ =In (Tlx(w)>’ then ¢/ is in linear with respect to x if plotted in log-log scale.

All five data sets are plotted on the Weibull probability plots, as shown in Fig-
ure [3.3] Visual inspection suggests that Weibull distribution fits all data sets well,
except for the behavior of the left tails of Carleton Lab, Severn Bridge and Forth
Road Bridge can not be fully explained by Weibull distrution. The left tails of these
three data sets are all arced above the reference lines, which indicates that they have

more skewness than Weibull distribution.
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Figure 3.3: Weibull probability plots of wire strength of five data sets: new wires,
Carleton Lab artificially corroded wires, Forth Road Bridge wires, Severn Bridge

wires, Williamsburg Bridge wires.
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3.2.7 Evolutionary distribution

The deterioration of wire strength is a constantly but slowly evolving process over
time. As a result the probability distribution of wire strength also evolves in time. In
order to capture the pattern of such change, an evolutionary distribution is proposed,
where the parameters of the distribution are assumed to be functions of time.

Suppose data is available for the same set of wires across different periods of time.
After the best fit of distribution is determined and the distribution parameters are
estimated for data of each period, then by observing the pattern that each parameter
varies over time, a function of time, preferably simple analytical function, is fitted
to each parameter. Note the fitted function must meet the requirements as a suit-
able distribution parameter when extrapolating into reasonable future. For example,
a function for the standard deviation of normal distribution o(¢) must be strictly
positive.

As a demonstration of concept, an evolutionary distribution is created for the five
available data sets, although strictly speaking their evolution in time may not follow
the same pattern, as the wires in these five data set were taken from different bridges
or experimental devices and were subject to different environments. Moreover, wires
in each data set have different initial strength. To make the five data sets comparable
as much as possible, they are normalized by dividing wire strength by their nominal

initial strength which are taken as a rounded number of maximum strength in each

data set, as listed in Table [3.7]
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Table 3.7: Nominal initial wire strength of the five data sets.

Data Set Age Nominal initial strength (ksi)
New wires 0 261
Carleton Lab 10 261
Severn Bridge 41 265
Forth Road Bridge 44 265
Williamsburg Bridge | 85 258

Weibull distributions are then fitted to the normalized data sets, and the param-
eters are listed in Table [3.8f Compared to the parameter in Table [3.6] the shape
parameters b stay the same.

Table 3.8: Parameters of Weibull distribution fitted to normalized data.

Data Set Age a (scale) b (shape)
New wires 0 0.97919  145.455

Carleton Lab 10 0.96978  88.37854
Severn Bridge 41 0.94810 40.70697
Forth Road Bridge |44  0.94175  32.93703
Williamsburg Bridge | 85  0.86074  21.35886

Analytical functions of time are then fitted to Weibull parameter a and b, which

are estimated from normalized data. The candidates for such analytical function are:

1. Polynomial functions of order k:

p(t) =cy+ it + 02t2 + ...+ thk (328)

2. Exponential of polynomial of order k:

p(t) — 660+81t+62t2+...+cktk (329)
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3. Shifted exponential of polynomial of order k:

p(t) =c_4 _|_ 600+01t+62t2+...+cktk (330)

4. Logistic function:
1

PM) = T @ren (3.31)

Weibull parameter a and b are plotted against the ages of the data sets in Fig-
ure |3.4] By observing the pattern that each parameters changes over time, a second
order polynomial function is selected for fitting parameter a, and an exponential func-
tion of first order polynomial is selected for fitting parameter b. The fitted functions

are given by
a(t) = 0.976666 — 1.690447 x 10™* — 1.401448 x 10~ °¢? (3.32)

and

b(t) = 115.115300¢ 0022254t (3.33)

Combining the Weibull distribution PDF in Eq. and the time-dependent pa-
rameters in Eq. and Eq. , a time-dependent Weibull distribution is es-
tablished. We call such probability distribution with time-dependent parameters an
evolutionary distribution. As a comparison Table [3.9| show the statistics of the five
data sets and of the fitted evolutionary Weibull distribution. Figure |3.5] plots the
PDEF’s of the fitted evolutionary Weibull distribution, evaluated at the ages of the
five data sets. It shows a clear trend that as time passes the mean value of strength
shifts towards lower values, while the variance increases.

An important feature of the evolutionary distribution is that it can be extrap-
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Figure 3.4: Weibull distribution parameters as functions of time.
Table 3.9: Statistics of the data and fitted evolutionary Weibull distribution.
Data Set Mean Median Std. Dev.
ata oo Data Fitted | Data Fitted | Data Fitted
New Wires 0.97534 0.97184 | 0.97672 0.97356 | 0.00856 0.01076
Carleton Lab 0.96357 0.96759 | 0.96577 0.96971 | 0.01387 0.01336
Severn Bridge 0.93521 0.93479 | 0.93960 0.93870 | 0.02896 0.02554
Forth Road Bridge 0.92608 0.93001 | 0.93133 0.93414 | 0.03530 0.02714
Williamsburg Bridge | 0.83927 0.83510 | 0.84610 0.84306 | 0.04880 0.05933

olated into the future, which is useful in reliability engineering. Two issues must

be paid attention to when performing the extrapolation. The first issue is that the

time-dependent parameters must remain eligible as parameters of the distribution.

For example, both parameters for Weibull distribution must be greater than zero. In

the above case b(t) > 0 for all ¢, but a(t) > 0 only for ¢ < 258.02yr. As a result

the evolutionary Weibull distribution is only valid in this range. The second issue

is that it is preferred that the fitted evolutionary distribution preserves the observed

monotonicity of the key statistics over time. In the above case it is observed in Ta-

ble. that the mean of the normalized wire strength decreases in time while the

variance increases. Let m(t) and v(t) be the mean and variance of the fitting evolu-
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Figure 3.5: PDF’s of the fitted evolutionary Weibull distribution evaluated at the
ages of the five data sets.

tionary Weibull distribution, respectively, which can be computed using Eq. (3.19)
and Eq. (3.20]). Taking derivative with respect to time t of the mean m(t) yields
_Om , om

= St + ()

=T (1 + %) d(t) - %r' (1 + %) b (t) (3.34)

m'(t)

where I"(-) is the polygamma function. For 0 < ¢ < 258.02, we have a > 0, b > 0,
['(1+1/b) > 0and I''(14+1/b) < 0. From Eq. and Eq. we have a’ < 0 and
b < 0. Therefore we have m/(t) < 0, indicating the mean of the fitted evolutionary
Weibull distribution monotonically decreases over time, which fits observation. The
monotonicity of the variance v(t) is hard to see analytically. It can be found numeri-
cally that v(¢) monotonically increases for t < 240yr (approximately). Therefore we
take the valid range of the fitted evolutionary Weibull distribution as [0, 240]yr. Fig-
ures and show the mean and variance as functions of time over this range,

respectively.
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Figure 3.6: Mean and variance of fitted evolutionary Weibull distribution as functions
of time.

Beyond this range, both the mean and variance quickly drop to zero simutaneously,
which indicates that the PDF eventually degenerates into a delta function centered
at zero when the strength of all wires become zero. Note that the breaks of wires are
not explicitly considered here, if it was, the distribition of wire strength would evolve

more abruptly especially when the wire strength is low.
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3.3 Correlation and Copula

Let X and Y be two random variables defined on the same probability space (2, F, P).
Then we would like to know the probability that they both taking certain values, and

this is given by their joint cumulative distribution function, defined as
Fxy(z,y) = P(X <2,Y <) (3.35)

Similarly, taking derivatives on Fxy twice with respect to x and y yields the joint

probability density function

2
Fer(e.0) = 5o Fv(e.) (3.36)

Based on the joint probability density function we can define the covariance
Cov[X,Y] of X and Y, which measures how much Y varies in response to the change
in X, and vice versa. In general if X and Y tend to take their biggest values and
smallest values at the same time, the their covariance is positive; otherwise their

covariance is negative. It is defined as

CovlX,Y] = E[(X — E[X])(Y — E[Y])] (3.37)

Alternatively, after expanding it and collecting terms, we have

Cov[X,Y] = E[XY] — E[X]E[Y] (3.38)

where the F[XY] term is computed by integrating over their joint probability density
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function

B[XY] = /R ey (o) dady (3.39)

If the value that random variable X takes does not depend on the value that
random variable Y takes and vice versa, then we say that X and Y are indenpen-
dent. Mathematically X and Y are indenpendent if and only if their joint cumulative

distribution function is separable

Fxy(z,y) = Fx(z)Fy(y) (3.40)

or alternatively, their probability density function is separable

fxy(z,y) = fx(2)fr(y) (3.41)

As a result the expectation of their product can be expressed in terms of the product

of their expectations:

E[XY] :/l“?/fXY(xa?J) dx dy
— [wts@dr- [urw)ay

= E[X]E[Y] (3.42)

Apparently that if X and Y are independent of each other then their covariance is

Z€ero

Cov[X,Y] =0, if X and Y are independent. (3.43)

Closely related to covariance is the Pearson’s correlation coefficient, defined as a
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normalized quantity:

And it can be shown that —1 < pxy < 1 due to normalization. It measures the linear
correlation between two random variables, and being -1 or 1 indicates the data points
of X and Y fall exactly a line. The Pearson’s correlation coefficient is symmetric, i.e.,

pxy = py.x and is invariant to affine transformation to each X or Y, or both.

3.3.1 Copula and correlation bounds

The drawback of both covariance and Pearson’s correlation coefficient as measures of
correlation between two random variables is that they only measure the correlation
with a single number, which might not provide enough resolution on the entire cor-
relation structure which is defined by the joint distribution function. However, the
joint distribution function is often too cumbersome to work with, and it is hard to
directly observe the correlation structure from it. To overcome this drawback, we
briefly introduce a more powerful tool for describing the correlation structure, which
is called copula. The beauty of it is that by using the probability integral transfor-
mation (see , a copula is capable of stripping the correlation structure out of
the original joint distribution function, and representing it in an universal way.

By definition, a copula is a multivariate probability distribution with the marginal
distribution of each random variable being uniform distribution. For simplicity, in the
following context we restrict our discussion to copulas on two random variables. Let
Xi, X5 be two random variables with marginal CDF Fy, (z), Fx,(z), respectively,
and joint CDF Fx, x,(x1,22). Applying probability integral transformation on X;
and X, gives

Uy = Fx,(X1), U= Fx,(X3) (3.45)
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where U; ~ U[0,1] and Us ~ U|0,1]. Then a copula of X; and X, is defined as the
joint CDF of U; and Us:
C(Ul, Ug) == FU1U2 (Ul, u2) (346)

The Sklar’s Theorem guarantees that Fy,y, (u1, ug) always exists for the given Fx, x, (21, x2)
and the marginal CDF Fy, (x), Fx,(z), and hence the copula C(uy,us) of X; and X5
always exists. Flx, x,(x1,22) is directly linked to the copula through the marginal
CDF’s:

FXle(xth) = C(FX1<x1)7FX2(x2>) (347>

In this way the information regarding the marginal distribution is filtered out, while
the information regarding the correlation structure remains. Universal methods can
then be developed to study the copula itself, yet literally such methods can be applied
to any marginal distribution.

An important property of copula is that it can be bounded. The Fréchet-Hoeffding

Theorem states that in the bivariate case

max(u +v —1,0) = W(u,v) < C(u,v) < M(u,v) = min(u,v) (3.48)

where the lower and upper bounds are denoted as W (u,v) and M (u,v), respectively.
Note that the lower bound may not be generalized to multivariate cases. When the
Fréchet upper bound is achieved, the random variables X; and X are called comono-
toic, referred to as the perfect positive dependence between the two variables, where
the Pearson’s correlation coefficient reaches its maximum pp,... When the Fréchet
lower bound is achieved, the random variables X; and X, are called countermono-
toic, referred to as the perfect negative dependence between the two variables, where

the Pearson’s correlation coefficient reaches its minimum puin.  Pmin @0d pPrax to-
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gether give the attainable correlation bounds on the Pearson’s correlation coefficient
for a specific distribution.

One of the commonly used copula is the Gaussian copula, which is given by

Co(u,v) = (27 (u), 27} (v); p) (3.49)

which is parameterized by the parameter p in the CDF of joint standard Gaussian
distribution. It can be verified that Gaussian copula achieves Fréchet upper bound if

and only if p = 1, and it achieves Fréchet lower bound if and only if p = —1.

3.3.2 Bounds of Pearson’s correlation coefficient

The standard definition of the Pearson’s correlation coefficient in Eq. can be
used to find p;, and ppax. In this section we study the attainable correlation bounds
of two random variable X; and X, with the same marginal CDF Fy(x), and hence
the same mean px and standard deviation ox. Let their joint CDF be F, x, (21, x2).
Then we have

E[X1 Xo] — %

PX1Xy = P (3.50)

The problem is reduced to finding the maximum and minimum values of E[X;X,],

which can be computed in terms of copula:

E[XlXQ] = X1X2 dFX1X2(.Z'1,LC2) (351)
2

:/01 /01 F(un) Fi (us) AC (s, us) (3.52)
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When the copula C(uy, us) achieves the Fréchet upper bound, we have

E[X1 X5] max / / % (u) d min(uy, uy) (3.53)
/ / uz)d(ul — ug) duy dus (3.54)
= / o (w) Ft(u) du (3.55)

/ X2dFx(z (3.56)

Therefore if X; and X5 have the same marginal CDF then py.c = 1. When the copula

achieves the Fréchet lower bound, we have

E[X1 X2 min / / o (up) dmax(uy + uy — 1,0) (3.57)
/ / o (U2)d(ug + ug — 1) duy dug (3.58)
_ /0 ) (1 — ) du (3.59)

However, the minimum value is not immediate available as it depends on the marginal
CDF. In particular we are interested in finding it for standard normal distribution
and Weibull distribution.

Standard normal distribution

For standard normal distribution, due to its symmetry we have F'(z) = —Fy'(x),

and therefore

E[X1 X min = /0 1 — P (u) Pt () du (3.60)
—/X2 dFx(z)a (3.61)

=1 (3.62)
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which indicates that pu;, = —1 for standard normal distribution.
Weibull distribution

For Weibull distribution with parameter a and b, we have

Fil(r) =a (ln ! )i

l—=x

and

1
E[X1 X min = / a’[lnuln(l — u)]% du
0

o1

(3.63)

(3.64)

The result depends on a and b, and it can be evaluated numerically. The minimum

correlation coefficient is computed for all five data sets, assuming the data follows

the fitted Weibull distribution with parameters in Table [3.6] The results are listed in

Table This indicates that the selection of probability distribution for the data

also imposes bounds on the data itself.

Table 3.10: Minimum correlation coefficient of the fitted Weibull distributions (see

Table [3.6] for fitted parameters) for the five data sets.

Data Set Age Min. p
New wires 0 -0.8919
Carleton Lab 10 -0.8956
Severn Bridge 41 -0.9064

Forth Road Bridge 44 -0.9109
Williamsburg Bridge | 85  -0.9230
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3.4 Wire strength as random processes

When testing the wire samples for tensile strength, their spatial coordinates were also
recorded. Using this information the wire strength along the wire length direction
can be modelled as a random process with marginal distribution being the Weibull
distribution as identified previously. This section gives the formal definition of a
random process, followed by concepts such as stationarity and second moment prop-
erties. Then evolutionary correlation function and power spectral density function
are introduced to capture how the nature of the random process that represents wire

strength changes over time.

3.4.1 Definition of a random process

A random process is a parameterized collection of random variable

{Xe}een (3.65)

defined on a probability space (€2, F, P) and taking values in R". = is the parameter
space. The parameter can be either time or spatial coordinate. If the parameter is
time, the parameter space is usually the half line [0, 00). Random process in time is
often also referred to as stochastic process in many literatures. In the next chapter
the deterioration rate will be modelled as a stochastic process. If the paramter is
spatial coordinate, the parameter space is often a subset of R™ for n > 1, and such
process is often also referred to as a random field, which has extensive applications
in engineering. In this chapter the wire strength at a specified time is modelled as
a random process, with the parameter being the spatial coordinate along the wire

length direction.
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For each fixed £ € = we have a random variable

w— Xe(w), we (3.66)

On the other hand, fixing w € €2 gives us a function

£ = Xe(w), £€E (3.67)

which is called a path of X, for a stochastic process or a realization, or a sample for
a random field.

If the parameter space = = R, i.e., the random process is one-dimensional, a finite
dimensional distribution of order k of such process X¢, £ € R is defined as the joint

probability disiribution of a set X¢,, Xe,, ..., Xe,:

e

F§1,§2 7777 gk(l'l,%g,...,xk) :P(X& S.’L‘l,X& S iL‘Q,...,X{k S l’k) (368)

Especially when k& = 1, it is called the marginal distribution of the process. When k >
1, the finite dimensional distribution contain information regarding the correlation

structure of the process.

3.4.2 Second moment properties

The first two moments of a random process are of great importance as many of the
properties of a random process are related to or defined based on them. For a real-
valued, one-dimensional, and square integrable random process X (¢), the following

second moment properties can be defined

1. Mean function: u(t) = E[X(t)]
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2. Correlation function: R(t,s) = E[X(¢)X(s)]
3. Covariance function: C(t,s) = E[(X(t) — u(t))(X(s) — u(s))]

The correlation function and covariance function defined on a single random process
are also be called autocorrelation function E] and autocovariance function, respectively.
Both functions are positive semidefinite. The second moment properties of a random
process are given by the pair of mean function and either one of the correlation

function or the covariance function.

3.4.3 Stationary process

A random process is said to be strictly stationary if its finite dimensional distribution

is invariate to time shift:

P{X(t) < 21, X(t2) < 29, ..., X(t) < 21}

=P{X(t1+7) <z, X(ta+7) <w9y..., X(tp +7) <z}, forallr (3.70)

As a result, the mean function is constant, and both the correlation function and

covariance function depend only on the time lag 7 =t — s:

1. wp(t) = p, constant (3.71)
2. R(t,s) =R(t—s) = R(7) (3.72)
3. C(t,s) =C(t—s)=0C(1) (3.73)

2In some applications the autocorrelation function is defined in terms of the normalized covariance

function:
' B[(X (1) — p(6))(X(5) — (s))
V/Var[X (t)]y/Var[X (s)]

R(t,s) = (3.69)
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In practice the condition on finite-dimensional distribution often turns out to be too
strong and therefore has limited applications. Instead, a random process is said to be
weakly stationary or stationary in a wide sense if its mean, correlation, and covariance
satisfy Eq. Eq. , regardless of the finite dimensional distribution. For a

weakly station random process, both R(7) and C(7) are even functions, and satisfy

R(1) < R(0), C(r) < C(0) (3.74)

3.4.4 Power spectral density

For a weakly stationary random process, the power spectral density (PSD) function
is defined as the expectation of direct Fourier tranform of the random process:

S(w) = lim E [\XT(w)ﬂ (3.75)

T—o00

where the subscript 7" indicates that the Fourier transform X (w) is computed using
realizations of X(¢) over the interval [0,7]. The power spectral density function
is symmetric, and it describes the distribution of power over different frequencies.
The Wiener-Khintchin Theorem states that correlation function and power spectral

density function of a weakly stationary random process form a Fourier pair:

R(7) = /_00 S(w)e™ dw (3.76)
and
S(w) = %/ R(t)e ™7 dr (3.77)

The power spectral density function contains all information of both the mean and

the correlation funciton. If the mean of the random process is not zero, the power
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spectral density function contains a delta function at origin p?d(0). Therefore the
power spetral density function provides an alternative way for specifying the second
moment properties for weakly stationary processes.

For zero-mean weakly stationary random processes, the one-sided spetral density

is often used in engineering, which is defined as
gonesided () — 98(w),  w >0 (3.78)

The one-sided power spectral density function is used throughout this chapter. Fur-

thermore, it can be shown that the following relationship holds:

Var[X ()] = R(0) = /0 N gonessided (1) dw (3.79)

3.4.5 Estimating spectral density and correlation from data

Suppose that wire strength can be modelled as weakly stationary random process.
This section seeks to estimate the power spectral density function and correlation
function of wire strength from the five available data sets. In practise the spectral
density function is estimated first since it is easier to construct than the correlation
function. This is because it is hard to guarantee the correlation function be positive
semidefinite when estimated it from data, but it is easier to require the estimated
power spectral be non-negative.

The power spectral density function can not be directly estimated using its def-
inition as given in Eq. as the result may suffer from severe frequency leakage
due to finite 7. Instead the Welch method|Stoica and Moses, 2005] with Hamming
window and without overlapping is used. The window length is selected by try-

ing different values. For each data set the overall mean is subtracted from all wire
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strength samples. The estimated one-sided power spectral density functions are plot-

ted in Figure Then the correlation functions are obtained by Wiener-Khinchin

transformation Eq. (3.76)), as shown in Figure
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Figure 3.7: Power spectral density functions estimated from all five data sets.
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Figure 3.8: Correlation functions estimated from all five data sets.

500

To make the the power spectral density functions comparable, they are normalized

such that their maximum value is equal to 1, as shown in Figure |3.7bl The spectral

density of new wires has the widest spread over frequency while the spectral density
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of Williamsburg bridge wires, which is the most aged, has the narrowest spread. The
spectral densities of the other three data sets lie in between. The similar phenomenon
can also be observed on the correlation functions which are normalized by dividing
R(0), as shows in Figure . Both observation suggests that the second moment
properties of the random process of wire strength may follow a certain pattern of

evolution in time.

3.4.6 Evolutionary power spectral density and correlation

This section studies the pattern of how power spectral density function evolves as
wire deteoriates. As a demonstration of concept, the pattern is established using the
five available data sets, although strictly speaking, as mentioned in Sec. [3.2.7] the
evolution of each set of wires may not follow the same pattern.

The Clough-Penzien spectrum with five parameters is chosen to fit the power
spectral density functions of each data set, which is given by

wy + (2¢gwew)? ' wl 5o
(W2 — w?)? + (2Qwew)? (w7 — w?)? + (2(pwsw)? 27

S(w) = (3.80)

where the first term is the Kanai-Tajimi spectrum, and the second term is a high-pass
filter. This is a two sided spectrum. The parameters w, and (, determine the peak and
spread of the Kanai-Tajimi spectrum, while parameters w; and (; determine the cut-
off frequency and convergence speed of the high-pass filter. Parameter Sy is a scaling
factOIﬂ such that the area under S(w) is equal to the variance of the wire strength
samples. The correlation function corresponding to Clough-Penzien spectrum is also

available in analytical form. The derivation can be found in [Kung and Pecknold,

3The original Clough-Penzien spectrum was resulted from filtering a white noise vibration whose
spectral density is constant Sj.
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1982]. Following the notations as in [Fu, 1995], the correlation function R(7) is given

by
R(r) = ie_cg“’gm (Car + Cyy) cos w?|| + Sos (Car — Cyy) sinw?|7|
4ngg g w;l 9
+ﬁ%WWW%+%MWWH@%%—%mMW|(mn
4waf W
where

wi = 4/1 = Cuw, (3.82)
wi = /1= Gy (3.83)

And Cy1, Coz, Cp and Cly are given in Appendix [C]

The cut-off frequency wy of the high-pass filter is chosen to be 0.0014, to account
for finite sample size. The damping ratio (f of the high-pass filter is chosen to
be 0.7, to avoid sharp peak in the spectrum. The remaining three parameters w,,
(g and Sy are estimated separately for each data set by simutaneously minimizing
the maximum absolute errors on the spectral density functions and the correlation
functions. Figure [3.9] compares the fitted Clough-Penzien spectrum to the target
spectral density functions estimated from data, as well as the fitted Clough-Penzier
correlation function to the targets. The estimated values of the parameters wy,, ¢,
and Sy are summarized in Table [3.11

The parameters wy, ¢, and Sy are then modelled as functions of time. Candidates
of analytical function forms are given by Eq. NEq. . By plotting their
values in Figure [3.10| and observing their behaviors, exponential functions are fitted
to both wy and (¢, and a quadratic function is fitted to Sy. However, from Figure
and Figure it is suspected that the Forth Road Bridge data is an outlier, as
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it significantly deviates fromt the pattern which is followed by the other four data
sets. Therefore the analytical functions are fitted again excluding the Forth Road

Bridge data set. The fitted analytical functions are given by Eq. (3.84)), Eq. (3.8
and Eq. (3.86]).

Table 3.11: Estimation of parameters of Clough-Penzien spectrum for all five data
sets.

Age wy, ¢ So
New wires 0 4.538x1073  2.741 3.144x10?
Carleton Lab 10 3.832x107% 2.337 2.138x10?
Severn Bridge 41 2.353x107% 1.944 1.231x10*

Forth Road Bridge |44  8.714x107% 1.185 7.261x10?
Williamsburg Bridge | 85  1.689x107% 1.782 5.883x10%

wy(t) = 0.0043¢~ 00116 (3.84)
C,(t) = 2.5454¢ 00047 (3.85)
So(t) = 1006.9 — 80.01¢ + 8.9323t* (3.86)

By now the evolutionary power spectral density function is constructed as the
Clough-Penzien spectrum with time-dependent parameters. It is plotted in Fig-
ure[3.11a) from 0 years to 120 years with 30-year increments. The peaks of the spectral
density functions get higher in time as the variance of wire strength increases. By
fixing So = 1, the normalized spectral density functions are plotted in Figure [3.115]
As the age of the wires increases, the location of the peak of the spectral density
shifts towards zero, while the spread of the spectral density becomes narrower. The

corresponding correlation functions and their normalized versions are plotted in Fig-
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ures and |3.12b| respectively. As the spread of the spectral density becomes
narrower, the corresponding effect is that the correlation function decays slower. The

correlation functions are guaranteed to decay towards zero due to the presence of the

exponential functions in Eq. (3.81)).
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3.5 Simulation of non-Gaussian process

Using the evolutionary distribution developed in Sec)3.2.7 as the marginal distri-
bution, and the evolutionary spectral density developed in Sec[3.4.6] realizations of

random process of wire strength can be generated. With the realizations and a care-
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fully selected failure criterion, the failure probability of the suspension bridge cable
can be estimated for any given time. This section reviews the simulation method for
non-Gaussian random process and discusses the often encountered incompatibility

issues.

3.5.1 Simulation by translation process

Simulation of a non-Gaussian process X (t) with prescribed marginal distribution
Fye(z) and prescribed spectral density function S (w) (or equivalently, prescribed
correlation function R% (7)) can be achieved by using the translation process theory|Grig-
oriu, 2002]. It takes the following steps. Let Y'(¢) be a stationary process with stan-
dard Gaussian distribution as its marginal distribution and normalized correlation
function p(7). Realizations of Y (t) are first generated using spectral respresentation
method|Deodatis, 1996b]. Then the realizations of Y () go through a memoryless

mapping ¢(-) to tranform into realizations of the desired non-Gaussian process X (¢):
X(t) = g[Y ()] = Fy{2[Y ()]} (3.87)

The resulting process X (t) will still be stationary and have Fg(-) as marignal dis-
tribution. The correlation function of Y (¢) obtained by this transformation can be
related to the correlation function p(7) of the underlying Gaussian process through

the following mapping:

R (r) = hp(r)) = / N / 9Bl e (1) dyr e (3.88)

where ¢(y1,y2; p(7)) is the joint PDF of bivariate normal distribution with correlation

p(7). In order that the transformation works, the correlation function p(7) must
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be carefully selected such that Ryg(7) matches the prescribe correlation function

Rig(T).

3.5.2 The incompatibility issue

In most cases a valid correlation function p(7) of the underlying Gaussian random
process Y (t) can be found by solving the inverse problem in Eq. . However, in
some cases there is no solution of p(7) exists for a given R%, (7). When this occurs,
we say the prescribed correlation function Ryg(7) is incompatible with the prescribed
marginal distribution Fyg(x). There are two types of incompatibility issues. The first
type arises when given a value of Ry¢(7) the corresponding p(7) does not exist, or its
value is outside of [—1, 1]. In some rare cases, although p(7) exists point-wise for all 7
and its values are all within [—1, 1], the second type of incompability issue may arise
when p(7) itself is not positive semi-definite, making it ineligible as an correlation
function. Both types of incompatible issues are due to the fact that the marginal
distribution Fyg(z) and correlation function Ry (7) can be prescribed separately
and arbitrarily.

Here we claim that if RY,(7) conforms with its attainable correlation [R., R*]
specified by the marginal CDF Fyg(-), and the function g = F&é o ® has two-sided
Laplace transformation, then the solution p(T) to the inverse problem in Eq.
exists. In other words, the incompatibility issue of the first type will not occur in this
case. A sketchy proof is given below.

Suppose X (t) has finite dimensional distribution F ]s%(xl,@), which is parame-

terized by 7. Then Ry¢(7) can be computed as

RNG(T) = / / T1X2 dF](\;-C)Tv<£IZ'1, l’g) (389)
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By Sklar’s theorem it can be rewritten in term of its copula:

Rya(r) = / / Fiyb(un) Fih (u2) dOS (ur, o) (3.90)

Again the copula is also parameterized by 7. The attainable correlation R, and R*

can be found by substituting the copula with its Fréchet-Hoeffding lower and upper
bounds given by Eq. (3.48)).

1 1
R = / / Fk(un) Fl (us) dM (ur, us) (3.92)
0 0
On the other hand, rewriting Eq. (3.88) gives
o) = [ [ Flel ke Ao ()] (399

1 1
0 0

where C27) (uy, uy) is the Gaussian copula parameterized by p(7). Since the Gaussian

copula achieves Fréchet-Hoeffding lower and upper bounds when p(7) takes -1 and 1,

respectively, by comparing Eq. (3.94)) with Eq. (3.92)) we see that
h(=1)=R., h(l)=R" (3.95)

Therefore if h is continuous on [—1, 1], then by Intermediate Value Theorem for
any R € [R., R*] there must exists a p € [—1, 1] such that h(p) = R. Actually the

continuity is implied by the Price’s Theorem|Price, 1958] which states that if g admits
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Laplace transform then the derivative of h is given by

3.96
Oy 0y ( )

Furthermore if Fyf, is strictly increasing (e.g. Weibull distsribution) then g is also
strictly increasing and hence 0h/0p > 0. This indicates that h : [-1, 1] — [R., R*|
is one-to-one and it has an inverse function A~! which can be used to find p directly
for given Ry¢.

However, so far there is not an effective way to avoid the compatibility issue of
the second type. Even if the Ryg(7) is positive semi-definite and the correponding
p(7) can be found for all 7, p(7) may not necessarily be positive semi-definite. A
iterative method was proposed|Deodatis and Micaletti, 2001b| to remedy this issue
by adaptively altering the power spectral density function corresponding to p(7) such
that the correlation function of the realizations simulated by translation process ap-
proximates the prescribed target. A mathematically explanation behind such method

was given by |Grigoriu, 2009).

3.6 Procedures for estimating reliability by simu-
lation

Due to the restriction imposed by the attainable correlation bounds, the following
guidelines are proposed for establishing probability distribution and power spectral
density function to a target data set, and eventually estimating the failure probaiblity
by simulation. By following this guideline the resulting marginal probability distri-
bution will be compatible with the power spectral density function. Suppose wire

strength data is available for different ages.



CHAPTER 3. TIME-DEPENDENT STATISTICAL MODELS OF WIRE
STRENGTH 69

1. Select the probability distribution according to either log-likelihood, BIC or
AIC;

2. Compute attainable correlation bounds imposed by the selected and fitted prob-
ability distribution using Eq. (3.59) based on copula theory;

3. Estimate power spectral density function directly from data by Welch method,
and compute correlation function using Wiener-Khinchin transform. These two
results are called target power spectral density ST (w) and target correlation

R™(7), respectively;

4. Select a parameterized function form S(w;p) for the power spectral density
function, which should have enough flexibility for fitting to target PSD, for

example, the Clough-Penzien spectrum,;

5. Estimate the parameters p of the selected power spectral density function
ST(w), by simulaneous minimizing the error between S(w; p) and S*(w), as well
as the error between R(7;p) and R™(7), where R(7;p) is the Wiener-Kninchin

transformation of S(w; p);

6. Check if the resulting correlation function R(7;p) is within attainable correla-
tion bounds, if not, impose penalties in the optimization problem in the previous

step.

7. Generate realizations of random process of wire strength, and estimate failure

probability using selected failure criterion.
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4.1 Chapter summary

In this chapter a stochastic deterioration model of wire strength is proposed, based
on Ito’s stochastic calculus. The goal of the proposed model is to quantitatively
study the evolution of the probability distribution of wire strength by studying the
deterioration rate.

In the previous chapter the probability distribution functions of wire strength were
plotted on Weibull probability papers and it was observed that heavy tails exist on
corroded wires for some data sets but not for the other. Besides, some data sets are
more skewed or have higher kurtosis than the other, let alone the mean and variance
of each data set is different. The proposed stochastic deterioration model aims offer
the flexibility to incorporate the various characteristics exhibited by the data sets.

In the proposed model, the deterioration rate of wire strength will be considered
as a stochastic process with respect to time under Ito’s stochastic calculus, and the
wire strength is a function of the deterioration rate. This chapter is organized as the
following. First, a simple and heuristic example is used to give the intuition behind
such model. Then a brief introduction is given to the fundamentals of Ito calculus,
followed by the proposed stochastic deterioration rate model. Lastly, methods are

developed for estimating model parameters using wire strength data.

4.2 Overview of proposed model

4.2.1 Need for a probabilistic model

A model that directly captures the nature of deterioration rate of wire strength is of
great interest, such that one can estimate the wire strength at any time given the

initial wire strength at installation. The actual deterioration rate of wire strength
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is highly uncertain, as it is subject to many contributing factors, each of which has
inherent uncertainty. For example, factors like temperature, humidity and acid level
are subject to weather and climate change; live load on the wire is subject to daily
and seasonal change; the quality of installation and protection of wires are subject
to human uncertainty. A good model must be capable of incorporating all sources of
uncertainties.

However, it is in general very difficult to directly establish the law that the de-
terioration rate follows due to the following reasons. First, to observe a credible
deterioration rate of wire strength, a virtual-reality environment is needed, in which
all aforementioned factors can be controlled. An example of such device is the cor-
rosion chamber built in the Carleton Lab at Columbia University|Deeble Sloane et
al., 2013], which was used for testing sensors that measure various factors as well as
the corrosion rate. Such devices are often costly to build and maintain. Second, the
deterioration of wire strength is a very slow process, whose time scale is measured
in decades, or even centuries. Although such environmental chamber may accelerate
the deterioration process by applying rapid cycles of selected factors, extrapolating
the results into long term future, for example 100 years, is prone to error.

To overcome the aforementioned difficulties, a stochastic deterioration model of
wire strength is proposed in the chapter. The proposed model has two assumptions,
one being the form of the stochastic deterioration rate process, and the other being
law of deterioration, i.e., wire strength as a function of deterioration rate. Instead of
explicitly modeling the uncertainty in each contributing factor, the proposed model
only considers the overall effect. This gives the model an advantage that it can be
calibrated using only a single snapshot of the wire conditions. In addition, the model
is based on well-established Ito’s stochastic calculus, which makes it mathematically

tractable. Last but not least, few assumptions about the laws of physics are needed,



CHAPTER 4. STOCHASTIC DETERIORATION MODEL OF WIRE
STRENGTH 73

yet the model is still flexible enough to match observed data.

4.2.2 Review of gamma process model

Before introducing the proposed model, it must be noted that there is a popular
probabilistic model in reliability analysis, called the gamma process model. It is
widely used in modeling the process of stochastic deterioration which is monotonically
accumulating over time. A comprehensive review of the theoretical background and
applications of gamma process model is available in [Nicolai et al., 2007] and in
[Frangopol et al., 2004].

The gamma process model was first proposed in [Abdel-Hameed, 1975] to model
the life distribution of a device subject to random deterioration. The gamma process
model was also applied to modeling deterioration of steel coating [Heutink et al.,
2004] [van Noortwijk, 2009]. Especially, in [Nicolai et al., 2007] the author suggested
that deterioration models can be categorized into the following three types, which

concurs with the arguments in the previous section:
1. Black-box statistical model, which is purely based on descriptive statistics;

2. Gray-box model, which specifically models a measurable quantity related to

time-dependent deterioration;
3. White-box model, which explicitly models the physics of deterioration.

The gamma process model and our proposed model are both gray-box models. The
main idea is to model the deterioration, measured by either the reduction of strength,
or loss of mass or dimension, as a random process in time. And the amount of

deterioration accumulated over each time interval is modeled as a random variable.
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Recall that a gamma distribution has two parameters, which can be specified in
two different ways, either by shape parameter k& and scaling factor 8, or by shape
parameter « and rate parameter §. In the following context the second flavor is used.

A random variable X ~ Gamma(a, ) has the following PDF

fx(z) = %xaleﬁ‘”, x>0, a>0 68>0. (4.1)

By definition, a gamma process X (¢) has independent, non-negative increments that
follow gamma distribution with an identical shape parameter 5. For a non-stationary
gamma process, the shape parameter must be a non-decreasing function of time «(t).

Therefore X (t) have the following characteristics:

2. X(t+71)— X(t) ~ Gamma(a(t + 7) — a(t), 5);
3. X(t) has independent increments.

Due to the fact that the sum of gamma random variables still follows gamma distri-
bution, these three characteristics result in X (¢) ~ Gamma(a(t), 5). And the mean

and variance of X (t) are given by

E[X(#)] = % (4.2)
Var[X (t)] = if) (4.3)

A stationary gamma process requires «(t) to be proportional to time ¢. However,
empirical studies show that by allowing gamma process to be non-stationary offers

more flexibility on fitting observed data. It was shown that «(t) instead of being
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linear in time, it is ofter proportional to a power law:

ct? b
EX(0)] = 5 o', ¢>0,6>0 (4.4)

According to a few examples summarized in [van Noortwijk, 2009], the constant b
varies for different applications. For example, b may take different values between 0
and 2 for degradation of concrete, due to the cause of degradation, e.g., corrosion of
reinforcement, sulphate attack, creeping, etc. The parameters can be estimated from
observation data either by method of moments or by Bayesian methods.

If a failure criterion is defined as the resistance R(t) = ro — X (t) dropping below

a critical stress level s, then the distribution time to failure, or lifetime 7' is given by

Fr(t) =Pr[T <t] =Pr[X(t) > 1o — s (4.5)
/ Frote (4.6)
a(t), B(ro — )] (4.7)

[(a(t))

where T'(+, -) and I'(+) are incomplete gamma function and gamma function, respec-
tively. The analytical tractability of the lifetime as well as the time-dependent mean
and variance help people in developing theories in optimal maintenance and lifetime

management, as well as inspection schedules.

4.2.3 The proposed model

The proposed model consists of two parts. The first part is the stochastic deterio-
ration rate model. The deterioration rate is treated as a stochastic process in time,
which is developed under Ito’s stochastic calculus framework. This gives the pro-

posed model a rigorous mathematical foundation. Compared to the gamma process
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model, the proposed model is no longer solely based on descriptive statistics. Instead,
we seek to explore the essential physics that governs the wire strength deterioration
process. As we may see later the fact that the deterioration rate following a gamma
distribution becomes a natural conclusion under certain intuitive assumptions about
the deterioration rate process.

The second part is the deterioration of wire strength as a function of deterioration
rate. Both state-independent model and state-dependent model are proposed. In the
state-independent model the reduction of wire strength is simply the cumulation of
deterioration rate, while in the state-dependent model the reduction of wire strength
may also depend on the wire strength itself. The intuition is that corroded may
be prone to further corrosion. The state-dependent model has more flexibility in

matching tails of the wire strength distribution.

4.3 Basics of stochastic calculus

This section gives a brief introduction to Ito’s stochastic calculus, based on which
the proposed stochastic deterioration model is developed. Note that the stochastic

processes discussed in this chapter are indexed by time.

4.3.1 Wiener process and Ito integral

The most fundamental stochatic process is the Wiener process, also know as the
Brownian motion. It is often used as a building block of other stochastic processes.

A stochastic process W (t) is a Wiener process if it satisfies the following conditions:

2. W(t) has independent increments;
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3. Each increment follows Gaussian distribution:

W(t) — W(s) ~ N(0,t — s) (4.8)

4. W(t) is continuous.

Consider an increment AW (t) = W(t) — W(s) from s to t, s < t. One of the most
important findings of Ito’s calculus is that when pushing At — 0, formally we can

write

[dW (1)) = dt (4.9)

as if the square of an increment of W (t) over an infinitesimal time d¢ become “deter-
ministic”, and its magnitude is comparable with d¢. A rigorous proof can be referred
to [@ksendal, 2003], but intuitively, consider the following. Due to the above proper-
ties, AW (t) follows Gaussian distribution with zero mean and variance At. Therefore

we have

E[AW] =0 (4.10)
E[(AW)?] = At (4.11)
Var[(AW)?] = 2(At)? (4.12)

As At — 0 the variance of AW(t) is of higher order than the mean, making its
randomness is negligible.

Now consider a stochastic process X (t) which satisfies the following difference
equation:

X(t+ At) — X(t) = p(t, X (1) At + o(t, X (1) AW (t) (4.13)

Then X (t) has a locally deterministic drift pu(t, X(¢)) and a Gaussian random fluc-
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tuation term AW (¢) which is amplified by the diffusion coefficient o (¢, X (¢)). In the
follow context u(t, X(t)) and o(t, X(t)) are also denoted as p and o, respectively, for
convenience. Besides, X (t) is sometimes also denoted as X;, and the two notations
are interchangeable.

Pushing At — 0 in Eq. yields the canonical form of the stochastic differen-

tial equation that X (¢) follows

dXt = M(t, Xt) dt + O'(t, Xt) th (4.].4)
X(0) = zg (4.15)
whose solution is given by
t t
X, = x +/ M(S,Xs)ds—i-/ o(s, Xs) dX (4.16)
0 0

Note that the second term can be evaluated using Riemann-Stieltjes integral, but the
third term cannot. In Ito calculus the third term is defined as an [Ito integral of the

form

/ o(s) AW, (4.17)

in which ¢(s) is a process satisfying the following conditions:

1. [1E[g%(s)]ds < o0

2. g(s) is F}V-adapted

Note that a process g(s) being F}V-adapted means when given the a trajectory of

W (s) on [0,t] then the trajectory of g(s) is also known up to t. Clearly W(t) is
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FV-adapted, and therefore we have
E[W (#)[F(t)] = W(t) (4.18)

where W (t) is a known quantity since F(t) contains information of it. Refer to
[Bjork, 2009] for more rigorous definitions and further details. For an Ito integral,

the following also holds:

E { /O tg(s) dWS] =0 (4.19)

E [(/Otg(s) dWS> 2] = /OtE [4°(s)] ds. (Ito isometry) (4.20)

Eq. (4.19) indicates that the Ito integral is a martingale, whose definition will be

given in the next section.

4.3.2 Martingale and Markov property

By definition, a F(t)-adapted stochastic process X (t) is called a martingale if
E[X(t)|F(s)] = X(s), for 0 <s <t (4.21)

This indicates that X(¢) has no drift, and therefore maintains a constant mean.
Actually, letting the drift term p(t, X;) = 0 makes X(¢) defined in Eq. a
martingale.

More generally, a stochastic process X (t) is a Markov process if for all non-negative

function f, there exists another function g such that

E[f (X)) F(s)] = g(X(s)), for 0 < s <1t (4.22)
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For a Markov process X (t), we may define its transitional probability p(s,y; t,x)ﬂ,

and then g can then be written as a functional of p:

/ f(@)p(s, y;t, ) da (4.23)

In later sections the Markov property is particularly useful for numerically generating

paths of a stochastic process.

Example 4.3.1. Consider a standard Brownian motion W (t), then W(t) is a mar-

tingale since for 0 < s <t we have

E[W ()| F(s)] = EW(t) = W(s)[F(s)] + E[W(s)|F(s)]
= W(s) (4.24)

where the increment W (t) — W(s) has zero mean and W(s) is known given F(s).
Furthermore, W (t) is also a Markov process. To see this, for a given non-negative

function f, we have

Blf(W(@)|F(s)] = E[f((W(t) = W(s)] + W(s)]|F(s)] (4.25)

where W (s) is a known quantity while W (t) — W(s) ~ N(0,t — s). Therefore the
transitional probability is given by
1 (z—1)?

$,Y;t, ) = ————=e 209 4.26
p(s,yt, ) o) (4.26)

Ip(s,y;t,x) reads the joint probability density of X (s) =y, and X (t) =
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And we find such function g that satisfies the Markov property as

z—y 2
/ f(r)———=¢ —5 de (4.27)
V27t —s)

4.3.3 Ito’s lemma

Suppose process X (t) satisfies the stochastic differential equation given by
dX; = pdt + o dW, (4.28)

Consider a function f(¢, X;), then Ito’s Lemma states that f has a stochastic differ-

ential given by

of  of 10°f
di+ S dX+ 55

ot ox

Or substituting Eq. (4.28) into Eq. (4.29)) yields

df(t, X;) = (dx,)* (4.29)

of | of 1 ,0°f of
X;) = — 4.
df(t, X,) (at+“a +50 82) dt + o dW, (4.30)
where we used the following implications
dt - dW, =0 (4.31)
(dt)* =0 (4.32)
(dW,)? = dt (4.33)

Again, a rigorous proof can be found in [@ksendal, 2003|. Ito’s Lemma serves as the

counterpart of the chain rule in stochastic calculus.
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4.3.4 Kolmogorov forward and backward equations

In Eq. (4.30) we notice that if we make the drift term equals zero then f(¢, X;) is

effectively a martingale, where we have
F(t,z) = E¢.[F(T, X7)], Y(t,x), andt <T (4.34)

The subscripts of the expectation operator means X; is equal to x at time ¢. If we
know that at time T' > ¢, F(T, X1) = ®(X1) where ®(X7) is a deterministic function

of Xr, then putting together we reach the Kolmogorov backward equation:

OF oOF 1, O°F
o T ,u(t,x)% +50 (, x)T =0 (4.35)

F(T,z) = ®(z) (4.36)

This result is known as the Feynman-Kac Theorem. As a special case, if we let

®(X7) = Ig(Xr), which is an indicator function over a set B, and let
P(s,y) = E;[Ip(X7)] = P(Xr € B|X; =) (4.37)

In this case P(s,y;T, B) is the transitional probability of X; starting from a point
Xs = y and ends up in a set B at time 7. By Feynman-Kac we can immediately
write down the PDE that P(s,y) follows, and this PDE is usually known Kolmogorov

backward equation

oP or 1, 0*P
L o 4,
55 T H(5:Y) oy T2 (5,) 0 0 (4.38)

P(T,y;T, B) = Ip(y) (4.39)
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As a result the density function p(s,y;t,z) of the probability measure P(s,y;t, dz)

follows another form of the Kolmogorov backward equation

op op 1, 0%p

“r Z — £ — 4.4

85 _I_ #(87 y) ay + 20 (87 y) ayQ 0 ( 0)
p(s,y;t,x) — 8, ass —t (4.41)

These two equations are called “backwards” as they must be solved backwards in
time, i.e., from ¢t to s if s < t. This is because the diffusion term has the same
sign as the time differential term. Kolmogorov backward equation tells us that for
a stochastic process X starting with arbitrarily given (s,y), the probability that it
reaches a certain position at time ¢ > s.

In the contrast, there is Kolmogorov forward equation for the density of transi-

tional probability.

2

oo, yst,2) = - lult, o6, 0] + 5ol aplt )] (442

p(s,y;t,x) = 0,, as st (4.43)

The Fokker-Planck equation can also be extended to multi-dimensional cases to
depict the joint distribution of a d-dimensional vector-valued stochastic process X,

whose dynamics is given by

where X; and p(t, X;) are d-dimensional random vectors, o (t, X;) is a d X n matrix
and W, is an n-dimensional standard Wiener process whose components are indepen-

dent of each other. We can further define the covariance matrix, also known as the
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diffusion tensor D of X, which is a d x d matrix given by

[D(t,x)]axa = o(t,x)o(t, z)T (4.45)
with each components given by

D;;(t,x) = Zozktwajktw) (4.46)

Then the joint probability density function p(t, X;) follows the multi-dimensional

Fokker-Planck equation:

(t,z)p(t, )] + = 2832 [Dy(t,x)p(t, )] (4.47)

z;07;

||Mm

Z]_

The the solution of Fokker-Planck equation of often defined on the entire R?. In
order that p(s,y;t, ) be a legitimate probability density function, it must satisfy the

following boundary conditions|Grigoriu, 2002

wll_l)I:Itloo wi(t,x)p(t,x) =0, i=1,...,d, (4.48)
lim Dj(t,z)p(t,z) =0, 4,j=1,....d, (4.49)
x;—+o0
o2
lim ———[D;;(t,x)p(t,x)] =0, i,j=1,...,d (4.50)

zi—+oo 0,07

4.3.5 Numerical solution to SDE

In this section three widely used numerical schemes for solving SDE’s are introduced.
In other words, these methods can be used as an essential part of Monte Carlo simula-
tion for generating paths of SDE’s . Consider a SDE in canonical form as Eq. (4.14)),

with initial condition X (0) = 0. Suppose the solution on the interval [0,77] is of
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interest. The first step of all three schemes is to partition the interval into n equal
size subintervals as

O=to<ti<...<t,=T (4.51)

with the size of each interval being At = T'/n. Let Xj denotes the value of the
stochastic process X; at time t,. The performance of a scheme is measured by the
strong order of convergence . A scheme is of strong order v if for any ¢, > 0 there

exist constants 0 > 0 and C' > 0 such that as the partition refines we have

E[X, — X, ] <CAt, VAL <§ (4.52)

The three schemes are all recursive schemes, which are summarized as the following:

1. Euler-Maruyama scheme. This scheme is also known as the Euler scheme. It
is a simple generalization of Euler method of ordinary differential equations to

SDE’s. The recursive formula is given by

where AWy, = Wiy — Wi, K = 0,1,...,n are independent increments of a
Wiener process, and thus AW, ~ i.i.d.N(0, At). Apparently the Euler scheme

is an explicit scheme. The Euler scheme has strong convergence order of 1/2.

2. Milstein scheme. The Milstein scheme has an additional term compared to the

Euler scheme, which serves a correction term for the discretization error so as
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to achieve a higher accuracy. The recursive formula is given by

Xk+1 = Xk + ,u(tk, Xk)At + U(tk,Xk)AWk

+ 50lte X)oult, X0) [(AW)? — AF (4.54)

where o,(t,z) is the partial derivative of o with respect to . The Milstein
scheme has strong convergence order of 1, which is better than the Euler scheme.
If o does not depend on X; then the Milstein scheme is the same as Euler scheme,
and this is a special case where the Euler scheme achieves convergence of 1. It
is worth mentioning that one may further push the Milstein scheme to second

order convergence by taking the second order partial derivative o, into account.

3. Exact transitional probability method. For some special stochastic processes
whose transitional probability is readily available in analytical form, one may
use a random number generator to draw a sample of the next step X, given the
previous step X;. This may be consider as an exact schemes, whose performance
is mainly determined by the quality of the random number generated. However,

in practice its performance is also impacted by the partition size A.

By using schemes, one may find the probability distribution of X; at any given
time ¢t > 0 by Monte Carlo simulation. Alternatively, such probability distribution
can also be found by solving the Fokker-Planck equation, which is discussed in the

next section.

4.3.6 Numerical solution Fokker-Planck equation

In general it is very difficult to find analytical solution to Fokker-Planck equation,

unless the coefficients are all constants. In PDE theory, the Fokker-Planck equation is
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an advection-diffusion equation, or more generally a second-order parabolic equation.
The numerical solution is sought on a bounded domain  C R%, with initial condition
Xo €  and appropriate boundary conditions. These boundary conditions are set up

based on conservation of probability mass. First we re-write Eq. (4.47)) in vector form

9p _

L =V up] + 5V - [V(Dp) (4.55)

Note the here D is a second order tensor. Then it can be further written as the

following two equations:

dp
o =~V Alt), (4.56)
Alt, @) = pp — 5V (Dp) (4.57)

where A(t,z) € R? is the probability current. As we shrink the original unbounded
domain R? into a bounded domain €, the probability current is of great importance

as the conservation of probability is defined in term of this quantity. Let

Polt) = /Q plt, ) dQ (4.58)

be the probability that X; € Q at time ¢. Then the rate of Pg(t) changes over time

is given by

8PQ . ap(t,w)
b= /Q I (4.59)
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Substituting Eq. (4.56)) into the above equation and apply divergence theorem gives

oPy

= —% A(t,x) -nds, (divergence theorem) (4.60)
)

where n(x) is the unit normal vector at & on the boundary. This gives the local
conservation law of probability over the domain 2, which states that change of total
probability over €2 is equal to the probability current flowing in or out on the boundary
0%). The boundary conditions that may be used in our applications are of the following

three types:

1. Reflecting boundary, where the probability flow must not cross the boundary,

and thus the probability current along the normal direction is zero:

n-At,x)=0 (4.61)

2. Absorbing boundary, where any probability flow hitting this boundary must

vanish, i.e., the probability becomes zero on this boundary:

p(t,z) = (4.62)

3. Continuity boundary, where the probability flow moves freely across the bound-
ary. Thus the probability density and the probability current are both contin-

uous on this boundary:

n - At @)oo+ =1 At @)|oo- (4.63)

p(t, @)|oo+ = p(t, @)|on- (4.64)
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where the superscripts + on 02 indicates both sides of the boundary.

Once the boundary conditions are fixed, numerical solution to the Fokker-Planck

equation can be obtained by finite difference method or finite element method.

4.4 Stochastic deterioration rate model

4.4.1 Desired properties

A novel stochastic deterioration rate model is proposed in this section. The desired

properties of a stochastic model on the deterioration rate include the following:

1. Steady mean, or in other words, mean-reversion;
2. Fluctuation with constant or time-dependent variance;
3. Non-negative, since the wire strength will not automatically recover;

4. Stationary distribution in the long term, since the deterioration process of ma-

terial is an intrinsic process.

As we will see later in this section, a special kind of stochastic process named the
squared-root process possesses all these properties, and is therefore chosen to model

the deterioration rate.

4.4.2 Simple mean-reversion process

We first consider simple a mean-reversion stochastic process for the deterioration rate,
which is the Ornstein-Uhlenbeck process (O-U process). Denote the deterioration rate

as 1, then it satisfies the following SDE:

dry = b(a —ry) dt + o dW, (4.65)
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where W, is a standard Brownian motion, a, b and o are assumed to be constant
throughout the following discussion, although they may be generalized to be functions
of time. Such process is mean-reversion due the form of it drift term: when r, is below
a the drift is positive which drives r; up, and vice versa. The O-U process is widely
used in engineering and social science due a few nice properties that it possesses.

First of all it is simple enough to have an analytical solution, which is given by

¢
ry =roe” " +a(l —e™) + Ue_bt/ e dw, (4.66)
0

The validity of this solution can be easily verified by applying Ito’s lemma on it. From
this solution we know that the random variable r; follows a normal distribution for

all t > 0, with mean and variance which can be obtained as

¢
Elr =E [roe ™ +a(l—e )] +E |:0'/ e bW qu}
0

et a1 — et (4.67)
and

t
Var[r;] = Var [a/ e~bt=w) qu]
0

t
— 52 / [e—b(t—u)]2 du, (Tto isometry)
0

2

= 1—e (4.68)

Apparently both mean and variance have transient terms e~* which will be dampened
out as t becomes large (with b > 0). Therefore the mean and variance converges to

constants @ and & respectively, regardless of the starting point ry. Asymptotically

2b7

r; admits a stationary normal distribution N (a, ‘;—Z) And the speed that r, converges
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to its equilibrium state is controlled by b.

A major disadvantage of the O-U process based model is that it may take negative
value due to its Gaussianity. However, if normal distribution fits observed deteriora-
tion rate well and it standard deviation is very small compared to it mean, the O-U

process may still be considered as a handy approximation.

4.4.3 Square-root process

A slight variation can be introduced to the O-U process to overcome its disadvantage
that it may take negative value. The resulting stochastic process is known as the

squared-root process, which satisfies the following SDE:
dry = b(a —ry) dt + \/rio AWy, a,0 > 0 (4.69)

It is named from the presence of the squared-root term /7, but it is actually derived
from the square of an O-U processﬂ The solution to the SDE Eq. (4.69)) of the

squared-root process is given by

t
re =a+ (rg—a)e ™ + Je_bt/ e’ \/ry AW, (4.72)
0

2Let q; be an O-U process of the form as in Eq. (4.65)), but with zero mean, i.e., a = 0. And let
re = q? (4.70)
Applying Ito’s lemma yields
1
= 2¢,(—bq, dt + o dW,) + o2 dt

= (02 — 2bq?) dt + 2q;0 AW,
= (0% — 2bry) dt + 2\/r0 AW, (4.71)

which is of the form as Eq. (4.69)) after matching the constant terms.
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The mean of the squared-root process can be easily obtained as
E[r] = roe ™ +a(l —e™™) (4.73)

Then, to obtain the variance it is not straight-forward, but still doable:

Var[r;] = E [(ae—bt /0 t e\ /ra qu>2]

t
= o%e ME [/ ey, du} ,  (Ito isometry)
0

t
= g% / e®E[r,]du, (Stochastic Fubini) (4.74)
0

Substituting Eq. (4.73)) into Eq. (4.74)) finally yields

2 2
Var(ry] = To%(e_bt —e ) 4 %(1 — e (4.75)

As we may see that the mean and variance of the squared-root process also converges

2
to constants a¢ and %2~

5, » respectively. The squared-root process not only preserves the

mean-reversion feature since it contains the same drift term as the O-U process, but

also ensures its value stays strictly positive as long as the Feller’s condition
2ab > o (4.76)

is met and ro > 0. If the Feller’s is not met, the squared-root process is non-negative,
and it may be zero occasionally.

The Feller’s condition can be concluded by imposing an absorbing condition on
the left boundary of the Fokker-Planck equation of the probability density function of

r¢. Intuitively we may consider that this feature is attributed to the volatility being
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modulated by the square-root of the rate itself. As a result, whenever r; approaches

zero, the stochastic part is weakened while the drift drives r; back towards the mean.

4.4.3.1 Distribution of deterioration rate

Let p(t,r:) = p(0,ro;t, 1) be the probability density function of r; at any future time
t, given that 7, starts from ry at ¢ = 0. Then p(t,r;) satisfies the Fokker-Planck

equation:

%p(t, ) = —% [b(a — r¢)p(t, )] + %;—T?[UQ'/}])(L )] (4.77)
p(0,2) = d(x — ro) (4.78)

This PDE has an exact analytical solution |Albanese and Campolieti, 2006] given by

v

p(t.r) = e (9)" ~ 1 (2/m) (4.79)

— 2b __ 2ab _ —bt _ : :
where ¢ = Tetmer 4= 52 —Lu=croe™™, v =cr, and I,(-) is the modified Bessel

function of the first kind of order ¢. Actually for a fixed time ¢, the random variable
ry can be written as

(4.80)

Tt =

Y
2c

where Y is a random variable of non-central Chi-squared distribution with %” degree
of freedom and non-centrality parameter 2croe=?.
In the long run as t — oo the squared-root process follows a stationary distribu-

tion, and the probability density function for r., can be solved for from the above

Fokker-Planck equation by letting % = 0. The stationary distribution turns out to
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be a gamma distribution whose probability density function is given by

v

P(rec) = P(y)r;:le*”m (4.81)

where w = 3—2 and v = 20%’ The speed that the distribution of r; converges to gamma
distribution is again controlled by parameter b, which appears in the exponential de-
caying term. This property makes the squared-root process suitable for modeling the
deterioration rate. Moreover, compared to the conventional gamma process model,
the squared-root process offers more flexibility for fitting to real data as it takes
into account the transition of from an observed initial deterioration rate towards a
gamma distribution. Significantly, after the process reaches its stationary state, the

autocorrelation function is given by [Tankov, 2003
p(1) =e b7 (4.82)

This equation as well as Eq. (4.79)) indicates that increment of r; may depend on its
state, while r; itself follows a gamma distribution. This is a major difference between

the squared-root process and the traditional gamma process model.

Example 4.4.1. Consider a squared-root process with ultimate mean a = 0.5, con-
vergence speed parameter b = 0.15, and volatility ¢ = 0.1. This example illustrates
the convergence of the distribution of a squared-root process towards its stationary
distribution — gamma distribution, with different starting point ro = 0.3 in Fig. 4.1a]
and 79 = a = 0.5 in Fig. [f.1b] Apparently besides parameter b, the starting point of
the squared-root process rg also has impact on the time needed for convergence. By
comparing the two figures, it is clear that the closer the starting point is to the mean

a, the quicker the process converges.
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Figure 4.1: Convergence of probability distribution of squared-root process towards
its stationary distribution.
In the rest of this chapter we will focus on using the squared-root process for

modeling the deterioration rate of wire strength.

4.4.3.2 Simulation of squared-root process

To simulate a path of a squared-root process, one may apply the numerical discretiza-
tion schemes, e.g., the Euler scheme as in Eq. , or the Milstein scheme as in
Eq. . Besides, since the transitional probability distribution of squared-process
is available in analytical form in Eq. , one may also apply the exact transitional
probability method. Specifically, to simulate paths of a squared-root process, the
detailed procedures are summarized as the following. Suppose the time interval At

is fixed.

1. Euler method. Combining the definition of squared-root process in Eq. (4.69)
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and the Euler scheme in Eq. (4.53) gives the following recursive equation:
Thy1 = Tk + b(a — 1) At + o/T, AW}, (4.83)

where AW}, ~ (0, At). A realization of r; is obtained by generating a random

number of AW,.

2. Milstein method. The Milstein method contains the partial derivative of the
volatility coefficient with respect to the state variable. For squared-root process,
its volatility coefficient is o/r;, in which o is a constant, and taking partial

derivative of this term gives #ﬁ Finally, combining Eq. (4.69) and Eq. (4.54))

gives the recursive equation:
1
Tky1 =Tk + b(CL — Tk)At + U\/EAWk + 502{(AW]€)2 — At] (484)

where AW}, ~ (0, At). A realization of r; is obtained by generating a random

number of AW,.

3. Exact transitional probability method. The transitional probability density func-
tion in Eq. is for time 0 to t. However, it also holds for time t; to tx,q by
simply substituting r,q for ry, ry for rq and At for ¢ in Eq. . Or one may
obtain r;41 by generating random number of Y in Eq. which is a random
variable of non-central Chi-squared distribution with % degree of freedom and

non-centrality parameter 2cre A%

Example 4.4.2. Let a = 0.5, b = 0.3, 0 = 0.4. Fig.[£.2]shows simulated squared-root

process for t € [0,30] with starting point 0.01, 0.5, and 2.0, respectively. From the

3For example in Matlab® the function for generating random variable of non-central Chi-squared
distribution is nxc2rnd ().
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figures we may observe the trend that all paths converge to their ultimate common

mean 0.5 and fluctuate around the mean afterwards.

Simulation of squared-root process

257

Figure 4.2: Simulation of squared-root process with different initial values.

Example 4.4.3. Let a = 0.5, 0 = 04, rg = 2.0. Fig. shows the emsemble
average of 100 paths and its corresponding theoretical mean for ¢ € [0,30] with the
convergence speed b equals to 0.1, 0.3 and 0.6, respectively. It shows that the mean of
the simulated paths converges to its theoretical value on average, while the theoretical

mean itself converges to the ultimate mean over time.

4.5 Deterioration of wire strength

In this section two models for the deterioration of wire strength are developed assum-
ing the deterioration rate is stochastic. Let g(¢, 7, S;) be the actual deterioration rate
of wire strength, then the change of wire strength over time can be formally defined

as

dSt == —g(t, Tt St> dt (485)
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Convergence of mean of squared-root process

t

Figure 4.3: Convergence of mean of a squared-root process towards its ultimate mean,
with different convergence speed shown.

Here g(t,r, S;) is called the effective deterioration rate, while r, which was studied
in the previous section is the base deterioration rate. The effective deterioration rate
can be a function of both the base deterioration rate r, and the current wire strength

Si. The general solution to the above equation is given as

t
Sy =Sy — / g(u,ry, Sy) du (4.86)
0

where Sy is the initial wire strength. Since 7, is a stochastic process this integral is
an I[to integral, and S; is a random variable. Two deterioration models, distinguished
by whether the effective deterioration rate depends on the current wire strength, are

proposed, which are

1. State-independent model: g(t,rs, S;) = 14;

S p
2. State-dependent model: g(t,r, S;) =1y <§O) :
t

In the following context the statistical properties of both model are first studies. And
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then both models are applied to strength data. Calibration methods for both models

are also developed.

4.5.1 State-independent model

Under the state-independent model, the effective deterioration rate is simply the base

deterioration rate, independent of the current wire strength. In this case we have
dSt = —T¢ dt (487)

which has the solution

¢
Sy =5y — / ry du (4.88)
0

If the deterioration rate r; is an O-U process then apparently S; follows a normal
distribution, which doesn’t fit our previous observations well. Instead, the squared-
root process appears to be a better choice for r; due to its non-negativity and mean-
reversion properties. In the following context, we will assume r; to be a squared-root

process as defined in Eq. (4.69).

It is more convenient to define the loss of strength L; as:
Lt - SQ - St (489)

And thus L, satisfies the
st =T dt (490)

In general we have Ly = 0, and therefore the solution to the above equation is given
by

t
Lt:/ ry du (4.91)
0
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which is essentially an integral of the square-root process. This quantity has been
studied extensively in the literatures as it is a popular model for interest rate in fi-
nancial applications. Many attempts has been made to obtain analytical solutions
to the statistical properties of L,. [Dufresne, 2001] was the first to gives formulas for
computing the statistical moments. The same results was later developed indepen-
dently by [Dassios and Nagaradjasarma, 2006], but in a simpler form. [Dassios and
Nagaradjasarma, 2006] also gives joint probability density function of the squared-
root process and its integral, as well as the marginal probability density functions in
analytical form. The key to finding the joints moment of order j for L; and order k

for r, is to apply Ito’s formula to the product Lg rk

d(L{rf) = rf d(L]) + L] d(r}) (4.92)

where

j i 1. i
A(L]) = jLI7 " dL, + 530 =1L ?(dLy)? (4.93)
) 1 )
= L redt + (G = DL (e dt)? (4.94)
= jLi trydt (4.95)
and
1
d(rf) = krf~tdr, + Skl = Drf=2(dr,)? (4.96)
1

= krf=t b(a — 7)) dt + o/r dW;] + §k;(k; — k=202, dt (4.97)

1
= |abk + §k(k — D)o?| rFtdt + bkl dt + kel /r dW, (4.98)
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Substituting Eq. (4.92)) and Eq. (4.98)) into Eq. (4.92)) yields

A(Lirk) = jLI7 i de (4.99)

1 : . .
+ [abk + S h(k - 1)02} LirF=tdt + bkLirF dt + kL{rF~'\/redW;  (4.100)

Take expectation on both side and define M;,(t) = E[L{rF], and this yields the

following ordinary differential equation on a discrete grid of M, (t):

d

1 .
ank(t) = abk’Mjk<t) + {abk‘ + 5]{3(1{3 - 1)0'2:| Mj7k_1(t) +]Mj_1,k+1(t) (4101)

This equation can be solved recursively, but derivation is quite lengthy and techni-
cal. See |[Dufresne, 2001] and [Dassios and Nagaradjasarma, 2006] for a complete
derivation. Here we states the results using the notations in |Dufresne, 2001]. These
formulas will be used to estimate model parameters from observational data. The

k-th moments of r; is given by

k
Elrf] =) fe™, k=0,1,... (4.102)
7=0
where
J g
o KN(=1)FTak (D) .
Orj = ; 0<j<k 4.103
& ;T%!o—w!w—j)! @, 7= (4.103)
2
o
U= —57 4.104
u 2 (4.104)
_ 2ab
v="13 (4.105)

Wr=yly+1)---(y+k—=1), k>1,(y)o=1 (4.106)
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And then the J-th moments of L, is computed using the following recursive formula:

E[L]] = Mo(t) (4.107)
J+K
Myg(t) = Mygm(t)e ™ (4.108)
m=0

min(j,j+k—m)

Mim() = > Mpt" (4.109)
n=0

min(j,j+k—m)
Migmn(t) = , Rikmi, k 4.110
pnll) = 2 g e T KW (410

where
Rjkmn = /Bij,k—l,m,n + ij—l,k-i—l,m,n (4111)
1
By, = abk + 502k(k: -1) (4.112)
and specially,
1 :
Mppn = ERj,kz,k,n—hE' n=1,...,7J (4.113)
Jtk
Mjpro = — Z Mjgmo, 7 21 (4.114)
m=0, m#k

MOkmO = ka (4115)
Mo =0, n > 1. (4.116)

These formulas for computing moments of arbitrary order can be easily imple-

mented numerically, or symbolically. See Appendix |B| for an implementation in

4There is a typo in the original paper.
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Matlab®.

4.5.1.1 Model calibration by moment matching

In this section the state-independent model is calibrated to four datasets: artificially
corroded wires in Carleton Lab, Severn Bridge wires, Forth Road Bridge wires and
Williamsburg Bridge cables. Four model parameters are to be estimated, three of
which are parameters of the dynamics of squared-root process: a, b, o, and the fourth
is the initial value ry of the squared-root process. These parameters are estimated
by matching the first four statistical moments using the analytical formulas for com-
puting moments of loss of wire strength L,. In this definition of loss of strength, the
initial wire strength Sy of each data set is given in Table [3.7]

The moment matching problem can be formulated as a multi-objective optimiza-

tion problem. To linearize the Feller’s condition, define the following new variables:

a=—b (4.117)
B =ab (4.118)
v =o? (4.119)

And the state variable is represented by the new variables:

x={a, 5,7, 10} (4.120)

The error measure of the goodness of match of moments is defined as the relative

error as the following:

ei(@) = [Mio(t; ) — M)/ M; x 100%, i=1,2,--- (4.121)
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where M; is the i-th moment estimated from the data set. These error measure-
ment can either be used as objective function for an approximate match, or used as
constraints for an exact match. Depending on how the error measure is used, the
optimization problem can be formulated in different variations. The model is first
calibrated to the artificially corroded wires from the Carleton Lab as an example for
comparing three different formulations.

The most straight-forward formulation of the optimization problem is to post all

four error measures for the first four moments as objectives, which is given by

max min lei(t; )|, i=1,2,3,4 (4.122)
subject to v—28<0 (4.123)
a<0,8>0~v>0 (4.124)

After solving this optimization problemﬂ the results of moment matching for Carleton
Lab wires are summarized in Table The 2nd moment achieves a good match, but
the 1st, 3rd and the 4th moment reach their minimum error uniformly, which is about
9.28% in relative value. This might not be a satisfactory result due to the error on
the 1st moment. Figure [.4] shows the probability plot of the original data set of loss
of strength, and the samples of simulated L;, as well as a gamma distribution fit to
the original data set as a reference. The Euler scheme is used to simulated paths of r;
and then trapezoidal rule is used to compute L;. A total number of 10,000 samples of
L, are generated. The results indicates a poor match between the simulated samples
and the original samples.

To achieve a better match, or even exact match for the first two moments, the

5Using the Optimization Toolbox of Matlab®, for example.
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optimization problem is formulated by using the first two moments as constraints,

while the 3rd and 4th moments remains objectives. This yields:

mjxmiin lei(t; )], 1 =3,4 (4.125)
subject to v—28<0 (4.126)
a<0,8>0,v>0 (4.127)
st ) =0 i=1,2 (4.128)

This formulation is often favorable since matching the first two moments are far more
important than matching any other higher order moment. This formulation requires
that the feasible set defined by the equality constraints not be empty. However,
compared to the previous formulation, exact match of the first two moment may
come at a cost of less accurate matches of the other moments. Table [£.3] shows
that applying this formulation to the Carleton Lab data set results in about 45%
error for the 4th moment. Nevertheless, since exact match is achieved for the first
two moments, the probability plot in Figure shows a better match between the
original data set and simulated samples, compared to the previous formulation.

The formulation with two equality constraint is also applied to the other three
data sets: Severn Bridge, Forth Road Bridge and Williamsburg Bridge. The results
are listed in Table [4.5] and [4.7] and the probability plots of the original data set
and simulated samples are in Figure [£.7] and [4.9] respectively. Two of these three
data sets, namely Severn Bridge and Williamsburg Bridge show good match for all
four moments, while Forth Road Bridge, similar to Carleton Lab wires, shows poor
match for the 4th moments.

Table[d.T|compares the estimated parameters among all four data sets by enforcing
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exact match of the first two moments. The physical meaning of each parameter is
also mentioned in the table. All four data sets show consistent pattern in terms

of the physics of deterioration. Note that for the Severn Bridge data, the moment

Table 4.1: Comparison of estimated parameters for all data sets by enforce exact
match of the first moments.

Parameter Carleton Severn Forth Road Williamsburg
Lab Bridge Bridge Bridge

a (ultimate mean) 0.5775 0.4713  0.4894 0.5300

b (convergence speed) | 0.4429 0.2054 0.1763 0.1498

o (volatility) 0.7153 0.4081 0.4154 0.3149

7o (initial value) 2.2681 0.0000  0.1097 0.0036

matching method estimates ro &~ 0.0. Due to the mean-reversion property of the
squared-root process, even though r; starts from 0.0, it quickly drifts away from 0.0
and stays strictly positive since the Feller’s condition is enforced as an constraint in
the optimization problem.

Lastly, in case that in the previous formulation the feasible set defined by the
two equality constraints is empty, or a balance of goodness of match is desired for all
four moments in a controlled manner, a tolerance can be used to relax the equality
constraints. As a result, the two constraints are written as ¢;(t; ) < ¢, where ¢ is the
desired level of tolerance. As a demonstration, this formulation is applied to Carleton
Lab data set with 1% tolerance, and the results is listed in Table[4.4 And Figure

compares the original data set against the simulated samples.
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Carleton Lab artificially corroded wires
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Figure 4.4: Probability plot of loss of strength of Carleton Lab artificially corroded
wires and simulated samples by the state-independent corrosion model. Model param-
eters are estimated without contraints on any specific moment. A gamma distribution
is fitted to the wire samples.

Table 4.2: Moment matching results for Carleton Lab artificially corroded wires.
Model parameters are estimated without constraints on any specific moment.

a | 1.3597
b | 0.2475
o | 0.8204
ro | 0.0255

Samples  Model Rel. Err.

Ist moment | 9.55 8.66 -9.28%
2nd moment | 110.07 109.66 -0.37%
3rd moment | 1762.76  1926.39  9.28%
4th moment | 48764.24 44237.64 -9.28%
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Carleton Lab artificially corroded wires
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Figure 4.5: Probability plot of loss of strength of Carleton Lab artificially corroded
wires and simulated samples by the state-independent corrosion model. Model pa-
rameters are estimated with equality constraints on first and second moment. A
gamma distribution is fitted to the wire samples.

Table 4.3: Moment matching results for Carleton Lab artificially corroded wires.
Model parameters are estimated with equality constraints on first and second moment.

a
b
o

To

0.5775
0.4429
0.7153
2.2681

Samples  Model

Rel. Err.

1st moment
2nd moment
3rd moment

4th moment

9.55
110.07

9.55
110.07

1762.76  1518.89

48764.24  24738.73

0.00%
0.00%
-13.83%
-49.27%
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Carleton Lab artificially corroded wires
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Figure 4.6: Probability plot of loss of strength of Carleton Lab artificially corroded
wires and simulated samples by the state-independent corrosion model. Model pa-
rameters are estimated with constraints on first and second moment which allow 1%
tolerence. A gamma distribution is fitted to the wire samples.

Table 4.4: Moment matching results for Carleton Lab artificially corroded wires.
Model parameters are estimated with constraints on first and second moment which
allow 1% tolerence.

a | 1.0970
b | 0.7216
o | 1.2582
ro | 0.0000

Samples  Model Rel. Err.

Ist moment | 9.55 9.45 -1.00%
2nd moment | 110.07 111.17 1.00%
3rd moment | 1762.76  1615.75  -8.34%
4th moment | 48764.24 28613.10 -41.32%
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Severn Bridge
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Figure 4.7: Probability plot of loss of strength of Severn Bridge wires and simulated
samples by the state-independent corrosion model. Model parameters are estimated
without constraints on any specific moment. A gamma distribution is fitted to the
wire samples.

Table 4.5: Moment matching results for Severn Bridge wires. Model parameters are
estimated with equality constraints on first and second moment.

a | 0.4713
b | 0.2054
o | 0.4081
ro | 0.0000

Samples  Model Rel. Err.

1st moment | 17.03 17.03 0.00%
2nd moment | 343.65 343.65 0.00%
3rd moment | 8137.55 8193.08 0.68%
4th moment | 228651.07 229196.00 0.24%
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Figure 4.8: Probability plot of loss of strength of Fouth Road Bridge wires and
simulated samples by the state-independent corrosion model. Model parameters are
estimated without contraints on any specific moment. A gamma distribution is fitted

to the wire samples.

Table 4.6: Moment matching results for Fouth Road Bridge wires. Model parameters
are estimated with equality constraints on first and second moment.

a | 0.4894
b |0.1763
o |0.4154
ro | 0.1097
Samples  Model Rel. Err.
1st moment | 19.38 19.38 0.00%
2nd moment | 460.24 460.24 0.00%
3rd moment | 14015.88  13314.49  -5.00%
4th moment | 626898.71 464085.70 -25.97%
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Williamsburg Bridge
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Figure 4.9: Probability plot of loss of strength of Williamsburg Bridge wires and
simulated samples by the state-independent corrosion model. Model parameters are
estimated without constraints on any specific moment. A gamma distribution is fitted
to the wire samples.

Table 4.7: Moment matching results for Williamsburg Bridge wires. Model parame-
ters are estimated with equality constraints on first and second moment.

a | 0.5300
b | 0.1498
o | 0.3149
ro | 0.0036
Samples Model Rel. Err.
Ist moment | 41.53 41.53 0.00%

2nd moment | 1885.10 1885.10 0.00%
3rd moment | 93131.37 93472.01 0.37%
4th moment | 4976931.02 5058848.86 1.65%
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4.5.2 State-dependent model

Under the state-dependent model, the effective deterioration rate also depends on the

current state of the wire strength:

So

gt 70, ) =1 (E)p (p > 0) (4.129)

where the ratio of initial wire strength Sy over the current wire strength S; represents
the degree of deterioration. This forms a modulating function on the base deteriora-
tion rate, which makes the effective deterioration rate negatively correlated to the wire
strength, as wires with lower strength will have a faster effective deterioration rate
than those with high strength. Many factors may contribute to such phenomenon,

including but not limited to the following:

1. Gradual loss of zinc protective coating;
2. Corroded wire surface may trap more moist;

3. Elevated strain due to loss of load bearing ability.

The exponential p > 0 adds more flexibility to the model for capturing the negative
correlation. As a limiting case when p = 0 this model degenerates to the state-
independent model.

The change of wire strength over time is given by

ds; = %’

whose solution is given by

p+1 1 t
S, = S, \/1—p+ /rudu (4.131)
SO 0
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where 7; is a squared-root process as defined in Eq. . Compared with the
state-independent model, statistical moments of wire strength S; cannot be easily
computed from the moment of the integral of r;. Instead, we seek to directly estimate
the probability distribution of S;.

One approach for estimating the distribution of S; is by solving for the joint dis-
tribution of .S; and r; from Fokker-Planck equation, and then obtaining the marginal
distribution of S; by integration. Let f,, s, (7, s) be the joint PDF of r, and S;. Then

fris.(r, s) satisfies the following two-dimensional Fokker-Planck forward equation:

or _ T (&)p o bla — 1) R N (4.132)

Y — P, + —0°r,——
ot S, or, 2 tor?
which is a two-dimensional advection-diffusion time-dependent PDE. This equation
is defined on an unbounded domain, but when applying numerically methods such
as finite element method or finite difference method, solution is sought on a bounded

domain

Q = [0, Spna] % [0, mas] (4.133)

Smax 18 chosen to be Sy, as S; must be strictly decreasing over time. 7., is so chosen
that r; never reaches 7.y, for t < T, where T is the maximum time horizon the
solution is sought. The initial condition of f is given as a delta function located at
(So,70). Boundary condition on S = Syay is no-flux, as the probability mass drifts
away from the boundary, while all the other three boundaries are absorbing, assuming
that the probability mass will not hit these three boundaries.

Alternative, the distribution of S; can be estimated by Monte Carlo simula-
tion. Realizations of deterioration rate process r; can be generated using methods in

Sec. 4.4.3.2 and then samples of S; can be obtained by numerically integrating r; in
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Eq. (4.131).

4.5.2.1 Calibration of state-dependent model

Since analytical solutions to the statistical moments of wire strength are not readily
available, moment matching method cannot be applied for estimating the parameters
of the state-dependent model. Instead, model parameters are estimated by matching
the probability distribution of simulated samples of wire strength to the data.
There are many distance/similarity measures between probability density func-
tions in the literatures. A recent survey |[Cha, 2007 listed and compared 45 different
measures. The Kullback-Leibler divergence (KL divergence) is choosen as the measure
for our application. Let P and () be two discrete probabiltiy density functions, e.g.
the empirical probability density function estimated from samples, the KL divergence

of @ from P is defined as

Dx(P||Q) = > P(i)log % (4.134)
1<Y/an

which is interpreted as relative entropy of P with respect to @, or information de-
viation of () from P. It is based on Shannon’s information entropy measure defined
as H = —) . P(i)log P(i). Typically P represents the “true” distribution, or the
target distribution, e.g., the distribution constructed from wire strength data, while
() represents the model distribution, e.g., the distribution estimated from samples
of S; generated by Monte Carlo simulation. However, the KL divergence is not a

real distance metric as it is not symmetric. Therefore, a symmetric version of KL

divergence defined as the following is used instead:

Dy (PllQ) = Dxw(Pl|Q) + Dxu(QI|P) (4.135)
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To calibrate the state-dependent model, five parameters need to be estimated,
where four parameters © = {a, 3,7, 70} are related to the deterioration rate process,
as defined in Eq. (4.120]), plus the exponential p. These five parameters can be

estimated by solving the following optimaztion problem:

min DR (PQ) (1.136)
subject to vy—28<0 (4.137)
a<0,>0,v>0 (4.138)
p>1 (4.139)

Given p and x, the probability density function () is estimated by the following steps:

1. Generate realizations of ry, starting with the same seed for the random number

generator;
2. For each realization of r;, compute a sample of S; by Eq. (4.131));

3. Estimate ) from samples of S; using the same rules for dividing bins as used

for constructing P.

After solving the optimization problem, results indicate that p = 0 is the best
fit for the three data sets obtained from real bridges: Forth Road Bridge, Severn
Bridge and Williamsburg Bridge. In this case the model degenerates to the state-
independent model and the values of the other four parameters stay the same. Results
also indicate that p = 4.9 is the best fit for the artificially corroded wires from Carleton
Lab. Figure compares the probability plots of loss of strength between data of
artificially corroded wires from Carleton Lab and the fitted state-dependent model.

Table lists the values of the calibrated model parameters, as well as comparison
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of statistical moments between data and simulated samples. It shows that the state-
dependent model calibrated based on KL divergence provides good fits for the first

two moments, but less satisfactory fit for the 3rd and the 4th moments.
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Carleton Lab artificially corroded wires (p=4.9)
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Figure 4.10: Probability plot of loss of strength of Carleton Lab artificially corroded
wires and simulated samples by the state-dependent corrosion model with p = 4.9. A
gamma distribution is fitted to the wire samples.

Table 4.8: Calibrated parameters of state-dependent model for Carleton Lab artifi-

cially corroded wires.

1st moment
2nd moment
3rd moment

4th moment

p | 4.9

a | 0.8347

b | 0.5263

o | 0.5683

ro | 0.9950

Samples  Model Rel. Err.
9.55 9.68 1.43%

110.07 106.08 -3.63%

1762.76 132229  -24.99%
48764.24 18831.80 -61.38%
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4.6 Proposed procedures for applying stochastic

deterioration model

In this section a stochastic deterioration model of wire strength is developed. This

model assumes the deterioration rate is a stochastic process which is non-negative and

mean reversion. The wire strength is therefore a function of the cumulation of the

deterioration rate over time. A major advantage is that this model can be calibration

using only one set of observational data of wire strength samples. Below are the main

step for applying this model to modeling wire strength of real bridges:

1.

Collect samples of wire strength from suspension bridge cables;

. Gather information of the initial wire strength when the bridge is built, and the

current age of the bridge;

Select either O-U process or squared-root process for modeling deterioration
rate process. The squared-root process is preferred, unless the distribution of
wire strength can be approximated by Gaussian distribution, where O-U process

may be used as quick approximation;

Select either state-independent or state-dependent model for the actual deteri-
oration of wire strength. The state-indenpendent model should be tried first,

as it is easier to calibrate, and provides good fit to real bridge data;

Calibrate model parameters. For state-independent model moment matching
method is used, while for state-dependent model KL divergence based method

is used;

Make prediction of the distribution of wire strength at any given time in the

future using calibrated model.
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Chapter 5

Discussion and conclusion

5.1 Quantify equivalent age of lab corroded wires

In Chapter 2 the artificially corroded wire from the Carleton Lab was assumed to have
an equivalent age of 10 year as if the wires were taken from a real bridge. However,
this judgment was purely empirical, as it was based on observing the corrosion stages
of the wires. In this section the equivalent age of the lab corroded wires is estimated
quantitatively using the stochastic deterioration model developed in Chapter 4.

The general idea is to apply parameters of the state-independent model, which
is estimated using data from a real bridge, to generate wire strength samples for a
given age. Then the equivalent age of the lab corroded wires is such an age that the
KL divergence of the PDF’s between the generated samples and the original strength
data is minimized. Results shows that when using parameters of Forth Road Bridge,
the equivalent age is 24.5; when using parameters of Severn Bridge, the equivalent
age is 25.8; when using parameters of Williamsburg Bridge, the equivalent age is 25.
Figure[5.2)compares the PDF of the wire strength of lab corroded wires with the PDF’s

of the generated samples using parameters from real bridges and estimated equivalent



CHAPTER 5. DISCUSSION AND CONCLUSION 121

ages. Table compares statistical moments of loss of strength computed from data
of lab corroded wires and from samples generated using real bridge parameters and

estimated equivalent ages.

0.15
---------- Carleton Lab wire data )
= = = Forth Road Bridge params(24.5yr) E
----- Severn Bridge params(25.8yr)
Williamsburg Bridge params(25yr)
01
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a
o
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O I
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Figure 5.1: Comparison of PDF’s of wire strength of lab corroded wires and generated
samples with estimated equivalent ages.

Table 5.1: Comparison of statistical moments of loss of strength.

Carleton | Using Forth Road | Using Severn Using Williamsburg

Lab Bridge Parameters | Bridge Parameters | Bridge Parameters
Order | Moment | Moment | Error Moment | Error Moment | Error
1st 9.55 9.83 3.01% | 9.80 2.69% 9.77 2.36%
2nd 110.07 128.43 16.68% | 120.86 9.80% 117.68 6.91%
3rd 1762.76 | 2180.71 | 23.71% | 1823.68 | 3.46% 1720.39 | -2.40%
4th 48764.24 | 46739.32 | -4.15% | 32482.59 | -33.39% | 29949.85 | -38.58%
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5.2 Comparison between evolutionary distribution
model and stochastic deterioration model

The evolutionary distribution model was developed in Chapter 3 and the stochastic
deterioration model was developed in Chapter 4. Once calibrated, both models are
able to predict the marginal probability distribution of wire strength at any given
time. The similarities and differences between the two methods are compared from
various aspects in this section.

Object of study

The evolutionary distribution model is based on descriptive statistics, and it directly
studies the evolution of the distribution in time. The stochastic deterioration model
4 studies deterioration rate process, which is the source of uncertainty for the wire
strength.

Assumptions

The evolutionary distribution model assumes that the wire strength follows the same
probability distribution at all time, whose parameters can be expressed as functions of
time. The stochastic deterioration model assumes that the wire strength is function
of the cumulation of deterioration rate over time, and the parameters of the stochastic
deteriorate process are constant at all time.

Model calibration

The evolutionary distribution model needs to observe multiple snapshots of proba-
bility distribution of wire strength in order to establish a reliable pattern of how the
distribution evolves in time. The stochstic deterioration model needs only one snap-
shot for calibrating the deteriotion rate process. This advantage is due to the fact
that the deterioration mechanism is relatively stable in time if the environment is not

drastically changed.
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Making prediction

Once calibrated, both models can predict the probability distribution at any given
time. The evolutionary distribution model is relatively easy to use, since the analytical
form of the distribution function is available. The stochastic deterioration model a
few more steps for making predictions, as it needs to first generate realizations of
the stochastic deterioration process and compute samples of wire strength, and then
estimate the distribution from samples.

Example

For comparison, both models are used to estimate distribution of normalized wire
strength at 20, 40, 80 and 120 years. The evolutionary distribution model as-
sumes Weibull distribution for wire strength, with time-dependent parameters given
in Eq. and Eq. . The stochastic deterioration model assumes deterio-
ration rate follows squared-root process with parameters calibrated for the Severn
Bridge data, as listed Table 4.5 It also assumes the deterioration is independent of
current wire strength. The estimated PDF’s are shown in Figure and statistics
are listed in Table/5.2l Both models predicts comparable mean values, however, the
evolutionary distribution model predicts larger variance than the stochastic deterio-
ration model. The PDF plots also suggests that the evolutionary distribution model

predicts a faster deterioration speed than the stochastic deterioration model.
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Table 5.2: Comparison of statistics of normalized wire strength estimated by evolu-
tionary distribution model (ED) and by stochastic deterioration model (SD).

Mean Variance
ED SD ED SD
20yr 0.96028 | 0.97297 | 2.7342e-04 | 2.2668e-04
40yt 0.93632 | 0.93778 | 6.2643e-04 | 7.3129e-04
80yr | 0.84966 | 0.86638 | 2.9394e-03 | 1.7791e-03
120yr | 0.71048 | 0.79563 | 1.1195e-02 | 2.8086e-03
40
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Figure 5.2: Comparison of PDF’s of normalized wire strength estimated by evolu-
tionary distribution model and by stochastic deterioration model.
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5.3 Spatial correlation in stochastic deterioration
model

The wire strength was modeled as a random process in Chapter 3 to account for
the its spatial variation and correlation. However, this was not considered in the
stochastic deterioration model developed in Chapter 4. This section extends the
stochastic deterioration model to account for spatial correlation.

T ry, dWy T ro, dWs

Figure 5.3: Wire segments that are x apart are subject to different deterioration rates
r1 and 7o.

As shown in Figure 5.2} consider two infinitesimal wire segments that are x apart,
and are subject to deterioration rates r; and r,. For demonstration purpose the
deterioration rates are assumed to be both O-U processes with the same parameters

but driven by different Brownian motions W; and Ws:

dT’l = b((l — 7’1) dt + \/EO'dWl,

dry = b(a — o) dt + /oo dWs. (5.1)

Note that for square-root processes the following derivations would still apply, but
not as easily tractable as the O-U process. Suppose that dWW; and dW5 are correlated

and the correlation is time-invariant but depends on the spatial distance x:

E[dW dWs] = p(z) (5.2)
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Using the state-independent model, the loss of wire strength of the two wire segments

are given by

Ll(t):/o r1(u) du, Lg(t):/o ro(u) du (5.3)

The goal the to find the spatial correlation pr(x) between L; and Lo, which is given
by

E[Ly(t)Ls(t)] = E K/Ot r1(w) du) (/Ot ro(1) du)]

_ /0 t /O "B [y (u)ra(0)] dudu (5.4)

With the explicit solutions of 7y and 75 given by Eq. (4.66), the expectation E[ry(u)ry(v)]

can be computed as

Bl (w)ra(0)] = i (1) (1) + 02~ 2H0H)E [ / " et AW (s) - / s dWQ(s)]

0 0

uNv
= 11 (u) 1 (v) + o2 2HY) / e®p(z)ds, (Ito isometry)
0

— 1 (W) (0) 4 02620 [ 200 1] p(a), (5.5)

where u A v = min{u, v}, p,-(t) is the mean of r; and ry given by Eq. (4.67). Substi-
tuting Eq. (5.5)) into Eq. (5.4]) yields
2

+ o? [L (1—e™) - %e_%t p(x) (5.6)

B0 L) = | [ netaa] +o? [

It can be verified that

E[Li(t)] = / () (5.7)
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and therefore the correlation coefficient between Ly (t) and Ly(t) is given by

o) = BlLa(t)La ()] — E[L (O)IE[L2(1)] _ .
pri(®) /Vat[L: (6)]/Var[La ()] pl) (5:8)

The result shows that if we view L(¢;x) as a random process in space than it has a
time-invariance correlation structure determined by the correlation of the Brownian

motions drivers in the deterioration rate process.

5.4 Conclusions and contributions

This research applied probabilistic methods to study the wire strength data collected
from real bridges and artificially corroded wires. Two methods were developed for
the purpose of estimating reliability of suspension cables at any given time. The
first method developed in Chapter 3 models the wire strength as random process in
space whose statistical properties evolves in time. The second method developed in
Chapter 4 models the deterioration rate as stochastic process in time. This research

has made the following significant and innovative contributions:

1. Recognized of the time-dependency of the marginal distribution and power spec-
tral density of the random process representing wire strength, while at any given
time the random process is considered as a stationary process in space. The
evolution of both characteristics is due to constant corrosion and deterioration
of wire strength. The evolutionary pattern is captured by fitting analytical func-
tion in time to the parameters of both distribution function and power spectral

density.

2. Applied copula theory to explained the origin of the incompatibility issue of

the first type between marginal distribution and power spectral density which
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arises when simulating non-Gaussian random processes by translation process

theory.

3. Proposed guidelines for fitting probability distribution and power spectral den-
sity to a data set of wire strength, avoiding the aforementioned incompatibility
issue of the first type by requiring the corresponding correlation function to be

within the attainable correlation bounds specified by the marginal distribution.

4. Identified the deterioration rate process as a square-root process under Ito’s
stochastic calculus theory. Subsequently the actual loss of strength is expressed
in terms of the integral of the square-root process. A method of moments
is proposed to estimate the model parameters from the observed probability

distribution.

5. Proposed that the actual deterioration of strength may also depend on the state
of the wire, as intuitively corroded wires are more prone to further corrosion.

Such model is able to explain the tail distribution of the observed data.

5.5 Future works

5.5.1 Incompatibility issue in non-Gaussian process simula-
tion

To completely avoid the incompatibility issue, one might directly construct the power
spectral density function of the underlying Gaussian process by matching its corre-
sponding non-Gaussian power spectral density with that estimated from data. Fol-
lowing this proposal, the Clough-Penzien spectrum would be directly constructed for

the underlying Gaussian process.
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5.5.2 Spatial correlation of the stochastic deterioration model

In Section [5.3]the stochastic deterioration model developed in Chapter 4 was extended
to account for spatial correlation. The resulting wire strength can be viewed as
a stationary random process in space at any given time. However, the derivation
was done assuming the deterioration rate process takes a simpler form, i.e., the O-U
process, instead of the previously suggested square-root process. The same derivation

may be applied to square-root process but would be much labor-intensive.
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Appendix A

Tensile testing results from

Carleton Lab

Results of the tensile testing performed in the Carleton Lab as part of this research
are presented in the following sections. Measurements include gross diameter, net
diameter which is diameter after removing zinc coating on both ends of the wire
specimen, and the diameter at the necking area. Test results include Young’s moduli,

maximum stress (engineering stress), yield stress, and stress at 2.5% strain.

A.1 New wires

A total of 5 new wires were tested and 65 test results were obtained, as presented in

Table [A1]
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Table A.1: Tensile testing results of new wires

138

Test | Wire | dgross(int) | dyet(in) | dpeck(in) | E(psi) | omax(ksi) | oyiela(ksi) | o259 (ksi)
1] IN | 0.1955 0.1919 | 0.1565 28278 | 250.62 192.85 233.46
2| IN | 0.1953 0.1919 | 0.1555 27499 | 251.68 190.16 233.46
31 IN |0.1951 0.1918 | 0.1548 26956 | 252.56 190.35 235.01
4| 1IN ]0.1950 0.1919 | 0.1568 26963 | 253.88 189.18 234.93
5| IN | 0.1953 0.1918 | 0.1573 26246 | 252.84 188.56 233.95
6| IN |0.1954 0.1918 | 0.1578 26584 | 251.93 187.30 233.28
71 1IN |0.1954 0.1921 | 0.1545 26328 | 253.74 190.89 235.17
8| IN |0.1951 0.1918 | 0.1540 26644 | 255.74 191.82 236.99
91 1IN | 0.1950 0.1915 | 0.1525 27004 | 255.77 191.77 237.27

10| IN | 0.1953 0.1918 | 0.1570 27259 | 252.49 190.08 234.70
11| IN | 0.1950 0.1918 | 0.1565 27320 | 253.26 191.20 236.66
12| IN | 0.1958 0.1918 | 0.1530 27127 | 254.02 190.76 235.26
13| IN | 0.1956 0.1916 | 0.1525 26559 | 254.77 190.62 236.05
14 | 2N |0.1954 0.1915 | 0.1575 26295 | 252.29 186.29 232.81
15| 2N | 0.1955 0.1916 | 0.1570 26282 | 252.23 187.31 233.05
16 | 2N | 0.1954 0.1918 | 0.1565 26920 | 254.33 190.01 235.39
171 2N | 0.1954 0.1919 | 0.1550 26135 | 255.50 190.12 235.75
18| 2N | 0.1955 0.1919 | 0.1568 26533 | 254.77 189.05 235.11
191 2N | 0.1959 0.1916 | 0.1605 25441 | 252.40 187.32 232.79
20 | 2N | 0.1953 0.1915 | 0.1585 25703 | 253.81 188.05 234.18
21| 2N | 0.1953 0.1918 | 0.1588 26507 | 254.02 187.75 234.32
22 | 2N | 0.1959 0.1919 | 0.1605 26173 | 252.47 187.13 233.22

Continued on next page. . .
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Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
23 | 2N | 0.1955 0.1921 | 0.1645 25694 | 249.32 184.26 230.92
24 | 2N | 0.1948 0.1915 | 0.1600 26868 | 255.68 189.16 235.90
25| 2N | 0.1955 0.1915 | 0.1608 | 25619 | 250.87 185.49 231.60
26 | 2N | 0.1954 0.1915 | 0.1573 25647 | 255.57 188.90 235.63
27 | 3N | 0.1945 0.1913 | 0.1543 26502 | 257.08 188.49 236.93
28 | 3N | 0.1951 0.1913 | 0.1585 25833 | 253.27 185.42 233.25
29 | 3N | 0.1945 0.1913 | 0.1580 25961 | 255.09 186.95 234.81
30 | 3N | 0.1946 0.1913 | 0.1578 26219 | 255.12 187.11 234.98
31| 3N | 0.1951 0.1911 | 0.1583 26049 | 253.13 185.51 233.15
32| 3N | 0.1951 0.1913 | 0.1568 26824 | 253.11 186.52 233.37
33 | 3N | 0.1949 0.1915 | 0.1543 27025 | 253.88 186.78 234.11
34 | 3N | 0.1948 0.1911 | 0.1538 27161 | 254.29 187.52 234.43
35| 3N | 0.1949 0.1913 | 0.1560 26829 | 254.19 187.12 234.31
36 | 3N | 0.1948 0.1911 | 0.1550 27190 | 253.60 186.28 233.76
371 3N | 0.1945 0.1914 | 0.1560 27131 | 255.35 189.14 236.34
38 | 3N | 0.1948 0.1913 | 0.1523 | 27218 | 256.35 189.52 236.60
39| 3N | 0.1945 0.1911 | 0.1513 27583 | 257.43 190.96 237.83
40 | 4N | 0.1946 0.1911 | 0.1550 26608 | 255.94 188.53 236.21
41 | 4N | 0.1948 0.1909 | 0.1553 26212 | 255.36 188.89 235.87
42 | 4N | 0.1945 0.1910 | 0.1543 26739 | 258.04 190.77 238.44
43 | 4N | 0.1955 0.1911 | 0.1540 | 26300 | 255.63 198.73 237.88
44 | AN | 0.1946 0.1914 | 0.1543 26634 | 258.12 191.40 238.45
45| 4N | 0.1944 0.1913 | 0.1603 26750 | 257.83 190.02 237.87

Continued on next page. . .
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Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
46 | 4N | 0.1950 0.1914 | 0.1623 25946 | 252.79 186.02 233.35
47 | 4N | 0.1948 0.1911 | 0.1558 26506 | 256.99 190.54 237.94
48 | 4N | 0.1949 0.1911 | 0.1555 | 27015 | 257.79 190.99 238.51
49 | 4N | 0.1948 0.1914 | 0.1560 26516 | 256.79 189.99 237.31
50 | 4N | 0.1946 0.1909 | 0.1550 26188 | 255.87 189.06 236.12
51 | 4N | 0.1949 0.1911 | 0.1545 26335 | 255.43 188.97 235.78
52 | 4N | 0.1953 0.1910 | 0.1555 26169 | 254.99 188.34 235.21
53 | 5N | 0.1951 0.1913 | 0.1550 25625 | 251.20 184.88 232.71
54 | BN | 0.1951 0.1914 | 0.1538 26159 | 255.87 188.64 236.47
55 | SN | 0.1946 0.1909 | 0.1540 26406 | 258.17 190.41 238.07
56 | 5N | 0.1948 0.1910 | 0.1518 26015 | 257.04 189.74 237.26
57 | BN | 0.1944 0.1911 | 0.1558 26081 | 256.14 188.55 236.30
58 | BN | 0.1948 0.1914 | 0.1545 25980 | 255.62 187.81 235.68
59 | 5N | 0.1946 0.1909 | 0.1545 26320 | 256.35 188.31 236.16
60 | 5N | 0.1945 0.1914 | 0.1543 26627 | 256.37 188.91 236.53
61 | BN | 0.1949 0.1911 | 0.1550 | 26539 | 255.22 188.08 235.41
62 | 5N | 0.1954 0.1911 | 0.1560 26688 | 254.00 186.93 234.35
63 | 5N | 0.1951 0.1910 | 0.1568 26542 | 254.65 187.34 234.95
64 | 5N | 0.1951 0.1911 | 0.1585 26959 | 254.56 187.53 234.95
65 | 5N | 0.1948 0.1915 | 0.1613 26367 | 255.18 187.79 235.21
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A.2 Artificially corroded wires

A total of 93 artificially corroded wires were tested and 1209 test results were obtained,
as presented in Table [A.2] The wires are labeled according to their location in the
cable. There are 12 wires that were taken from the surface of the cable, which are
labeled as 100 to 1200, as shown in Figure [A.1] The remaining 81 wires were taken

from the inside of the cable, and they are labeled in the following format, for example:
16R5

The first number is the strand number, as shown in Figure[A.2] The letter indicates
whether the strand is from the left or right part of the cable. The second number

indicates the location of the wire within the strand, as shown in Figure [A.3]

1200

1000 200
900 300

800 400

600

Figure A.1: Numbering of wires on the surface of the cable.
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Figure A.2: Numbering of strands.
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Figure A.3: Numbering of wires within a strand.

Table A.2: Tensile testing results of artifially corroded wires

142

Test | Wire | dgross(int) | dnet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiera(ksi) | o250 (ksi)
11 100 | 0.1960 0.1918 | 0.1603 25484 | 251.72 184.96 231.79
21 100 | 0.1968 0.1921 | 0.1565 25518 | 251.44 185.99 232.22
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Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)

3| 100 | 0.1968 0.1916 | 0.1660 26270 | 251.90 187.44 232.60
4| 100 | 0.1971 0.1918 | 0.1565 27139 | 249.91 189.57 232.37
5| 100 | 0.1975 0.1918 | 0.1568 26948 | 249.52 188.29 231.13
6| 100 | 0.1979 0.1918 | 0.1555 27237 | 247.90 189.83 230.07
71 100 | 0.1963 0.1920 | 0.1630 26997 | 251.48 189.25 232.91
8| 100 | 0.1940 0.1911 | 0.1658 27266 | 241.46 190.42 233.38
91| 100 | 0.1973 0.1909 | 0.1675 36028 | 234.53 187.36 234.41
10 | 100 | 0.1971 0.1916 | 0.1568 25669 | 249.05 185.51 230.22
11 | 100 | 0.1966 0.1918 | 0.1588 26059 | 251.24 185.61 231.47
12 | 100 | 0.1955 0.1914 | 0.1573 26621 | 254.26 188.08 234.69
13| 100 | 0.1959 0.1918 | 0.1575 25902 | 251.78 184.96 232.00
14| 200 | 0.1959 0.1918 | 0.1615 24882 | 254.69 186.18 233.39
15| 200 | 0.1973 0.1920 | 0.1630 24250 | 250.32 184.05 229.81
16 | 200 | 0.1985 0.1920 | 0.1683 23778 | 243.89 180.05 224.71
17| 200 | 0.1985 0.1921 | 0.1673 23967 | 243.80 180.86 226.05
18| 200 | 0.1978 0.1920 | 0.1643 24300 | 246.22 183.07 227.96
19 | 200 | 0.1976 0.1919 | 0.1663 24720 | 248.48 184.03 228.60
20 | 200 | 0.1998 0.1919 | 0.1695 23627 | 242.99 180.10 223.38
21| 200 | 0.1993 0.1911 | 0.1640 23913 | 240.73 180.83 224.48
22 | 200 | 0.1975 0.1918 | 0.1630 24913 | 249.93 184.94 230.63
23 | 200 | 0.1969 0.1920 | 0.1615 24807 | 252.55 185.38 231.88
24 | 200 | 0.1963 0.1919 | 0.1643 24865 | 252.65 184.36 231.84
25 | 200 | 0.1979 0.1919 | 0.1613 23890 | 247.95 181.04 227.16
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Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
26 | 200 | 0.1970 0.1920 | 0.1625 24115 | 250.51 183.30 229.62
27 | 300 | 0.1964 0.1919 | 0.1585 26292 | 251.83 186.65 232.48
28 | 300 | 0.1963 0.1918 | 0.1590 26964 | 251.41 187.65 232.80
29 | 300 | 0.1980 0.1918 | 0.1608 26296 | 246.95 185.30 228.93
30 | 300 | 0.1975 0.1916 | 0.1623 26249 | 249.84 187.17 231.66
31| 300 | 0.1976 0.1919 | 0.1590 26732 | 250.82 187.99 232.13
32| 300 | 0.1966 0.1919 | 0.1613 27230 | 252.88 190.95 234.43
33| 300 | 0.1976 0.1916 | 0.1605 26678 | 247.58 187.07 229.89
34 | 300 | 0.1970 0.1916 | 0.1635 26469 | 246.48 184.89 229.27
35| 300 | 0.1969 0.1919 | 0.1613 27086 | 248.26 188.20 231.34
36 | 300 | 0.1964 0.1916 | 0.1645 27443 | 250.19 188.46 231.68
37 1 300 | 0.1953 0.1920 | 0.1613 38994 | 254.57 201.94 237.22
38| 300 | 0.1955 0.1919 | 0.1583 27128 | 256.01 190.75 236.60
39| 300 | 0.1950 0.1919 | 0.1555 26968 | 257.61 191.08 238.07
40 | 400 | 0.1956 0.1919 | 0.1573 27240 | 252.60 188.37 234.08
41 | 400 | 0.1961 0.1915 | 0.1700 27700 | 250.34 191.16 23291
42 | 400 | 0.1964 0.1914 | 0.1593 26943 | 249.80 188.19 231.72
43 | 400 | 0.1960 0.1916 | 0.1590 27709 | 250.64 190.73 232.99
44 | 400 | 0.1979 0.1951 | 0.1600 26505 | 246.54 185.20 228.61
45 | 400 | 0.1980 0.1919 | 0.1585 26085 | 246.14 184.98 228.10
46 | 400 | 0.1966 0.1915 | 0.1580 27156 | 249.47 188.75 231.82
47 | 400 | 0.1998 0.1916 | 0.1560 26449 | 243.16 186.91 226.53
48 | 400 | 0.1963 0.1919 | 0.1540 27254 | 253.44 191.13 235.14
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Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
49 | 400 | 0.1958 0.1916 | 0.1555 28101 | 254.36 193.83 236.07
50 | 400 | 0.1961 0.1918 | 0.1550 27124 | 251.36 190.30 234.30
51 | 400 | 0.1959 0.1921 | 0.1593 26865 | 250.53 187.60 241.62
52 | 400 | 0.1950 0.1913 | 0.1613 28020 | 253.90 190.87 235.69
53 | 500 | 0.1960 0.1919 | 0.1598 24986 | 249.97 180.98 228.89
54 | 500 | 0.1975 0.1918 | 0.1630 24177 | 245.41 178.58 224.69
55 | 500 | 0.1973 0.1920 | 0.1630 24578 | 246.22 180.84 226.67
56 | 500 | 0.1974 0.1918 | 0.1593 24809 | 248.86 181.76 228.20
57 | 500 | 0.1996 0.1915 | 0.1588 23595 | 242.82 178.39 222.54
58 | 500 | 0.1996 0.1914 | 0.1570 23410 | 238.67 176.23 220.19
59 | 500 | 0.1965 0.1919 | 0.1615 24648 | 246.33 180.03 227.07
60 | 500 | 0.1993 0.1920 | 0.1623 23617 | 240.16 175.82 220.85
61 | 500 | 0.1970 0.1919 | 0.1588 24947 | 248.71 181.10 227.95
62 | 500 | 0.1968 0.1916 | 0.1575 24586 | 249.42 181.99 228.45
63 | 500 | 0.1950 0.1918 | 0.1568 25629 | 254.17 184.59 232.86
64 | 500 | 0.1955 0.1919 | 0.1565 25566 | 254.20 185.16 232.99
65| 500 | 0.1958 0.1914 | 0.1585 25445 | 254.07 185.26 232.71
66 | 600 | 0.1968 0.1920 | 0.1555 25956 | 250.60 184.16 229.42
67| 600 | 0.2020 0.1920 | 0.1565 23802 | 237.56 175.02 217.23
68 | 600 | 0.1983 0.1918 | 0.1550 25846 | 245.90 181.43 225.65
69 | 600 | 0.2000 0.1920 | 0.1635 24317 | 240.19 176.32 220.06
70 | 600 | 0.1994 0.1923 | 0.1650 24573 | 241.75 178.70 221.98
711 600 | 0.1976 0.1920 | 0.1558 25329 | 246.17 180.62 225.64
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Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
72| 600 | 0.2011 0.1920 | 0.1633 24100 | 236.91 175.71 217.45
73 | 600 | 0.1984 0.1923 | 0.1575 25295 | 243.84 179.73 223.78
741 600 | 0.1983 0.1921 | 0.1580 25390 | 244.02 179.00 223.76
75 | 600 | 0.1969 0.1920 | 0.1658 25666 | 247.82 182.12 227.15
76 | 600 | 0.1974 0.1921 | 0.1565 25832 | 246.39 181.26 226.03
77| 600 | 0.1968 0.1923 | 0.1600 25968 | 247.82 182.28 227.32
78 | 600 | 0.1971 0.1921 | 0.1550 26080 | 248.89 182.78 228.21
79 | 700 | 0.1968 0.1921 | 0.1580 26347 | 249.36 184.74 229.98
80 | 700 | 0.1956 0.1920 | 0.1590 27140 | 252.85 187.14 233.32
81 | 700 | 0.1963 0.1919 | 0.1588 26352 | 251.18 185.45 231.63
82 | 700 | 0.1960 0.1918 | 0.1583 26373 | 251.76 185.88 232.25
83| 700 | 0.1983 0.1919 | 0.1553 26177 | 247.68 183.87 228.50
84 | 700 | 0.1960 0.1924 | 0.1550 27300 | 253.85 189.45 234.36
85| 700 | 0.1953 0.1916 | 0.1605 27200 | 256.13 190.01 236.26
86 | 700 | 0.1956 0.1920 | 0.1575 26800 | 254.01 187.58 234.18
87| 700 | 0.1950 0.1920 | 0.1663 27246 | 253.80 187.47 234.29
88 | 700 | 0.1964 0.1915 | 0.1668 26914 | 251.65 186.16 232.11
89 | 700 | 0.1963 0.1920 | 0.1670 26589 | 251.01 185.88 231.60
90 | 700 | 0.1950 0.1921 | 0.1575 27138 | 254.34 186.88 234.73
91 | 700 | 0.1959 0.1920 | 0.1605 26060 | 251.44 185.18 232.01
92 | 800 | 0.1955 0.1919 | 0.1800 26187 | 256.96 189.72 237.14
93 | 800 | 0.1964 0.1914 | 0.1543 25885 | 256.95 190.51 236.76
94 | 800 | 0.1969 0.1920 | 0.1538 25600 | 255.36 189.90 235.34
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Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)

95| 800 | 0.1975 0.1916 | 0.1580 26017 | 250.58 186.12 232.13
96 | 800 | 0.1976 0.1921 | 0.1573 26455 | 250.64 187.61 231.82
97 | 800 | 0.1968 0.1918 | 0.1543 25534 | 255.10 188.99 234.97
98 | 800 | 0.1963 0.1916 | 0.1553 25877 | 256.99 189.95 236.86
99 | 800 | 0.1969 0.1918 | 0.1550 25294 | 255.39 189.57 235.17
100 | 800 | 0.1955 0.1915 | 0.1530 26113 | 259.63 191.92 239.31
101 | 800 | 0.1964 0.1916 | 0.1600 25696 | 256.87 190.73 237.06
102 | 800 | 0.1961 0.1920 | 0.1525 25888 | 258.71 191.36 238.09
103 | 800 | 0.1963 0.1919 | 0.1528 25765 | 257.42 189.95 236.94
104 | 800 | 0.1954 0.1915 | 0.1543 25786 | 258.26 189.23 237.41
105 | 900 | 0.1956 0.1919 | 0.1535 26248 | 251.69 184.75 232.02
106 | 900 | 0.1971 0.1919 | 0.1545 24975 | 247.78 182.96 228.09
107 | 900 | 0.1979 0.1915 | 0.1578 24808 | 246.13 182.54 226.66
108 | 900 | 0.1996 0.1916 | 0.1565 24380 | 241.92 179.82 222.98
109 | 900 | 0.1989 0.1914 | 0.1545 24584 | 243.41 180.27 224.39
110 | 900 | 0.1980 0.1920 | 0.1558 24663 | 245.97 182.24 226.78
111 | 900 | 0.1979 0.1913 | 0.1535 24907 | 248.59 185.04 229.01
112 | 900 | 0.1980 0.1918 | 0.1560 25384 | 248.51 184.11 228.95
113 | 900 | 0.1969 0.1918 | 0.1630 25714 | 251.17 186.23 231.52
114 | 900 | 0.1966 0.1919 | 0.1560 25482 | 249.65 185.10 231.05
115 | 900 | 0.1969 0.1916 | 0.1553 25442 | 249.69 184.06 230.00
116 | 900 | 0.1984 0.1920 | 0.1615 24923 | 243.64 180.58 224.95
117 | 900 | 0.1968 0.1919 | 0.1540 26282 | 248.73 184.32 229.66
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Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)

118 | 1100 | 0.1963 0.1920 | 0.1635 25339 | 250.52 182.62 229.95
119 | 1100 | 0.1963 0.1920 | 0.1598 24920 | 250.86 183.46 230.07
120 | 1100 | 0.1975 0.1919 | 0.1630 25514 | 247.65 184.22 228.03
121 | 1100 | 0.1975 0.1916 | 0.1615 25833 | 246.29 184.29 227.82
122 | 1100 | 0.1978 0.1920 | 0.1640 25936 | 246.58 183.95 227.38
123 | 1100 | 0.1988 0.1918 | 0.1605 27185 | 243.96 189.82 226.60
124 | 1100 | 0.1976 0.1919 | 0.1605 27059 | 244.92 186.72 227.74
125 | 1100 | 0.1944 0.1905 | 0.1650 28046 | 228.68 191.74 NaN
126 | 1100 | 0.1975 0.1891 | 0.1563 27173 | 232.91 187.55 225.34
127 | 1100 | 0.1980 0.1921 | 0.1590 27108 | 246.44 187.81 228.62
128 | 1100 | 0.1976 0.1919 | 0.1650 26213 | 249.09 184.39 229.45
129 | 1100 | 0.1968 0.1919 | 0.1615 24881 | 251.55 184.36 230.82
130 | 1100 | 0.1969 0.1916 | 0.1625 27861 | 247.33 198.71 230.79
131 | 1200 | 0.1971 0.1921 | 0.1588 25184 | 249.57 182.97 229.03
132 | 1200 | 0.1968 0.1919 | 0.1590 25112 | 250.48 183.74 229.99
133 | 1200 | 0.2001 0.1918 | 0.1600 25067 | 242.08 181.41 223.18
134 | 1200 | 0.1988 0.1919 | 0.1580 25823 | 243.98 184.81 226.31
135 | 1200 | 0.1990 0.1920 | 0.1588 25706 | 245.27 184.41 226.16
136 | 1200 | 0.1985 0.1919 | 0.1630 27778 | 244.24 201.37 229.35
137 | 1200 | 0.1980 0.1920 | 0.1580 25911 | 249.20 187.61 230.18
138 | 1200 | 0.1979 0.1921 | 0.1588 28073 | 244.31 210.35 234.31
139 | 1200 | 0.1968 0.1921 | 0.1623 27820 | 241.14 208.16 235.14
140 | 1200 | 0.1974 0.1921 | 0.1598 24918 | 250.35 185.43 230.78
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Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
141 | 1200 | 0.1965 0.1920 | 0.1598 25674 | 254.69 187.25 234.22
142 | 1200 | 0.1960 0.1919 | 0.1575 25349 | 256.30 188.76 235.44
143 | 1200 | 0.1958 0.1918 | 0.1598 25397 | 256.18 188.09 235.28
144 | 16R5 | 0.1955 0.1920 | 0.1570 26057 | 251.71 184.10 231.36
145 | 16R5 | 0.1975 0.1916 | 0.1570 25988 | 249.31 185.16 229.51
146 | 16R5 | 0.1961 0.1925 | 0.1555 26505 | 254.82 189.00 234.80
147 | 16R5 | 0.1956 0.1920 | 0.1560 26292 | 256.38 188.84 235.83
148 | 16R5 | 0.1960 0.1920 | 0.1680 26774 | 253.44 187.52 233.64
149 | 16R5 | 0.1971 0.1919 | 0.1610 26785 | 248.93 186.60 229.74
150 | 16R5 | 0.1979 0.1918 | 0.1600 25834 | 248.94 184.92 229.42
151 | 16R5 | 0.1979 0.1915 | 0.1570 25025 | 249.25 183.66 229.11
152 | 16R5 | 0.1970 0.1913 | 0.1580 26210 | 251.04 185.75 231.13
153 | 16R5 | 0.1973 0.1915 | 0.1590 26346 | 250.29 185.38 230.45
154 | 16R5 | 0.1961 0.1920 | 0.1605 27322 | 253.83 188.70 234.05
155 | 16R5 | 0.1958 0.1918 | 0.1600 26460 | 255.50 188.00 234.99
156 | 16R5 | 0.1948 0.1914 | 0.1575 26741 | 257.77 188.27 236.85
157 | 13R1 | 0.1963 0.1920 | 0.1528 25343 | 253.22 184.83 232.23
158 | 13R1 | 0.1968 0.1925 | 0.1520 25440 | 253.98 186.80 233.14
159 | 13R1 | 0.1966 0.1919 | 0.1505 25872 | 255.72 189.35 234.99
160 | 13R1 | 0.1965 0.1911 | 0.1530 26565 | 256.40 190.03 235.74
161 | 13R1 | 0.1966 0.1950 | 0.1555 26598 | 255.85 189.86 235.48
162 | 13R1 | 0.1968 0.1915 | 0.1570 26517 | 253.08 189.30 233.51
163 | 13R1 | 0.1968 0.1918 | 0.1545 26477 | 253.14 188.50 233.67
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Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
164 | 13R1 | 0.1968 0.1918 | 0.1540 26277 | 253.84 188.38 234.00
165 | 13R1 | 0.2136 0.1918 | 0.1538 19128 | 216.19 164.11 198.58
166 | 13R1 | 0.1968 0.1920 | 0.1555 25910 | 256.14 188.46 235.23
167 | 13R1 | 0.1959 0.1925 | 0.1545 26023 | 254.83 186.93 233.74
168 | 13R1 | 0.1963 0.1920 | 0.1555 25152 | 252.75 185.25 231.75
169 | 13R1 | 0.1959 0.1920 | 0.1548 24932 | 252.71 184.35 231.43
170 | 11R4 | 0.1968 0.1919 | 0.1590 24742 | 247.59 180.75 227.42
171 | 11R4 | 0.1979 0.1919 | 0.1568 24521 | 247.71 183.17 228.30
172 | 11R4 | 0.1961 0.1923 | 0.1585 25439 | 253.30 185.62 232.62
173 | 11R4 | 0.1970 0.1919 | 0.1578 24877 | 252.26 185.55 231.55
174 | 11R4 | 0.1993 0.1919 | 0.1590 22926 | 245.84 182.42 225.45
175 | 11R4 | 0.1979 0.1915 | 0.1600 24079 | 247.23 181.96 227.08
176 | 11R4 | 0.1979 0.1923 | 0.1623 24118 | 247.51 182.22 227.44
177 | 11R4 | 0.1974 0.1920 | 0.1600 24105 | 248.97 183.33 228.64
178 | 11R4 | 0.1961 0.1918 | 0.1615 25010 | 252.09 184.43 231.35
179 | 11R4 | 0.1965 0.1919 | 0.1605 24744 | 251.56 184.45 230.82
180 | 11R4 | 0.1960 0.1921 | 0.1593 25254 | 253.02 185.47 232.19
181 | 11R4 | 0.1958 0.1919 | 0.1590 25034 | 254.06 186.11 233.17
182 | 11R4 | 0.1953 0.1918 | 0.1578 25147 | 254.65 186.41 233.94
183 | 26R3 | 0.1955 0.1916 | 0.1573 32896 | 253.46 195.45 239.13
184 | 26R3 | 0.1961 0.1919 | 0.1575 26320 | 251.84 187.33 232.05
185 | 26R3 | 0.1964 0.1916 | 0.1598 29265 | 251.01 183.57 231.41
186 | 26R3 | 0.1959 0.1919 | 0.1655 34961 | 251.94 171.00 233.17
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Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
187 | 26R3 | 0.1955 0.1919 | 0.1573 26712 | 253.52 187.20 234.13
188 | 26R3 | 0.1958 0.1921 | 0.1580 26299 | 255.23 188.57 235.09
189 | 26R3 | 0.1961 0.1920 | 0.1555 26638 | 254.15 188.17 234.57
190 | 26R3 | 0.1968 0.1920 | 0.1558 25787 | 251.58 186.80 232.40
191 | 26R3 | 0.1960 0.1918 | 0.1548 26421 | 252.92 187.76 233.41
192 | 26R3 | 0.1959 0.1918 | 0.1585 26426 | 252.60 187.23 233.10
193 | 26R3 | 0.1951 0.1915 | 0.1525 26583 | 256.81 189.49 236.60
194 | 26R3 | 0.1961 0.1919 | 0.1550 26294 | 253.63 186.56 233.49
195 | 26R3 | 0.1958 0.1915 | 0.1550 25696 | 253.44 186.42 233.59
196 | 10R5 | 0.1965 0.1920 | 0.1615 24767 | 252.67 184.47 231.52
197 | 10R5 | 0.1963 0.1916 | 0.1680 25043 | 253.09 185.01 232.14
198 | 10R5 | 0.1966 0.1918 | 0.1653 25308 | 252.22 183.96 231.36
199 | 10R5 | 0.1985 0.1918 | 0.1630 23945 | 247.22 181.14 226.65
200 | 10R5 | 0.1980 0.1919 | 0.1625 24514 | 188.46 181.61 NaN
201 | 10R5 | 0.1994 0.1919 | 0.1605 24139 | 246.46 181.38 226.02
202 | 10R5 | 0.1981 0.1920 | 0.1615 24483 | 249.56 183.84 229.22
203 | 10R5 | 0.1975 0.1918 | 0.1588 24761 | 250.48 183.39 230.03
204 | 10R5 | 0.1983 0.1919 | 0.1578 24330 | 249.50 183.12 228.84
205 | 10R5 | 0.1964 0.1923 | 0.1585 25060 | 254.02 185.57 232.94
206 | 10R5 | 0.1956 0.1919 | 0.1553 25454 | 256.23 187.23 234.89
207 | 10R5 | 0.1956 0.1919 | 0.1613 25097 | 253.32 185.13 232.87
208 | 10R5 | 0.1961 0.1920 | 0.1610 24779 | 253.25 184.75 232.12
209 | 1IR3 | 0.1961 0.1920 | 0.1548 25545 | 253.01 185.31 232.47
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Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
210 | 1IR3 | 0.1995 0.1918 | 0.1608 24166 | 243.32 179.83 223.38
211 | 1R3 | 0.1973 0.1919 | 0.1563 24834 | 248.97 183.21 228.52
212 | 1R3 | 0.1986 0.1913 | 0.1588 25845 | 245.06 182.28 225.66
213 | 1R3 | 0.1966 0.1913 | 0.1580 26211 | 249.78 185.54 230.06
214 | 1R3 | 0.1974 0.1911 | 0.1555 26283 | 248.19 185.79 228.90
215 | 1R3 | 0.1965 0.1881 | 0.1585 26898 | 250.02 187.53 230.85
216 | 1R3 | 0.2014 0.1920 | 0.1580 24667 | 238.11 178.45 219.47
217 | 1R3 | 0.1976 0.1915 | 0.1580 25119 | 247.86 183.13 227.83
218 | 1R3 | 0.1980 0.1913 | 0.1550 24668 | 246.98 182.58 226.76
219 | 1R3 | 0.1968 0.1913 | 0.1545 25577 | 251.91 185.68 231.33
220 | 1R3 | 0.1968 0.1916 | 0.1553 25690 | 252.44 186.42 231.88
221 | 1R3 | 0.1976 0.1914 | 0.1593 25206 | 249.85 184.79 229.65
222 | 5R3 | 0.1953 0.1918 | 0.1535 23499 | 231.90 177.37 225.27
223 | 5R3 | 0.1969 0.1916 | 0.1728 25207 | 218.83 185.75 NaN
224 | 5R3 | 0.1974 0.1919 | 0.1545 25166 | 253.21 188.04 233.44
225 | 5R3 | 0.1968 0.1915 | 0.1580 25834 | 254.84 188.99 235.18
226 | 5R3 | 0.1970 0.1915 | 0.1593 25459 | 254.01 188.77 234.19
227 | 5R3 | 0.1968 0.1915 | 0.1580 25453 | 254.15 188.51 234.44
228 | BR3 | 0.1964 0.1916 | 0.1570 25650 | 254.84 189.08 234.94
229 | 5R3 | 0.1970 0.1915 | 0.1618 25057 | 250.52 186.47 231.84
230 | 5R3 | 0.1950 0.1916 | 0.1613 25826 | 257.17 189.67 236.90
231 | 5R3 | 0.1955 0.1915 | 0.1615 25511 | 255.86 189.58 236.15
232 | 5R3 | 0.1954 0.1910 | 0.1603 26035 | 257.79 190.43 245.32
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Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
233 | 5R3 | 0.1960 0.1915 | 0.1585 25039 | 255.28 189.39 243.41
234 | 5R3 | 0.1955 0.1915 | 0.1670 25336 | 255.00 187.34 234.75
235 | 2R3 | 0.1951 0.1915 | 0.1593 26241 | 254.83 186.90 234.75
236 | 2R3 | 0.1956 0.1915 | 0.1595 25806 | 253.18 186.30 233.21
237 | 2R3 | 0.1973 0.1916 | 0.1605 25294 | 249.78 184.40 230.20
238 | 2R3 | 0.1966 0.1923 | 0.1610 25620 | 251.10 185.59 231.50
239 | 2R3 | 0.1971 0.1916 | 0.1648 25589 | 249.67 184.17 230.18
240 | 2R3 | 0.1955 0.1920 | 0.1600 25969 | 253.81 187.96 233.83
241 | 2R3 | 0.1968 0.1919 | 0.1598 25971 | 251.03 185.28 231.38
242 | 2R3 | 0.1963 0.1924 | 0.1623 21596 | 251.69 190.71 230.74
243 | 2R3 | 0.1978 0.1918 | 0.1685 25282 | 247.31 182.95 228.33
244 | 2R3 | 0.1958 0.1919 | 0.1583 26141 | 254.74 188.39 235.07
245 | 2R3 | 0.1956 0.1911 | 0.1603 26437 | 256.13 189.44 236.06
246 | 2R3 | 0.1951 0.1919 | 0.1595 26593 | 256.25 189.62 237.13
247 | 2R3 | 0.1963 0.1919 | 0.1598 26101 | 253.92 187.41 234.16
248 | 15R3 | 0.1986 0.1919 | 0.1635 24580 | 249.26 183.57 228.87
249 | 15R3 | 0.1980 0.1918 | 0.1605 24044 | 250.03 183.57 229.28
250 | 156R3 | 0.1978 0.1914 | 0.1675 24676 | 249.43 182.86 228.86
251 | 15R3 | 0.1978 0.1913 | 0.1648 24480 | 249.13 183.02 228.79
252 | 156R3 | 0.1973 0.1916 | 0.1648 24875 | 249.85 184.31 230.27
253 | 16R3 | 0.1976 0.1915 | 0.1635 24721 | 249.14 184.19 229.20
254 | 15R3 | 0.1979 0.1916 | 0.1623 24393 | 248.51 182.65 228.17
255 | 16R3 | 0.1988 0.1915 | 0.1618 24082 | 245.45 181.31 226.11
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 154
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
256 | 15R3 | 0.1969 0.1916 | 0.1638 24866 | 251.13 184.88 231.35
257 | 156R3 | 0.1968 0.1918 | 0.1603 24762 | 252.44 184.75 231.62
258 | 15R3 | 0.1980 0.1919 | 0.1588 24296 | 249.31 182.72 228.65
259 | 156R3 | 0.1958 0.1914 | 0.1863 25609 | 257.13 188.16 235.99
260 | 156R3 | 0.1973 0.1920 | 0.1583 24892 | 253.51 185.89 232.52
261 | 23R1 | 0.1953 0.1913 | 0.1568 26246 | 255.29 188.58 235.13
262 | 23R1 | 0.1958 0.1914 | 0.1603 25448 | 252.16 186.01 232.27
263 | 23R1 | 0.1963 0.1920 | 0.1565 25710 | 252.56 187.18 232.30
264 | 23R1 | 0.1961 0.1915 | 0.1548 26980 | 253.35 188.61 233.74
265 | 23R1 | 0.1979 0.1918 | 0.1565 25787 | 248.47 185.34 229.61
266 | 23R1 | 0.1983 0.1918 | 0.1578 25929 | 247.97 185.64 228.71
267 | 23R1 | 0.1968 0.1914 | 0.1555 25753 | 250.50 186.26 231.17
268 | 23R1 | 0.1995 0.1915 | 0.1588 25009 | 242.76 180.53 223.40
269 | 23R1 | 0.1978 0.1915 | 0.1583 25936 | 247.53 184.54 227.86
270 | 23R1 | 0.1976 0.1916 | 0.1580 25296 | 247.76 183.28 227.72
271 | 23R1 | 0.1968 0.1920 | 0.1545 25827 | 249.51 184.05 229.33
272 | 23R1 | 0.1963 0.1918 | 0.1590 26351 | 250.43 184.76 230.30
273 | 23R1 | 0.1955 0.1920 | 0.1630 26326 | 252.66 185.78 232.22
274 | 24R5 | 0.1964 0.1916 | 0.1540 26564 | 254.34 189.49 234.78
275 | 24R5 | 0.1954 0.1915 | 0.1593 26887 | 254.59 187.93 235.17
276 | 24R5 | 0.1968 0.1916 | 0.1573 26330 | 252.98 186.95 233.47
277 | 24R5 | 0.1968 0.1913 | 0.1563 26252 | 251.50 185.98 232.06
278 | 24R5 | 0.1963 0.1913 | 0.1573 26788 | 252.96 187.63 233.66
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 155
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
279 | 24R5 | 0.1959 0.1919 | 0.1595 26959 | 254.15 188.94 234.63
280 | 24R5 | 0.1954 0.1911 | 0.1565 26569 | 255.17 188.50 235.21
281 | 24R5 | 0.1961 0.1911 | 0.1555 26020 | 252.95 186.88 233.25
282 | 24R5 | 0.1964 0.1920 | 0.1540 26356 | 252.10 186.12 232.53
283 | 24R5 | 0.1956 0.1919 | 0.1568 26311 | 254.52 187.31 234.46
284 | 24R5 | 0.1958 0.1923 | 0.1608 26509 | 254.08 187.07 234.14
285 | 24R5 | 0.1969 0.1916 | 0.1548 25990 | 250.99 184.44 231.30
286 | 24R5 | 0.1954 0.1918 | 0.1545 26578 | 256.48 188.88 236.66
287 | 6R3 | 0.1948 0.1914 | 0.1603 25447 | 255.81 186.91 234.64
288 | 6R3 | 0.1958 0.1915 | 0.1585 25066 | 253.33 185.17 232.38
289 | 6R3 | 0.1954 0.1915 | 0.1630 25918 | 254.18 185.60 233.53
290 | 6R3 | 0.1961 0.1920 | 0.1583 32869 | 252.80 186.31 232.83
291 | 6R3 | 0.1960 0.1913 | 0.1615 25549 | 252.62 185.54 232.03
292 | 6R3 | 0.1966 0.1914 | 0.1595 25731 | 251.07 186.79 231.29
293 | 6R3 | 0.1975 0.1915 | 0.1568 25150 | 250.38 185.70 230.41
294 | 6R3 | 0.1978 0.1914 | 0.1628 25011 | 249.61 186.21 230.05
295 | 6R3 | 0.1973 0.1918 | 0.1565 25059 | 251.49 185.69 231.19
296 | 6R3 | 0.1961 0.1914 | 0.1598 25044 | 253.09 186.23 232.80
297 | 6R3 | 0.1961 0.1916 | 0.1603 24596 | 250.26 183.69 230.18
298 | 6R3 | 0.1961 0.1918 | 0.1623 24696 | 251.67 184.26 231.10
299 | 6R3 | 0.1956 0.1913 | 0.1655 24785 | 251.73 184.07 231.25
300 | 21R5 | 0.1954 0.1916 | 0.1580 26315 | 254.14 187.73 234.15
301 | 21R5 | 0.1950 0.1919 | 0.1605 26040 | 254.40 187.65 234.33
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 156
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
302 | 21R5 | 0.1959 0.1916 | 0.1573 26146 | 252.97 187.96 233.45
303 | 21R5 | 0.1960 0.1914 | 0.1563 26456 | 254.82 190.44 235.23
304 | 21R5 | 0.1959 0.1916 | 0.1563 26916 | 255.61 192.18 236.07
305 | 21R5 | 0.1949 0.1921 | 0.1575 26976 | 257.36 192.28 237.58
306 | 21R5 | 0.1954 0.1918 | 0.1618 26469 | 254.07 189.46 234.80
307 | 21R5 | 0.1963 0.1914 | 0.1610 26355 | 252.14 187.90 233.10
308 | 21R5 | 0.1974 0.1918 | 0.1668 25883 | 246.93 183.83 228.23
309 | 21R5 | 0.1956 0.1915 | 0.1585 26302 | 255.46 189.93 235.64
310 | 21R5 | 0.1950 0.1919 | 0.1605 26352 | 258.19 190.69 237.70
311 | 21R5 | 0.1954 0.1919 | 0.1558 25906 | 257.44 190.65 236.98
312 | 21R5 | 0.1950 0.1920 | 0.1568 26594 | 255.69 188.71 236.11
313 | 17R5 | 0.1964 0.1916 | 0.1615 25187 | 250.20 183.58 230.35
314 | 17R5 | 0.1958 0.1916 | 0.1568 25393 | 251.48 184.63 231.53
315 | 17R5 | 0.1955 0.1915 | 0.1638 25540 | 249.17 183.57 230.20
316 | 17R5 | 0.1970 0.1913 | 0.1565 25359 | 249.83 184.40 230.22
317 | 17R5 | 0.1971 0.1916 | 0.1565 25520 | 250.55 184.90 230.62
318 | 17R5 | 0.1964 0.1916 | 0.1558 26012 | 253.10 186.50 233.10
319 | 17R5 | 0.1975 0.1916 | 0.1568 25072 | 249.29 184.38 229.61
320 | 17R5 | 0.1965 0.1916 | 0.1638 25431 | 249.90 183.97 230.09
321 | 17R5 | 0.1971 0.1914 | 0.1600 25087 | 248.24 182.41 228.50
322 | 17R5 | 0.1949 0.1916 | 0.1568 26011 | 254.35 185.64 233.87
323 | 17R5 | 0.1951 0.1916 | 0.1590 25718 | 253.64 185.34 233.18
324 | 17R5 | 0.1959 0.1916 | 0.1570 25661 | 251.77 184.42 231.50

Continued on next page. . .




APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 157
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
325 | 17R5 | 0.1953 0.1916 | 0.1575 25873 | 253.18 185.15 232.69
326 | 26R6 | 0.1950 0.1918 | 0.1573 26857 | 254.38 187.43 234.49
327 | 26R6 | 0.1950 0.1916 | 0.1550 26867 | 255.78 188.32 235.38
328 | 26R6 | 0.1951 0.1914 | 0.1608 26413 | 255.48 188.19 235.05
329 | 26R6 | 0.1958 0.1915 | 0.1595 25874 | 253.79 186.92 233.39
330 | 26R6 | 0.1965 0.1915 | 0.1570 25257 | 250.52 184.11 230.36
331 | 26R6 | 0.1954 0.1920 | 0.1605 25814 | 252.39 185.21 232.02
332 | 26R6 | 0.1971 0.1919 | 0.1595 25015 | 248.56 182.58 228.34
333 | 26R6 | 0.1965 0.1919 | 0.1615 25418 | 249.80 182.92 229.44
334 | 26R6 | 0.1953 0.1915 | 0.1578 25887 | 253.31 185.81 232.74
335 | 26R6 | 0.1949 0.1915 | 0.1595 25901 | 254.17 186.07 233.46
336 | 26R6 | 0.1961 0.1918 | 0.1575 25203 | 251.24 184.64 230.82
337 | 26R6 | 0.1948 0.1914 | 0.1563 25900 | 255.19 186.51 234.46
338 | 26R6 | 0.1955 0.1918 | 0.1615 25389 | 252.76 184.68 232.09
339 | 14R3 | 0.1963 0.1915 | 0.1545 26240 | 249.74 185.88 230.31
340 | 14R3 | 0.1961 0.1910 | 0.1550 26681 | 250.86 187.17 231.78
341 | 14R3 | 0.1960 0.1913 | 0.1550 26695 | 251.27 187.30 232.10
342 | 14R3 | 0.1985 0.1914 | 0.1538 25712 | 244.32 182.86 225.59
343 | 14R3 | 0.1986 0.1910 | 0.1540 25665 | 244.09 183.41 225.58
344 | 14R3 | 0.1963 0.1913 | 0.1543 26798 | 250.42 187.87 231.60
345 | 14R3 | 0.1971 0.1914 | 0.1545 26222 | 248.39 186.42 229.67
346 | 14R3 | 0.1991 0.1910 | 0.1560 26051 | 242.28 183.08 224.25
347 | 14R3 | 0.1979 0.1914 | 0.1545 25886 | 246.13 185.20 227.83
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 158
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
348 | 14R3 | 0.1983 0.1910 | 0.1530 25003 | 248.06 185.43 228.71
349 | 14R3 | 0.1953 0.1914 | 0.1550 26292 | 255.33 189.21 235.21
350 | 14R3 | 0.1961 0.1913 | 0.1578 24973 | 248.25 185.47 230.68
351 | 14R3 | 0.1953 0.1915 | 0.1528 26249 | 255.56 189.63 235.65
352 | 19R2 | 0.1961 0.1913 | 0.1593 25163 | 250.45 183.89 230.55
353 | 19R2 | 0.1964 0.1915 | 0.1573 24999 | 250.83 184.96 231.60
354 | 19R2 | 0.1955 0.1914 | 0.1548 26342 | 254.07 189.31 235.64
355 | 19R2 | 0.1969 0.1916 | 0.1520 25485 | 253.45 190.52 233.71
356 | 19R2 | 0.1969 0.1911 | 0.1518 26649 | 253.67 190.03 234.16
357 | 19R2 | 0.1951 0.1916 | 0.1543 28230 | 257.23 196.84 238.30
358 | 19R2 | 0.1960 0.1913 | 0.1543 26338 | 252.63 188.00 232.96
359 | 19R2 | 0.1984 0.1918 | 0.1560 25343 | 246.90 184.23 227.69
360 | 19R2 | 0.1980 0.1913 | 0.1555 25239 | 247.58 183.96 227.99
361 | 19R2 | 0.1963 0.1910 | 0.1603 25685 | 251.38 184.85 231.24
362 | 19R2 | 0.1963 0.1914 | 0.1555 24759 | 251.78 184.68 231.17
363 | 19R2 | 0.1964 0.1911 | 0.1545 24804 | 252.03 184.97 231.51
364 | 19R2 | 0.1956 0.1911 | 0.1558 25167 | 254.11 186.15 233.21
365 | 4R1 | 0.1948 0.1916 | 0.1583 26133 | 255.57 187.67 235.44
366 | 4R1 | 0.1963 0.1916 | 0.1623 25080 | 249.56 183.76 230.14
367 | 4R1 | 0.1960 0.1916 | 0.1565 25719 | 251.76 186.91 232.56
368 | 4R1 | 0.1960 0.1920 | 0.1555 25904 | 253.79 188.08 234.22
369 | 4R1 | 0.1973 0.1913 | 0.1560 25605 | 252.04 187.32 232.19
370 | 4R1 | 0.1965 0.1915 | 0.1568 25723 | 253.70 188.13 233.55
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 159
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
371 | 4R1 | 0.1955 0.1920 | 0.1555 25899 | 253.78 187.04 233.84
372 | 4R1 | 0.1963 0.1921 | 0.1555 25566 | 252.07 186.57 232.23
373 | 4R1 | 0.1961 0.1915 | 0.1590 25431 | 252.72 186.56 232.57
374 | 4R1 | 0.1966 0.1921 | 0.1548 25311 | 251.32 185.39 231.34
375 | 4R1 | 0.1960 0.1914 | 0.1538 25350 | 253.12 187.05 232.85
376 | 4R1 | 0.1943 0.1920 | 0.1555 26253 | 257.79 189.51 237.12
377 | 4R1 | 0.1951 0.1916 | 0.1573 25741 | 255.54 188.10 234.86
378 | 18L5 | 0.1964 0.1918 | 0.1533 24949 | 254.55 188.17 233.72
379 | 18L5 | 0.1958 0.1919 | 0.1568 25152 | 253.85 186.65 233.56
380 | 18L5 | 0.1958 0.1918 | 0.1585 250562 | 252.89 185.32 231.97
381 | 18L5 | 0.1963 0.1914 | 0.1553 24994 | 251.98 184.89 231.12
382 | 18L5 | 0.1966 0.1916 | 0.1560 25073 | 251.15 183.79 230.31
383 | 18L5 | 0.1963 0.1916 | 0.1615 24988 | 251.56 184.73 230.93
384 | 18L5 | 0.1953 0.1919 | 0.1588 25228 | 253.81 186.55 232.92
385 | 18L5 | 0.1954 0.1921 | 0.1590 25084 | 254.08 186.78 233.19
386 | 18L5 | 0.1963 0.1920 | 0.1568 24761 | 251.69 184.92 230.94
387 | 18L5 | 0.1968 0.1916 | 0.1613 24528 | 250.33 183.41 229.54
388 | 18L5 | 0.1964 0.1920 | 0.1558 25027 | 252.30 185.48 231.53
389 | 18L5 | 0.1954 0.1919 | 0.1543 25729 | 256.90 188.50 235.78
390 | 18L5 | 0.1958 0.1919 | 0.1525 25650 | 255.95 187.67 234.88
391 | 8L1 | 0.1954 0.1916 | 0.1600 25413 | 254.79 185.85 233.56
392 | 8L1 | 0.1959 0.1916 | 0.1595 24854 | 253.11 185.19 232.03
393 | 8L1 | 0.1965 0.1919 | 0.1623 24988 | 251.17 183.72 230.30
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 160
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
394 | 8L1 | 0.1960 0.1915 | 0.1583 25265 | 253.18 185.81 232.53
395 | 8L1 | 0.1963 0.1918 | 0.1565 25317 | 253.98 187.49 233.29
396 | 8L1 | 0.1963 0.1914 | 0.1580 25462 | 253.60 187.24 233.15
397 | 8L1 | 0.1968 0.1915 | 0.1605 25238 | 252.45 186.55 231.96
398 | 8L1 | 0.1971 0.1920 | 0.1600 24592 | 250.56 184.49 230.01
399 | 8L1 | 0.1961 0.1918 | 0.1598 25079 | 253.30 186.22 232.62
400 | 8L1 | 0.1963 0.1915 | 0.1610 250563 | 253.58 185.70 232.59
401 | 8L1 | 0.1956 0.1918 | 0.1613 24730 | 251.86 184.19 231.07
402 | 8L1 | 0.1969 0.1918 | 0.1618 24816 | 249.54 183.12 229.68
403 | 8L1 | 0.1959 0.1915 | 0.1565 25009 | 255.36 187.55 234.22
404 | 9L1 | 0.1949 0.1919 | 0.1568 25972 | 255.77 186.85 234.85
405 | 9L1 | 0.1953 0.1914 | 0.1578 25353 | 255.21 186.97 234.26
406 | 9L1 | 0.1965 0.1919 | 0.1593 25028 | 251.42 184.16 230.68
407 | 9L1 | 0.1964 0.1911 | 0.1568 24967 | 252.00 184.67 231.20
408 | 9L1 | 0.1956 0.1913 | 0.1578 25148 | 254.15 186.37 233.06
409 | 9L1 | 0.1961 0.1918 | 0.1590 25239 | 253.43 186.30 232.63
410 | 9L1 | 0.1958 0.1918 | 0.1630 25164 | 252.84 185.30 232.17
411 | 9L1 | 0.1961 0.1916 | 0.1593 25451 | 253.12 186.19 232.82
412 | 9L1 | 0.1965 0.1916 | 0.1565 24919 | 253.37 187.03 232.96
413 | 9L1 | 0.1955 0.1916 | 0.1618 25222 | 255.13 186.30 234.07
414 | 9L1 | 0.1966 0.1919 | 0.1553 25298 | 253.49 185.96 232.75
415 | 9L1 | 0.1956 0.1918 | 0.1593 25176 | 253.99 184.93 233.06
416 | 9L1 | 0.1953 0.1921 | 0.1558 25412 | 257.54 188.46 236.26
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 161
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
417 | 2L1 | 0.1960 0.1919 | 0.1575 25549 | 253.10 185.83 232.25
418 | 2L1 | 0.1959 0.1919 | 0.1588 25529 | 254.15 187.69 233.51
419 | 2L1 | 0.1966 0.1916 | 0.1585 25451 | 252.41 186.28 231.86
420 | 2L1 | 0.1949 0.1918 | 0.1575 25958 | 256.48 189.44 235.83
421 | 2L1 | 0.1960 0.1918 | 0.1580 25720 | 251.81 185.59 231.83
422 | 2L1 | 0.1968 0.1914 | 0.1603 25208 | 249.17 184.01 229.11
423 | 2L1 | 0.1974 0.1918 | 0.1613 25060 | 248.44 183.52 228.34
424 | 2L1 | 0.1975 0.1920 | 0.1595 24357 | 246.02 182.54 226.95
425 | 2L1 | 0.1973 0.1919 | 0.1640 24624 | 248.24 182.91 228.14
426 | 2L1 | 0.1969 0.1920 | 0.1630 25353 | 249.22 184.01 229.13
427 | 2L1 | 0.1956 0.1918 | 0.1585 25652 | 252.97 186.42 232.47
428 | 2L1 | 0.1955 0.1920 | 0.1623 26256 | 252.52 185.84 232.13
429 | 2L1 | 0.1959 0.1921 | 0.1615 24834 | 251.29 184.21 230.68
430 | 1L5 | 0.1956 0.1921 | 0.1595 25553 | 253.91 186.07 233.12
431 | 1L5 | 0.1954 0.1919 | 0.1610 25976 | 254.43 186.65 233.79
432 | 1L5 | 0.1959 0.1920 | 0.1665 25547 | 252.39 186.04 232.11
433 | 1L5 | 0.1959 0.1920 | 0.1623 26139 | 253.74 187.60 233.77
434 | 1L5 | 0.1966 0.1916 | 0.1603 26008 | 253.04 187.36 232.93
435 | 1L5 | 0.1956 0.1920 | 0.1633 26558 | 252.76 189.17 235.13
436 | 1L5 | 0.1963 0.1918 | 0.1600 25932 | 252.94 188.14 233.17
437 | 1L5 | 0.1970 0.1921 | 0.1590 25693 | 251.73 187.13 231.96
438 | 1L5 | 0.1966 0.1919 | 0.1583 25727 | 250.88 186.46 231.80
439 | 1L5 | 0.1965 0.1923 | 0.1600 25155 | 250.81 186.15 231.64
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 162
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
440 | 1L5 | 0.1964 0.1921 | 0.1613 25907 | 252.96 186.57 232.66
441 | 1L5 | 0.1966 0.1924 | 0.1580 25333 | 251.31 185.11 231.19
442 | 1L5 | 0.1951 0.1921 | 0.1590 25625 | 254.86 186.41 234.09
443 | 17L1 | 0.1951 0.1918 | 0.1568 26160 | 256.96 189.88 236.62
444 | 17L1 | 0.1953 0.1918 | 0.1565 25486 | 255.76 188.50 235.30
445 | 17L1 | 0.1961 0.1923 | 0.1605 24654 | 252.23 185.99 231.60
446 | 17L1 | 0.1968 0.1920 | 0.1560 25331 | 251.42 185.31 231.15
447 | 17L1 | 0.1968 0.1918 | 0.1578 25609 | 251.12 185.19 231.12
448 | 17L1 | 0.1969 0.1919 | 0.1585 25279 | 250.55 184.30 230.44
449 | 17L1 | 0.1958 0.1921 | 0.1553 25898 | 253.51 186.32 233.24
450 | 17L1 | 0.1973 0.1920 | 0.1613 25313 | 249.79 184.66 229.84
451 | 17L1 | 0.1960 0.1921 | 0.1603 25655 | 253.04 186.52 233.10
452 | 17L1 | 0.1954 0.1916 | 0.1593 26079 | 253.72 186.87 233.70
453 | 17L1 | 0.1956 0.1921 | 0.1550 25792 | 254.24 187.30 233.96
454 | 17L1 | 0.1956 0.1919 | 0.1558 25933 | 256.28 189.01 235.77
455 | 17L1 | 0.1960 0.1920 | 0.1555 25652 | 255.52 188.43 235.01
456 | 19L6 | 0.1966 0.1919 | 0.1555 24407 | 250.54 186.83 230.95
457 | 19L6 | 0.1973 0.1916 | 0.1548 24511 | 249.84 186.03 229.86
458 | 19L6 | 0.1974 0.1920 | 0.1560 25434 | 248.60 187.57 229.93
459 | 19L6 | 0.1975 0.1919 | 0.1563 25698 | 249.77 188.60 230.70
460 | 19L6 | 0.1984 0.1920 | 0.1558 24916 | 247.15 186.75 228.27
461 | 19L6 | 0.1983 0.1915 | 0.1555 26857 | 245.92 190.91 228.30
462 | 19L6 | 0.1975 0.1923 | 0.1550 25445 | 247.96 186.70 228.97
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 163
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
463 | 19L6 | 0.1981 0.1918 | 0.1710 25351 | 240.56 185.75 225.50
464 | 19L6 | 0.1981 0.1919 | 0.1645 25932 | 247.81 191.19 232.32
465 | 19L6 | 0.1973 0.1920 | 0.1588 24507 | 248.49 185.90 228.93
466 | 19L6 | 0.1971 0.1921 | 0.1553 24575 | 249.22 185.42 229.41
467 | 19L6 | 0.1959 0.1921 | 0.1548 24964 | 252.63 187.31 232.43
468 | 19L6 | 0.1963 0.1921 | 0.1565 24667 | 250.91 186.52 230.69
469 | 23L5 | 0.1968 0.1920 | 0.1615 25226 | 251.01 184.46 231.28
470 | 23L5 | 0.1978 0.1918 | 0.1578 25242 | 249.40 183.97 229.58
471 | 23L5 | 0.1971 0.1919 | 0.1623 25682 | 250.90 185.27 230.99
472 | 23L5 | 0.1965 0.1916 | 0.1618 25563 | 250.93 184.23 231.10
473 | 23L5 | 0.1968 0.1920 | 0.1610 25441 | 249.89 184.05 230.13
474 | 23L5 | 0.1964 0.1919 | 0.1635 25231 | 250.93 185.05 230.83
475 | 23L5 | 0.1964 0.1919 | 0.1660 25164 | 250.99 184.89 231.04
476 | 23L5 | 0.1975 0.1916 | 0.1625 25451 | 247.64 182.25 228.27
477 | 23L5 | 0.1973 0.1915 | 0.1678 25057 | 248.59 180.94 228.43
478 | 23L5 | 0.1971 0.1918 | 0.1638 24936 | 249.00 183.37 229.14
479 | 23L5 | 0.1973 0.1920 | 0.1618 24903 | 248.74 182.60 228.62
480 | 23L5 | 0.1960 0.1915 | 0.1665 25736 | 251.89 183.83 231.57
481 | 23L5 | 0.1969 0.1921 | 0.1635 25712 | 250.65 184.03 230.91
482 | 5L1 | 0.1963 0.1914 | 0.1535 25018 | 253.07 186.00 232.38
483 | 5L1 | 0.1951 0.1918 | 0.1523 25241 | 257.06 189.59 236.03
484 | 5L1 | 0.1951 0.1916 | 0.1530 25742 | 257.33 189.52 236.54
485 | 5L1 | 0.1970 0.1918 | 0.1505 24962 | 252.25 186.52 231.97
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 164
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
486 | 5L1 | 0.1964 0.1913 | 0.1508 25268 | 254.13 188.31 233.75
487 | 5L1 | 0.1959 0.1916 | 0.1548 24810 | 253.59 188.05 233.16
488 | 5L1 | 0.1974 0.1920 | 0.1583 24689 | 248.80 183.93 228.85
489 | 5L1 | 0.1966 0.1916 | 0.1543 25356 | 252.43 186.18 232.28
490 | 5L1 | 0.1964 0.1919 | 0.1540 25680 | 253.55 202.26 236.22
491 | 5L1 | 0.1969 0.1919 | 0.1550 24297 | 249.95 184.38 230.00
492 | 5L1 | 0.1961 0.1918 | 0.1553 24817 | 251.87 184.70 231.38
493 | 5L1 | 0.1956 0.1921 | 0.1528 14623 | 253.39 202.44 227.10
494 | 5L1 | 0.1955 0.1916 | 0.1543 19149 | 253.14 193.03 230.10
495 | 22L5 | 0.1956 0.1914 | 0.1578 24843 | 251.75 187.43 231.45
496 | 22L5 | 0.1959 0.1919 | 0.1565 16735 | 251.26 197.48 227.68
497 | 22L5 | 0.1956 0.1923 | 0.1563 22003 | 253.53 193.42 232.76
498 | 2215 | 0.1974 0.1915 | 0.1550 25618 | 249.87 187.26 230.59
499 | 22L5 | 0.1975 0.1915 | 0.1570 25639 | 248.82 188.17 230.21
500 | 22L5 | 0.1964 0.1915 | 0.1608 26293 | 250.88 188.30 231.70
501 | 22L5 | 0.1951 0.1916 | 0.1628 19601 | 251.57 194.95 230.66
502 | 22L5 | 0.1964 0.1918 | 0.1570 25705 | 251.45 188.81 232.22
503 | 22L5 | 0.2005 0.1919 | 0.1558 23246 | 240.73 183.07 222.28
504 | 22L5 | 0.1956 0.1914 | 0.1570 23306 | 252.60 191.02 232.40
505 | 22L5 | 0.1961 0.1920 | 0.1555 20005 | 253.14 196.28 231.80
506 | 22L5 | 0.1979 0.1918 | 0.1553 23608 | 249.31 187.57 22991
507 | 22L5 | 0.1975 0.1913 | 0.1570 26120 | 249.44 186.74 230.50
508 | 19L3 | 0.1964 0.1920 | 0.1540 26850 | 252.68 182.22 232.77
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 165
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
509 | 19L3 | 0.1961 0.1920 | 0.1540 25400 | 255.06 188.23 234.57
510 | 19L3 | 0.1980 0.1918 | 0.1630 25070 | 247.53 184.01 227.84
511 | 19L3 | 0.1969 0.1919 | 0.1545 25944 | 253.24 189.33 233.54
512 | 19L3 | 0.1975 0.1921 | 0.1548 16716 | 251.49 200.48 228.24
513 | 19L3 | 0.1966 0.1916 | 0.1575 28369 | 251.96 189.51 233.29
514 | 19L3 | 0.1968 0.1923 | 0.1608 21262 | 251.73 193.28 230.58
515 | 19L3 | 0.1971 0.1920 | 0.1568 21639 | 250.55 191.49 229.71
516 | 19L3 | 0.2001 0.1921 | 0.1633 25721 | 242.03 175.66 223.29
517 | 19L3 | 0.1971 0.1924 | 0.1560 24782 | 250.39 184.94 230.17
518 | 19L3 | 0.1979 0.1919 | 0.1570 21766 | 248.45 186.81 227.43
519 | 19L3 | 0.1960 0.1919 | 0.1545 25283 | 253.47 186.45 232.99
520 | 19L3 | 0.1963 0.1923 | 0.1575 24996 | 252.80 186.24 232.19
521 | 24L5 | 0.1965 0.1919 | 0.1550 25689 | 252.25 184.48 231.55
522 | 24L5 | 0.1964 0.1923 | 0.1560 25555 | 253.30 185.33 232.45
523 | 24L5 | 0.1966 0.1920 | 0.1595 26442 | 252.26 185.76 231.90
524 | 24L5 | 0.1961 0.1919 | 0.1583 26820 | 252.92 186.52 232.70
525 | 24L5 | 0.1979 0.1919 | 0.1583 26448 | 249.06 184.12 229.87
526 | 24L5 | 0.1971 0.1919 | 0.1573 26065 | 252.07 186.17 231.66
527 | 24L5 | 0.1963 0.1918 | 0.1565 26242 | 253.87 186.83 233.45
528 | 24L5 | 0.1958 0.1920 | 0.1588 25852 | 253.11 184.28 232.56
529 | 24L5 | 0.1968 0.1916 | 0.1605 26032 | 250.43 184.16 230.47
530 | 24L5 | 0.1963 0.1918 | 0.1598 25939 | 252.20 183.39 231.66
531 | 24L5 | 0.1974 0.1918 | 0.1593 25353 | 249.12 181.78 228.56
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 166
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
532 | 24L5 | 0.1958 0.1921 | 0.1565 25838 | 253.21 184.23 232.23
533 | 24L5 | 0.1960 0.1918 | 0.1573 25561 | 253.05 184.81 232.05
534 | 22L3 | 0.1966 0.1918 | 0.1593 26251 | 255.32 189.13 235.25
535 | 22L3 | 0.1956 0.1916 | 0.1535 26003 | 254.16 188.13 234.16
536 | 22L3 | 0.1960 0.1916 | 0.1513 26284 | 253.09 188.19 233.64
537 | 22L3 | 0.1963 0.1918 | 0.1498 25814 | 253.12 187.84 233.45
538 | 22L3 | 0.1973 0.1918 | 0.1518 26838 | 249.27 187.44 230.39
539 | 22L3 | 0.1973 0.1919 | 0.1523 27017 | 249.36 189.28 230.96
540 | 22L3 | 0.1985 0.1916 | 0.1530 26668 | 243.60 185.29 225.79
541 | 22L3 | 0.1970 0.1916 | 0.1538 26763 | 247.59 186.04 229.05
542 | 2213 | 0.1978 0.1918 | 0.1545 25091 | 247.07 182.86 227.79
543 | 22L3 | 0.1973 0.1913 | 0.1590 27081 | 247.05 186.87 228.62
544 | 22L3 | 0.1975 0.1919 | 0.1540 26733 | 246.04 185.41 227.63
545 | 22L3 | 0.1956 0.1916 | 0.1528 25920 | 251.59 185.64 232.04
546 | 22L3 | 0.1966 0.1913 | 0.1510 26718 | 248.54 185.44 229.52
547 | 18L3 | 0.1958 0.1915 | 0.1545 25493 | 252.85 184.99 232.44
548 | 18L3 | 0.1966 0.1915 | 0.1528 24726 | 252.71 187.17 232.46
549 | 18L3 | 0.1966 0.1918 | 0.1545 25832 | 252.34 186.38 232.31
550 | 18L3 | 0.1955 0.1916 | 0.1513 26190 | 255.51 188.96 235.34
551 | 18L3 | 0.1958 0.1919 | 0.1563 25601 | 253.92 186.99 233.90
552 | 18L3 | 0.1963 0.1918 | 0.1560 25671 | 255.13 188.78 234.99
553 | 18L3 | 0.1958 0.1914 | 0.1550 25856 | 256.14 190.01 235.85
554 | 18L3 | 0.1958 0.1921 | 0.1538 25678 | 255.55 189.65 235.63
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 167
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
555 | 18L3 | 0.1964 0.1918 | 0.1598 25273 | 252.35 186.26 232.40
556 | 18L3 | 0.1960 0.1916 | 0.1540 25578 | 254.91 188.28 234.47
557 | 18L3 | 0.1963 0.1916 | 0.1533 25351 | 252.46 185.81 232.17
558 | 18L3 | 0.1958 0.1915 | 0.1530 25332 | 253.40 185.77 232.75
559 | 18L3 | 0.1951 0.1916 | 0.1558 25739 | 255.07 187.81 234.28
560 | 14L5 | 0.1954 0.1919 | 0.1498 25340 | 255.85 192.26 236.05
561 | 14L5 | 0.1950 0.1915 | 0.1500 25765 | 256.12 192.63 236.79
562 | 14L5 | 0.1958 0.1916 | 0.1530 25281 | 252.05 188.96 233.12
563 | 14L5 | 0.1959 0.1919 | 0.1570 25752 | 251.12 187.71 231.89
564 | 14L5 | 0.1961 0.1918 | 0.1533 25872 | 250.84 188.04 231.61
565 | 14L5 | 0.1958 0.1918 | 0.1525 25853 | 251.71 189.50 232.76
566 | 14L5 | 0.1976 0.1919 | 0.1533 25381 | 246.89 185.25 228.18
567 | 14L5 | 0.1961 0.1915 | 0.1623 25814 | 250.00 188.36 231.87
568 | 14L5 | 0.1958 0.1915 | 0.1533 25551 | 251.94 188.66 232.72
569 | 14L5 | 0.1985 0.1916 | 0.1530 24450 | 244.71 183.53 226.23
570 | 14L5 | 0.1970 0.1914 | 0.1553 25001 | 248.13 185.03 228.95
571 | 14L5 | 0.1964 0.1915 | 0.1563 25058 | 251.94 188.71 232.21
572 | 14L5 | 0.1958 0.1918 | 0.1538 25254 | 254.25 190.05 234.43
573 | 12L3 | 0.1973 0.1921 | 0.1553 24268 | 248.46 180.82 227.55
574 | 12L3 | 0.1968 0.1920 | 0.1560 25176 | 251.50 184.16 230.66
575 | 12L3 | 0.1973 0.1916 | 0.1585 25408 | 250.72 184.38 230.04
576 | 12L3 | 0.1960 0.1916 | 0.1573 26031 | 253.46 186.37 233.02
577 | 12L3 | 0.1966 0.1920 | 0.1583 25620 | 249.87 184.06 229.99
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 168
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
578 | 12L3 | 0.1963 0.1918 | 0.1573 26610 | 250.46 185.79 230.97
579 | 12L3 | 0.1975 0.1920 | 0.1583 26270 | 246.80 184.93 228.30
580 | 12L3 | 0.1986 0.1918 | 0.1590 25916 | 243.51 182.52 224.75
581 | 12L3 | 0.1986 0.1915 | 0.1565 24564 | 244.07 180.39 224.85
582 | 12L3 | 0.1958 0.1919 | 0.1558 25167 | 252.11 184.61 231.69
583 | 12L3 | 0.1965 0.1918 | 0.1568 25139 | 250.42 182.88 230.13
584 | 12L3 | 0.1978 0.1915 | 0.1573 26511 | 245.48 183.74 226.74
585 | 12L3 | 0.1950 0.1918 | 0.1580 26190 | 253.13 184.20 232.48
586 | 18L1 | 0.1964 0.1916 | 0.1538 24511 | 249.23 181.91 228.35
587 | 18L1 | 0.1969 0.1916 | 0.1528 24118 | 248.29 181.66 227.38
588 | 18L1 | 0.1954 0.1918 | 0.1518 24084 | 252.05 185.17 230.71
589 | 18L1 | 0.1961 0.1915 | 0.1515 24599 | 250.41 183.36 229.38
590 | 18L1 | 0.1951 0.1915 | 0.1540 25452 | 252.82 184.53 231.90
591 | 18L1 | 0.1964 0.1918 | 0.1535 25431 | 249.47 182.53 229.45
592 | 18L1 | 0.1958 0.1914 | 0.1518 25895 | 253.09 185.45 232.25
593 | 18L1 | 0.1965 0.1919 | 0.1513 25534 | 251.26 184.48 230.51
594 | 18L1 | 0.1971 0.1919 | 0.1508 25126 | 249.15 182.97 228.50
595 | 18L1 | 0.1960 0.1921 | 0.1518 25645 | 251.83 184.91 231.05
596 | 18L1 | 0.1958 0.1918 | 0.1568 25818 | 252.96 185.07 231.98
597 | 18L1 | 0.1959 0.1918 | 0.1515 25177 | 251.52 184.40 230.77
598 | 18L1 | 0.1964 0.1918 | 0.1528 25222 | 249.85 182.85 229.60
599 | 4L5 | 0.1961 0.1916 | 0.1555 27737 | 252.03 186.07 232.69
600 | 4L5 | 0.1955 0.1921 | 0.1535 24974 | 253.60 186.30 232.62
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 169
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
601 | 4L5 | 0.1961 0.1918 | 0.1538 24877 | 252.08 186.09 231.58
602 | 4L5 | 0.1960 0.1918 | 0.1560 22773 | 252.13 188.89 231.01
603 | 4L5 | 0.1965 0.1915 | 0.1535 25083 | 251.12 185.03 230.88
604 | 4L5 | 0.1958 0.1919 | 0.1525 25230 | 253.06 186.45 232.55
605 | 4L5 | 0.1970 0.1918 | 0.1538 24542 | 250.10 184.83 229.87
606 | 4L5 | 0.1963 0.1919 | 0.1543 24920 | 252.02 186.30 231.65
607 | 4L5 | 0.1953 0.1920 | 0.1523 25315 | 254.15 186.55 233.43
608 | 4L5 | 0.1964 0.1923 | 0.1513 25237 | 252.78 186.72 232.59
609 | 4L5 | 0.1956 0.1918 | 0.1503 25270 | 255.75 189.72 234.97
610 | 4L5 | 0.1955 0.1915 | 0.1520 25191 | 254.02 187.62 234.25
611 | 4L5 | 0.1955 0.1921 | 0.1538 24570 | 253.14 187.14 233.07
612 | 23L3 | 0.1953 0.1921 | 0.1538 25720 | 254.71 186.92 234.29
613 | 23L3 | 0.1960 0.1921 | 0.1568 26093 | 252.07 184.45 232.06
614 | 23L3 | 0.1959 0.1919 | 0.1568 25684 | 252.05 184.85 231.96
615 | 23L3 | 0.1951 0.1919 | 0.1550 26043 | 254.24 186.67 234.00
616 | 23L3 | 0.1965 0.1921 | 0.1570 25706 | 250.93 184.71 230.99
617 | 23L3 | 0.1981 0.1921 | 0.1560 25337 | 246.75 182.47 227.46
618 | 23L3 | 0.1956 0.1921 | 0.1568 26274 | 252.54 185.96 233.07
619 | 23L3 | 0.1969 0.1919 | 0.1528 26023 | 251.15 186.02 231.62
620 | 23L3 | 0.1965 0.1916 | 0.1523 26242 | 253.29 187.55 233.48
621 | 23L3 | 0.1963 0.1915 | 0.1595 26383 | 253.49 186.99 233.67
622 | 23L3 | 0.1958 0.1921 | 0.1588 26021 | 253.37 187.13 233.61
623 | 23L3 | 0.1953 0.1918 | 0.1653 26277 | 251.12 183.99 232.08
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 170
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
624 | 23L3 | 0.1955 0.1919 | 0.1573 26073 | 252.66 185.98 232.95
625 | 2L3 | 0.1954 0.1918 | 0.1575 25113 | 252.63 184.98 231.78
626 | 2L3 | 0.1956 0.1919 | 0.1563 25634 | 253.31 185.99 232.72
627 | 2L3 | 0.1953 0.1919 | 0.1575 26037 | 255.20 187.37 234.54
628 | 2L3 | 0.1963 0.1920 | 0.1558 25336 | 252.69 186.45 232.17
629 | 2L3 | 0.1954 0.1920 | 0.1570 25879 | 254.02 187.15 233.45
630 | 2L3 | 0.1961 0.1919 | 0.1578 25668 | 251.15 185.14 231.11
631 | 2L3 | 0.1954 0.1918 | 0.1580 25496 | 251.49 185.33 231.25
632 | 2L3 | 0.1954 0.1918 | 0.1678 24823 | 247.61 181.33 227.71
633 | 2L3 | 0.1955 0.1919 | 0.1578 25754 | 250.77 184.95 231.19
634 | 2L3 | 0.1960 0.1920 | 0.1600 26046 | 251.62 184.75 231.55
635 | 2L3 | 0.1949 0.1918 | 0.1575 26647 | 254.86 188.37 234.39
636 | 2L3 | 0.1951 0.1920 | 0.1605 25963 | 254.32 186.79 233.56
637 | 2L3 | 0.1948 0.1918 | 0.1595 25617 | 253.83 185.48 233.13
638 | 15L5 | 0.1963 0.1918 | 0.1543 25233 | 250.49 184.04 230.39
639 | 15L5 | 0.1958 0.1919 | 0.1548 25147 | 252.21 185.13 231.70
640 | 15L5 | 0.1963 0.1919 | 0.1578 25664 | 251.24 184.28 230.94
641 | 15L5 | 0.1948 0.1919 | 0.1555 26035 | 254.44 186.46 234.04
642 | 15L5 | 0.1963 0.1920 | 0.1545 25498 | 251.17 185.65 231.31
643 | 15L5 | 0.1961 0.1919 | 0.1540 26593 | 253.25 187.27 233.43
644 | 15L5 | 0.1954 0.1918 | 0.1570 26476 | 255.66 189.40 235.59
645 | 15L5 | 0.1965 0.1918 | 0.1630 25873 | 252.15 186.27 232.35
646 | 15L5 | 0.1971 0.1921 | 0.1533 25726 | 248.42 184.25 229.54
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 171
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
647 | 15L5 | 0.1966 0.1919 | 0.1610 25846 | 249.73 184.90 230.24
648 | 15L5 | 0.1960 0.1919 | 0.1585 26169 | 250.20 184.47 231.05
649 | 15L5 | 0.1955 0.1918 | 0.1585 26520 | 254.63 187.75 234.56
650 | 15L5 | 0.1960 0.1918 | 0.1533 26049 | 252.35 186.25 232.60
651 | 3L6 | 0.1955 0.1919 | 0.1590 25427 | 253.21 185.73 232.89
652 | 3L6 | 0.1953 0.1918 | 0.1565 25706 | 254.65 186.75 233.84
653 | 3L6 | 0.1948 0.1920 | 0.1600 25601 | 254.09 186.20 233.27
654 | 3L6 | 0.1959 0.1915 | 0.1600 25179 | 251.52 184.83 230.99
655 | 3L6 | 0.1964 0.1916 | 0.1610 25274 | 250.42 184.28 230.14
656 | 3L6 | 0.1963 0.1921 | 0.1588 25037 | 250.42 184.16 230.01
657 | 3L6 | 0.1964 0.1919 | 0.1590 25167 | 250.13 183.84 229.79
658 | 3L6 | 0.1961 0.1919 | 0.1588 24772 | 250.91 184.49 230.21
659 | 3L6 | 0.1961 0.1916 | 0.1568 25404 | 250.95 183.64 230.47
660 | 3L6 | 0.1951 0.1920 | 0.1603 25699 | 252.78 184.24 232.08
661 | 3L6 | 0.1959 0.1919 | 0.1565 25198 | 250.84 184.04 230.33
662 | 3L6 | 0.1958 0.1921 | 0.1550 25465 | 254.11 186.91 233.25
663 | 3L6 | 0.1956 0.1916 | 0.1545 25420 | 254.89 186.99 233.93
664 | 12L6 | 0.1961 0.1919 | 0.1528 25170 | 251.91 184.35 231.37
665 | 12L6 | 0.1961 0.1916 | 0.1570 25326 | 252.18 184.77 231.57
666 | 1216 | 0.1966 0.1919 | 0.1543 25445 | 250.87 185.06 230.71
667 | 126 | 0.1964 0.1920 | 0.1573 25763 | 250.87 185.49 230.93
668 | 126 | 0.1958 0.1918 | 0.1528 26203 | 252.55 186.67 232.61
669 | 1216 | 0.1960 0.1919 | 0.1513 26664 | 252.52 189.47 233.24
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 172
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
670 | 12L6 | 0.1970 0.1916 | 0.1525 26063 | 249.29 185.29 229.96
671 | 12L6 | 0.1985 0.1920 | 0.1540 25417 | 245.13 183.26 226.19
672 | 12L6 | 0.1974 0.1919 | 0.1528 26702 | 249.39 188.25 230.58
673 | 12L6 | 0.1974 0.1918 | 0.1563 27289 | 249.77 189.36 231.09
674 | 1216 | 0.1964 0.1919 | 0.1530 26736 | 252.14 188.46 232.62
675 | 12L6 | 0.1958 0.1920 | 0.1545 26190 | 252.51 188.37 232.88
676 | 1216 | 0.1956 0.1918 | 0.1523 27802 | 251.92 193.47 233.80
677 | 13L1 | 0.1959 0.1920 | 0.1553 26365 | 252.70 185.11 231.90
678 | 13L1 | 0.1956 0.1916 | 0.1558 26092 | 253.07 185.44 232.27
679 | 13L1 | 0.1963 0.1919 | 0.1545 26079 | 251.34 184.68 230.82
680 | 13L1 | 0.1963 0.1920 | 0.1523 26930 | 252.72 187.50 232.76
681 | 13L1 | 0.1961 0.1920 | 0.1555 27155 | 254.42 189.66 234.43
682 | 13L1 | 0.1960 0.1918 | 0.1530 27465 | 254.41 190.69 234.69
683 | 13L1 | 0.1966 0.1919 | 0.1570 26741 | 250.32 185.81 230.77
684 | 13L1 | 0.1973 0.1919 | 0.1585 26320 | 246.71 184.14 227.59
685 | 13L1 | 0.1964 0.1920 | 0.1510 26253 | 252.34 187.72 232.38
686 | 13L1 | 0.1963 0.1920 | 0.1503 26082 | 254.03 187.56 233.67
687 | 13L1 | 0.1960 0.1918 | 0.1538 25946 | 253.36 186.97 233.10
688 | 13L1 | 0.1969 0.1919 | 0.1575 25963 | 249.23 184.47 229.48
689 | 13L1 | 0.1955 0.1919 | 0.1535 25934 | 253.74 185.06 233.22
690 | 12L1 | 0.1966 0.1920 | 0.1618 24939 | 250.34 181.19 229.09
691 | 12L1 | 0.1978 0.1920 | 0.1603 24446 | 247.58 180.49 226.71
692 | 12L1 | 0.1964 0.1919 | 0.1650 24963 | 250.93 183.89 229.99
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 173
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
693 | 12L1 | 0.1970 0.1920 | 0.1605 24923 | 249.93 184.24 229.31
694 | 12L1 | 0.1979 0.1921 | 0.1650 24884 | 247.46 181.79 227.18
695 | 12L1 | 0.1978 0.1920 | 0.1623 25692 | 247.38 185.18 227.98
696 | 12L1 | 0.1969 0.1918 | 0.1580 24953 | 251.96 187.45 231.61
697 | 1211 | 0.1959 0.1920 | 0.1598 25805 | 250.14 186.30 232.00
698 | 12L1 | 0.1971 0.1915 | 0.1593 25614 | 247.86 185.44 230.27
699 | 12L1 | 0.1970 0.1916 | 0.1610 24759 | 250.90 184.37 230.40
700 | 12L1 | 0.1971 0.1918 | 0.1653 24783 | 249.25 182.08 228.96
701 | 12L1 | 0.1973 0.1918 | 0.1648 23848 | 248.15 180.96 227.43
702 | 12L1 | 0.1971 0.1919 | 0.1598 23823 | 247.93 180.84 227.23
703 | 2614 | 0.1958 0.1919 | 0.1533 26313 | 255.45 185.72 234.50
704 | 2614 | 0.1961 0.1920 | 0.1543 21200 | 254.41 193.97 232.12
705 | 26L4 | 0.1960 0.1920 | 0.1518 26196 | 254.35 188.00 233.85
706 | 2614 | 0.1954 0.1916 | 0.1563 26088 | 255.21 188.26 234.85
707 | 2614 | 0.1963 0.1919 | 0.1600 24869 | 254.10 188.83 233.29
708 | 26L4 | 0.1959 0.1919 | 0.1570 25639 | 253.42 187.15 232.99
709 | 2614 | 0.1968 0.1919 | 0.1578 25671 | 250.80 184.35 230.51
710 | 26L4 | 0.1963 0.1915 | 0.1595 25265 | 251.83 184.32 231.13
711 | 2614 | 0.1961 0.1920 | 0.1583 25211 | 252.44 185.42 231.69
712 | 2614 | 0.1959 0.1918 | 0.1593 25334 | 252.66 184.36 231.65
713 | 2614 | 0.1961 0.1920 | 0.1598 25271 | 251.96 185.04 231.19
714 | 2614 | 0.1954 0.1920 | 0.1585 26112 | 254.11 186.20 233.26
715 | 2614 | 0.1955 0.1919 | 0.1560 25658 | 253.89 185.62 232.91
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 174
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
716 | 14L1 | 0.1973 0.1919 | 0.1558 25239 | 252.80 189.43 233.62
717 | 14L1 | 0.1971 0.1919 | 0.1523 22429 | 253.55 193.32 233.32
718 | 14L1 | 0.1988 0.1920 | 0.1553 24767 | 249.17 187.55 230.43
719 | 14L1 | 0.1963 0.1918 | 0.1610 25576 | 253.82 189.75 234.48
720 | 14L1 | 0.1965 0.1914 | 0.1548 25799 | 253.20 189.74 234.21
721 | 14L1 | 0.1970 0.1914 | 0.1550 25972 | 253.67 191.30 234.66
722 | 14L1 | 0.1984 0.1910 | 0.1570 25089 | 247.57 186.19 229.53
723 | 14L1 | 0.1995 0.1916 | 0.1578 24281 | 243.84 182.34 225.15
724 | 14L1 | 0.1959 0.1913 | 0.1558 25743 | 253.64 189.03 234.49
725 | 14L1 | 0.1974 0.1918 | 0.1560 24928 | 250.28 186.78 231.32
726 | 14L1 | 0.1961 0.1910 | 0.1570 25449 | 252.37 187.62 233.22
727 | 14L1 | 0.1981 0.1913 | 0.1573 24596 | 247.32 184.05 228.18
728 | 14L1 | 0.1963 0.1918 | 0.1560 24841 | 252.36 187.88 232.67
729 | 10L3 | 0.1963 0.1918 | 0.1600 28827 | 252.05 193.45 234.78
730 | 10L3 | 0.1953 0.1923 | 0.1613 28564 | 253.13 191.96 235.45
731 | 10L3 | 0.1951 0.1920 | 0.1545 28498 | 256.01 193.16 237.39
732 | 10L3 | 0.1958 0.1918 | 0.1543 28688 | 254.13 195.68 236.34
733 | 10L3 | 0.1954 0.1918 | 0.1563 28497 | 256.01 197.73 237.97
734 | 10L3 | 0.1953 0.1914 | 0.1563 29039 | 254.70 192.89 237.05
735 | 10L3 | 0.1953 0.1913 | 0.1605 29203 | 253.45 192.26 235.74
736 | 10L3 | 0.1961 0.1918 | 0.1555 28196 | 252.02 193.65 234.21
737 | 10L3 | 0.1956 0.1918 | 0.1588 27774 | 253.29 192.12 234.92
738 | 10L3 | 0.1949 0.1918 | 0.1578 28465 | 254.73 194.57 236.78
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 175
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
739 | 10L3 | 0.1954 0.1916 | 0.1558 27931 | 253.76 193.81 235.84
740 | 10L3 | 0.1954 0.1918 | 0.1550 27971 | 253.83 193.85 235.67
741 | 10L3 | 0.1951 0.1918 | 0.1570 28288 | 254.28 193.33 236.11
742 | 20L3 | 0.1955 0.1923 | 0.1538 25639 | 255.32 189.01 235.34
743 | 20L3 | 0.1958 0.1918 | 0.1578 26303 | 255.68 189.87 235.58
744 | 20L3 | 0.1951 0.1919 | 0.1545 26492 | 256.04 188.75 236.12
745 | 20L3 | 0.1963 0.1920 | 0.1578 26699 | 254.13 188.17 234.42
746 | 20L3 | 0.1959 0.1916 | 0.1573 22956 | 253.99 191.75 233.10
747 | 20L3 | 0.1955 0.1919 | 0.1538 26992 | 256.89 194.53 237.44
748 | 20L3 | 0.1965 0.1915 | 0.1520 28009 | 254.16 185.89 234.55
749 | 20L3 | 0.1973 0.1914 | 0.1543 26135 | 250.26 186.30 230.87
750 | 20L3 | 0.1970 0.1920 | 0.1553 25494 | 250.58 185.65 230.69
751 | 20L3 | 0.1959 0.1920 | 0.1548 25832 | 253.85 186.93 233.52
752 | 20L3 | 0.1961 0.1916 | 0.1553 25959 | 252.81 186.04 232.51
753 | 20L3 | 0.1963 0.1921 | 0.1553 25608 | 252.41 184.83 231.89
754 | 20L3 | 0.1951 0.1916 | 0.1550 25874 | 255.50 186.94 234.73
755 | 11L5 | 0.1961 0.1918 | 0.1558 25227 | 252.08 184.84 231.89
756 | 11L5 | 0.1964 0.1920 | 0.1575 19812 | 250.89 190.79 229.02
757 | 11L5 | 0.1963 0.1919 | 0.1588 26037 | 252.81 186.84 233.04
758 | 11L5 | 0.1951 0.1914 | 0.1523 26770 | 256.76 188.02 236.65
759 | 11L5 | 0.1955 0.1914 | 0.1540 27306 | 254.78 185.61 235.31
760 | 11L5 | 0.1954 0.1919 | 0.1603 25854 | 253.09 186.09 232.80
761 | 11L5 | 0.1955 0.1914 | 0.1598 25943 | 252.85 186.10 233.41
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 176
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
762 | 11L5 | 0.1961 0.1919 | 0.1530 25585 | 252.69 185.89 232.34
763 | 11L5 | 0.1964 0.1916 | 0.1555 25897 | 251.00 184.30 231.67
764 | 11L5 | 0.1964 0.1920 | 0.1545 25494 | 251.19 185.24 231.18
765 | 11L5 | 0.1971 0.1918 | 0.1523 25549 | 251.54 185.04 231.66
766 | 11L5 | 0.1959 0.1918 | 0.1510 26266 | 255.35 186.91 235.12
767 | 11L5 | 0.1960 0.1915 | 0.1518 27118 | 254.65 183.64 234.47
768 | 25L2 | 0.1964 0.1921 | 0.1595 24394 | 249.79 183.80 229.71
769 | 25L2 | 0.1963 0.1921 | 0.1600 23847 | 248.16 182.00 22791
770 | 25L2 | 0.1963 0.1919 | 0.1593 24831 | 250.53 184.59 230.91
771 | 25L2 | 0.1966 0.1916 | 0.1548 24823 | 252.69 186.18 232.04
772 | 25L2 | 0.1968 0.1916 | 0.1518 24727 | 252.99 187.51 232.29
773 | 25L2 | 0.1966 0.1919 | 0.1538 24670 | 252.66 186.61 231.82
774 | 25L2 | 0.1974 0.1918 | 0.1575 24022 | 248.80 182.77 228.12
775 | 25L2 | 0.1974 0.1920 | 0.1558 24227 | 248.84 183.36 228.29
776 | 25L2 | 0.1985 0.1920 | 0.1535 23562 | 246.47 181.71 225.86
777 | 25L2 | 0.1973 0.1916 | 0.1533 23811 | 249.25 183.74 227.62
778 | 25L2 | 0.1964 0.1920 | 0.1530 24262 | 251.45 184.62 229.51
779 | 25L2 | 0.1963 0.1920 | 0.1558 24360 | 252.17 184.92 231.06
780 | 25L2 | 0.1961 0.1918 | 0.1520 24627 | 252.70 185.18 231.53
781 | 4L3 | 0.1958 0.1918 | 0.1540 25265 | 253.14 185.45 232.20
782 | 4L3 | 0.1963 0.1914 | 0.1505 25065 | 253.42 186.11 232.34
783 | 4L3 | 0.1961 0.1919 | 0.1563 25098 | 251.96 185.04 231.41
784 | 4L3 | 0.1958 0.1916 | 0.1525 25587 | 255.19 188.16 234.13
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 177
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
785 | 4L3 | 0.1963 0.1918 | 0.1518 25263 | 253.16 186.86 232.28
786 | 4L3 | 0.1964 0.1918 | 0.1565 25177 | 250.91 184.43 230.29
787 | 4L3 | 0.1956 0.1919 | 0.1525 25607 | 252.38 185.41 231.84
788 | 4L3 | 0.1963 0.1916 | 0.1545 25358 | 251.38 184.34 230.66
789 | 4L3 | 0.1963 0.1915 | 0.1535 25123 | 250.95 183.89 230.10
790 | 4L3 | 0.1956 0.1915 | 0.1568 25065 | 252.29 184.60 231.25
791 | 4L3 | 0.1960 0.1916 | 0.1568 25198 | 251.47 183.83 230.51
792 | 4L3 | 0.1964 0.1919 | 0.1525 24906 | 251.01 183.44 22991
793 | 4L3 | 0.1948 0.1915 | 0.1525 25369 | 255.01 186.08 233.68
794 | 1L3 | 0.1963 0.1918 | 0.1570 24965 | 251.54 184.47 229.13
795 | 1L3 | 0.1964 0.1915 | 0.1553 25230 | 251.49 184.52 231.09
796 | 1L3 | 0.1956 0.1918 | 0.1550 25590 | 253.87 187.08 233.48
797 | 1L3 | 0.1960 0.1918 | 0.1563 25732 | 252.67 186.41 232.53
798 | 1L3 | 0.1958 0.1921 | 0.1573 25990 | 252.46 185.99 232.35
799 | 1L3 | 0.1953 0.1918 | 0.1568 26580 | 254.47 188.44 234.93
800 | 1L3 | 0.1965 0.1923 | 0.1550 25902 | 253.32 187.95 233.24
801 | 1L3 | 0.1970 0.1916 | 0.1585 26089 | 250.15 186.66 231.35
802 | 1L3 | 0.1975 0.1919 | 0.1563 25412 | 250.34 185.78 231.03
803 | 1L3 | 0.1961 0.1915 | 0.1558 25629 | 253.03 188.21 234.51
804 | 1L3 | 0.1958 0.1920 | 0.1543 25721 | 255.92 189.45 235.65
805 | 1L3 | 0.1966 0.1913 | 0.1553 24957 | 253.47 187.54 233.17
806 | 1L3 | 0.1958 0.1918 | 0.1565 25396 | 254.88 187.64 234.82
807 | 18L4 | 0.1956 0.1918 | 0.1550 24853 | 251.33 183.77 230.48
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 178
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
808 | 18L4 | 0.1948 0.1915 | 0.1563 25219 | 254.22 185.81 233.14
809 | 18L4 | 0.1956 0.1918 | 0.1560 25122 | 251.73 184.72 230.86
810 | 18L4 | 0.1953 0.1914 | 0.1540 25447 | 252.81 185.39 232.17
811 | 18L4 | 0.1951 0.1921 | 0.1553 25268 | 253.07 184.93 232.16
812 | 18L4 | 0.1961 0.1918 | 0.1538 24748 | 250.54 184.37 229.93
813 | 18L4 | 0.1953 0.1915 | 0.1563 25310 | 252.85 185.55 232.01
814 | 18L4 | 0.1959 0.1920 | 0.1563 25238 | 250.95 183.98 230.46
815 | 18L4 | 0.1959 0.1919 | 0.1563 25602 | 252.24 185.27 232.12
816 | 18L4 | 0.1956 0.1919 | 0.1585 25386 | 253.88 186.48 232.92
817 | 18L4 | 0.1958 0.1914 | 0.1558 25424 | 254.27 186.80 233.32
818 | 18L4 | 0.1959 0.1915 | 0.1558 25280 | 253.34 186.03 232.27
819 | 18L4 | 0.1955 0.1916 | 0.1523 25724 | 254.80 186.40 233.73
820 | 18L4 | 0.1948 0.1916 | 0.1553 25865 | 254.69 185.16 233.25
821 | 18L4 | 0.1954 0.1919 | 0.1568 25713 | 252.94 184.52 231.78
822 | 18L4 | 0.1953 0.1921 | 0.1548 26202 | 253.12 185.31 232.25
823 | 18L4 | 0.1961 0.1919 | 0.1575 25505 | 251.11 183.76 230.09
824 | 18L4 | 0.1958 0.1919 | 0.1575 25780 | 252.24 184.99 231.32
825 | 18L4 | 0.1966 0.1920 | 0.1558 25658 | 249.85 183.42 229.34
826 | 18L4 | 0.1960 0.1920 | 0.1608 26132 | 251.25 184.31 230.71
827 | 18L4 | 0.1954 0.1918 | 0.1560 26109 | 254.73 187.11 233.79
828 | 18L4 | 0.1961 0.1918 | 0.1555 25841 | 252.61 185.77 232.13
829 | 18L4 | 0.1956 0.1920 | 0.1623 25891 | 252.29 184.15 231.42
830 | 18L4 | 0.1956 0.1920 | 0.1563 26281 | 254.67 186.36 233.44
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 179
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
831 | 18L4 | 0.1956 0.1918 | 0.1550 26026 | 254.45 186.39 233.50
832 | 18L4 | 0.1958 0.1919 | 0.1623 25607 | 252.55 184.86 231.82
833 | 22L1 | 0.1966 0.1915 | 0.1533 25492 | 253.93 187.82 233.70
834 | 22L1 | 0.1953 0.1918 | 0.1593 26057 | 257.23 190.04 236.73
835 | 22L1 | 0.1960 0.1916 | 0.1533 25810 | 255.48 189.57 235.36
836 | 22L1 | 0.1963 0.1918 | 0.1585 25491 | 251.32 186.08 232.13
837 | 22L1 | 0.1963 0.1919 | 0.1578 25577 | 252.14 188.00 233.05
838 | 2211 | 0.1970 0.1918 | 0.1610 25233 | 248.78 185.78 230.18
839 | 22L1 | 0.1986 0.1916 | 0.1520 25149 | 247.36 184.49 228.11
840 | 22L1 | 0.1968 0.1920 | 0.1590 25792 | 250.84 186.31 231.35
841 | 22L1 | 0.1995 0.1916 | 0.1528 24753 | 245.35 183.27 226.05
842 | 2211 | 0.1965 0.1915 | 0.1558 25692 | 251.94 187.60 232.52
843 | 22L1 | 0.1960 0.1918 | 0.1583 25586 | 252.38 186.20 232.02
844 | 22L1 | 0.1961 0.1916 | 0.1580 25382 | 252.76 186.69 232.64
845 | 22L1 | 0.1955 0.1914 | 0.1538 25923 | 254.51 187.98 234.12
846 | 26L2 | 0.1956 0.1920 | 0.1600 25144 | 252.36 185.25 231.66
847 | 26L2 | 0.1955 0.1920 | 0.1605 24932 | 253.03 185.48 232.14
848 | 26L2 | 0.1955 0.1920 | 0.1635 25142 | 252.85 185.00 232.11
849 | 26L2 | 0.1958 0.1916 | 0.1603 24961 | 252.13 184.81 231.71
850 | 26L2 | 0.1960 0.1919 | 0.1598 24987 | 251.70 184.79 231.32
851 | 26L2 | 0.1956 0.1920 | 0.1610 25000 | 253.08 186.18 232.49
852 | 26L2 | 0.1963 0.1919 | 0.1600 24771 | 250.93 184.25 230.41
853 | 26L2 | 0.1958 0.1919 | 0.1608 25059 | 252.46 185.02 232.03
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 180
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
854 | 26L2 | 0.1960 0.1918 | 0.1585 25739 | 253.71 187.05 233.49
855 | 26L2 | 0.1959 0.1916 | 0.1585 25417 | 254.37 187.41 233.62
856 | 26L2 | 0.1955 0.1919 | 0.1595 25471 | 254.93 187.14 233.94
857 | 26L2 | 0.1953 0.1915 | 0.1618 24892 | 253.74 185.62 232.77
858 | 26L2 | 0.1956 0.1920 | 0.1583 25213 | 253.82 186.08 232.78
859 | 19L2 | 0.1963 0.1918 | 0.1595 24868 | 252.87 186.01 232.39
860 | 19L2 | 0.1986 0.1918 | 0.1585 23953 | 246.85 182.21 226.67
861 | 19L2 | 0.1978 0.1916 | 0.1595 25131 | 248.99 184.56 229.21
862 | 19L2 | 0.1994 0.1916 | 0.1583 24995 | 244.82 183.81 226.02
863 | 19L2 | 0.2013 0.1921 | 0.1593 24213 | 240.38 180.23 221.57
864 | 19L2 | 0.2039 0.1919 | 0.1580 25202 | 234.67 182.33 217.56
865 | 19L2 | 0.2009 0.1921 | 0.1600 23943 | 240.83 180.38 221.92
866 | 19L2 | 0.2025 0.1921 | 0.1595 24957 | 237.64 182.35 220.79
867 | 19L2 | 0.1984 0.1918 | 0.1673 25537 | 238.69 185.82 226.48
868 | 19L2 | 0.1981 0.1920 | 0.1608 24287 | 247.83 183.13 227.93
869 | 19L2 | 0.1978 0.1919 | 0.1580 24559 | 250.56 184.63 230.22
870 | 19L2 | 0.1971 0.1921 | 0.1530 25083 | 253.74 187.39 233.24
871 | 19L2 | 0.1986 0.1921 | 0.1538 24409 | 249.90 184.88 229.57
872 | 5L5 | 0.1963 0.1920 | 0.1565 24657 | 252.82 186.49 232.15
873 | 5L5H | 0.1968 0.1913 | 0.1538 24666 | 251.84 185.36 231.19
874 | 5L5 | 0.1955 0.1918 | 0.1560 25184 | 254.92 187.57 234.26
875 | 5L5 | 0.1966 0.1918 | 0.1543 24754 | 251.97 185.76 231.35
876 | 5L5 | 0.1970 0.1914 | 0.1590 24904 | 250.86 184.91 230.59
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 181
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
877 | 5L5 | 0.1976 0.1918 | 0.1585 24438 | 249.85 184.73 229.64
878 | 5L5H | 0.1954 0.1916 | 0.1545 25461 | 255.16 188.48 234.71
879 | HL5 | 0.1976 0.1915 | 0.1553 24666 | 249.31 184.05 229.34
880 | 5L5 | 0.1969 0.1918 | 0.1555 24962 | 253.00 187.87 232.77
881 | 5L5 | 0.1971 0.1920 | 0.1535 24681 | 252.10 187.13 232.22
882 | 5L5H | 0.1959 0.1921 | 0.1593 25010 | 252.85 186.71 232.73
883 | 5L5H | 0.1961 0.1918 | 0.1560 24983 | 252.96 188.35 234.10
884 | HL5 | 0.1958 0.1920 | 0.1543 25292 | 255.15 188.79 235.12
885 | 25R5 | 0.1954 0.1919 | 0.1573 25806 | 256.01 188.80 235.15
886 | 25R5 | 0.1951 0.1914 | 0.1585 26286 | 255.28 188.48 234.76
887 | 25R5 | 0.1956 0.1918 | 0.1590 25614 | 253.54 187.51 233.32
888 | 25R5 | 0.1956 0.1915 | 0.1583 25495 | 254.49 188.53 234.27
889 | 25R5 | 0.1959 0.1916 | 0.1558 25785 | 254.93 188.57 234.47
890 | 25R5 | 0.1958 0.1918 | 0.1600 26382 | 254.04 188.12 233.97
891 | 25R5 | 0.1963 0.1915 | 0.1590 25799 | 254.39 188.29 234.04
892 | 25R5 | 0.1965 0.1915 | 0.1568 25588 | 253.69 188.04 233.28
893 | 25R5 | 0.1954 0.1918 | 0.1580 25537 | 254.79 187.95 234.35
894 | 25R5 | 0.1960 0.1915 | 0.1605 25720 | 252.33 186.00 231.84
895 | 25R5 | 0.1959 0.1916 | 0.1565 25178 | 253.36 186.44 232.59
896 | 25R5 | 0.1955 0.1918 | 0.1583 25368 | 254.19 187.01 233.32
897 | 25R5 | 0.1956 0.1918 | 0.1598 25202 | 253.55 186.51 232.77
898 | 5R5 | 0.1965 0.1916 | 0.1550 26115 | 254.68 189.25 234.75
899 | 5R5 | 0.1961 0.1913 | 0.1550 26439 | 256.38 190.03 236.29
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 182
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
900 | 5R5 | 0.1964 0.1915 | 0.1543 26347 | 255.57 189.89 235.60
901 | 5R5 | 0.1975 0.1914 | 0.1525 26028 | 252.69 188.11 232.90
902 | 5R5 | 0.1953 0.1915 | 0.1555 26934 | 258.23 192.00 238.26
903 | 5R5 | 0.1969 0.1918 | 0.1568 26114 | 249.26 187.23 232.16
904 | 5R5 | 0.1968 0.1914 | 0.1593 27106 | 253.94 189.78 234.51
905 | 5R5 | 0.1965 0.1916 | 0.1580 26322 | 254.58 189.20 234.72
906 | 5R5 | 0.1959 0.1918 | 0.1530 25907 | 256.04 190.21 236.28
907 | HR5H | 0.1963 0.1919 | 0.1570 25415 | 253.82 187.69 233.70
908 | 5R5 | 0.1949 0.1918 | 0.1560 26408 | 257.80 190.21 237.38
909 | 5R5 | 0.1973 0.1919 | 0.1535 25160 | 252.39 186.97 232.31
910 | H5R5 | 0.1961 0.1915 | 0.1553 25661 | 254.83 188.26 234.68
911 | 5R1 | 0.1958 0.1918 | 0.1570 25206 | 253.59 185.75 233.15
912 | 5R1 | 0.1968 0.1915 | 0.1568 24910 | 252.07 186.34 232.40
913 | 5R1 | 0.1955 0.1919 | 0.1538 25690 | 257.41 189.67 236.96
914 | 5R1 | 0.1958 0.1916 | 0.1555 25737 | 256.69 189.78 236.41
915 | 5R1 | 0.1959 0.1915 | 0.1548 25780 | 255.40 188.57 235.19
916 | 5R1 | 0.1965 0.1918 | 0.1593 25233 | 251.29 185.17 231.59
917 | 5R1 | 0.1983 0.1916 | 0.1580 24594 | 248.06 183.75 228.32
918 | 5R1 | 0.1964 0.1918 | 0.1565 25458 | 253.68 186.73 233.25
919 | 5R1 | 0.1969 0.1918 | 0.1555 25416 | 252.48 185.73 232.58
920 | HR1 | 0.1955 0.1916 | 0.1553 25961 | 256.89 188.60 236.20
921 | 5R1 | 0.1964 0.1919 | 0.1583 25678 | 254.48 186.85 233.82
922 | 5R1 | 0.1963 0.1916 | 0.1568 25479 | 253.26 185.57 233.28
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 183
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
923 | 5R1 | 0.1954 0.1916 | 0.1573 25349 | 255.05 187.21 234.39
924 | 8R3 | 0.1960 0.1915 | 0.1613 25107 | 252.41 183.27 231.35
925 | 8R3 | 0.1965 0.1916 | 0.1575 25330 | 251.27 183.01 230.49
926 | 8R3 | 0.1974 0.1918 | 0.1578 24855 | 248.99 182.30 228.49
927 | 8R3 | 0.1969 0.1918 | 0.1590 24522 | 245.97 181.49 227.39
928 | 8R3 | 0.1971 0.1914 | 0.1605 24040 | 243.41 180.01 224.99
929 | 8R3 | 0.1980 0.1915 | 0.1585 24722 | 244.60 182.07 226.41
930 | 8R3 | 0.1965 0.1916 | 0.1610 24688 | 247.44 183.74 228.26
931 | 8R3 | 0.1978 0.1909 | 0.1625 24288 | 243.18 181.42 226.55
932 | 8R3 | 0.1978 0.1914 | 0.1540 24978 | 249.61 183.03 228.96
933 | 8R3 | 0.1983 0.1915 | 0.1585 24490 | 247.99 182.04 226.88
934 | 8R3 | 0.1965 0.1916 | 0.1565 24905 | 249.53 183.73 229.85
935 | 8R3 | 0.1978 0.1916 | 0.1545 24679 | 247.94 181.01 227.50
936 | 8R3 | 0.1970 0.1918 | 0.1553 24971 | 250.34 183.02 229.71
937 | 18R4 | 0.1956 0.1919 | 0.1533 25219 | 253.19 185.36 232.35
938 | 18R4 | 0.1959 0.1918 | 0.1590 25248 | 252.26 184.48 231.53
939 | 18R4 | 0.1964 0.1920 | 0.1588 25028 | 250.69 184.49 230.32
940 | 18R4 | 0.1951 0.1918 | 0.1535 26472 | 255.95 189.36 235.66
941 | 18R4 | 0.1964 0.1915 | 0.1563 25567 | 253.60 187.09 233.16
942 | 18R4 | 0.1989 0.1921 | 0.1573 23964 | 244.78 180.23 224.74
943 | 18R4 | 0.1966 0.1920 | 0.1555 24858 | 250.42 184.05 230.15
944 | 18R4 | 0.1984 0.1916 | 0.1528 24766 | 247.75 183.33 227.86
945 | 18R4 | 0.1956 0.1916 | 0.1520 25764 | 255.30 187.98 234.65
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 184
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
946 | 18R4 | 0.1954 0.1914 | 0.1520 25834 | 255.58 188.42 235.10
947 | 18R4 | 0.1950 0.1919 | 0.1555 25928 | 256.90 188.94 235.97
948 | 18R4 | 0.1948 0.1918 | 0.1603 25731 | 257.81 189.67 236.78
949 | 18R4 | 0.1950 0.1916 | 0.1545 25985 | 255.19 186.75 234.53
950 | 21R1 | 0.1959 0.1916 | 0.1548 25107 | 252.60 188.36 232.85
951 | 21R1 | 0.1960 0.1918 | 0.1565 24921 | 251.33 187.03 231.54
952 | 21R1 | 0.1971 0.1916 | 0.1558 25682 | 248.55 184.86 229.35
953 | 21R1 | 0.1969 0.1916 | 0.1568 25961 | 248.96 186.77 230.05
954 | 21R1 | 0.1965 0.1914 | 0.1593 25833 | 250.28 186.97 230.89
955 | 21R1 | 0.1963 0.1916 | 0.1555 26301 | 251.35 188.80 232.22
956 | 21R1 | 0.1978 0.1915 | 0.1568 25397 | 247.52 186.10 228.69
957 | 21R1 | 0.2008 0.1914 | 0.1560 24854 | 240.24 181.13 222.00
958 | 21R1 | 0.1970 0.1915 | 0.1560 25439 | 249.25 186.57 230.15
959 | 21R1 | 0.1984 0.1918 | 0.1558 24217 | 246.15 184.04 226.90
960 | 21R1 | 0.1964 0.1918 | 0.1525 25864 | 252.48 188.11 233.04
961 | 21R1 | 0.1968 0.1915 | 0.1568 26276 | 250.15 188.20 231.61
962 | 21R1 | 0.1953 0.1915 | 0.1563 25607 | 254.35 190.35 235.24
963 | 12R5 | 0.1951 0.1915 | 0.1583 25565 | 252.44 184.38 231.78
964 | 12R5 | 0.1958 0.1915 | 0.1568 25719 | 252.27 185.28 231.95
965 | 12R5 | 0.1954 0.1919 | 0.1578 26194 | 251.95 186.21 232.75
966 | 12R5 | 0.1959 0.1918 | 0.1588 26226 | 252.95 187.16 232.63
967 | 12R5 | 0.1966 0.1918 | 0.1558 26228 | 252.22 187.62 232.30
968 | 12R5 | 0.1960 0.1919 | 0.1555 27390 | 254.36 191.45 234.50
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 185
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
969 | 12R5 | 0.1964 0.1916 | 0.1568 26536 | 251.07 186.57 231.80
970 | 12R5 | 0.1960 0.1916 | 0.1593 25832 | 251.34 185.36 231.08
971 | 12R5 | 0.1963 0.1916 | 0.1583 25811 | 251.44 185.28 231.13
972 | 12R5 | 0.1955 0.1919 | 0.1593 25815 | 253.58 186.47 232.87
973 | 12R5 | 0.1954 0.1915 | 0.1570 25758 | 253.67 186.13 232.87
974 | 12R5 | 0.1949 0.1915 | 0.1570 25917 | 254.93 186.32 233.94
975 | 12R5 | 0.1955 0.1916 | 0.1563 25502 | 253.61 185.48 232.65
976 | 4R3 | 0.1964 0.1918 | 0.1530 25422 | 250.32 185.07 230.41
977 | 4R3 | 0.1960 0.1914 | 0.1528 25863 | 251.24 185.91 231.42
978 | 4R3 | 0.1968 0.1915 | 0.1560 25880 | 249.13 184.25 229.51
979 | 4R3 | 0.1974 0.1918 | 0.1533 25307 | 247.81 184.01 228.39
980 | 4R3 | 0.1960 0.1914 | 0.1538 26066 | 251.37 186.38 231.73
981 | 4R3 | 0.1974 0.1914 | 0.1563 25367 | 247.71 183.77 228.19
982 | 4R3 | 0.1975 0.1918 | 0.1535 25575 | 249.37 186.22 229.94
983 | 4R3 | 0.1968 0.1913 | 0.1545 25869 | 251.35 186.90 231.96
984 | 4R3 | 0.1963 0.1918 | 0.1523 26100 | 253.15 188.24 233.50
985 | 4R3 | 0.1964 0.1919 | 0.1515 25878 | 251.70 187.26 232.19
986 | 4R3 | 0.1960 0.1914 | 0.1543 25703 | 251.55 185.94 231.72
987 | 4R3 | 0.1963 0.1916 | 0.1523 25878 | 251.59 186.35 231.86
988 | 4R3 | 0.1956 0.1916 | 0.1615 25379 | 248.50 182.71 229.34
989 | 6R1 | 0.1958 0.1920 | 0.1585 25045 | 254.50 185.92 233.66
990 | 6R1 | 0.1960 0.1920 | 0.1603 25339 | 254.05 185.40 233.30
991 | 6R1 | 0.1968 0.1918 | 0.1628 25274 | 251.94 185.21 231.48
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 186
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
992 | 6R1 | 0.1956 0.1916 | 0.1560 26046 | 255.27 188.05 234.78
993 | 6R1 | 0.1969 0.1920 | 0.1575 25554 | 251.20 185.39 231.21
994 | 6R1 | 0.1964 0.1915 | 0.1588 26523 | 252.73 188.69 233.24
995 | 6R1 | 0.1963 0.1915 | 0.1570 26229 | 254.72 189.18 234.57
996 | 6R1 | 0.1986 0.1916 | 0.1568 24890 | 247.38 183.25 227.89
997 | 6R1 | 0.1974 0.1919 | 0.1605 25197 | 249.35 183.64 229.30
998 | 6R1 | 0.1958 0.1915 | 0.1598 25588 | 254.77 186.48 234.00
999 | 6R1 | 0.1958 0.1918 | 0.1578 25535 | 255.07 186.77 234.38
1000 | 6R1 | 0.1965 0.1918 | 0.1660 24243 | 248.47 181.54 228.86
1001 | 6R1 | 0.1951 0.1920 | 0.1585 25660 | 256.87 187.63 236.10
1002 | 3R1 | 0.1949 0.1914 | 0.1578 25811 | 254.68 187.01 234.22
1003 | 3R1 | 0.1971 0.1918 | 0.1530 24655 | 249.15 183.92 229.15
1004 | 3R1 | 0.1970 0.1919 | 0.1533 25019 | 249.66 184.56 229.67
1005 | 3R1 | 0.1959 0.1918 | 0.1540 25676 | 252.65 186.41 232.48
1006 | 3R1 | 0.1960 0.1914 | 0.1563 25940 | 251.75 186.34 232.04
1007 | 3R1 | 0.1958 0.1915 | 0.1550 26308 | 252.81 188.04 233.33
1008 | 3R1 | 0.1965 0.1915 | 0.1510 26410 | 253.43 188.78 233.78
1009 | 3R1 | 0.1963 0.1916 | 0.1560 25978 | 253.77 188.66 233.75
1010 | 3R1 | 0.1954 0.1916 | 0.1593 26316 | 255.21 189.15 235.29
1011 | 3R1 | 0.1954 0.1916 | 0.1573 26477 | 254.39 188.34 234.45
1012 | 3R1 | 0.1968 0.1913 | 0.1600 25791 | 250.17 184.82 230.39
1013 | 3R1 | 0.1953 0.1913 | 0.1538 26167 | 255.76 188.61 235.37
1014 | 3R1 | 0.1950 0.1913 | 0.1565 25359 | 253.93 188.41 234.51
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 187
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
1015 | 7R3 | 0.1954 0.1918 | 0.1625 26530 | 254.81 189.01 234.92
1016 | 7R3 | 0.1959 0.1919 | 0.1610 26241 | 253.31 186.94 233.50
1017 | 7R3 | 0.1946 0.1916 | 0.1603 27129 | 255.93 190.66 236.60
1018 | 7R3 | 0.1953 0.1920 | 0.1575 28088 | 255.51 193.17 236.30
1019 | 7R3 | 0.1973 0.1918 | 0.1655 27993 | 250.10 194.14 232.45
1020 | 7R3 | 0.1949 0.1916 | 0.1583 27734 | 256.80 193.70 237.70
1021 | 7R3 | 0.1956 0.1919 | 0.1580 27117 | 255.39 192.14 236.65
1022 | 7R3 | 0.1978 0.1913 | 0.1580 27241 | 249.95 190.49 231.65
1023 | 7R3 | 0.1971 0.1916 | 0.1580 27691 | 251.10 190.42 232.99
1024 | 7R3 | 0.1973 0.1918 | 0.1578 26823 | 252.43 190.20 233.45
1025 | 7R3 | 0.1963 0.1918 | 0.1588 26780 | 255.06 189.96 235.40
1026 | 7R3 | 0.1948 0.1918 | 0.1613 26921 | 257.96 191.43 238.22
1027 | 7R3 | 0.1956 0.1915 | 0.1625 26876 | 253.94 188.21 234.18
1028 | 12R2 | 0.1964 0.1918 | 0.1553 25150 | 250.88 183.03 230.12
1029 | 12R2 | 0.1965 0.1916 | 0.1578 25035 | 250.18 182.77 229.33
1030 | 12R2 | 0.1960 0.1916 | 0.1583 25723 | 252.48 185.83 232.23
1031 | 12R2 | 0.1961 0.1915 | 0.1598 26102 | 253.45 187.48 232.98
1032 | 12R2 | 0.1955 0.1916 | 0.1585 26409 | 254.75 188.68 234.40
1033 | 12R2 | 0.1965 0.1920 | 0.1568 25652 | 252.21 184.74 231.29
1034 | 12R2 | 0.1963 0.1916 | 0.1620 26787 | 250.72 187.38 231.41
1035 | 12R2 | 0.1959 0.1916 | 0.1653 26230 | 252.48 186.97 232.26
1036 | 12R2 | 0.1969 0.1915 | 0.1640 25849 | 247.62 184.31 229.48
1037 | 12R2 | 0.1979 0.1918 | 0.1630 24425 | 243.74 179.75 224.37
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 188
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
1038 | 12R2 | 0.1966 0.1918 | 0.1583 25465 | 249.93 183.65 230.42
1039 | 12R2 | 0.1961 0.1914 | 0.1580 25507 | 253.78 186.04 232.81
1040 | 12R2 | 0.1956 0.1918 | 0.1548 25449 | 254.09 185.75 233.10
1041 | 14R1 | 0.1953 0.1918 | 0.1568 25964 | 253.91 187.67 233.70
1042 | 14R1 | 0.1956 0.1914 | 0.1593 25543 | 253.11 186.91 232.99
1043 | 14R1 | 0.1960 0.1916 | 0.1608 25673 | 251.69 186.35 231.91
1044 | 14R1 | 0.1966 0.1914 | 0.1618 26932 | 249.27 187.91 230.98
1045 | 14R1 | 0.1951 0.1913 | 0.1573 26421 | 254.44 188.98 234.76
1046 | 14R1 | 0.1959 0.1918 | 0.1583 25691 | 252.22 188.04 232.69
1047 | 14R1 | 0.1954 0.1915 | 0.1590 25599 | 254.20 189.77 234.67
1048 | 14R1 | 0.1971 0.1920 | 0.1570 24978 | 251.42 187.88 231.73
1049 | 14R1 | 0.1966 0.1918 | 0.1578 25056 | 252.81 188.59 232.97
1050 | 14R1 | 0.1950 0.1915 | 0.1595 25441 | 256.08 190.00 236.08
1051 | 14R1 | 0.1948 0.1914 | 0.1618 25477 | 254.18 186.94 234.03
1052 | 14R1 | 0.1951 0.1914 | 0.1620 24968 | 252.64 185.93 232.72
1053 | 14R1 | 0.1964 0.1915 | 0.1598 24887 | 253.13 187.47 232.68
1054 | 3R3 | 0.1956 0.1914 | 0.1570 25478 | 255.34 188.33 234.92
1055 | 3R3 | 0.1955 0.1916 | 0.1548 25807 | 255.18 188.00 234.80
1056 | 3R3 | 0.1958 0.1915 | 0.1568 25587 | 254.53 188.78 234.59
1057 | 3R3 | 0.1963 0.1916 | 0.1550 25938 | 255.17 189.81 235.47
1058 | 3R3 | 0.1961 0.1916 | 0.1533 26127 | 256.04 190.22 236.15
1059 | 3R3 | 0.1950 0.1914 | 0.1533 26386 | 258.01 191.73 238.24
1060 | 3R3 | 0.1956 0.1920 | 0.1548 25761 | 254.30 188.99 234.79

Continued on next page. . .




APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 189
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
1061 | 3R3 | 0.1964 0.1918 | 0.1563 25680 | 252.85 188.45 233.93
1062 | 3R3 | 0.1961 0.1916 | 0.1543 25830 | 255.05 189.33 235.29
1063 | 3R3 | 0.1954 0.1918 | 0.1555 25912 | 257.57 190.85 237.30
1064 | 3R3 | 0.1950 0.1916 | 0.1580 26187 | 257.49 190.61 237.34
1065 | 3R3 | 0.1959 0.1918 | 0.1538 25184 | 253.55 186.69 233.26
1066 | 3R3 | 0.1953 0.1915 | 0.1550 25823 | 255.46 188.55 235.52
1067 | 24R6 | 0.1964 0.1919 | 0.1583 25513 | 252.62 186.55 233.08
1068 | 24R6 | 0.1956 0.1918 | 0.1593 25434 | 253.60 186.93 233.93
1069 | 24R6 | 0.1954 0.1919 | 0.1583 25554 | 256.38 189.03 235.79
1070 | 24R6 | 0.1955 0.1919 | 0.1590 25592 | 254.53 187.81 234.37
1071 | 24R6 | 0.1956 0.1914 | 0.1605 25721 | 253.75 186.52 233.62
1072 | 24R6 | 0.1973 0.1918 | 0.1615 25352 | 250.06 184.42 230.27
1073 | 24R6 | 0.1955 0.1915 | 0.1605 25737 | 254.10 186.93 233.96
1074 | 24R6 | 0.1960 0.1914 | 0.1640 25875 | 252.47 185.92 232.25
1075 | 24R6 | 0.1956 0.1916 | 0.1590 26280 | 253.46 187.05 233.68
1076 | 24R6 | 0.1948 0.1919 | 0.1615 26046 | 256.19 188.21 235.71
1077 | 24R6 | 0.1955 0.1918 | 0.1608 25782 | 254.09 185.78 233.40
1078 | 24R6 | 0.1960 0.1918 | 0.1620 26085 | 252.20 184.96 231.74
1079 | 24R6 | 0.1950 0.1918 | 0.1583 26981 | 255.76 189.15 235.66
1080 | 26R5 | 0.1949 0.1915 | 0.1545 26086 | 252.75 184.66 232.33
1081 | 26R5 | 0.1950 0.1918 | 0.1530 26624 | 254.25 186.60 234.05
1082 | 26R5 | 0.1955 0.1914 | 0.1540 26469 | 253.38 187.02 233.22
1083 | 26R5 | 0.1950 0.1916 | 0.1580 26592 | 254.50 188.12 234.38
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 190
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
1084 | 26R5 | 0.1965 0.1915 | 0.1610 25934 | 248.22 184.31 229.84
1085 | 26R5 | 0.1959 0.1919 | 0.1580 25329 | 248.35 182.68 229.30
1086 | 26R5 | 0.1959 0.1916 | 0.1608 25571 | 251.28 184.96 231.35
1087 | 26R5 | 0.1955 0.1913 | 0.1598 25573 | 252.50 185.65 232.25
1088 | 26R5 | 0.1956 0.1915 | 0.1593 25823 | 252.21 185.23 232.20
1089 | 26R5 | 0.1950 0.1915 | 0.1578 26013 | 255.42 187.45 234.75
1090 | 26R5 | 0.1954 0.1916 | 0.1613 26067 | 254.59 187.14 234.04
1091 | 26R5 | 0.1949 0.1915 | 0.1580 26240 | 255.17 186.80 234.53
1092 | 26R5 | 0.1960 0.1918 | 0.1598 25334 | 250.57 184.04 230.54
1093 | 17R1 | 0.1949 0.1913 | 0.1565 26252 | 255.13 187.42 234.78
1094 | 17R1 | 0.1959 0.1914 | 0.1588 25763 | 252.44 186.50 232.44
1095 | 17R1 | 0.1951 0.1916 | 0.1573 26732 | 254.34 187.80 234.36
1096 | 17R1 | 0.1966 0.1915 | 0.1585 25651 | 249.97 184.56 230.26
1097 | 17R1 | 0.1961 0.1914 | 0.1578 25951 | 251.66 185.79 232.15
1098 | 17R1 | 0.1963 0.1916 | 0.1548 26032 | 253.61 188.17 233.70
1099 | 17R1 | 0.1970 0.1915 | 0.1560 25714 | 249.88 186.86 231.47
1100 | 17R1 | 0.1949 0.1915 | 0.1538 26578 | 256.99 190.73 236.85
1101 | 17R1 | 0.1963 0.1916 | 0.1590 25816 | 249.58 185.38 231.23
1102 | 17R1 | 0.1953 0.1913 | 0.1598 25793 | 251.29 185.21 232.61
1103 | 17R1 | 0.1948 0.1915 | 0.1560 26644 | 256.81 189.06 236.70
1104 | 17R1 | 0.1948 0.1914 | 0.1558 26622 | 256.71 189.13 236.42
1105 | 17R1 | 0.1948 0.1916 | 0.1543 26854 | 257.41 189.58 237.37
1106 | 22R3 | 0.1949 0.1916 | 0.1560 26323 | 257.39 190.12 236.75
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 191
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
1107 | 22R3 | 0.1951 0.1916 | 0.1568 25792 | 255.79 189.38 235.57
1108 | 22R3 | 0.1964 0.1916 | 0.1588 25285 | 250.67 184.86 230.45
1109 | 22R3 | 0.1960 0.1914 | 0.1605 25333 | 251.52 185.75 231.41
1110 | 22R3 | 0.1956 0.1914 | 0.1583 26018 | 252.58 187.36 232.62
1111 | 22R3 | 0.1951 0.1915 | 0.1575 26096 | 253.95 188.18 233.99
1112 | 22R3 | 0.1963 0.1913 | 0.1583 25478 | 250.97 185.89 231.05
1113 | 22R3 | 0.1964 0.1915 | 0.1578 25539 | 250.71 185.81 230.90
1114 | 22R3 | 0.1959 0.1916 | 0.1588 25737 | 252.27 186.73 232.23
1115 | 22R3 | 0.1953 0.1916 | 0.1600 25361 | 253.48 187.51 233.11
1116 | 22R3 | 0.1950 0.1916 | 0.1573 25447 | 254.27 187.53 234.09
1117 | 22R3 | 0.1953 0.1918 | 0.1560 25651 | 255.57 189.98 235.46
1118 | 22R3 | 0.1953 0.1918 | 0.1540 25861 | 256.03 189.53 235.50
1119 | 10R1 | 0.1965 0.1916 | 0.1635 25293 | 250.74 182.33 229.80
1120 | 10R1 | 0.1968 0.1918 | 0.1625 24934 | 249.92 182.46 229.17
1121 | 10R1 | 0.1989 0.1919 | 0.1638 24543 | 244.21 179.03 224.03
1122 | 10R1 | 0.1983 0.1915 | 0.1608 24299 | 243.61 179.82 224.84
1123 | 10R1 | 0.1966 0.1913 | 0.1645 24911 | 246.25 180.55 226.96
1124 | 10R1 | 0.2000 0.1916 | 0.1625 23898 | 239.23 176.60 220.53
1125 | 10R1 | 0.1956 0.1911 | 0.1633 25483 | 247.62 183.41 230.01
1126 | 10R1 | 0.1963 0.1911 | 0.1585 25541 | 246.87 183.52 229.89
1127 | 10R1 | 0.2001 0.1916 | 0.1640 23837 | 242.50 178.99 222.76
1128 | 10R1 | 0.1985 0.1914 | 0.1640 23932 | 245.19 179.36 224.73
1129 | 10R1 | 0.1966 0.1911 | 0.1615 25119 | 250.90 183.98 230.85
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 192
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
1130 | 10R1 | 0.1961 0.1914 | 0.1635 25443 | 252.49 183.95 231.97
1131 | 10R1 | 0.1978 0.1916 | 0.1865 24610 | 248.39 182.22 228.37
1132 | 19R3 | 0.1951 0.1918 | 0.1550 25694 | 254.18 187.67 233.72
1133 | 19R3 | 0.1959 0.1916 | 0.1563 25194 | 252.36 186.62 232.11
1134 | 19R3 | 0.1958 0.1914 | 0.1553 25809 | 253.05 187.34 232.90
1135 | 19R3 | 0.1951 0.1918 | 0.1583 26087 | 254.09 188.67 234.01
1136 | 19R3 | 0.1954 0.1916 | 0.1575 26475 | 253.69 190.37 234.38
1137 | 19R3 | 0.1960 0.1916 | 0.1548 26667 | 254.13 193.99 235.33
1138 | 19R3 | 0.1961 0.1915 | 0.1560 26532 | 254.24 190.66 234.69
1139 | 19R3 | 0.1968 0.1916 | 0.1583 25445 | 249.72 186.33 230.16
1140 | 19R3 | 0.1965 0.1915 | 0.1545 26255 | 253.69 190.00 234.12
1141 | 19R3 | 0.1961 0.1915 | 0.1525 25774 | 255.00 189.51 234.68
1142 | 19R3 | 0.1960 0.1915 | 0.1543 25466 | 254.19 188.35 234.30
1143 | 19R3 | 0.1951 0.1915 | 0.1590 26071 | 257.48 190.30 236.74
1144 | 19R3 | 0.1950 0.1915 | 0.1513 26141 | 257.65 190.30 237.06
1145 | 23L1 | 0.1949 0.1919 | 0.1625 26454 | 255.40 187.35 234.94
1146 | 23L1 | 0.1954 0.1916 | 0.1700 25967 | 252.26 184.80 231.98
1147 | 23L1 | 0.1956 0.1916 | 0.1645 25638 | 250.97 184.12 230.75
1148 | 23L1 | 0.1956 0.1911 | 0.1715 25853 | 251.74 184.97 231.42
1149 | 23L1 | 0.1959 0.1915 | 0.1650 25655 | 250.98 184.44 230.86
1150 | 23L1 | 0.1960 0.1916 | 0.1680 25756 | 250.51 184.53 230.59
1151 | 23L1 | 0.1953 0.1918 | 0.1683 26077 | 252.54 185.75 232.75
1152 | 23L1 | 0.1968 0.1915 | 0.1650 25360 | 249.15 183.87 229.35
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APPENDIX A. TENSILE TESTING RESULTS FROM CARLETON LAB 193
Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
1153 | 23L1 | 0.1949 0.1911 | 0.1655 26415 | 253.94 186.81 233.94
1154 | 23L1 | 0.1950 0.1919 | 0.1658 25877 | 253.14 185.43 232.82
1155 | 23L1 | 0.1950 0.1918 | 0.1610 26194 | 254.36 186.67 234.21
1156 | 23L1 | 0.1951 0.1919 | 0.1605 26021 | 255.37 187.62 234.85
1157 | 23L1 | 0.1955 0.1919 | 0.1583 26017 | 253.38 186.31 233.07
1158 | 10L1 | 0.1955 0.1916 | 0.1558 25739 | 255.36 188.78 235.10
1159 | 10L1 | 0.1960 0.1919 | 0.1593 25729 | 253.10 187.04 233.34
1160 | 10L1 | 0.1970 0.1914 | 0.1588 25406 | 249.41 183.93 229.71
1161 | 10L1 | 0.1953 0.1915 | 0.1590 26815 | 253.99 189.20 235.29
1162 | 10L1 | 0.1963 0.1916 | 0.1588 26222 | 252.61 187.15 232.77
1163 | 10L1 | 0.1980 0.1914 | 0.1645 25098 | 246.99 182.91 227.38
1164 | 10L1 | 0.1966 0.1918 | 0.1625 25760 | 251.11 185.42 231.06
1165 | 10L1 | 0.1979 0.1919 | 0.1650 25353 | 247.42 183.26 227.66
1166 | 10L1 | 0.1958 0.1914 | 0.1625 26605 | 252.15 186.29 232.31
1167 | 10L1 | 0.1953 0.1915 | 0.1615 26288 | 253.56 186.65 233.50
1168 | 10L1 | 0.1963 0.1919 | 0.1595 25918 | 251.06 184.78 230.97
1169 | 10L1 | 0.1964 0.1916 | 0.1593 25943 | 251.26 185.54 231.36
1170 | 10L1 | 0.1960 0.1920 | 0.1575 25957 | 251.85 184.88 231.64
1171 | 21L5 | 0.1954 0.1916 | 0.1550 25402 | 255.61 186.94 234.44
1172 | 21L5 | 0.1958 0.1916 | 0.1578 25637 | 255.21 187.44 234.24
1173 | 21L5 | 0.1959 0.1919 | 0.1595 25792 | 254.48 187.15 233.70
1174 | 21L5 | 0.1964 0.1915 | 0.1570 25309 | 252.01 185.80 231.69
1175 | 21L5 | 0.1964 0.1915 | 0.1575 25204 | 251.34 184.90 230.80

Continued on next page. . .
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Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
1176 | 21L5 | 0.1954 0.1919 | 0.1583 25963 | 251.32 185.23 231.68
1177 | 21L5 | 0.1961 0.1915 | 0.1588 25901 | 249.61 185.39 231.54
1178 | 21L5 | 0.1960 0.1916 | 0.1555 25812 | 253.64 187.24 233.23
1179 | 21L5 | 0.1958 0.1914 | 0.1600 25563 | 254.79 188.01 233.92
1180 | 21L5 | 0.1961 0.1916 | 0.1600 25438 | 253.55 186.08 232.71
1181 | 21L5 | 0.1965 0.1915 | 0.1570 24917 | 251.06 184.09 230.58
1182 | 21L5 | 0.1954 0.1914 | 0.1595 24937 | 252.63 184.09 231.43
1183 | 21L5 | 0.1955 0.1913 | 0.1560 24953 | 252.79 184.46 231.59
1184 | 8R5 | 0.1983 0.1913 | 0.1553 24014 | 245.91 180.22 225.28
1185 | 8R5 | 0.1985 0.1915 | 0.1578 24037 | 245.97 179.98 224.88
1186 | 8R5 | 0.2005 0.1913 | 0.1550 23570 | 240.86 177.28 220.40
1187 | 8R5 | 0.1965 0.1914 | 0.1580 25121 | 249.33 182.54 228.68
1188 | 8R5 | 0.1965 0.1911 | 0.1568 24834 | 246.39 179.98 226.13
1189 | 8R5 | 0.1993 0.1914 | 0.1630 23753 | 239.67 177.53 221.26
1190 | 8R5 | 0.1999 0.1918 | 0.1628 22948 | 235.87 174.31 218.12
1191 | 8R5 | 0.2044 0.1915 | 0.1575 21713 | 230.21 169.99 210.68
1192 | 8R5 | 0.2038 0.1918 | 0.1588 22118 | 232.96 171.46 212.74
1193 | 8R5 | 0.1979 0.1914 | 0.1570 24663 | 247.88 181.77 227.07
1194 | 8R5 | 0.1998 0.1915 | 0.1568 23795 | 243.49 178.39 222.87
1195 | 8R5 | 0.1988 0.1916 | 0.1580 24131 | 245.14 179.49 224.43
1196 | 8R5 | 0.1979 0.1915 | 0.1590 23909 | 245.79 179.51 224.89
1197 | 10L5 | 0.1946 0.1918 | 0.1555 26334 | 255.15 187.17 234.57
1198 | 10L5 | 0.1955 0.1919 | 0.1570 26010 | 252.68 186.06 232.26

Continued on next page. . .
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Test | Wire | dgross(in) | dpet(in) | dneck(in) | E(psi) | Omax(ksi) | oyiela(ksi) | o259 (ksi)
1199 | 10L5 | 0.1963 0.1918 | 0.1560 26091 | 250.96 184.80 231.06
1200 | 10L5 | 0.1960 0.1918 | 0.1603 25973 | 251.14 185.27 231.27
1201 | 10L5 | 0.1969 0.1918 | 0.1583 26120 | 249.51 185.27 230.18
1202 | 10L5 | 0.1959 0.1916 | 0.1613 27373 | 252.91 189.85 233.70
1203 | 10L5 | 0.1958 0.1916 | 0.1580 27008 | 254.29 188.95 234.54
1204 | 10L5 | 0.1968 0.1918 | 0.1590 26332 | 251.13 186.62 231.35
1205 | 10L5 | 0.1961 0.1919 | 0.1570 26382 | 252.18 186.96 232.30
1206 | 10L5 | 0.1960 0.1918 | 0.1608 25817 | 252.70 185.58 232.37
1207 | 10L5 | 0.1955 0.1916 | 0.1610 26414 | 251.69 185.73 231.85
1208 | 10L5 | 0.1956 0.1916 | 0.1650 26377 | 249.96 184.14 230.37
1209 | 10L5 | 0.1960 0.1918 | 0.1605 25612 | 250.87 184.50 230.75
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Appendix B

Statistical moments of integral of

squared-root process

The squared-root process and its integral are defined as

dry = b(a —ry) dt + \/rio dWi,a,b > 0 (B.1)

t
I, - / v ds (B.2)
0

Given a, b, 0 and rg, the recursive formula for computing the k-th moment of L; is

given Sec. |4.5.1 An implementation in Matlab® is given below.

Listing B.1: Matlab code for computing moments of integral of squared-root process.

function [ m ] = Moment(t, k, a, b, sigma, r0)

% Compute the k-th moment of integral of squared-root
% process from O to t, with parameters a, b, sigma

% and initial value roO.

params.alpha = -a;

params.beta = a * b;
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params.gamma = sigma,;
params.xb = 1r0;

m = M2(k, 0, t, params),;

end

function [ res ] = theta( k, j, params )
ub = params.gamma“2 / 2 / params.alpha;
vb = 2 * params.beta / params.gamma”2;
res = 0;

for i =0 : j
nom = factorial(k) * (-1)"(k-j) * ub~(k - 1i);
den = factorial(i) * factorial(j - i)
* factorial(k - j);
res = res + params.xb”i * nom / den

* fac(vb, k) / fac(vb, 1i);

end

end

function [ res ] = ak( k, params )
res = params.alpha * k;

end

function [ res ] = bk( k, params )

res = params.beta * k + 0.5 * params.gamma”2
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end

function [ res ]

if (

else

end

end

func
res

for

end

end

func
res

for

end

end

* k x (k - 1);

fac( y, k )

k == 0)
res = 1;
res = prod(y + [0 : k - 1]);
tion [ res ] = M2( j, k, t, params )
=O;
m =0 (j + k)
res = res + M3(j, k, m, t, params)
* exp(params.alpha * m *x t);
tion [ res ] = M3( j, k, m, t, params )

= 0.0;

n =0 : min(j, j + k - m)

res = res + M4(j, k, m, n, params) * t n;

198
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function [ res ] = M4( j, k, m, n, params )
% Okmn
if (j == 0 && n >= 1)
res = 0;
return;
end
% O0kmO
if (j == 0 && n == 0)
res = theta(k, m, params);
return;
end

% jkmn, k'!'=m

if ( k¥ "= m)

res = 0;
for i = n min(j, j + k - m)
res = res + fac(n + 1, i - n)

/ (params.alpha * (k - m))"(i - n + 1)
* R4(j, k, m, i, params);

end

res = -res;

return,;

else
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% jkkn, n=1,2,...
if (n > 0)
/» Maybe here
res = 1.0 / n *x R4(j, k, k, n - 1, params);
return;
else
% jkkO
res = 0;
for m =0 : j + k
if (m == k)

continue;

end
res = res + M4(j, k, m, 0, params);
end
res = - res;
end
end
end
function [ res ] = R4( j, k, m, n, params )

res = bk(k, params) * M4(j, k - 1, m, n, params)
+ 3j *x M4(j - 1, k + 1, m, n, params);

end

200
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Appendix C

Coefficients of Clough-Penzien

correlation function

wﬁ w4 W2 (,L}Q w2
Car = =2 | (1482~ 16¢}) (1 - w—i) -85 (1 -7 - +2C§w—§>] (C.1)
f f f f
200 w2 w? Wy
on=2 [ursg 106y (1-2g - F a5 g (1-5)] e
whi? wh w2 w? w?
f 2 4 2 2
Coz = 2L | (148¢2 — 16¢)) (1—%)—8@“—%(1—2gf—w—§+2@;§>]
(C.3)
2wgwi | wy 2 2¢ 2 29y 2 wy
Co=—2L 1= +8C—16C 1-2(——+2§ +2¢2(1-2%
¥ i /
(C.4)
D =—4wlwi|1-2¢ — ~"+2§ 1—2¢3 -4 ng + 4dw? 1—“—;l
gf f w2 gw? f W;lc
(C.5)
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