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Abstract

Toroidal algebra representations and equivariant elliptic surfaces

Samuel DeHority

We study the equivariant cohomology of moduli spaces of objects in the derived category

of elliptic surfaces in order to find new examples of infinite dimensional quantum integrable

systems and their geometric representation theoretic interpretation in enumerative geometry. This

problem is related to a program to understand the cohomological and K-theoretic Hall algebras of

holomorphic symplectic surfaces and to understand how it related to the Donaldson-Thomas

theory of threefolds fibered in those surfaces.

We use the theory of noncommutative deformations of Poisson surfaces and especially van den

Berg’s noncommutative P1 bundles as well as Rains’s analysis of moduli theory for quasi-ruled

noncommutative surfaces as well as the theory of Bridgeland stability conditions and their relative

versions to understand equivariant deformations and birational transformations of Hilbert

schemes of points on equivariant elliptic surfaces. The moduli spaces are closely related to

elliptic versions of classical integrable systems. We also use these moduli spaces to construct

vertex algebra representations of extensions of toroidal extended affine algebras on their

equivariant cohomology, building on work of Eswara-Rao–Moody–Yokonuma, of Billig, and of

Chen–Li–Tan on vertex representations of toroidal algebras, full toroidal algebras, and toroidal

extended affine algebras.

Using Fourier-Mukai transforms and their relative action on families of dg-categories we study

the relationship between automorphisms of toroidal extended affine algebras and families of



derived equivalences on dg categories, in particular finding a relativistic (difference)

generalization of the Laumon-Rothstein deformation of the Fourier-Mukai duality.

Finally, using the above analysis we extend the construction of Maulik–Okounkov’s stable

envelopes to moduli of framed torsionfree sheaves on noncommutative surfaces in some cases and

use this to study coproducts on associated algebras assigned to elliptic surfaces with applications

to understanding new representation theoretic structures in the Donaldson-Thomas theory of local

curves.
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Chapter 1: Introduction

This thesis is concerned with the geometric representation theory of moduli spaces of objects

in the derived category of certain elliptic surfaces admitting actions of an algebraic torus.

The main results are some beginning steps to extending to a new class of examples the nar-

rative which, to certain resolution of conical symplectic singularities, the canonical prototype be-

ing Nakajima quiver varieties, assigns 1) algebras which act on the equivariant cohomology or

K-theory of the resolution 2) representations of the same algebras on vector spaces underlying

equivariant enumerative theories of the resolutions and 3) systems of compatible difference and

differential equations.

The specific elliptic surfaces 𝑋𝑅 for 𝑅 a root system in

{𝐴−1, 𝐴0, 𝐴1, 𝐴2, 𝐷4, 𝐸6, 𝐸7, 𝐸8}

have features which make them particularly amenable to analysis in analogy with quiver varieties.

They are the natural affine analogue of ADE surfaces, which are themselves conical symplectic res-

olutions. They also belong to the class of moduli spaces of Higgs bundles and thus have geometric

(the Hitchin fibration, nonabelian Hodge theory) and algebraic (Langlands duality) properties con-

straining and aiding in the analysis of their enumerative geometry.

1.1 Vertex algebras and toroidal algebras

The central algebraic tool for our analysis is the theory of vertex operator algebras. Our narra-

tive centers around vertex algebras and geometric interpretations of their Fourier coefficients. In

particular, this work is based on [1] in which a vertex algebra 𝑉𝑇∗𝐸 was shown to admit a represen-

tation of an algebra 𝔤𝑇∗𝐸 which is a supersymmetric extension of the algebra of Hamiltonian vector
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fields on C∗2. There are also close relationships between the geometric representation theory of

the surfaces 𝑋𝑅 and a family of vertex algebras arising in the 4d/2d duality story in the physics

literature. Chapter 2 explains the relevant results from [1] and also carries the narrative slightly

further by relating them to the vertex algebras in 4d/2d duality, in particular the small N = 4

superconformal vertex algebra.

This is a promising sign that many of the results of the present work admit generalizations in

some form to a broader class of moduli spaces of Higgs bundles, because while the surfaces 𝑋𝑅

are quite special and isolated examples, these other vertex algebras form a much broader class.

1.2 Moduli spaces

In [2] families of moduli spaces of objects in dg categories, interpreted as noncommutative

ruled surface, were studied in order to find a geometric description of the actions constructed in [1]

at the level of vector spaces and algebras, but not cohomology theories. The theory of Bridgeland

stability conditions and its relative analogue are used to understand the wall-crossing relevant to

the geometric construction of algebra representations on cohomology.

1.3 Stable envelopes and relativistic deformations

Chapter 5 contains the largest technical advances in the present work. The analysis of [2] and

in Chapter 4 is carried further, as the family of noncommutative surfaces infinitesimally close to

commutative ones are deformed to noncommutative surfaces related to elliptic difference equa-

tions.

We describe a family of noncommutative surfaces over a base of the form 𝐸 × 𝐸 where 𝐸

is an elliptic curve, where moduli spaces of torsionfree sheaves are related to relativistic elliptic

integrable systems and also to the geometric representations in cohomology which form the main

subject of the paper. We explain the dualities of the dg categories and moduli of torsionfree sheaves

covering an action on GL(2,Z) on 𝐸 × 𝐸 .

While the elliptic curve serving as the analogue of the target of the moment map parameter of

2



a Hamiltonian reduction seems to be a new feature of geometric representation theory in holomor-

phic symplectic geometry, the very same deformation is the necessary ingredient to understand

the generalization of stable envelopes the moduli spaces of torsion free sheaves on elliptic sur-

faces. The stable envelopes are described and they are related to algebra modules relevant to the

enumerative geometry of local elliptic curve Calabi-Yau threefolds.
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Chapter 2: Vertex algebras

Vertex algebras were introduced in the mathematics literature by Borcherds [3] to formalize

algebraic structures arising in two-dimensional quantum field theories with applications to infinite-

dimensional Lie algebras. They have since served an indispensable role in the study of the rep-

resentation theory of infinite dimensional lie algebras and their applications to the enumerative

geometry of moduli spaces of sheaves on surfaces and of threefolds.

2.1 Definitions

Given a ring 𝑅, the space 𝑅[[𝑧±]] of formal power series in 𝑧 and 𝑧−1 is not a ring, but it has

subspaces 𝑅((𝑧)), 𝑅[[𝑧]], 𝑅[[𝑧−1]] of Laurent series, power series in 𝑧 and those in 𝑧−1 which are

rings.

Basic references for the theory of vertex algebras are [4, 5] which we follow for the definition

of vertex algebras.

Let 𝑉 be a vector space. An element

𝑎(𝑧) =
∑︁
𝑛∈Z

𝑎𝑛𝑧
−𝑛−1 ∈ End(𝑉) [[𝑧±]]

is called a field if for any 𝑣 ∈ 𝑉 , the element

𝑎(𝑧)𝑣 =
∑︁
𝑛∈Z

𝑎𝑛 (𝑣)𝑧−𝑛−1

lies in End(𝑉) ((𝑧)).
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Two fields 𝑎(𝑧), 𝑏(𝑤) are weakly local if

Res𝑧 (𝑧 − 𝑤)𝑁 [𝑎(𝑧)𝑏(𝑤)] = 0

for 𝑁 ≫ 0 and are local with the stronger condition

(𝑧 − 𝑤)𝑁 [𝑎(𝑧)𝑏(𝑤)] = 0

for 𝑁 ≫ 0. We use the weak locality condition because we will be interested in fields under the

transformation 𝑧 ↦→ 𝑒𝑧 − 1 which does not preserve locality. Decompose 𝑎(𝑧) = 𝑎+(𝑧) + 𝑎−(𝑧) in

the unique 𝜕𝑧 invariant way, so that 𝑎+(𝑧) =
∑
𝑛<0 𝑎𝑛𝑧

−𝑛−1 and 𝑎−(𝑧) =
∑
𝑛≥0 𝑎𝑛𝑧

−𝑛−1. Given two

local fields 𝑎(𝑧), 𝑏(𝑧) their normally ordered product is defined as

: 𝑎(𝑧)𝑏(𝑧) := 𝑎+(𝑧)𝑏(𝑧) + 𝑏(𝑧)𝑎−(𝑧)

and Dong’s lemma says that : 𝑎𝑏 : (𝑧) is local with 𝑎(𝑧) and 𝑏(𝑧).

The space of all fields on 𝑉 in the variable 𝑧 will be denoted 𝔤𝔩𝔣(𝑉 ; 𝑧).

Definition 2.1.1. A vertex algebra is

• The space of states a vector space 𝑉 .

• The vacuum vector |0⟩ ∈ 𝑉 .

• The translation operator 𝑇 ∈ End(𝑉).

• A linear map

𝑌 (−, 𝑧) : 𝑉 → 𝔤𝔩𝔣(𝑉 ; 𝑧)

satisfying

• (vacuum axiom) 𝑌 ( |0⟩, 𝑧) = Id𝑉 . Also for any 𝑎 ∈ 𝑉 we have 𝑌 (𝑎, 𝑧) |0⟩ ∈ 𝑉 [[𝑧]] with

constant term 𝑎.
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• (translation axiom) The commutator [𝑇,𝑌 (𝑎, 𝑧)] = 𝜕𝑧𝑌 (𝑎, 𝑧) and 𝑇 |0⟩ = |0⟩.

• (locality axiom) The fields 𝑌 (𝑎, 𝑧) for 𝑎 ∈ 𝑉 are all mutually local.

Vertex algebra modules of a vertex algebra 𝑉 are similarly defined as vector spaces 𝑀 with

End(𝑀) valued fields

𝑌𝑀 (𝑎, 𝑧) ∈ End(𝑀) [[𝑧±]]

for any 𝑎 ∈ 𝑉 , satisfying appropriate axioms.

The formal delta function 𝛿(𝑧 − 𝑤) ∈ C[[𝑧±, 𝑤±]] defined by 𝛿(𝑧 − 𝑤) =
∑
𝑘∈Z 𝑤

𝑛𝑧−1−𝑛

conveniently expresses commutators of the modes (i.e. coefficients) of fields because if fields

𝑎(𝑧), 𝑏(𝑧) are weakly local, then

[𝑎(𝑧)𝑏(𝑤)] =
𝑛∑︁
𝑗=0
𝑐 𝑗+1(𝑤)𝜕 ( 𝑗)𝑤 𝛿(𝑧 − 𝑤)

for some fields 𝑐 𝑗 (𝑤) where 𝜕 ( 𝑗)𝑤 = 1
𝑗!𝜕

𝑗
𝑤. The same data is expressed in the singular part of the

Operator Product Expansion

𝑎(𝑧)𝑏(𝑤) ∼
𝑛∑︁
𝑗=0

𝑐 𝑗 (𝑤)
(𝑧 − 𝑤) 𝑗+1

where 1
𝑧−𝑤 is expanded in the domain |𝑧 | < |𝑤 |. In this case we denote the field 𝑐 𝑗 (𝑤) by 𝑎 𝑗𝑏(𝑤).

If the fields 𝑎(𝑧), 𝑏(𝑤) are vertex operators 𝑌 (𝑎, 𝑧), 𝑌 (𝑏, 𝑤) then 𝑐 𝑗 (𝑤) = 𝑌 (𝑎 𝑗𝑏, 𝑤) moti-

vating the previous terminology. For 𝑗 = 0 we define 𝑎0𝑏(𝑧) =: 𝑎𝑏 : (𝑧) and more generally

𝑎−𝑛𝑏(𝑧) =: 𝜕 (𝑛)𝑧 𝑎𝑏 : (𝑧). The structure theory of vertex algebras then gives the following formulas

for their modes

[𝑎𝑛, 𝑏𝑚] =
∑︁
𝑗≥0

(
𝑚

𝑗

)
(𝑎 𝑗𝑏)𝑚+𝑛− 𝑗 (2.1.2)

∞∑︁
𝑗=0

(
𝑚

𝑗

)
(𝑎𝑛+ 𝑗𝑏)𝑚+𝑘− 𝑗𝑐 =

∞∑︁
𝑗=0

(−1) 𝑗
(
𝑛

𝑗

)
𝑎𝑚+𝑛− 𝑗 (𝑏𝑘+ 𝑗𝑐) −

∞∑︁
𝑗=0

(−1) 𝑗+𝑛
(
𝑛

𝑗

)
𝑏𝑛+𝑘− 𝑗 (𝑎𝑚+ 𝑗𝑐) (2.1.3)

the latter identity, called Borcherds identity, holding for any 𝑘, 𝑚, 𝑛 ∈ Z.
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Two important special cases are the noncommutative Wick formula

𝑎𝑚 : 𝑏𝑐 : (𝑧) =: 𝑎𝑚𝑏(𝑧)𝑐(𝑧) : + : 𝑏(𝑧)𝑎𝑚𝑐(𝑧) : +
𝑚−1∑︁
𝑗=0

(
𝑚

𝑗

)
(𝑎 𝑗𝑏)𝑚−1− 𝑗𝑐(𝑧)

which allows the calculation of OPEs of fields built from others and the quasiassociativity of the

normal ordered product

: 𝑎 : 𝑏𝑐 :: (𝑧) =:: 𝑎𝑏 : 𝑐 : (𝑧) +
∑︁
𝑗≥0

𝑎− 𝑗−2(𝑏 𝑗𝑐) (𝑧) + 𝑏− 𝑗−2(𝑎 𝑗𝑐) (𝑧).

Definition 2.1.4. A vertex algebra 𝑉 is said to be generated by a collection {𝑎𝑖 | 𝑖 ∈ 𝐼} if 𝑉 is

spanned words built from 𝑎𝑖 under all products 𝑎𝑖𝑏, 𝑖 ∈ Z. The set {𝑎𝑖 | 𝑖 ∈ 𝐼} strongly generates 𝑉

if 𝑉 is spanned by words formed with only the negative products 𝑖 ∈ Z≤0 up to a finite dimensional

space of central elements.

If 𝑉 is strongly generated by {𝑎𝑖 | 𝑖 ∈ 𝐼} then 𝑉 is spanned by the elements {𝑎𝑖1−𝑘1
· · · 𝑎𝑖𝑛−𝑘𝑛 |0⟩ |

𝑘𝑖 ≥ 0} as a vector space up to a finite dimensional space of central elements.

We will often say that 𝑉 is generated or strongly generated by the fields 𝑌 (𝑎𝑖, 𝑧) if {𝑎𝑖 | 𝑖 ∈ 𝐼}

generates or strongly generates 𝑉 .

All of these definitions have extensions to where the underlying vector space 𝑉 is a superspace

𝑉 = 𝑉0 ⊕ 𝑉1 and one my define a vertex operator superalgebra. We refer to [4] for the required

sign modification on the formulas in the preceding.

2.2 Library of examples

In this section we list a number of examples which will be useful for the remainder of the text.

Example 2.2.1. (Free super bosons) Let (H, ⟨−,−⟩) denote a super space over the field K with a

supersymmetric bilinear form. The Heisenberg-Clifford vertex algebra is the vector space

𝑉H = Sym•(H[𝑡−1]) ⊕ Kc.
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Given 𝛾 ∈ H the fields

𝛼(𝛾, 𝑧) := 𝑌 (𝛾𝑡−1, 𝑧) =
∑︁
𝑛∈Z

𝛼𝑛 (𝛾)𝑧−𝑛−1 (2.2.2)

strongly generate 𝑉𝐻 and satisfy the OPE

𝛼(𝛾, 𝑧)𝛼(𝜂, 𝑤) ∼ ⟨𝛾, 𝜂⟩c
(𝑧 − 𝑤)2 . (2.2.3)

Given a linear functional 𝜁 ∈ H∨ there is a module called the Fock module

F𝑘,H(𝜁) ≃ Sym•(𝑡−1H[𝑡−1])

with vacuum element |0⟩𝑘,𝜁 ∈ F𝑘,H(𝜁) where

𝛼0(𝛾) |0⟩𝑘,𝜁 = 𝜁 (𝛾) |0⟩𝑘,𝜁 , 𝑐 |0⟩𝑘,𝜁 = 𝑘 |0⟩𝑘,𝜁 . (2.2.4)

Example 2.2.5. (Lattice vertex superalgebras) Let (Λ, ⟨, ⟩) be an integral lattice with group algebra

k[Λ] spanned by 𝑒𝜆 for 𝜆 ∈ Λ. Let H = k ⊗ Λ with the induced pairing. The lattice vertex

superalgebra

𝑉Λ :=
⊕
𝜆∈Λ

F𝑘,H(𝜁𝜆) ⊗ 𝑒𝜆 ≃ Sym•(𝑡−1H[𝑡−1]) ⊗ C[Λ] (2.2.6)

contains a copy of the Fock module of the free boson vertex subalgebra for each element of the

lattice Λ. The vertex algebra structure depends mildly on an auxiliary cocycle

𝜖 : Λ ⊗ Λ → Z/2Z

(c.f. [4]) which we omit from the notation. In addition to the fields (2.2.2) there are fields

Γ𝜆 (𝑧) := 𝑌 (1 ⊗ 𝑒𝜆, 𝑧)
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with OPE

𝛼(𝛾, 𝑧)Γ𝜆 (𝑤) ∼
(𝜆, 𝛾)Γ𝜆 (𝑤)
𝑧 − 𝑤 . (2.2.7)

Example 2.2.8. (Cone vertex algebras) Given a lattice vertex algebra 𝑉Λ and a cone 𝐶 ⊂ Λ of the

lattice (i.e. a saturated submonoid) for example, of a sublattice, then

𝑉𝐶⊂Λ =
⊕
𝜆∈𝐶

F𝑘,H(𝜁𝜆) ⊗ 𝑒𝜆

is a vertex subalgebra of 𝑉Λ. These have been studied in relation to mock modular forms [6] and

will arise in Chapter 5 in relation to Donaldson-Thomas theory of local surfaces.

Example 2.2.9. (Affine vertex algebra) For a semisimple finite dimensional Lie algebra 𝔤 with

invariant form (−,−) the affine vertex algebra𝑉 (𝔤)𝑘 at level 𝑘 is strongly generated by fields 𝐽𝑥 (𝑧)

for 𝑥 ∈ 𝔤. The OPEs are given by

𝐽𝑥 (𝑧)𝐽𝑦 (𝑤) ∼
𝐽[𝑥,𝑦] (𝑤)
𝑧 − 𝑤 + 𝑘 (𝑥, 𝑦)

(𝑧 − 𝑤)2 .

Example 2.2.10. ((Super)conformal vertex algebras ) The Virasoro vertex algebra is strongly gen-

erated by a single field

𝑇 (𝑧) =
∑︁
𝑛∈Z

𝐿𝑛𝑧
−𝑛−2

satisfying the OPE

𝑇 (𝑧)𝑇 (𝑤) ∼ 𝑐/2
(𝑧 − 𝑤)4 + 2𝑇 (𝑤)

(𝑧 − 𝑤)2 + 𝜕𝑤𝑇 (𝑤)
𝑧 − 𝑤

where 𝑐 is a central element. The modes of 𝑇 (𝑧) satisfy the commutation relations of the Virasoro

algebra which is a central extension of the algebra of polynomial vector fields on C∗.

A conformal structure on a vertex algebra 𝑉 is an element 𝜔 ∈ 𝑉 so that 𝑌 (𝜔, 𝑧) generates a

virasoro vertex subalgebra. Then 𝑌 (𝜔, 𝑧) is called the stress tensor.

9



For example, the free super bosons have a family of conformal structures given by

1
2

∑︁
𝛼−1(𝛾𝑖)𝛼−1(𝛾𝑖) − 𝛼−2(𝜂)

for {𝛾𝑖}{𝛾𝑖} dual bases of H and 𝜂 ∈ H some element. The central charge is

𝑐 = dim(H) − 12⟨𝜂, 𝜂⟩𝑘.

There are superalgebras containing the algebra of modes of 𝑇 (𝑧) as finite index subalgebra

corresponding to central extensions of algebras of infinitesimal superconformal transformations

on supercurves. Among these is the N = 4 small superconformal vertex algebra 𝑉N=4 which is

strongly generated by fields

𝑇 (𝑧), 𝐺+(𝑧), 𝐺−(𝑧), 𝐺+(𝑧), 𝐺−(𝑧), 𝐽+(𝑧), 𝐽0(𝑧), 𝐽−(𝑧)

subject to the nonvanishing OPEs

𝐽0(𝑧)𝐽±(𝑤) ∼ ±2𝐽±(𝑤)
𝑧 − 𝑤 𝐽0(𝑧)𝐽0(𝑤) ∼ 𝑐/3

(𝑧 − 𝑤)2

𝐽+(𝑧)𝐽−(𝑤) ∼ 𝐽0(𝑤)
𝑧 − 𝑤 + 𝑐/6

(𝑧 − 𝑤)2 𝐽0(𝑧)𝐺±(𝑤) ∼ ±𝐺±(𝑤)
(𝑧 − 𝑤)

𝐽0(𝑧)𝐺±(𝑤) ∼ ±𝐺±(𝑤)
(𝑧 − 𝑤) 𝐽+(𝑧)𝐺−(𝑤) ∼ 𝐺+(𝑤)

𝑧 − 𝑤

𝐽−(𝑧)𝐺+(𝑤) ∼ 𝐺−(𝑤)
𝑧 − 𝑤 𝐽+(𝑧)𝐺−(𝑤) ∼ −𝐺+(𝑤)

𝑧 − 𝑤

𝐽−(𝑧)𝐺+(𝑤) ∼ −𝐺−(𝑤)
𝑧 − 𝑤 𝐺±(𝑧)𝐺±(𝑤) ∼ 2𝐽±(𝑤)

(𝑧 − 𝑤)2 + 𝜕𝐽
±(𝑤)
𝑧 − 𝑤

𝐺±(𝑧)𝐺∓(𝑤) ∼ 𝑇 (𝑤) + 𝜕𝐽0(𝑤)/2
𝑧 − 𝑤 ± 𝐽0(𝑤)

(𝑧 − 𝑤)2 + 𝑐/6
(𝑧 − 𝑤)3

in addition to those of the Virasoro vertex algebra.

There are is another N = 4 extension of the Virasoro algebra where the 𝐽0, 𝐽± currents, which

form a an affine 𝔰𝔩2 algebra, are replaced by a pair of affine 𝔰𝔩2 currents. The latter version is
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referred to as the large N = 4 superconformal algebra.

Example 2.2.11. (Symplectic fermion vertex algebra) This example is a special case of Example

2.2.1 where

H ≃ 𝐻1(𝐸)

for 𝐸 an elliptic curve with the Poincaré pairing. It is referred to by SF or the symplectic fermion

vertex algebra [7]. In simple terms, H has basis 𝜎+, 𝜎− of odd vectors with ⟨𝜎+, 𝜎−⟩ = −⟨𝜎−, 𝜎+⟩ =

1. This vertex algebra is distinguished by the fact that it is among the simplest examples of vertex

algebras whose representation category is not semisimple. Its study is facilitated by the following

example.

Example 2.2.12. (bc system) The 𝑏𝑐-system is a vertex algebra 𝑉𝑏𝑐 strongly generated by odd

fields 𝑏(𝑧), 𝑐(𝑧) with central element 𝑘 subject to the OPE

𝑏(𝑧)𝑐(𝑤) ∼ 𝑘

𝑧 − 𝑤 .

There is a family of conformal structure on 𝑉𝑏𝑐 given by

𝑇𝜆 (𝑧) = (1 − 𝜆) : 𝜕𝑐(𝑧)𝑏(𝑧) : +𝜆 : 𝜕𝑏(𝑧)𝑐(𝑧) :

with central charge

−12𝜆2 + 12𝜆 − 2.

Three cases are singled out:

1. When 𝜆 = 0 one gets 𝑐 = −2. Then 𝑇0(𝑧) agrees with the stress tensor of the symplec-

tic fermion model (c.f. Example 2.2.11 )generated by the fields {𝜕𝑐, 𝑏} which is a vertex

subalgebra of 𝑉𝑏𝑐.

2. When 𝜆 = 1 one again finds 𝑐 = −2. Then 𝑇1(𝑧) is the stress tensor of a different symplectic

fermion vertex subalgebra generated by fields {𝑏, 𝜕𝑐}.

11



3. At the midpoint of the two previous examples gives a stress tensor 𝑇1/2(𝑧) with 𝑐 = 1. In this

case 𝑉𝑏𝑐 is usually referred to as the free charged fermion vertex algebra. It is isomorphic to

the lattice vertex algebra (Example 2.2.5) with the lattice Z ⊂ R with Gram matrix (1) via

the boson-fermion correspondence with the stress tensor on the lattice VOA induced from

its underlying free bosonic vertex algebra generated by the field

𝐽𝑏𝑐 (𝑧) =: 𝑐(𝑧)𝑏(𝑧) : . (2.2.13)

Example 2.2.14. (Weyl vertex algebra, symplectic bosons, or 𝛽𝛾-system ) The Weyl vertex algebra

is the vertex algebra strongly generated by two bosonic fields 𝛽(𝑧), 𝛾(𝑧) subject to the OPE

𝛽(𝑧)𝛾(𝑤) ∼ 1
𝑧 − 𝑤 .

2.2.1 Logarithmic fields

The mathematical formulation of vertex algebras requires that OPEs be expressed using rational

functions, but based on the physical context of logarithmic conformal field theory, (c.f. [8] for

an excellent introduction) there exist conformal field theories with weakly mutually local fields

exhibiting logarithmic divergences of correlation functions. A characteristic feature of their study

is the non-semisimplicity of the representation category of the resulting algebra. One formalization

of the notion of a logarithmic vertex operator is given in [9]. We will instead content ourselves with

an analysis of OPEs and fields with logarithmic terms, which have already appeared in a hidden

way in Example 2.2.5.

Example 2.2.15. (Logarithmic extension of free boson, real logarithmic modes) Let H be purely

even and let 𝛾 ∈ H be an element. Consider the indefinite integral

𝜙(𝛾, 𝑧) =
∫

𝑑𝑧𝛼(𝛾, 𝑧) = 𝛼log(𝛾) + 𝛼0(𝛾) log 𝑧 +
∑︁
𝑛≠0

𝛼𝑛 (𝛾)
𝑧−𝑛

−𝑛 . (2.2.16)
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The logarithmic mode 𝛼log(𝛾) satisfies the commutation relation

[𝛼log(𝛾), 𝛼𝑘 (𝜂)] = ⟨𝛾, 𝜂⟩𝛿𝑛,0

and acts by infinitesimal translation on the space of vacua in (2.2.4), so that

exp(𝛼log(𝛾)) |0⟩1,𝜁 = |0⟩1,𝜁 ′

where 𝜁 ′ = 𝜁 + ⟨𝛾,−⟩. See also [10, §13.1.3].

Example 2.2.17. (Logarithmic extension of 𝑏𝑐 system, fermionic logarithmic modes) Starting

from the symplectic fermions generated by fields

{𝑏, 𝜕𝑐}

we write the field 𝑐 as already being an indefinite integral

𝑐(𝑧) =
∫

𝑑𝑧𝜕𝑐(𝑧) = 𝜃𝑐 + 𝑐0 log(𝑧) +
∑︁
𝑛≠0

𝑐𝑛
𝑧−𝑛

−𝑛 .

Then the field

𝜙𝑏 (𝑧) :=
∫

𝑑𝑧𝑏(𝑧) = 𝜃𝑏 + 𝑏0 log(𝑧) +
∑︁
𝑛≠0

𝑏𝑛
𝑧−𝑛

−𝑛

is such that the zero and logarithmic modes satisfy the commutation relations

[𝜃𝑐, 𝑏0] = 1, [𝜃𝑏, 𝑐0] = 1, [𝜃𝑐, 𝑐0] = [𝜃𝑏, 𝑏0] = 0.

2.3 Toroidal superalgebras

In [1] vertex constructions of toroidal superalgebras extended by derivations were provided

based on the results of Billig and Chen-Li-Tan [11, 12].
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2.3.1 Toroidal algebras

Given a semisimple Lie algebra 𝔤 and the ring of functions 𝐴 of a smooth affine variety 𝑈 =

Spec 𝐴, the Lie algebra

𝔤[𝑈]

with pointwise bracket [𝑥 𝑓 , 𝑦𝑔] = [𝑥, 𝑦] 𝑓 𝑔 for 𝑥, 𝑦 ∈ 𝔤 and 𝑓 , ℎ ∈ 𝐴 defines a Lie algebra.

paralleling the case Spec 𝐴 = C∗, Kassel [13] calculated the Lie algebra cohomology group to be

𝐻2(𝔤, k) ≃ Ω1
𝐴/𝑑Ω

0
𝐴

of global 1-forms modulo exact global 0-forms. It follows that the universal central extension of

𝔤[𝐴] is

𝔤[𝐴] ⊕ Ω1
𝐴/𝑑Ω

0
𝐴 (2.3.1)

with bracket

[𝑥 𝑓 , 𝑦𝑔] = [𝑥, 𝑦] 𝑓 𝑔 + ⟨𝑥, 𝑦⟩ 𝑓 𝑑𝑔.

This algebra then has outer derivations given by global sections 𝜉 of T 1
𝐴

which act by the Lie

derivative on 1-forms, so that if 𝐴 has coordinates 𝑎1, . . . , 𝑎𝑛 and 𝜉 = 𝜉𝑖 𝜕
𝜕𝑎𝑖

then its action on the

1-form 𝜅 = 𝜅𝑖𝑑𝑎𝑖 is

[𝜉, 𝜅] =
(
𝜉𝑖
𝜕𝜅 𝑗

𝜕𝑎𝑖
+ 𝜅𝑖

𝜕𝜉𝑖

𝜕𝑎 𝑗

)
𝑑𝑎 𝑗

so that if 𝜅 = 𝑑𝑓 = 𝜕 𝑓

𝜕𝑎𝑖
𝑑𝑎𝑖 then

[𝜉, 𝑑𝑓 ] = 𝑑 (𝜉 ( 𝑓 ))

so that the action of 𝜉 descends to Ω1
𝐴
/𝑑Ω0

𝐴
.

Example 2.3.2. When 𝑈 = (C∗)𝑛 with coordinate ring 𝐴 = k[𝑠±1 , . . . , 𝑠
±
𝑛 ] the Lie algebra (2.3.1)

is called then toroidal algebra 𝔤̂(𝑛) . If 𝑛 = 1 then Ω1
𝐴
/𝑑Ω0

𝐴
= k 𝑑𝑠

𝑠
is 1-dimensional and we recover
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the usual description of the affine Lie algebra. After adjoining all global sections of T 1
𝐴

we get the

full toroidal algebra

𝔤̂
(𝑛)
𝑓 𝑢𝑙𝑙

= 𝑔[𝑠±𝑖 ] ⊕ Ω1
𝐴/𝑑Ω

0
𝐴 ⊕ 𝑇1

𝐴.

We restrict from this point to the case of Example 2.3.2. There are various subalgebras of the

full toroidal algebra depending on which subalgebra of T 1
𝐴

is adjoined. Pick an 𝐴-basis

d1 = 𝑠1
𝜕

𝜕𝑠1
, . . . , d𝑛 = 𝑠𝑛

𝜕

𝜕𝑠𝑛

of T 1
𝐴

and an 𝐴-basis of Ω1
𝐴

given by

k𝑖 =
𝑑𝑠𝑖

𝑠𝑖
, 𝑖 = 1, . . . , 𝑛.

Adjoining

d1, . . . , d𝑛

gives rise to the elliptic Lie algebra when 𝑛 = 2, denoted 𝔤𝑒𝑙𝑙 . This is a direct generalization of the

affine Lie algebra for 𝑛 = 1.

An intermediate example is the toroidal extended affine algebra

𝔤̂(𝑛),𝑒𝑎 = 𝔤̂(𝑛) ⊕ ker div

where

div : T 1
𝐴 → 𝐴∑︁

𝜉𝑖𝑠𝑖
𝜕

𝜕𝑠𝑖
↦→

𝑛∑︁
𝑖=1

𝑠𝑖
𝜕𝜉𝑖

𝜕𝑠𝑖

is the divergence. The toroidal extended affine algebra is an example of an extended affine algebra,

a notion introduced in the physics literature under a different name in [14] c.f. [15] for historical
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remarks.)

Definition 2.3.3. An extended affine algebra is a Lie algebra 𝔤 such that

EA1 There is a symmetric non-degenerate invariant for (−,−) on 𝔤.

EA2 There is a finite dimensional semisimple self-centralizing subalgebra 𝔥 ⊂ 𝔤.

EA3 Real root elements 𝑥𝑎 ∈ 𝔤𝛼 act locally nilpotently in the adjoint representation.

EA4 𝔤 is indecomposable.

EA5 The centralizer of the subalgebra 𝔤𝑐 generated by real root spaces is contained in 𝔤𝑐

EA6 The subgroup generated by isotropic roots is free abelian group of finite rank.

The symmetric invariant form on 𝔤̂(𝑛),𝑒𝑎 is such that

(𝔤[𝐴],Ω1
𝐴/𝑑Ω

0
𝐴) = (Ω1

𝐴/𝑑Ω
0
𝐴,Ω

1
𝐴/𝑑Ω

0
𝐴) = (ker div, ker div) = (𝔤[𝐴], ker div) = 0

and on elements (𝑥 𝑓 , 𝜅, 𝜉), (𝑦𝑔, 𝜆, 𝜁) is given by

((𝑥 𝑓 , 𝜅, 𝜉), (𝑦𝑔, 𝜆, 𝜁)) =
∫
𝑇𝑐𝑝𝑡

𝑑𝜎⟨𝑥, 𝑦⟩ 𝑓 (𝜎)𝑔(𝜎) + 𝜅(𝜁) (𝜎) + 𝜆(𝜉) (𝜎)

where 𝑇𝑐𝑝𝑡 ⊂ 𝑈 is the compact torus and ⟨−,−⟩ is the invariant form on 𝔤.

This only descends from Ω1
𝐴

to Ω1
𝐴
/𝑑Ω0

𝐴
if the vector fields are required to be divergence free.

There is a further twisting in the bracket on 𝔤̂
(𝑛)
𝑓 𝑢𝑙𝑙

, depending on a parameter 𝜇 ∈ k given by the

Ω1
𝐴
/𝑑Ω0

𝐴
-valued 2-cocycle (̧−,−) on T 1

𝐴
given by

𝑐( 𝑓 d𝑖, 𝑔d 𝑗 ) =
d 𝑗 𝑓 d𝑖𝑔
𝑓 𝑔

(
𝑛∑︁
ℓ=1

𝑓 dℓ𝑔kℓ

)
so that

𝔤̂
(𝑛)
𝑓 𝑢𝑙𝑙

(𝜇)

16



with bracket twisted [−,−]𝜇 so that

[𝜉, 𝜁]𝜇 = [𝜉, 𝜁] + 𝜇𝑐(𝜉, 𝜁)

also forms a Lie algebra and its subalgebra 𝔤̂(𝑛),𝑒𝑎 with the induced bracket does as well.

2.3.2 Hamiltonian vector fields on a super torus

A super extension in the 𝔤 = 𝔤𝔩0 case for 𝑛 = 2. We specialize to 𝑛 = 2 and rename the

variables of the torus 𝑠 and 𝑡. Let 𝐻∗(𝐸) = k⟨1, 𝜎+, 𝜎−, pt⟩ denote the cohomology of an elliptic

curve and 𝐵 the provided basis.

The cohomology of any compact Lie group 𝐺 is provided with a Hopf algebra structure where

the coproduct is given by 𝑚∗ where 𝑚 : 𝐺 ×𝐺 → 𝐺 is the multiplication. The adjoint of 𝑚∗ under

the Poincaré pairing is 𝑚∗. Thus 𝐻∗(𝐸) is equipped with the multiplication map ★ of the dual

Hopf algebra, which in this case is the cup product on the dual elliptic curve 𝐸∨.

We define a Lie algebra

𝔤𝑇∗𝐸 = ⟨𝑤𝑎,𝑏𝛾 , 𝑐𝑐𝑐𝑠, 𝑐𝑐𝑐𝑡⟩

with (super)bracket

[𝑤𝑎,𝑏𝛾 , 𝑤𝑐,𝑑𝜂 ] = − det
©­­«
𝑎 𝑐

𝑏 𝑑

ª®®¬𝑤
𝑎+𝑐,𝑏+𝑑
𝛾★𝜂 + 𝛿𝑎+𝑐,0𝛿𝑏+𝑐,0(𝑎𝑐𝑐𝑐𝑠 + 𝑏𝑐𝑐𝑐𝑡). (2.3.4)

This Lie algebra has an alternative interpretation as a central extension of the algebra of Hamil-

tonian vector fields on (k∗)2|2, a 2|2-dimensional super torus. The Lie algebra Ham((k∗)2|2) has

elements which are functions 𝑓 ∈ k[𝑠±𝑡±, 𝜉1, 𝜉2] where 𝜉1, 𝜉2 are odd variables and the bracket is

given by the the Poisson bracket

{ 𝑓 , 𝑔} = 𝜕 𝑓

𝜕 log 𝑠
𝜕𝑔

𝜕 log 𝑡
− 𝜕 𝑓

𝜕 log 𝑡
𝜕𝑔

𝜕 log 𝑠
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in purely even logarithmic coordinates around the identity.

This description shows that the Lie bracket on 𝔤𝑇∗𝐸 admits a family of deformations over P1

given over [𝑋0 : 𝑋1] by

𝑋0{−,−}𝑒𝑣 + 𝑋1{−,−}𝑜𝑑𝑑

where {−,−}𝑒𝑣 is the above bracket and

{−,−}𝑜𝑑𝑑 = − 𝜕 𝑓
𝜕𝜉1

𝜕𝑔

𝜕𝜉2
+ 𝜕 𝑓

𝜕𝜉2

𝜕𝑔

𝜕𝜉1

is the (compatible) odd bracket. Over ∞ ∈ P1 the Lie algebra structure is that of 𝔭(0|2) [𝑠±, 𝑡±]

where 𝔭(0|2) is the Poisson Lie superalgebra.

Vertex representations

The difficulty in constructing representations of toroidal algebras using vertex operator algebra

techniques depends drastically on whether one is interested in constructing the action of the vector

fields extending the toroidal algebra.

For the toroidal algebra itself, there is a functor from the category of 𝔤̂-modules to the cate-

gory of 𝔤̂(𝑛)-modules due to Iohara-Saito-Wakimoto [16] and Bergman-Billig [17]. For this, let

𝑉 ((0)⊕𝑛−1) denote the abelian Lattice vertex algebra associated to the lattice with completely de-

generate pairing. Then if 𝑀 is a module for the affine vertex algebra 𝑉 (𝔤)𝑘 at level 𝑘 then

Theorem 2.3.5 ([17], [16]). 1. Modes of the vertex algebra

𝑉 (𝔤)𝑘 ⊗ 𝑉 ((0)⊕𝑛−1)

satisfy the commutation relations of 𝔤̂(𝑛) .

2. The map

𝑀 ↦→ 𝑀 ⊗ 𝑉 ((0) (⊕𝑛−1))

18



is a functor from 𝑉 (𝔤)𝑘 -modules to 𝔤̂(𝑛) modules.

The generator 𝑥𝑠𝑘1
1 𝑠

𝑘2
2 · · · 𝑠𝑘𝑛𝑛 is sent to

: 𝐽𝑥 (𝑧)Γ(𝑘2,...,𝑘𝑛) (𝑧) : [𝑧−1−𝑘1]

while the remaining central generators are modes of the fields

Γ(𝑘2,...,𝑘𝑛) (𝑧).

The vertex representations of the vector field part of toroidal algebras by contrast is somewhat

finicky and generally depends on an auxiliary vertex algebra and a fine-tuning of central charges.

The definitive construction was provided in papers of Billig [12, 18].

When 𝔤 is ADE type It is possible to produce a representation of some abelian extension of the

universal enveloping algebra of the full toroidal algebra

0 → K → 𝔤̂
(𝑛)
𝑓 𝑢𝑙𝑙,𝑒𝑥𝑡

→ 𝔤̂
(𝑛)
𝑓 𝑢𝑙𝑙

→ 0

as modes of the vertex algebra 𝑉 (𝐿) where

𝐿 = 𝑅 ⊕
©­­«
0 1

1 0

ª®®¬
⊕𝑛−1

is the direct sum of the root lattice 𝑅 of 𝔤 and 𝑛 − 1 copies of the Lorentzian lattice 𝐼 𝐼1,1 [19, 20]

where the extension is given by a residue calculation providing the OPEs of some generating fields,

but the resulting extension seems somewhat uncontrollable.

To explain Billig’s construction, let 𝑉𝐻𝑉 denote the Heisenberg-Virasoro vertex algebra with

cental charges 𝑐𝑉 , 𝑐𝐻 , 𝑐𝐻𝑉 , which is generated by a Heisenberg field 𝐼 (𝑧) = ∑
𝑛∈Z 𝐼𝑛𝑧

−𝑛−1 of central

charge 𝑐𝐻 , a Virasoro field 𝜔(𝑧) = ∑
𝑛∈Z 𝐿𝑛𝑧

−𝑛−2 of central charge 𝑐𝑉 so that the OPE between the
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two is given by

𝜔(𝑧)𝐼 (𝑤) ∼ −𝑐𝐻𝑉/2
(𝑧 − 𝑤)3 + 𝐼 (𝑤)

(𝑧 − 𝑤)2 + 𝜕𝐼 (𝑤)
𝑧 − 𝑤 .

At the level of modes, the commutator between the Heisenberg and Virasoro fields in

[𝐿𝑛, 𝐼𝑚] = −𝑛𝐼𝑛+𝑚 − 𝛿𝑛+𝑚,0(𝑛2 + 𝑛)𝑐𝐻𝑉 .

It is known that this is the universal central extension of the centerless Virasoro-Heisenberg

algebra.

Let 𝑢, 𝑣 denote the basis of 𝐼 𝐼1,1 so that the Gram matrix is of the form
©­­«
0 1

1 0

ª®®¬.

Let 𝑉+(𝐼 𝐼⊕𝑛−1
1,1 ) denote the sublattice vertex algebra associated to the lattice spanned by the 𝑢𝑖.

Consider the vertex algebra

𝑉 = 𝑉 (𝔤)𝑐𝔤 ⊗ 𝑉 (𝔰𝔩𝑛−1)𝑐𝔰𝔩 ⊗ 𝑉𝐻𝑉 ⊗ 𝑉+(𝐼 𝐼⊕𝑛−1
1,1 ).

Theorem 2.3.6 (Billig [18]). For any 𝜇 ∈ C, At the values of central charges

𝑐𝔤 = 𝑐 ≠ 0 𝑐𝔰𝔩 = 1 − 𝜇𝑐

𝑐𝐻 = (𝑛 − 1) (1 − 𝜇𝑐) 𝑐𝑉 = 12𝜇𝑐 − 2(𝑛 − 1)

𝑐𝐻𝑉 = (𝑛 − 1)/2

The vertex algebra 𝑉 is a module over 𝔤(𝑛)
𝑓 𝑢𝑙𝑙

(𝜇).

The action of the basis vector fields depend on whether they are of the form 𝑓 d1 or d𝑖 for 𝑖 > 1.

If 𝑖 = 1 then 𝑠𝑘1
1 · · · 𝑠𝑘𝑛𝑛 d𝑖 is the 𝑧−𝑘1−1 coefficient of the field

𝑑𝑖 (𝑘2, . . . , 𝑘𝑛, 𝑧) = 𝑌 (𝑣𝑖,−1 ⊗ 𝑒𝑘2𝑢2+···+𝑘𝑛𝑢𝑛 , 𝑧) +
𝑛∑︁
𝑗=2

𝑘 𝑝𝑌 (𝐸𝑝𝑖,−1 ⊗ 𝑒𝑘2𝑢2+···+𝑘𝑛𝑢𝑛 , 𝑧)

where 𝐸𝑎𝑏 is the 𝑎𝑏 elementary symmetric matrix in 𝔤𝔩𝑛−1 and we have combined the Heisenberg
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and 𝔰𝑙𝑛−1 affine vertex algebras into a 𝔤𝔩𝑛−1 vertex algebra.

The action of 𝑠𝑘1
1 · · · 𝑠𝑘𝑛𝑛 d1 is given by the −𝑘1 − 2 coefficient of a similar expression.

Arising naturally in the geometry of moduli spaces of framed torsion-free sheaves on 𝐸 × P1

there is a representation of 𝑉𝔰𝔩𝑛−1 ⊗ 𝑉𝐻𝑉 on a n-fold tensor product of the 𝑏𝑐 system 𝑉⊗𝑛−1
𝑏𝑐

where

𝐽𝐸𝑖 𝑗
(𝑧) ↦→: 𝑏𝑖 (𝑧)𝑐 𝑗 (𝑧) :

and the stress tensor

𝜔 =: 𝜕𝑐1(𝑧)𝑏1(𝑧) + · · · + 𝜕𝑐𝑛 (𝑧)𝑏𝑛−1(𝑧) :

which by a calculation using Wick’s theorem has

𝑐𝔰𝔩𝑛−1 , 𝑐𝐻 = 𝑛 − 1, 𝑐𝑉 = −2𝑛 − 1, 𝑐𝐻𝑉 = (𝑛 − 1)/2.

Proposition 2.3.7 ([1]). There is a representation of 𝔤𝔩0
(𝑛+1)
𝑓 𝑢𝑙𝑙 on the vertex algebra

(𝑉+(𝐼 𝐼1,1) ⊗ 𝑉𝑏𝑐)⊗𝑛.

Proof. Follows from the above discussion and the tensor formula

𝑉+(𝐼 𝐼1,1) (⊗𝑛) = 𝑉+(𝐼 𝐼 (⊕𝑛)1,1 )

□

By adjoining the fields

𝑌 (𝑐𝑖,−2 ⊗ 𝑒𝑘1𝑢1+···+𝑘𝑛𝑢𝑛 , 𝑧) =: 𝜕𝑐𝑖 (𝑧)Γ(𝑘1,...,𝑘𝑛) (𝑧) :

𝑌 (𝑏𝑖,−1 ⊗ 𝑒𝑘1𝑢1+···+𝑘𝑛𝑢𝑛 , 𝑧) =: 𝑏𝑖 (𝑧)Γ(𝑘1,...,𝑘𝑛) (𝑧) :

one obtains a superalgebra whose even part is 𝔤𝔩0
(𝑛+1)
𝑓 𝑢𝑙𝑙 .
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Extended affine subalgebra using coordinated vertex opreators

Billig also provided a construction of the toroidal extended affine subalgebra [12]. The con-

struction was explained in [11] using the language of 𝜙-coordinated modules for vertex operator

algebras, which is a formalization of the construction in [21] of certain modified vertex operators

under the conformal transformation 𝑧 ↦→ 𝑒𝑧 − 1.

Precisely, we only consider the case 𝜙 = 𝑧𝑒𝑧 which is a special case of a coordinated module

construction under a family of conformal transformations [22]. Let 𝑉 be a vertex algebra.

Definition 2.3.8. A 𝜙-coordinated 𝑉-module is a space 𝑀 and a linear map

𝑌𝑊 (−, 𝑧) : 𝑉 → Hom(𝑊,𝑊 ((𝑧)))

such that 𝑌𝑊 ( |0⟩, 𝑧) = Id𝑊 , and for 𝑢, 𝑣 ∈ 𝑉 there exists 𝑘 ∈ Z≥0 such that

(𝑧1 − 𝑧2)𝑘𝑌𝑊 (𝑢, 𝑧1)𝑌𝑊 (𝑣, 𝑧2) ∈ Hom(𝑊,𝑊 ((𝑧1, 𝑧2)))

(𝑧2𝑒𝑧0 − 𝑧2)𝑘𝑌𝑊 (𝑌 (𝑢, 𝑧0)𝑣, 𝑧2) = ((𝑧1 − 𝑧2)𝑘𝑌𝑊 (𝑢, 𝑧1)𝑌𝑊 (𝑣, 𝑧2))
��
𝑧1=𝑧2𝑒

𝑧0 .

As a consequence of the definitions, if the original vertex algebra

𝑌 (𝑢, 𝑧)𝑌 (𝑣, 𝑤) ∼
∑︁
𝑗≥0

𝑌 (𝑢( 𝑗)𝑣, 𝑤)
(𝑧 − 𝑤) 𝑗+1 (2.3.9)

corresponding to the bracket

[𝑌 (𝑢, 𝑧)𝑌 (𝑣, 𝑤)] =
∑︁
𝑗≥0
𝑌 (𝑢( 𝑗)𝑣, 𝑤)𝜕 ( 𝑗)𝑤 𝛿(𝑧 − 𝑤) (2.3.10)

then given a 𝜙-coordinated module (𝑊,𝑌𝑊 ) the OPE over C with additive derivatives 𝜕𝑤 and

additive delta function are replaced with their multiplicative versions

𝜕𝑤, 𝛿(𝑧 − 𝑤) ⇝ 𝑤𝜕𝑤, 𝛿(𝑧/𝑤)
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so that

[𝑌𝑊 (𝑢, 𝑧), 𝑌𝑊 (𝑣, 𝑤)] =
∑︁
𝑗≥0
𝑌𝑊 (𝑢( 𝑗)𝑣, 𝑤) (𝑤𝜕𝑤) ( 𝑗)𝛿

(
𝑤

𝑧

)
. (2.3.11)

If rather than a vertex algebra 𝑉 and a module𝑊 , we had imposed that 𝑉 itself had multiplica-

tive OPEs then we would obtain the definition of a multiplicative vertex algebra. In simple terms,

𝜙-coordinated modules are multiplicative modules over an additive (i.e. ordinary) vertex algebra.

A source of 𝜙-coordinated modules was constructed in [21] from a conformal structure 𝜔 on 𝑉

with central charge 𝑐, letting 𝜔 = 𝜔 − 1
24𝑐 |0⟩ and given 𝑣 ∈ 𝑉 define

𝑌 [𝑣, 𝑧] = 𝑌 (𝑒𝑧𝐿 (0)𝑣, 𝑒𝑧 − 1)

the data (𝑉,𝑌 [−, 𝑧], |0⟩, 𝜔) defines a vertex algebra such that

𝑇 ( |0⟩) = |0⟩, 𝑇 (𝜔) = 𝜔,𝑇 (𝑎) = 𝑎

for primary 𝑎 ∈ 𝑉 and for descendants the compatibility of the stress tensor forces

𝑇 (𝐿−𝑘1𝐿−𝑘2 . . . 𝐿−𝑘𝑛𝑎) = 𝐿̃−𝑘1 𝐿̃−𝑘2 . . . 𝐿̃−𝑘𝑛𝑎

where

𝑌 (𝜔, 𝑧) =
∑︁
𝑛∈Z

𝐿𝑛𝑧
−𝑛−2

and

𝑌 [𝜔, 𝑧] =
∑︁
𝑛∈Z

𝐿̃𝑛𝑧
−𝑛−2.

This gives a vertex algebra isomorphism from (𝑉,𝑌, |0⟩, 𝜔) to (𝑉,𝑌 [−, 𝑧], |0⟩, 𝜔).

Given 𝑎 ∈ 𝑉 let

𝑌 [𝑎, 𝑧] =
∑︁
𝑛∈Z

𝑎[𝑛]𝑧−𝑛−1 (2.3.12)
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and define the bracket 𝑛th product by

𝑇 (𝑎𝑛𝑏) = 𝑇 (𝑎) [𝑛]𝑇 (𝑏) (2.3.13)

using that if 𝑎 is homogeneous of weight wt 𝑎 we have

𝑎[𝑛] = Res𝑧
(
𝑌 (𝑎, 𝑧) log(1 + 𝑧)𝑛 (1 + 𝑧)wt 𝑎−1

)
. (2.3.14)

Given an (ordinary) 𝑉-module (𝑊,𝑌𝑊 ), in particular for 𝑉 as a module over itself, one obtains

a 𝜙-coordinated module.

Proposition 2.3.15 ([11, §6],[23]). Define a End(𝑊)-valued field 𝑋 (𝑣, 𝑧) by the formula

𝑋𝜙 (𝑣, 𝑧) := 𝑌𝑊 (𝑧𝐿 (0)𝑇 (𝑣), 𝑧) (2.3.16)

The data (𝑊, 𝑋𝜙 (−, 𝑧)) defines a 𝜙-coordinated 𝑉-module structure on𝑊 .

For the 𝑉 module structure of 𝑉 over itself, we have brackets

[𝑋𝜙 (𝑢, 𝑧), 𝑋𝜙 (𝑣, 𝑤)] =
∑︁
𝑗≥0

𝑋𝜙 (𝑢( 𝑗)𝑣, 𝑤) (𝑤𝜕𝑤) ( 𝑗)𝛿
(
𝑤

𝑧

)
. (2.3.17)

Example 2.3.18. In the simplest case of a free bosonic field of dimension 1 from Example 2.2.1

the vertex operator

𝑌 (𝑎−1, 𝑧) =
∑︁
𝑛∈Z

𝑎𝑛𝑧
−𝑛−1

has associated 𝜙-coordinated vertex operator

𝑋𝜙 (𝑎−1, 𝑧) =
∑︁
𝑛∈Z

𝑎𝑛𝑧
−𝑛

and the OPE becomes

𝑋𝜙 (𝑎−1, 𝑧)𝑋𝜙 (𝑎−1, 𝑤) ∼
𝑐𝑧𝑤

(𝑧 − 𝑤)2 .
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Toroidal extended affine Lie algebras using coordinated modules

We now describe Chen-Li-Tan’s interpretation of Billig’s construction using 𝜙-coordinated

modules. Let 𝑉 be the vertex operator algebra from Theorem 2.3.6 and 𝑉𝜙 for the 𝜙-coordinated

vacuum module.

Theorem 2.3.19 ([12], [11]). 1. ([12]) If 𝑀 is a module for the

𝑉 (𝔤)𝑐𝔤 ⊗ 𝑉 (𝔰𝔩𝑛−1) ⊗ 𝑉𝑖𝑟 ⊗ 𝑉+(𝐼 𝐼⊕𝑛−1
1,1 )

factor of 𝑉 then 𝑀 inherits a module structure for 𝔤̂(𝑛+1),𝑒𝑎.

2. When 𝑛 = 1, There exist 𝜙-coordinated vertex operators 𝑋𝜙 (𝑣, 𝑧) for 𝑉𝜙 and a set of vectors

{𝑣} so that Fourier coefficients of the 𝑋𝜙 (𝑣, 𝑧) satisfy the commutation relations of 𝔤̂(2),𝑒𝑎.

In simple terms, one does not need the central part of the affine 𝔤𝔩𝑛−1 factor to produce the

representation of the toroidal extended affine algebra. The construction of Theorem 2.3.19 is

explicit, but we choose to only write down the result in special cases in the sequel.

Vertex representation of 𝔤𝑇∗𝐸

Consider the Lie algebra 𝔤𝑇∗𝐸 . Combine its elements into generating series

Υ𝑚 (𝛾, 𝑧) =
∑︁
𝑛∈Z

𝑤𝑚,𝑛𝛾 𝑧−𝑛. (2.3.20)

as in [1]. The defining relation (2.3.4) becomes

[Υ𝑚 (𝛾, 𝑧),Υ𝑚′ (𝛾′, 𝑤)] = 𝑚𝑤𝜕𝑤Υ𝑚+𝑚′ (𝛾 ★ 𝛾′, 𝑤)𝛿(𝑤/𝑧)

+ (𝑚 + 𝑚′)Υ𝑚+𝑚′ (𝛾 ★ 𝛾′, 𝑤)𝑤𝜕𝑤𝛿(𝑤/𝑧) + 𝛿𝑚+𝑚′,0⟨𝛾, 𝛾′⟩𝑐𝑐𝑐𝑤𝜕𝑤𝛿(𝑤/𝑧). (2.3.21)
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or equivalently via the multiplicative-style operator product expansion

Υ𝑚 (𝛾, 𝑧)Υ𝑚′ (𝛾′, 𝑤) ∼ 𝑚𝑤𝜕𝑤Υ𝑚+𝑚′ (𝛾 ★ 𝛾′, 𝑤) 𝑤

𝑧 − 𝑤

+ (𝑚 + 𝑚′)Υ𝑚+𝑚′ (𝛾 ★ 𝛾′, 𝑤)𝑤𝜕𝑤
𝑤

𝑧 − 𝑤 + 𝛿𝑚,−𝑚′ ⟨𝛾, 𝛾′⟩𝑐𝑐𝑐𝑤𝜕𝑤
𝑤

𝑧 − 𝑤 . (2.3.22)

Owing to the multiplicative description of the fields, and the results of Chen-Li-Tan, it is natural

to expect a representation in terms of 𝜙-coordinated modules. In fact the following 𝜙-coordinated

fields in the vertex algebra

𝑉+(𝐼 𝐼1,1) ⊗ F𝐻1 (𝐸)

defined by

d𝑚 (𝑧) = 𝑚𝑧2 : 𝜔(𝑧)Γ𝑚𝐸 (𝑧) : +𝑚𝑧𝜕𝑧Γ𝑚𝐸 (𝑧) − 𝑧𝜕𝑧 [𝑧 : 𝛼(pt, 𝑧)Γ𝑚𝐸 (𝑧) :] (2.3.23)

− 𝑚𝑧2 : 𝜕𝑧𝛼(𝑚𝐸, 𝑧)Γ𝑚𝐸 (𝑧) :

k𝑚 (𝑧) =


1
𝑚
Γ𝑚𝐸 (𝑧) 𝑚 ≠ 0

𝜙𝜙𝜙(𝐸, 𝑧) − 𝐸 − 𝛼0(𝐸) log 𝑧 𝑚 = 0
(2.3.24)

𝜎+
𝑚 (𝑧) =: 𝑧𝛼(𝜎+, 𝑧)Γ𝑚𝐸 (𝑧) : (2.3.25)

𝜎−
𝑚 (𝑧) =: 𝑧𝛼(𝜎−, 𝑧)Γ𝑚𝐸 (𝑧) : . (2.3.26)

where

𝜙𝜙𝜙(𝛾, 𝑧) =
∫

𝑑𝑧𝛼(𝛾, 𝑧) = 𝛾 + 𝛼0(𝛾) log 𝑧 +
∑︁
𝑛≠0

𝛼𝑛 (𝛾)𝑧−𝑛
−𝑛
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satisfy the OPEs

d𝑚 (𝑧)d𝑚′ (𝑤) ∼ 𝑚𝑤𝜕𝑤d𝑚+𝑚′ (𝑤)𝑤
𝑧 − 𝑤 + (𝑚 + 𝑚′)d𝑚+𝑚′ (𝑤)𝑧𝑤

(𝑧 − 𝑤)2 (2.3.27)

d𝑚 (𝑧)k𝑚′ (𝑤) ∼ 𝑚𝑤𝜕𝑤k𝑚+𝑚′ (𝑤)𝑤
𝑧 − 𝑤 + (𝑚 + 𝑚′)k𝑚+𝑚′ (𝑤)𝑧𝑤

(𝑧 − 𝑤)2 + 𝛿𝑚+𝑚′,0
𝑧𝑤

(𝑧 − 𝑤)2 (2.3.28)

d𝑚 (𝑧)𝜎±
𝑚′ (𝑤) ∼ 𝑚

𝑤𝜕𝑤𝜎
±
𝑚+𝑚′ (𝑤)𝑤
𝑧 − 𝑤 + (𝑚 + 𝑚′)

𝜎±
𝑚+𝑚′ (𝑤)𝑧𝑤
(𝑧 − 𝑤)2 (2.3.29)

𝜎+
𝑚 (𝑧)𝜎−

𝑚′ (𝑤) ∼ 𝑚
𝑤𝜕𝑤k𝑚+𝑚′ (𝑤)𝑤

𝑧 − 𝑤 + (𝑚 + 𝑚′)k𝑚+𝑚′ (𝑤)𝑧𝑤
(𝑧 − 𝑤)2 + 𝛿𝑚+𝑚′,0

𝑧𝑤

(𝑧 − 𝑤)2 . (2.3.30)

The conclusion is the major part of one of the main theorems of [1]

Theorem 2.3.31 ([1] ). The vertex algebra 𝑉𝑇∗𝐸 = 𝑉+(𝐼 𝐼1,1 ⊗ F𝐻1 (𝐸)) is an irreducible module for

𝔤𝑇∗𝐸 .

We can also combine the generating fields Υ(𝛾, 𝑧1) into a formal generating function of fields

depending on an additional even parameter 𝑧2 and two odd parameters 𝜓+, 𝜓−. Denote the gener-

ating function L(𝑧1, 𝑧2, 𝜓+, 𝜓−) ∈ End(𝑉𝑇∗𝐸 ) [[𝑧±1 , 𝑧
±
2 , 𝜓+, 𝜓−]] defined by

L(𝑍) =
∑︁
𝑛∈Z

Υ−𝑚 (1, 𝑧1)𝜓+𝜓−𝑧
−𝑚
2 + Υ−𝑚 (𝜎−, 𝑧1)𝜓+𝑧

−𝑚
2 + Υ−𝑚 (𝜎+, 𝑧1)𝜓−𝑧

−𝑚
2 + Υ−𝑚 (pt, 𝑧1)𝑧−𝑚2

where 𝑍 = (𝑧1, 𝑧2, 𝜓+, 𝜓−) is the 2|2-dimensional parameter. Thus

𝑤
𝑎,𝑏

𝜎𝑐
+𝜎

𝑑
−
=

1
(2𝜋𝑖)2

∫
𝑑𝑧1
𝑧1

𝑑𝑧2
𝑧2
𝑑𝜓+𝑑𝜓−L(𝑍)𝑧𝑎1𝑧

𝑏
2𝜓

𝑐
+𝜓

𝑑
−.

Then owing to the identity of 0|2-dimensional formal functions if

𝑓 (𝜙+, 𝜙−) = 𝑓1𝜙+𝜙− + 𝑓−𝜙+ + 𝑓+𝜙− + 𝑓+−1

then the equation

𝑓 (𝜙 + 𝜉) = 𝑓1𝜙+𝜙− + 𝑓1𝜙+𝜓− − 𝑓1𝜙−𝜓+ + 𝑓1𝜓+𝜓− + 𝑓−𝜓+ + 𝑓−𝜙+ + 𝑓+𝜓− + 𝑓+𝜙− 𝑓+−1
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is compatible with the generating function for the convolution product on 𝐻∗(𝐸) so that if 𝑓1 =

1, 𝑓+ = 𝜎+, 𝑓− = 𝜎−, 𝑓+− = pt then

𝑓 (𝜓) ★ 𝑓 (𝜙) = 𝑓 (𝜙 + 𝜓).

It follows that the defining relations for 𝔤𝑇∗𝐸 can be expressed via the formula

[L(𝑍),L(𝑊)] = 𝑤1𝜕𝑤1L(𝑊 + 𝜓)𝛿
(
𝑤1
𝑧1

)
𝑤2𝜕𝑤2𝛿

(
𝑤2
𝑧2

)
− 𝑤2𝜕𝑤2L(𝑊 + 𝜓)𝑤1𝜕𝑤1𝛿

(
𝑤1
𝑧1

)
𝛿

(
𝑤2
𝑧2

)
+ 𝑐𝑐𝑐𝑡𝑤1𝜕𝑤1𝛿

(
𝑤1
𝑧1

)
𝛿

(
𝑤2
𝑧2

)
𝛿

(
𝜙1
𝜓1

)
𝛿

(
𝜙2
𝜓2

)
+ 𝑐𝑐𝑐𝑠𝛿

(
𝑤1
𝑧1

)
𝑤2𝜕𝑤2𝛿

(
𝑤2
𝑧2

)
𝛿

(
𝜙1
𝜓1

)
𝛿

(
𝜙2
𝜓2

)
. (2.3.32)

2.4 Superconformal and reflection vertex algebras

In this section we describe another family of vertex algebras, closely related to the N = 4 small

superconformal algebra. they belong to the more general class of vertex algebras which have been

studied under the term 4d/2d duality in the physics literature initiated in [24].

In general, it is expected that to any superconformal field theory in 4d with N = 2 super-

symmetries there is a vertex algebra. For various classes of theories, such as those with marginal

deformations to weakly coupled gauge theories or for theories of class S there are mathematical

descriptions of the resulting vertex algebra. The body of recent literature related to this problem is

too vast to properly cite, but some number of references are available in the introduction to [25].

We will be concerned only with the special case when the 4𝑑 theory is 4𝑑N = 4 supersymmet-

ric Yang-Mills theory with type 𝐴𝑘 gauge group. The resulting vertex algebra 𝑊N=4
𝑘

is expected

and/or known to have a number of equivalent descriptions.

1. As a BRST reduction of a system of 𝑇∗𝔤𝔩𝑘 -valued symplectic bosons [24, 26] owing to the

weak coupling limit.
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2. As the evaluation of a functor predicted in [27]

{complex reflection groups} → {vertex algebras}

applied to symmetric group 𝑆𝑘 , the Weyl group of GL(𝑘).

3. As the kernel of a system of screening operators S𝛼 for 𝛼 running over the simple roots of

the root system 𝐴𝑘 where each

S𝛼 : (𝑉𝑏𝑐 ⊗ 𝑉𝛽𝛾)⊗𝑘 → (𝑉𝑏𝑐 ⊗ 𝑉𝛽𝛾)⊗𝑘

is the zero-mode of a screening current 𝑆(𝑧).

4. It has a construction as the vertex algebra of global sections of a sheaf of vertex operator

algebras over a superscheme whose underlying classical scheme is the hilbert scheme of 𝑘

points in A2 [25]. By restricting to a specific open set, one obtains an embedding

𝑊N=4
𝑘

→ (𝑉𝑏𝑐 ⊗ 𝑉𝛽𝛾)⊗𝑘

and this is expected to coincide with the kernel of certain screening operators in general, and

known when 𝑘 = 2, 3.

2.4.1 k = 2

When 𝑘 = 2, the algebra 𝑊N=4
𝑘

coincides with the small N = 4 superconformal algebra at

𝑐 = −9, and the screening operators coincide with those studied first by Adamović [28].
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Realization of Weyl vertex algebra in lattice vertex algebra

First, consider the vertex algebra 𝑉+(𝐼 𝐼1,1). With the fields

𝑎(𝑧) = 𝑌 (𝑒𝑢, 𝑧) = Γ(1,0) (𝑧) (2.4.1)

𝑎∗(𝑧) = 𝑌 (−1
2
(𝑢−1 + 𝑣−1)𝑒−𝑢, 𝑧) = −1

2
: 𝑢(𝑧)Γ(−1,0) (𝑧) : −1

2
: 𝑣(𝑧)Γ(−1,0) (𝑧) : (2.4.2)

the subalgebra generated by the states 𝑒𝑢 and −1
2 (𝑢−1 + 𝑣−1)𝑒−𝑢 is isomorphic to a symplectic

boson, or Weyl vertex algebra corresponding to a map

𝛽(𝑧) ↦→ 𝑎(𝑧), 𝛾(𝑧) ↦→ 𝑎∗(𝑧)

of fields. We will also need an extension

𝑉+
1/2(𝐼 𝐼1,1)

which is as a vector space

F𝐻∗ (𝐸) ⊗ C[𝑒±𝐸/2] = F𝐻∗ (𝐸) ⊗ C[𝑒±(1/2,0)]

and contains for example vertex operators Γ(1/2,0) (𝑧) = 𝑌 (𝑒𝑢/2).
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From [28] the assignment

𝐽+(𝑧) ↦→ 𝛽(𝑧) (2.4.3)

𝐽−(𝑧) ↦→ −2 : 𝛾(𝑧)𝛽(𝑧) : +𝑐(𝑧) (2.4.4)

𝐽0(𝑧) ↦→ − : 𝛾2(𝑧)𝛽(𝑧) : −3
2
𝜕𝑧𝛾(𝑧)+ : 𝛾(𝑧)𝑐(𝑧) : (2.4.5)

𝐺+(𝑧) ↦→ 𝑐(𝑧) (2.4.6)

𝐺−(𝑧) ↦→: 𝛾(𝑧)𝑐(𝑧) : (2.4.7)

𝐺+(𝑧) ↦→ −2 : 𝛽(𝑧) : 𝜕𝑧𝐽𝑏𝑐 (𝑧)𝑐(𝑧) : + : 𝜕𝑧𝛽(𝑧)𝑏(𝑧) : (2.4.8)

𝐺−(𝑧) ↦→ 𝜕2
𝑧 𝑏(𝑧) + 2 : 𝛾(𝑧)𝛽(𝑧)𝜕𝑏(𝑧) :

+ : 𝐽𝑏𝑐 (𝑧)𝑏(𝑧) : + : 𝛾(𝑧) : 𝜕𝛽(𝑧)𝑏(𝑧) :: (2.4.9)

𝑇 (𝑧) =: 𝐽+(𝑧)𝐽−(𝑧) : + : 𝐽−(𝑧)𝐽+(𝑧) : +1
2

: 𝐽0(𝑧)𝐽0(𝑧) : (2.4.10)

defines a small N = 4 superconformal structure on the vertex algebra 𝑉𝑏𝑐 ⊗ 𝑉𝛽𝛾 at 𝑐 = −9.

Next define the screening current

𝑆(𝑧) =: 𝑏(𝑧)Γ(−1/2,0) (𝑧) :

and screening operator S =
∮
𝑆(𝑧)𝑑𝑧.

Theorem 2.4.11 (Adamović [28]). There is an identification

ker𝑉𝑏𝑐⊗𝑉𝛽𝛾 S = 𝑉𝑖𝑟
N=4

between the algebra generated by fields (2.4.3)-(2.4.10) and the kernel of the screening operator

in 𝑉𝑏𝑐 ⊗ 𝑉𝛽𝛾.

Define the vertex algebra

𝑉 Jac
𝑇∗𝐸 = 𝑉+(𝐼 𝐼1,1) ⊗ 𝑉𝑏𝑐
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from [1] which differs from 𝑉𝑇∗𝐸 only by the fermionic zero and logarithmic modes.

Using (2.4.1)-(2.4.2) there is an embedding 𝑉𝛽𝛾 → 𝑉+(𝐼 𝐼1,1) and hence an embedding

𝑉𝛽𝛾 ⊗ 𝑉𝑏𝑐 → 𝑉 Jac
𝑇∗𝐸 (2.4.12)

Corollary 2.4.13. The vertex algebra 𝑉 Jac
𝑇∗𝐸 admits an N = 4 superconformal structure.

Under the identification of 𝔤𝑇∗𝐸 with the algebra of Hamiltonian vector fields on the space

Spec[𝑠±, 𝑡±, 𝜃+, 𝜃−] from section 2.3.2 and of 𝑉 Jac
𝑇∗𝐸 with its module in Theorem 2.3.31, the screen-

ing operator is equivalent to the action of the Hamiltonian vector field

{𝜃+
√
𝑡,−}.

It would be interesting to give a full interpretation of the superconformal algebra analogously

using the explicit description in (2.4.3)-(2.4.10).

2.4.2 Infinite limit

We now discuss the infinite limit of the vertex algebra 𝑊N=4
𝑘

as studied in [26]. Consider

𝔤𝔩𝑘 -valued field 𝛽(𝑋, 𝑧), 𝔤𝔩∗
𝑘

valued field 𝛾(𝑌, 𝑧). Let 𝜔(−,−) on 𝔤𝔩𝑘 ⊕ 𝔤𝔩∗
𝑘

denote the standard

symplectic form so that the fields have OPE

𝛽(𝑋, 𝑧)𝛾(𝑌, 𝑧) ∼ 𝜔(𝑋,𝑌 )
𝑧 − 𝑤

and likewise define odd 𝔤𝔩𝑘 -valued fields 𝑏(𝑋, 𝑧) and 𝑐(𝑌, 𝑧) so that

𝑏(𝑀, 𝑧)𝑐(𝑁, 𝑧) ∼ 𝜔(𝑀, 𝑁)
𝑧 − 𝑤 .

In particular, up to the action of zero modes of the 𝑐-ghost fields, it is expected that the vertex
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algebra𝑊N=4
𝑘

is written as

ker𝑄/im𝑄

where

𝑄 =

∮
Tr 𝑐(𝑀, 𝑧)𝛽(𝑋, 𝑧)𝛾(𝑌, 𝑧) + 1

2
Tr 𝑏(𝑁, 𝑧)𝑐(𝑀, 𝑧)2

is the BRST operator and the trace is taken over the matrix indices.

Furthermore, it is shown in [26] that the resulting vertex algebras stabilize as 𝑘 → ∞ to an

infinitely generated vertex algebra we will denote𝑊N=4
∞ .
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Chapter 3: Cohomological Hall algebras

In geometric representation theory, the weight spaces of a representation are the evaluation

of some cohomology theory on moduli spaces, or moduli stacks, and the operators are given by

correspondences between the spaces.

A rich source of moduli stacks and correspondences is given by the moduli stack M of ob-

jects in an abelian category A. There is then a natural correspondence provided by the stack of

extensions

MExt = {0 → 𝐸1 → 𝐸2 → 𝐸2 → 0|𝐸𝑖 ∈ A}

where we have only written the set of closed points of the stack.

Then the projections 𝜋𝑖 : [0 → 𝐸1 → 𝐸2 → 𝐸2 → 0] ↦→ 𝐸𝑖 provide a correspondence

diagram
MExt

M ×M M

𝜋1×𝜋3 𝜋2 .

3.1 Cohomological Hall algebras

Depending on the properties of the maps 𝜋1 × 𝜋3 and of 𝜋2 and the functoriality of the coho-

mology theory 𝐻∗(−) under maps of the corresponding types if one is able to define (𝜋1 × 𝜋3)∗

and 𝜋2∗ then the map

𝐻∗(M) ⊗ 𝐻∗(M) → 𝐻∗(M)

𝑥 ⊗ 𝑦 ↦→ 𝜋2∗(𝜋1 × 𝜋∗3(𝑥 ⊠ 𝑦))
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defines an algebra structure on 𝐻∗(M). In particular, when the abelian category A has global

dimension ≤ 2 then the map 𝜋1 × 𝜋2 is quasismooth and so in Borel-Moore homology there is a

pullback 𝜋1 × 𝜋!
3 and when the map 𝜋2 is proper there is a pushforward 𝜋2∗.

3.1.1 Dimension zero sheaves on a surface

The cohomological hall algebra of dimension zero sheaves on a surface was defined in [29] with

a related K theoretic construction in [30]. The stack M is the stack of dimension zero coherent

sheaves

C𝑜ℎ0 =
⊔
𝑛≥0

C𝑜ℎ𝑛

on a surface 𝑆 which is a substack of the stack of all objects in C𝑜ℎ(𝑆). Let 𝐻∗(−) denote Borel-

Moore homology.

Theorem 3.1.1 ([29, 30]). The CoHA multiplication is well defined on 𝐻∗(C𝑜ℎ0) and defines an

associative product ∗.

Remark 3.1.2. When 𝑆 has an action of a torus 𝑇 , the same result holds in 𝑇-equivariant Borel-

Moore homology.

When 𝑆 is proper, or equivariantly proper and 𝐻∗(𝑆) is pure in the sense that there is a compact-

ification 𝑆 such that 𝜄∗ is surjective, then a compete description of the cohomological hall algebra

of dimension zero sheaves was provided in [31].

The tautological classes are cohomology classes

ch𝑘,𝛾 ∈ 𝐻∗(C𝑜ℎ0), 𝑘 ≥ 0, 𝛾 ∈ 𝐻∗(𝑆)

given by Kunneth components of the universal bundle E𝑈 over test schemes𝑈 → C𝑜ℎ0× 𝑆 so that

ch𝑘,𝛾 =
∫
𝑆

ch𝑘 ∪𝜋∗2𝛾.
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In addition there is an auxiliary version of the CoHA called the extended cohomological Hall

algebra denoted

𝐻∗(C𝑜ℎ0) = 𝐻∗(C𝑜ℎ0) ⋉ Λ(𝑆)

where 𝐻∗(C𝑜ℎ0) and Λ(𝑆) is the universal tautological ring which is the home for symbols ch𝑘,𝛾

which act on 𝐻∗(C𝑜ℎ0) via the cap product

ch𝑘,𝛾 ∩− : 𝐻∗(C𝑜ℎ0) → 𝐻∗(C𝑜ℎ0).

Deformed𝑊1+∞ algebra

The answer is expressed in terms of the deformed𝑊1+∞ algebra associated to the surface. This

is the algebra W1+∞,𝑆 generated by elements

𝜓𝑛 (𝛾), 𝑇+
𝑛 (𝛾), 𝑇−

𝑛 (𝛾), 𝑛 ≥ 0, 𝛾 ∈ 𝐻∗(𝑆)

linear in 𝛾 subject to the relations

[𝜓𝑚 (𝛾), 𝜓𝑛 (𝜂)] = 0 (3.1.3)

[𝜓𝑚 (𝛾), 𝑇±
𝑛 (𝜂)] = 𝑚𝑇±

𝑚+𝑛−1(𝛾𝜂) (3.1.4)

[𝑇±
𝑚 (𝛾𝜂), 𝑇±

𝑛 (𝜇)] = [𝑇±
𝑚 (𝛾), 𝑇±

𝑛 (𝜂𝜇)] (3.1.5)

and additional relations summarized in [31, §3.1 §3.4]

This is closely related to a vertex algebra𝑊1+∞(𝑆) which is defined for an equivariantly proper

surface with equivariant 𝑐2(𝑆)2 = 0 in [32]. The latter is generated by fields

𝔏𝑝 (𝛾, 𝑧), 𝑝 ∈ Z≥0, 𝛾 ∈ 𝐻∗(𝑆) (3.1.6)
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and the modes satisfy the commutation relations

[𝔏𝑝𝑛 (𝛾),𝔏𝑞𝑚 (𝜂)] = − det
©­­«
𝑝 𝑞

𝑛 𝑚

ª®®¬𝔏
𝑝+𝑞−1
𝑛+𝑚 (𝛾𝜂) + central . (3.1.7)

There is a homomorphism W1+∞,𝑆 → 𝑊1+∞(𝑆) provided in [31] by the map 𝑇+
𝑛 (𝛾) ↦→ 𝔏𝑛±1(𝛾),

𝜓𝑛 (𝛾) ↦→ 𝔏𝑛0 (𝛾).

Theorem 3.1.8. [31] The extended CoHA of 𝑆 is isomorphic to the algebra generated by the 𝜙𝑛 (𝛾)

and 𝑇+
𝑛 (𝛾).

In the case that 𝑆 = A2 and the cohomology theory is taken fully equivariantly with respect to

the torus 𝑇 = (C∗)2 acting on the coordinates with weights 𝑡1 and 𝑡2, which is the basic equivariant

local example, the CoHA of dimension zero sheaves had been previously determined by Davison

[33]. There the identification

𝐻∗,𝑇 (C𝑜ℎ0(A2)) ≃ Y(𝔤𝔩1)+

was given between the CoHA and the positive half of the affine Yangian of 𝔤𝔩1.

3.1.2 Preprojective algebra

To the knowledge of the author, there is not currently attested in the literature any smooth

algebraic surface where the cohomological hall algebra of torsion sheaves (rather than simply

dimension zero sheaves) has been explicitly determined excepting the cases where there are no

properly supported torsion sheaves of dimension 1, in which case it is handled by Theorem 3.1.8

. On the other hand, for the surface 𝑋𝐴𝑛 which is a symplectic resolution of C2/Z/(𝑛 + 1)Z then

there is a derived equivalence [34]

𝐷𝑏 (Coh𝑡𝑜𝑟𝑠 (𝑋𝐴𝑛))
∼−→ 𝐷𝑏 (Rep−Π0

𝑄)
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between the category of torsion sheavesCoh𝑡𝑜𝑟𝑠 (𝑋𝐴𝑛) on 𝑋𝐴𝑛 and the category of representations

of a certain associative algebra Π0
𝑄

associated to the cyclic quiver 𝑄 with 𝑛 + 1.

There is a cohomological Hall algebra for abelian category of representations of the latter,

and this has been determined, in localized cohomology in [35] and without localization in [36].

Let R𝑒𝑝Π0
𝑄

denote the stack of representations of the preprojective algebra of the quiver 𝑄. Let

𝑅𝑄 = 𝐾 (Π0
𝑄
) denote the Grothendieck group of representations of Π0

𝑄
which is the group of

connected components of R𝑒𝑝Π0
𝑄

.

It is shown that

𝐻𝑇∗ (R𝑒𝑝Π0
𝑄
) ≃ Y(𝔤𝑄)+

where

• The Hopf algebra Y(𝔤𝑄) is the Maulik-Okounkov Yangian introduced in [10].

• The positive half Y(𝔤𝑄)+ is a tensor factor of a PBW decomposition

Y(𝔤𝑄) ≃ Y(𝔤𝑄)+ ⊗ Y(𝔤𝑄)0 ⊗ Y(𝔤𝑄)−. (3.1.9)

• The Lie algebra 𝔤𝑄 is (as a result of the resolution [37] of a conjecture of Okounkov) is a

generalized Kac-Moody moody algebra which is 𝑅𝑄 × Z≥0-graded.

Also as a result of the resolution of the aforementioned conjecture, he root multiplicities

dim 𝔤𝑄,𝑑,𝑖 = 𝑎𝑎𝑎𝑄 (𝑑, 𝑞) [𝑞𝑖], 𝑑 ∈ 𝑅𝑄 , 𝑖 ∈ Z≥0

where 𝑎𝑎𝑎𝑄 (𝑑, 𝑞) is the Kac polynomial which counts absolutely indecomposable representations

of 𝑄 over F𝑞 of dimension 𝑑 (c.f. [37]) for the relevant definitions.
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3.2 Modules

Modules for the CoHA are provided by the groups 𝐻∗(M◦) of moduli spaces (or sometimes

stacks) M◦ fitting into a diagram

M◦
Ext

M ×M◦ M◦

𝜋1×𝜋3 𝜋2 (3.2.1)

for an appropriate choice of M◦ so that 𝜋3 remains proper. Generally, M◦ is a moduli stack of

elements of a subcategory of A, a moduli of objects in A equipped with additional data such as a

framing, or an open substack of M consisting of objects satisfying a stability condition. The stack

of extensions 𝑀◦
Ext again parametrizes short exact sequences.

3.2.1 Nakajima quiver varieties

The canonical example is the action is on the Nakajima quiver variety with positive stability

condition. Let 𝑄 be a quiver with vertex set 𝐼 and edge set 𝐸 . Choose dimension vector (𝑣𝑖) and

framing vector (𝑤𝑖). Let

𝑅𝑣,𝑤 = 𝑇∗
⊕
𝑖∈𝐼

Hom(𝑊𝑖, 𝑉𝑖) ⊕ 𝑇∗
⊕

𝑒:𝑖→ 𝑗∈𝐸
Hom(𝑉𝑖, 𝑉 𝑗 ).

Let 𝜇 : 𝑅𝑣,𝑤 → ⊕𝑖ℨ(𝔤𝔩𝑉𝑖 )∗ denote the moment map. Choose a stability parameter 𝜃 = (𝜃𝑖) corre-

sponding to the equivariant line bundle ⊗𝑖 det(𝑔𝑖)−𝜃𝑖 where det(𝑔𝑖) is the determinant character of

GL(𝑉𝑖). Let 𝐺𝑣 =
∏
𝑖 GL(𝑉𝑖).

Definition 3.2.2. The Nakajima quiver variety 𝑀𝜃,𝜆 (𝑣, 𝑤) is the GIT quotient

𝜇−1(𝜆)//𝜃𝐺𝑣 .

By results of Schiffmann-Vasserot [38] and Yang-Zhao [35] for 𝜃 = (1, . . . , 1) and 𝜆 = 0 there
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is a representation

𝐻𝑇∗ (M𝑄) → End(
⊕
𝑣

𝐻∗
𝑇 (𝑀 (𝑣, 𝑤)))

which is known to agree [36] with the action of the positive half of the Yangian action

Y(𝔤𝑄) → End(
⊕
𝑣

𝐻∗
𝑇 (𝑀 (𝑣, 𝑤)))

under an isomorphism 𝐻𝑇∗ (M𝑄) ≃ Y(𝔤𝑄)+ under the triangular decomposition (3.1.9).

3.2.2 Torsion pairs

A general construction of modules of CoHAs is given by the construction of Diaconescu-Porta-

Sala using torsion pairs [39]. In fact, we expect that the positive halves of the geometric actions on

moduli spaces of sheaves on surfaces agree with the action of a cohomological hall algebra action

on the torsion-free part of a torsion pair, analogous to the identification between the cohomological

hall algebra action and the action of the Maulik-Okounkov Yangian.

Their setting gives a context which provides the properness of the map 𝜋2 in the diagram

necessary to define the action.

Let A be an abelian category.

Definition 3.2.3. A Serre subcategory A′ ⊂ A is a subcategory such that for any short exact

sequence

0 → 𝐸1 → 𝐸3 → 𝐸2 → 0

we have 𝐸3 ∈ A′ if and only if 𝐸1, 𝐸2 ∈ A′.

Definition 3.2.4. A torsion pair (T , F ) in A is a pair of full subcategories such that Hom(𝑇, 𝐹) =

0 for all 𝑇 ∈ T and 𝐹 ∈ F and every 𝐸 ∈ A fits in to an exact sequence

0 → 𝑇 → 𝐸 → 𝐹 → 0

with 𝑇 ∈ T and 𝐹 ∈ F .
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Then 𝑇 is referred to as the torsion part of 𝐸 while 𝐹 is the torsionfree part. This is motivated

by the main example of A = Coh(𝑋) for a variety 𝑋 and T is the subcategory of torsion sheaves

while T is the category of torsionfree sheaves.

The cohomological hall algebra multiplication of an abelian category restricts to a product on

the stack of objects MA′⊂A in a Serre subcategory A′ of A as long as MA′⊂A is an open substack.

Let 𝑆 be a proper surface. This property is satisfied for the Serre subcategory of torsion sheaves on

a surface Coh𝑡𝑜𝑟𝑠 (𝑆). Likewise the substack of torsionfree sheaves is also open. Furthermore, as

special case of the results in [39] we have the following result. Let

C𝑜ℎ𝑡 𝑓 (𝑆) ⊂ C𝑜ℎ(𝑆), C𝑜ℎ𝑡𝑜𝑟𝑠 (𝑆) ⊂ C𝑜ℎ(𝑆)

denote the open substacks of torsion-free or torsion sheaves respectively.

Theorem 3.2.5 ([39]). The torsion CoHA

𝐻∗(C𝑜ℎ𝑡𝑜𝑟𝑠 (𝑆))

acts via multiplication on the left on the module

𝐻∗(Coh𝑡 𝑓 (𝑆)).

3.2.3 Nakajima operators

Because the stack of torsion sheaves contains the stack of dimension zero sheaves, the dimen-

sion zero CoHA is a subalgebra of the torsion CoHA. Furthermore, the module 𝐻∗(C𝑜ℎ𝑡𝑜𝑟𝑠) splits

into a direct sum of modules for torsion-free coherent sheaves of a fixed rank C𝑜ℎ𝑡 𝑓 ,𝑟 . When 𝑟 = 1,

the stack of torsion-free coherent sheaves is representable by a space

Hilb𝑆 =
⊔
𝑛≥0

𝑆 [𝑛]
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where 𝑆 [𝑛] is the moduli space of ideal sheaves of length 𝑛 subschemes of 𝑆, the Hilbert scheme of

points of 𝑆. There is an identification

C𝑜ℎ𝑡 𝑓 ,1 ≃ Hilb𝑆 ×𝐵G𝑚

and the CoHA of dimension zero sheaves acts on the Hilbert scheme [31].

In particular, the negative modes of the currents 𝔏0(𝛾) from (3.1.6) act on

F𝑆 :=
⊕
𝑛≥0

𝐻∗(𝑆 [𝑛])

and moreover letting H =∗ (𝑆) with its Poicaré pairing ⟨, ⟩ we have

Theorem 3.2.6 ([40, 41]). There is an isomorphism

F𝑆 ≃ FH

between the cohomology of the Hilbert schemes and the vacuum module for the free super bosons

valued in H.

Under the isomorphism, the modes of the generating fields 𝛼−𝑘 (𝛾) for 𝑘 > 0 act via the

correspondences 𝜋12∗(𝑃𝑘 ∪ 𝜋∗3𝛾) where 𝑃𝑘 (𝛾) ⊂ 𝑆 [𝑛] × 𝑆 [𝑛+𝑘] × 𝑆 is the cycle

𝑃𝑘 = {𝐼1, 𝐼2, 𝑥 | 𝐼2 ⊂ 𝐼1, supp(𝐼1/𝐼2) = 𝑥}.

The negative modes 𝛼−𝑘 (𝛾) for 𝑘 < 0 act via the 𝛼𝑘 (𝛾)𝜏 where for an operator 𝜙 : 𝐻∗(𝑋) →

𝐻∗(𝑌 ) its adjoint 𝜙𝜏 is defined so that

⟨𝑎, 𝜙𝑏⟩𝑌 = (−1) (dimC 𝑋−dimC 𝑌 )/2⟨𝜙𝜏𝑎, 𝑏⟩𝑋 . (3.2.7)

Remark 3.2.8. When 𝑆 is not proper but has a 𝑇-action with proper fixed points, the same result
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of Theorem 3.2.6 holds with the induced equivariant cohomology on 𝑆 [𝑛] and with H = 𝐻∗
𝑇
(𝑆).

The preceding narrative has proceeded in almost the exact opposite of the proper historical

order of discovery, in which the pioneering results of Nakajima and Grojnowski inspired a tremen-

dous amount of activity in trying to understand cohomological Hall algebras of surfaces and related

abelian categories.

The result of Theorem 3.2.6 together with results in [40] connecting lattice vertex algebras to

other rank 1 torsionfree sheaves provide a vertex operator algebra language to study the represen-

tations of cohomological hall algebras of surfaces. In particular, if

NS(𝑆) = Pic(𝑆)/Pic0(𝑆)

is the Neron-Severì lattice of 𝑆 then consider the vertex algebra

𝑉𝑆 = F𝐻∗ (𝑆)/𝐻2
𝑎𝑙𝑔

(𝑆) ⊗ 𝑉 (NS(𝑆))

which is the tensor product of the lattice vertex algebra modelled on NS(𝑆), 𝐻2
𝑎𝑙𝑔

(𝑆) = k⊗ZNS(𝑆)

and F𝐻∗ (𝑆)/𝐻2
𝑎𝑙𝑔

(𝑆) a free bosonic vertex algebra modelled on the remaining cohomology classes of

𝑆. Then there is an isomorphism

𝑉𝑆 =
⊕

𝑑∈Z,𝜆∈NS(𝑆)
𝐻∗(𝑀0((1, 0, 0) + 𝑑 [pt] + 𝜆))

between the cohomology of the moduli spaces

𝑀0(𝑣) = {𝐸 ∈ Coh(𝑆) | ch(𝐸) = 𝑣, det(𝐸) = O𝑆}

of rank 1 torsion-free sheaves with trivial determinant and the vertex algebra.
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3.2.4 Torsion sheaves on 𝑇∗𝐶

Here we outline some slightly imprecise predictions for the action of the cohomological hall

algebra of torsion sheaves on the equivariant holomorphic symplectic surface 𝑇∗𝐶 where 𝐶 is a

smooth genus 𝑔 curve.

Action of zero modes of 𝑏𝑐-system

The moduli space of rank 1 torsion free sheaves on 𝑇∗𝐶 admits a map

𝑀 (1, 𝑐1, 𝑑)
det−−→ Pic𝑐1 (𝑇∗𝐶) (3.2.9)

with target

Pic𝑐1 (𝑇∗𝐶) ≃ 𝑃𝑖𝑐0(𝑇∗𝐶) ≃ Jac(𝐶)

by the usual determinant construction [42]. Here Pic𝑐1 (𝑇∗𝐶) is the moduli space of line bundles

with first chern class 𝑐1.

Given a basis

𝜎+,1, . . . , 𝜎+,𝑔, 𝜎−,1, . . . , 𝜎−,𝑔 (3.2.10)

for 𝐻1(𝐶) of A and B cycles so that ⟨𝜎+,𝑖, 𝜎−, 𝑗 ⟩ = 𝛿𝑖 𝑗 . Fix a point 𝑝 ∈ 𝐶. The map 𝜄 : 𝐶 → Jac(𝐶)

given by 𝑥 ↦→ O𝐶 (𝑥 − 𝑝) induces a map 𝜄∗ : 𝐻∗(Jac𝐶) → 𝐻∗(𝐶) which is an isomorphism on

𝐻1(−) and 𝐻∗(Jac𝐶) is freely generated as a supercommutative ring by 𝐻1(Jac𝐶). Denote by

𝜉±,𝑖 the class such that 𝜄∗(𝜉±,𝑖) = 𝜎±,𝑖.

There is an action

Pic0(𝑇∗𝐶) × 𝑀 (1, 𝑐1, 𝑑)
𝑚⊗−−→ 𝑀 (1, 𝑐1, 𝑑) (3.2.11)

(L, 𝐸) ↦→ L ⊗ 𝐸 (3.2.12)

which coves the multiplication map Jac(𝐶) × Jac(𝐶) 𝑚−→ Jac(𝐶) on the base of (3.2.9).
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Given 𝛾 ∈ 𝐻∗(Jac(𝐶)) let

𝛾 ★⊗ − : 𝐻∗(𝑀 (1, 𝑐1, 𝑑)) → 𝐻∗(𝑀 (1, 𝑐1, 𝑑))

denote 𝑚⊗∗(𝛾 ⊠ −).

We have an decomposition of the vertex algebra

𝑉H ≃ 𝑉H0 (𝐶) ⊗ SF ⊗𝑔

so that the fields

𝜙(𝜎±,𝑖, 𝑧) =
∫

𝛼(𝜎±,𝑖, 𝑧), 𝑖 = 1, . . . , 𝑔

are identified with the fields of the logarithmic extension of the 𝑏𝑐 system in Example 2.2.17. By

assigning

𝛼0(𝜎±,𝑖) ↦→ 𝜉±,𝑖 ∪ − (3.2.13)

𝛼log(𝜎±,𝑖) ↦→ 𝜉∓,𝑖 ★⊗ − (3.2.14)

In the notation of the 𝑏𝑐-system, the modes 𝛼log(𝜎±,𝑖) are denoted 𝜃𝑏/𝑐,𝑖.
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Chapter 4: Moduli spaces of objects on surfaces

In this chapter, we explain the main classes of example of moduli spaces whose cohomology

groups provide weight spaces of representations of vertex algebras and of quantum groups.

There are a number of reasons that moduli spaces of objects in the derived category arise in

the study of geometric representation theory, even if one is only concerned with moduli spaces of

sheaves. Among these reasons we highlight two. Firstly, automorphisms of geometrically defined

algebras associated to a variety 𝑋 may arise via derived equivalences which do not preserve the

standard heart Coh ⊂ 𝐷𝑏 (Coh(𝑋)). Secondly, birational models of moduli spaces of sheaves often

admit descriptions as moduli space of objects in 𝐷𝑏 (Coh(𝑋)).

4.1 Elliptic surfaces

An elliptic surface 𝑆 is (for us) a smooth quasiprojective surface over with a map 𝜋 : 𝑆 → 𝐵

whose generic fiber is a smooth elliptic curve and a section 𝜎 : 𝐵 → 𝑆. A minimal elliptic

surface is one not admitting a contraction 𝑆 → 𝑆′ to a smooth 𝑆′ which also admits an elliptic

fibration. Over the complex numbers, the singular fibers of minimal elliptic surfaces were classified

by Kodaira and admit an affine ADE classification. The ADE classification is not a bijection and

they are labelled by indices

𝐼𝑘 , 𝑘 ≥ 0, 𝐼∗𝑘 , 𝑘 ≥ 0, 𝐼 𝐼, 𝐼 𝐼 𝐼, 𝐼𝑉, 𝐼 𝐼∗, 𝐼 𝐼 𝐼∗, 𝐼𝑉∗.

The intersection pairing on the 1-cycles contracted by 𝜋 is even on account of minimality and

negative semidefinite. The dual graph of a basis of irreducible 1-cycles for the curves contracted

by 𝜋 is the Dynkin diagram of an ADE root system of type given by Table 4.1.
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𝐼𝑘 𝐼∗
𝑘

𝐼 𝐼 𝐼 𝐼 𝐼 𝐼𝑉 𝐼 𝐼∗ 𝐼 𝐼 𝐼∗ 𝐼𝑉∗

𝐴𝑘−1 𝐷𝑘+4 𝐴0 𝐴1 𝐴2 𝐸8 𝐸7 𝐸6

Table 4.1: Singular fibers and corresponding affine root systems

4.1.1 Equivariant elliptic surfaces

The elliptic surfaces which serve as the main examples of this text are those admitting a C∗
ℏ

action such that the elliptic fibration 𝜋 : 𝑆 → A1 is equivariant with respect to this map where C∗
ℏ

scales A1 with a positive weight.

Two consequences immediately follow: there is at most one singular fiber which can only be

located over 0 ∈ A1, and all other fibers are mutually isomorphic. In particular, the 𝑗-invariant map

A1 𝑗
−→ P1 must be constant and because type 𝐼𝑘 , 𝑘 > 1 and 𝐼∗

𝑘
, 𝑘 > 1 singular fibers only appear at

poles of 𝑗 (𝑡) the singular fiber can only be of type in

Σ ∈ {𝐼0, 𝐼∗0 , 𝐼 𝐼, 𝐼 𝐼 𝐼, 𝐼𝑉, 𝐼 𝐼
∗, 𝐼 𝐼 𝐼∗, 𝐼𝑉∗}

. If 𝜏Σ is the elliptic parameter associated to any fiber of an equivariant elliptic surface with a

singular fiber of type Σ at 0 then after acting by SL(2,Z) so that 𝜏Σ lies in the fundamental domain

𝐷 in the upper half plane, we have that 𝜏𝐼∗0𝜏𝐼0 may be anything but the remaining values must lie

on the boundary of the domain as indicated in Figure 4.1.

We can uniquely identify the type of singular fiber a minimal equivariant elliptic surface over

A1 by the finite Cartan type of the affine Cartan type associated with the singular fiber by Table

4.1.

Proposition 4.1.1. There are two infinite families 𝑋𝐴−1, 𝑗 𝐴𝐷4, 𝑗 𝑗 ∈ A1 with arbitrary 𝑗 invariant

and 6 isolated equivariant elliptic surfaces 𝑋𝐴0 , 𝑋𝐴1 , 𝑋𝐴2 , 𝑋𝐸6 , 𝑋𝐸7 , 𝑋𝐸8 with the indicated singular

fiber.

We will omit the 𝑗 index when it is irrelevant. We give two constructions of these surfaces.

For the surfaces 𝐴𝑅 for 𝑅 ∈ {𝐴−1, 𝐷4, 𝐸6, 𝐸7, 𝐸8} let Γ ∈ {Z/1Z,Z/2Z,Z/3Z,Z/4Z,Z/6Z} be a
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Figure 4.1: The values of 𝜏Σ in the upper half plane

group of automorphisms of an elliptic curve 𝐸 . Then there is a resolution

𝑋𝑅 → 𝑇∗𝐸/Γ

where 𝑔 ∈ Γ acts on 𝑇∗𝐸 = 𝐸×A1 by 𝑔 · (𝐸, 𝑧) ↦→ (𝑔 ·𝐸, 𝜌(𝑔)𝑧) for a character of Γ. The resulting

surface is minimal because it is a resolution of symplectic singularities on a symplectic quotient.

For the type 𝐴0, 𝐴1, 𝐴2 surfaces, construct an auxiliary surface 𝑆𝑅 as a resolution

𝑆𝑅 → 𝑇𝐸/Γ (4.1.2)

where Γ acts on 𝑇𝐸 = 𝐸 × A1 by 𝑔(𝐸, 𝑧) ↦→ (𝐸, 𝜌−1𝑧). Then 𝑋𝑅 is obtained as a contraction

𝑆𝑅 → 𝑋𝑅 (4.1.3)

to a minimal elliptic surface 𝑋𝑅.
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The resolution of such non-Gorenstein finite quotient singularities with respect to groups

Γ ⊂ GL(2,C)

admits a quiver description in terms of the Wemyss reconstruction algebras, generalizing the ADE

classification of the McKay correspondence [43, 44] for which we only need the cyclic case. Let

Γ = ⟨𝑔⟩ ⊂ GL(2,C) be a cyclic group denoted 1
𝑟
(1, 𝑎) generated by

𝑔 =
©­­«
𝜖 0

0 𝜖𝑎

ª®®¬
with 𝑟/𝑎 in reduced terms and 𝜖 an 𝑟th root of unity. Consider the Jung-Hirzebruch continued

fraction

𝑟/𝑎 = 𝛼1 −
1

𝛼2 − 1
𝛼3−···

with each 𝛼𝑖 ≥ 2. Denote the resulting sequence [𝛼1, . . . , 𝛼𝑛]. The following is classical, c.f. [45]

for references.

Theorem 4.1.4. The exceptional fiber of the resolution of A2/Γ has a chain 𝐸1, . . . , 𝐸𝑛 of rational

curves of self intersections

⟨𝐶𝑖 · 𝐶 𝑗 ⟩ = −𝛼𝑖𝛿𝑖+ 𝑗 ,0 + 1𝛿𝑖, 𝑗+1 + 1𝛿 𝑗 ,𝑖+1.

When gcd(𝑟, 𝑎) = ℓ > 1 the action of Z/ℓZ induced by 𝑔ℓ produces no singularity and the

action of Z/ℓZ is of the form 1
ℓ
(𝑏, 1) so eventually the theorem applies.

Remark 4.1.5. The resolution is no longer derived equivalent to the stack quotient but we may

instead use semiorthogonal decomposition provided in (4.1.18) below in order to understand the

derived category of the relatively minimal elliptic surfaces in terms of those on the stack quotient.

Example 4.1.6. (𝑋𝐴2 surface ) The quotient 𝑇𝐸/Γ has three singularities equivalent to the action of
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Z/3Z on A2 of the form (𝑥, 𝑦) ↦→ (𝜒(𝛾)𝑥, 𝜒(𝛾)𝑥). Let 𝐸𝑖, 𝑖 = 1, 2, 3 denote the three exceptional

fibres with 𝐸2
𝑖
= −3 by Theorem 4.1.4. Let 𝐸𝑐 be the reduced class induced by the strict transform

of the zero section of 𝑇𝐸 . The elliptic fiber 𝐸1 + 𝐸2 + 𝐸3 + 3𝐸𝑐 has self intersection zero and thus

we calculate the intersection matrix is of the form

©­­­­­­­­«

−3 0 0 1

0 −3 0 1

0 0 −3 1

1 1 1 −1

ª®®®®®®®®¬
.

After blowing down 𝐸𝑐 we are left with an affine 𝐴2 collection of −2 curves.

Example 4.1.7. (𝑋𝐴1 surface ) Here Γ = Z/4Z and the quotient 𝑇𝐸/Γ has has two singularities

isomorphic to quotients by 1
4 (1, 1) and one isomorphic to that by 1

4 (1, 2). The resulting resolution

has exceptional curves 𝐸1, 𝐸
′
1 of self-intersection −4 and a curve 𝐸2 of self intersection −2, and

1/4 the strict transform of the zero section 𝐸𝑐 with self intersection −1. Contracting 𝐸𝑐 followed

by 𝐸2 gives a type 𝐼 𝐼 𝐼 singular fiber.

Example 4.1.8. (𝑋𝐴0 surface ) The quotient 𝑇𝐸/Γ has singularities of type 1
6 (1, 1),

1
6 (1, 2), and

1
6 (1, 3). The resolution has curves 𝐸6, 𝐸3, 𝐸2, 𝐸𝑐 of self intersection −6,−3,−2,−1 and blowing

down 𝐸𝑐 followed by 𝐸2 followed by 𝐸3 results in a type 𝐼 𝐼 cuspidal singular elliptic fiber.

To study the equivariant cohomology of the resulting surface, we use an alternate construction

as a resolution of a singular Weierstrass model. We are only concerned with the special case

producing rational elliptic surfaces.

Consider the P2 bundle

𝑌 = Tot(O1
P ⊕ OP1 (2) ⊕ OP1 (3))

with fiber homogeneous coordinates [𝑋 : 𝑌 : 𝑍] and coordinate 𝑧 ∈ P1. Given sections 𝑎(𝑡) ∈

𝐻0(OP1 (4)) and 𝑏(𝑡) ∈ 𝐻0(OP1 (6)) then the twisted family of plane cubics 𝑆0 is the zero set of
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(a) 𝑋𝐴2 surface with Γ = Z/3Z. (b) 𝑋𝐴1 surface with Γ = Z/4Z.

(c) 𝑋𝐴0 surface with Γ = Z/6Z.

Figure 4.2: Intersection diagrams after resolving cyclic quotient singularities.

the equation

𝑌2𝑍 = 𝑋3 + 𝑎(𝑡)𝑋𝑍2 + 𝑏(𝑡)𝑍3. (4.1.9)

Because of the equality

𝑗 (𝑡) = 1728
4𝑎(𝑡)3

4𝑎(𝑡)3 + 27𝑏(𝑡)2 (4.1.10)

we can only obtain isotrivial surfaces when 𝑎(𝑡) = 0 or 𝑏(𝑡) = 0. In this case there is an additional

C∗ action coming from coordinate actions on (𝑡, 𝑋,𝑌 , 𝑍) which preserves (4.1.9) and this gives

rise to an action on 𝑆0. There are options depending on the order of the zero of 𝑎(𝑡) or 𝑏(𝑡). For

the following also recall that if we blowup a point 𝑝 on a curve 𝐶 with 𝐶2 = 𝑘 which is smooth on

𝐶 and the surface then the strict transform 𝐶 satisfies 𝐶2 = 𝑘 − 1.

𝑎(𝑡) = 𝑡, 𝑏(𝑡) = 0: In this case at (0, 0, 0) in the 𝑍 ≠ 0 chart there is a singularity

𝑦2 = 𝑥3 + 𝑡𝑥

which is an 𝐴1 singularity. This is the only singularity of the surface and its resolution has two

rational curves meeting at a double point, giving the surface 𝑋𝐴1 . The group action in coordinates
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descents the one of A3 with coordinates (𝑥, 𝑦, 𝑡) with C∗
ℏ
-weights

(2ℏ, 3ℏ, 4ℏ).

𝑎(𝑡) = 0, 𝑏(𝑡) = 𝑡: In this case there is no singularity and we immediately recover the 𝑋𝐴0

surface. The weights at 0 are

(2ℏ, 3ℏ, 6ℏ).

𝑎(𝑡) = 0, 𝑏(𝑡) = 𝑡2: The singularity at (0, 0, 0) is an 𝐴2 singularity whose blowup gives the type

𝐼𝑉 singular fiber. The weights of the action at zero before the blowup are

(2ℏ, 3ℏ, 3ℏ).

The weights at the torus fixed points on the blownup charts and at infinity are recorded in Table

2 in [1].

4.1.2 Tubular canonical algebras

Given 𝐸 an elliptic curve and Γ ⊂ Aut(𝐸) there is an alternative description of 𝐷𝑏 (Coh[𝐸/Γ])

as the derived category of modules for a path algebra of a quiver with relations. See [46, 47] More

generally, given a weighted projective line C with points 𝑥𝑖, 𝑖 = 1, 𝑛 of order ℓ𝑖 so that in 𝐾𝑛𝑢𝑚(C)

we have ℓ𝑖 [𝑥𝑖] = [pt] where pt is the class of a non-orbifold point, there is a set of projective

generators

{OC ,OC (pt),OC (𝑘𝑥𝑖) | 𝑖 = 1, . . . 𝑛, 𝑘 = 1, . . . , ℓ𝑖 − 1}

so that

A = OC ⊕ OC (pt) ⊕
⊕
1≤𝑖≤𝑛

1≤𝑘≤ℓ𝑖−1

OC (𝑘𝑥𝑖) (4.1.11)

satisfies

𝐷𝑏 (Coh[𝐸/Γ]) ≃ 𝐷𝑏 (Rep(End(A))). (4.1.12)
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The endomorphisms End(A) are described as the path algebra of the quiver

•OC (𝑥𝑛) • · · · •OC (ℓ𝑛𝑥𝑛)

...

•OC •OC (𝑥2) • · · · •OC (ℓ2𝑥2) •OC (pt)

•OC (𝑥1) • · · · •OC (ℓ1𝑥1)

Letting 𝜄( 𝑗)
𝑖

: OC ((𝑖 − 1)𝑥 𝑗 ) → OC (𝑖𝑥 𝑗 ) the relations depend on a 𝑛 − 2 tuple (𝜆3, . . . , 𝜆𝑛) of

pairwise distinct non-zero elements of k and are described by the equation

𝜄
( 𝑗)
ℓ 𝑗
𝜄
( 𝑗)
ℓ 𝑗−1 · · · 𝜄

( 𝑗)
1 = 𝜄

(1)
ℓ1
𝜄
(1)
ℓ1−1 · · · 𝜄

(1)
1 + 𝜆 𝑗 𝜄(2)ℓ2 𝜄

(2)
ℓ2−1 · · · 𝜄

(2)
2

where by rescaling we can 𝜆3 = 1 and more generally we view 𝜆 𝑗 as the position of the 𝑗 th point

of 𝑥1 = 0, 𝑥2 = ∞. Let Λ = Λ(𝑥, 𝜆) = End(A) denote the resulting algebra.

There is always a finite extension of the group − ⊗ L for L ∈ Pic(C) which acts by derived

autoequivalences on Λ. In particular there is the Auslander-Reiten transition 𝜏(−) = − ⊗ 𝜔 There

is an enhanced group of derived autoequivalences of 𝐷𝑏 (Λ) exactly when the weighted projective

line arises as [𝐸/Γ] for Γ a finite group [47, 48, 49]. There are generated given by the mutation

functors associated to a simple sheaf S ∈ 𝐷𝑏 (Coh( [𝐸/Γ])) and defined by twS (𝐸) as the cone

⊕
𝑖∈Z

1≤ 𝑗≤𝑝(S)

Hom(S ⊗ 𝜔 𝑗 [−𝑖], 𝐸) ⊗ (S ⊗ 𝜔 𝑗 ) [−𝑖] ev−→ 𝐸 → twS (𝐸) → (4.1.13)

where 𝑝 is the order of the action of 𝜏(−) on S, which is finite because we started with an elliptic

curve.

The group descends to an action on 𝐾𝑛𝑢𝑚 (C) and together with the group generated by D =
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H𝑜𝑚(−,OC) and −⊗L, L ∈ Pic(C) preserves the space spanned by [pt] and [OC] and the action

on this space surjects onto GL(2,Z).

4.1.3 Fourier-Mukai transform

The equivariant elliptic surfaces 𝑋𝑅 or certain compactifications of them admit enhanced groups

of autoequivalences. These are based on relative versions, worked out in [50] c.f. [51] of the equiv-

alences for abelian varieties discovered by Mukai [52].

We distinguish two cases where different descriptions of the derived equivalences are more

suitable.

For the equivariant elliptic surfaces 𝑋𝐴0 , 𝑋𝐴1 , 𝑋𝐴2 , the fibers of the relative compactified Jaco-

bian

𝐽 (𝑋)/A1

parametrizes torsion-free sheaves on the fibers of the map 𝑋 → A1 and we have an isomorphism

𝑋 ≃ 𝐽 (𝑋)/A1 (4.1.14)

induced by the section class as well as a relative Poincaré sheaf

P ∈ 𝐷𝑏 (Coh(𝑋 × 𝐽 (𝑋)/A1))

inducing a Fourier-Mukai transform

𝜋2∗(𝜋∗1(−) ⊗ P) : 𝐷𝑏 (Coh(𝑋)) → 𝐷𝑏 (Coh(𝐽 (𝑋)))

which when composing with the isomorphism (4.1.14) gives an autoequivalence of 𝐷𝑏 (Coh(𝑋)).

For the cases of 𝑋𝑅 when 𝑅 ∈ {𝐷4, 𝐸6, 𝐸7, 𝐸8} the relative compactified Jacobian is somewhat

harder to completely describe explicitly.

thus instead we use the fact that for the surface 𝑋𝑅 = P[𝐸/Γ] (T ⊕ O) which is a projective line
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over the elliptic orbifold, we have a semiorthogonal decomposition

𝐷𝑏 (Coh(𝑋𝑅)) = ⟨𝐷𝑏 (Coh( [𝐸/Γ])), 𝐷𝑏 (Coh( [𝐸/Γ]))⟩ (4.1.15)

which is induced by a relative Beilinson resolution over [𝐸/Γ]. Furthermore, it implies a trian-

gulated equivalence between 𝐷𝑏 (Coh(𝑋𝑅)) and a derived category kos[𝐸/Γ] (T ⊕ O) of Koszul

data consisting of triples (𝑎, 𝑏, 𝜂) with 𝑎, 𝑏 ∈ 𝐷𝑏 (Coh(𝑋𝑅)) and 𝜂 : 𝑎 ⊗ (T ⊕ O) → 𝑏 a mor-

phism. Maps between Koszul data (𝑎1, 𝑏1, 𝜂1) to (𝑎2, 𝑏2, 𝜂2) are pairs of maps 𝜙𝑎 : 𝑎1 → 𝑎2 and

𝜙𝑏 : 𝑏1 → 𝑏2 with 𝜂2 ◦ 𝜙𝑎 = 𝜙𝑏 ◦ 𝜂1.

The derived equivalence with kos[𝐸/Γ] (T ⊕ O) is a relative version on the equivalence (4.1.12)

in the special case where there are no points, and where the category of vector spaces over the base

field k is replaced with Coh( [𝐸/Γ]).

While this is a nontrivial fact [53], the autoequivalences of 𝐷𝑏 (Coh( [𝐸/Γ])) do lift to the

derived category 𝐷𝑏 (Coh(𝑋𝑅)).

Other derived equivalences are given by spherical twists introduced by Seidel and Thomas

[54]. Let 𝐷 be a smooth proper triangulated category.

Definition 4.1.16. A spherical object 𝑆 ∈ 𝐷 is an object such that End(𝑆) ≃ k ⊕ k[2].

Then the twist functor 𝑇𝑆 (−) defined by the (functorial) cone

Hom(𝑆, 𝐸) ⊗ 𝑆 ev−→→ 𝐸 → 𝑇𝑆 (𝐸) → (4.1.17)

gives an autoequivalence of 𝐷.

Semiorthogonal decompositions

For the stacky surfaces 𝑋𝑅 consider surfaces 𝑆𝑅
′
is the minimal resolution obtained by blowing

up all cyclic quotient singularities and 𝑆𝑅 which is the relatively minimal elliptic surface obtained
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as a blowdown

𝑆𝑅
′ → 𝑆𝑅

in (−1) curves in the fiber over ∞ ∈ P1.

Ishii and Ueda [55] have shown in the general situation of projective surfaces with cyclic

quotient singularities and their canonical stacks that the derived category of 𝑆𝑅
′

embeds as a

semiorthogonal factor in that of 𝑋𝑅 so that

𝐷𝑏 (Coh(𝑋𝑅)) = ⟨𝐷𝑏 (Coh(𝑆𝑅
′)), 𝐸1, . . . , 𝐸𝑘⟩

for exceptional objects 𝐸1, . . . , 𝐸𝑟 .

Moreover, by the blowup formula [56] there is a semiorthogonal decomposition

𝐷𝑏 (Coh(𝑆𝑅
′)) = ⟨𝐷𝑏 (Coh(𝑆𝑅)), 𝐹1, . . . , 𝐹ℓ⟩

combining these decompositions demonstrates a semiorthogonal decomposition

𝐷𝑏 (Coh(𝑋𝑅)) = ⟨𝐷𝑏 (Coh(𝑆𝑅)),A⟩ (4.1.18)

where A is generated by E1, . . . , E𝑘 , F1, . . . , Fℓ. We may thus study moduli of objects in the de-

rived category 𝐷𝑏 (Coh(𝑋𝑅)) which lie in the first factor of (4.1.18) in order to understand moduli

of objects on 𝑆𝑅.

Elliptic Weyl groups

One result of [2] is an identification of the action on numerical K theory of the group generated

by spherical twists, derived duality, and the SL(2,Z) group of autoequivalences induced by relative

Fourier-Mukai transforms. It is expressed in terms of elliptic root systems. An elliptic root system

[57, 58] is a set of roots 𝑅 = 𝑅𝑟𝑒⊔𝑅𝑖𝑚 in a Euclidean space 𝐸 with a degenerate symmetric pairing

⟨−,−⟩ with 2-dimensional radical satisfying certain axioms. We take the definition from [1] which
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differs in the(quite degenerate) case relevant to the surface 𝑇∗𝐸 . The elliptic Weyl group 𝑊 𝑒𝑙𝑙
𝑅

is

generated by reflections through the real roots 𝛼 ∈ 𝑅𝑟𝑒.

As lattice we have we have that the lattice 𝑄 spanned by 𝑅 is of the form

𝑄 𝑓 𝑖𝑛 ⊕ 𝐾𝑛𝑢𝑚 (𝐸) ≃ 𝑄 𝑓 𝑖𝑛 ⊕ Z⊕2

where 𝑄 𝑓 𝑖𝑛 is the lattice spanned by a finite root system 𝑅 𝑓 𝑖𝑛. A choice of identification

rad(⟨−,−⟩) ∩ 𝑅 ∼−→ 𝐾𝑛𝑢𝑚 (𝐸)

gives splittings

0 → 𝑄 𝑓 𝑖𝑛 → 𝑊 𝑒𝑙𝑙
𝑅 → 𝑊

𝑎 𝑓 𝑓

𝑅
→ 0

0 → 𝑄 𝑓 𝑖𝑛 → 𝑊
𝑎 𝑓 𝑓

𝑅
→ 𝑊

𝑓 𝑖𝑛

𝑅
→ 0.

We can extend this definition to the isotropic extended elliptic Weyl group

𝐼𝑊 𝑒𝑙𝑙
𝑅 ⊂ Aut(𝑅)

from [2] by adjoining elements which act on rad(⟨-, -⟩) by GL(2,Z).

4.2 Non commutative surfaces

A deformation of the derived categories of the surfaces 𝑋𝑅 from (4.1.15) is provided by a

family of noncommutative P1-bundles over the elliptic orbifold curve [𝐸/Γ].

These are generalizations of the construction of the projectivization P𝑋 (E) of a rank two locally

O𝑋-module when the commutative O𝑋 is replaced with a rank two sheaf bimodule. They were

introduced by van den Bergh in [59].

Consider a pair 𝑋,𝑌 of 𝑛-dimensional smooth projective varieties, or orbifolds 𝑋 = [𝔛/𝐺], 𝑌 =
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[𝔜/𝐻].

Definition 4.2.1. The category of sheaf bimodules

shbimod(𝑋,𝑌 ) ⊂ Coh(𝑋 × 𝑌 )

is the additive subcategory of sheaves E so that 𝜋𝑖∗E is locally free for 𝑖 = 1, 2.

The rank of the sheaf bimodule is the rank of 𝜋𝑖∗E.

Remark 4.2.2. When 𝑋 and 𝑌 are orbifolds, the pushforward map Coh(𝑋 ×𝑌 ) → Coh(𝑌 ) gener-

alizes the pushforward map

Coh𝐺 (𝔛) → Coh(pt)

E ↦→ 𝐻0(E)𝐺 .

Similar constructions apply to derived functors. See [60] for details on equivariant derived cate-

gories.

Given a sheaf bimodule E ∈ shbimod(𝑋,𝑌 ) define

𝑎 ⊗𝑋 E = 𝜋2∗(𝜋∗1𝑎 ⊗ E)

and likewise given E ∈ shbimod(𝑋,𝑌 ) and F ∈∈ shbimod(𝑌, 𝑍) define E ⊗ F ∈ shbimod(𝑋, 𝑍)

by

E ⊗ F = 𝜋13∗(𝜋∗12E ⊗ 𝜋∗23F ).

Given E a sheaf bimodule it has left and right adjoints ∗E and E∗ such that

Hom𝑌 (𝑎 ⊗𝑋 E, 𝑏) ≃ Hom𝑌 (𝑎, 𝑏 ⊗𝑌 E∗)

Hom𝑌 (𝑎 ⊗𝑋 ∗𝐸, 𝑏) ≃ Hom𝑌 (𝑎, 𝑏 ⊗𝑌 E).
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A sheaf Z-algebra over 𝑋 is a category enriched over shbimod(𝑋) with objects Z and a single

arrow A𝑖 𝑗 : [𝑖] → [ 𝑗] for each 𝑖 ≤ 𝑗 . Given a Z-graded algebra A =
⊕

𝑘∈ZA𝑘 one can construct

a Z-algebra so that A𝑖 𝑗 = A 𝑗−𝑖, but Z-algebras relax the condition that these agree up to translation.

Given a rank 2 sheaf bimodule E, van den Bergh constructs a sheaf Z-algebra denoted AE .

This algebra is freely generated by the 𝑖th iterated adjoint AE
𝑖,𝑖+1 = E∗𝑖 where E∗−𝑘 = ∗𝑘E for

𝑘 > 0, modulo the Z-ideal generated by the images

Q𝑖 := im(OΔ𝑋
→ E∗𝑖 ⊗𝑋 E∗(𝑖+1))

generated by the adjunction. When E = O𝑋⊗𝑉𝑥,𝑦 is a rank 2 bundle on the diagonal with local fiber

sections 𝑥, 𝑦, each Q𝑖 ⊂ E ⊗𝑋 E is generated by the section 𝑥 ⊗ 𝑦 − 𝑦 ⊗ 𝑥 and so this construction

generalizes the symmetric algebra on a locally free sheaf.

An AE-module is a collection (𝑀𝑖)𝑖∈Z of O𝑋-modules with multiplication maps 𝑀𝑖 ⊗𝑋 A𝑖 𝑗 →

𝑀 𝑗 . Denote by Gr(A) the category of modules and gr(A) the full subcategory of Noetherian

modules. There is a Serre subcategory Tors(A) ⊂ Gr(A) of direct limits of right bounded modules

and its intersection with gr(A) denoted tors(A). Then the categories

QCoh(P1
𝑋 (E)) := Gr(A)/Tors(A)

Coh(P1
𝑋 (E)) := gr(A)/tors(A)

are noncommutative analogues of their usual definitions when E is a vector bundle supported

on the diagonal.

All of the above construction work over a Noetherian base scheme 𝑆.

The derived category 𝐷𝑏 (Coh(P1
𝑋
(E))) admits an 𝑆-linear semiorthogonal decomposition

𝐷𝑏 (Coh(P1
𝑋 (E))) = ⟨𝐷𝑏 (Coh(𝑋)), 𝐷𝑏 (Coh(𝑋))⟩ (4.2.3)
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and likewise there is a triangulated equivalence between 𝐷𝑏 (Coh(P1
𝑋
(E))) and a category

kos𝑋 (E) := {(𝑎, 𝑏, 𝜂) | 𝑎, 𝑏 ∈ Coh(𝑋), 𝜂 : 𝑎 ⊗𝑋 E → 𝑏} (4.2.4)

with morphism as in the undeformed case.

Our example is almost exclusively the case when 𝑋 = 𝒞 = [𝐸/Γ] and E is a deformation of

T𝒞 ⊕ O𝒞 so that P1
𝒞
(E) deforms P1

𝒞
(T𝒞 ⊕ O𝒞) = Tot(𝜔𝒞).

The stack of sheaf bimodules

𝑠ℎ𝑏𝑖𝑚𝑜𝑑 (𝑋, 𝑋) ⊂ C𝑜ℎ(𝑋 × 𝑋)

is an open substack of the stack of coherent sheaves. The tangent complex at E ∈ 𝑠ℎ𝑏𝑖𝑚𝑜𝑑 (𝑋, 𝑋)

is

Ext∗(E, E)[1]

and so the tangent space to T𝒞 ⊕ O𝒞 in the moduli of sheaf bimodules is the group

𝑇[E]𝑠ℎ𝑏𝑖𝑚𝑜𝑑 (𝑋, 𝑋) = Ext1(𝑇𝒞 ⊕ O𝒞, 𝑇𝒞 ⊕ O𝒞). (4.2.5)

If the group C∗
ℏ

scales T𝒞 with weight −ℏ then the subspace of 𝑇[E]𝑠ℎ𝑏𝑖𝑚𝑜𝑑 (𝑋, 𝑋) of positive

weight is

𝐵 = Ext1𝑋×𝑋 (Δ∗T𝒞,OΔ).

The Hochschild homology module of a derived category of coherent sheaves 𝐷𝑏 (Coh 𝑋) are

the groups

𝐻𝐻𝑖 (𝑋) := Hom(Δ!O𝑋 [𝑖],OΔ)

and so we have an identification

𝐵 = 𝐻𝐻0( [𝐸/Γ]). (4.2.6)
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The construction 𝐻𝐻𝑖 (𝑋) is functorial for autoequivalences of dg-enhanced derived categories.

Thus given Φ ∈ Aut(𝐷𝑏 (Coh( [𝐸/Γ]))) there is a map Φ𝐻𝐻 : 𝐻𝐻0( [𝐸/Γ]) → 𝐻𝐻0( [𝐸/Γ]).

This action lifts to an action on the family of derived categories of noncommutative P1-bundles

𝐷𝑏 (Coh(P1
[𝐸/Γ] (Ξ))/𝐵) (4.2.7)

where Ξ ∈ shbimod [𝐸/Γ]𝐵, [𝐸/Γ]𝐵 is the universal extension

0 → O𝐵 ⊠ Δ∗T[𝐸/Γ] → Ξ → O𝐵 ⊠ OΔ → 0.

The action of Φ ∈ Aut(𝐷𝑏 (Coh( [𝐸/Γ]))) on 𝐷𝑏 (Coh(P1
[𝐸/Γ] (Ξ))/𝐵) is 𝐵-linear after base

change along Φ𝐻𝐻 . There is also a deformation of the functor D(−) over the commutative P1-

bundle which acts by a reflection in the base, sending the bimodule extension E to E𝜏, the trans-

posed sheaf bimodule without taking an adjoint, and on Koszul data acting via

(𝑎, 𝑏, 𝜂) ↦→ (D[𝐸/Γ] (𝑏),D[𝐸/Γ] (𝑎), 𝜂∗) (4.2.8)

where 𝜂∗ is defined via the adjunction

𝜂 ∈ Hom(𝑎 ⊗[𝐸/Γ] E, 𝑏) ≃ Hom(𝑎, 𝑏 ⊗ E∗)

≃ Hom(D[𝐸/Γ] (𝑏 ⊗ E∗),D[𝐸/Γ] (𝑎))

≃ Hom(D[𝐸/Γ] (𝑏) ⊗ E𝜏,D[𝐸/Γ] (𝑎)) ∋ 𝜂∗.

Futhermore, we can calculate 𝐻𝐻0( [𝐸/Γ]) via the orbifold Hochschild-Konstant-Rosenberg

isomorphism [61, 62]

𝐻𝐻∗( [𝑋/Γ]) =
(⊕
𝑔∈Γ

𝐻𝐻∗(𝑋𝑔)
)Γ
.
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Calculating the term ∗ = 0 we get an three-way isomorphism

𝐻𝐻0( [𝐸/Γ]) ≃ 𝐾𝑛𝑢𝑚( [𝐸/Γ]) ≃ ̂̂
𝔥 (4.2.9)

where 𝔥 ≃ 𝔥 𝑓 𝑖𝑛 ⊕ 𝐾𝑛𝑢𝑚 (𝐸) where ̂̂
𝔥 is the Cartan subalgebra of the toroidal algebra of type

𝐴−1, 𝐷4, 𝐸6, 𝐸7, 𝐸8 depending on Γ. The second identification is the same as the one from [49].

We summarize the above construction in Theorem 4.2.10 together with an explanation of how

(part of, and conjecturally all of) the group 𝐼𝑊 𝑒𝑙𝑙
𝑅

acts on the family. In particular we have an action

of 𝐼𝑊 𝑒𝑙𝑙
𝑅

on 𝐻𝐻0( [𝐸/Γ]) under the isomorphism (4.2.9).

Theorem 4.2.10 ([2]). There exits a family of dg categories 𝐷𝑏 (Coh(P1
[𝐸/Γ] (Ξ))) over

𝐵 = 𝐻𝐻0( [𝐸/Γ]).

The subgroup of 𝐼𝑊 𝑒𝑙𝑙
𝑅

generated by anti autoequivalences of [𝐸/Γ] acts on 𝐷𝑏 (Coh(P1
[𝐸/Γ] (Ξ)))

by relative anti autoequivalences covering its action on 𝐻𝐻0( [𝐸/Γ]).

4.3 Relative Bridgeland stability conditions

Definition 4.3.1. ([63]) A (numerical) Bridgeland stability condition on a dg category D is a heart

A of a bounded t-structure (D≤0,D≥0) on the homotopy category of D and a stability function

𝑍 : 𝐾𝑛𝑢𝑚 (A) → C satisfying the support and Harder-Narasimhan properties.

A relative notion of Definition 4.3.1 was introduced in [64], or properly speaking a number of

notions of various versions of stability conditions in families, with conditions sufficient to produce

good relative moduli spaces of objects in D.

Given a Noetherian base 𝐵 and an 𝐵-linear dg category D, a family of 𝑡-structures (D≤0,D≥0)

is a 𝑡-structure on D𝑏 for every point 𝑏 ∈ 𝐵, not necessarily closed. The 𝑡-structures satisfies

universal openness of flatness is lying in the heart A is universally an open condition. Likewise a

family of stability conditions is a stability condition on each D𝑏 satisfying a number of axioms, 1)
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having universally locally constant central charges, 2) universally satisfying openness of geometric

stability, 3) universal openness of slicing and 3) the support property. These are Definition 20.1

and Definition 21.15 in [64] for the precise meaning of these terms.

They then prove in particular for families of smooth projective surfaces 𝑆/𝐵 satisfying the

Bogomolov-Gieseker inequality that

Theorem 4.3.2. [64] Given 𝜔, 𝛽 ∈ 𝑁1(𝑆)Q with 𝜔 relatively ample

1. There exist families of stability conditions 𝜎 = (𝜎𝜔𝑏 ,𝛽𝑏) on 𝐷𝑏 (Coh(𝑆)/𝐵) agreeing on

closed points with those in [65].

2. For any relative Mukai vector 𝑣 there exists a stack M𝜎 (𝑣) over 𝐵 of 𝜎-semistable objects

with good moduli space 𝑀𝜎 (𝑣) which is an algebraic space proper over 𝐵 parametrizing

𝑆-equivalence classes of semistable objects.

3. There is a relatively strictly nef line bundle ℓ𝜎 on 𝑀𝜎 (𝑣).

In the above theorem, relatively strictly nef implies that on any effective curve the line bundle

has strictly positive degree. Its existence is not enough to prove that 𝑀𝜎 (𝑣) is projective because

one needs to prove that it has enough sections to demonstrate ampleness. This has been done in

some specific situations such as for K3 surfaces [66, 64] and for a specific wall governing the

Bridgeland stability model of the Uhlenbeck compactification [67].

4.3.1 Noncommutative surfaces

While Theorem 4.3.2 does not apply directly to the families of noncommutative surfaces in

Theorem 4.2.10, in the 𝑋𝐴−1 case and subject to technical hypotheses on the assumptions going in

to the proof of the existence of relative stability conditions, we were able to show that the results

of Theorem 4.3.2 extended to the case of the families of noncommutative P1 bundles.

In particular, if we define Pic(P1
𝒞
(Ξ)) as a subquotient of 𝐾𝑛𝑢𝑚 (P1

𝒞
(Ξ)) and the ample cone

Amp(P1
𝒞
(E)) as in [68] to be number classes given 𝜔, 𝛽 ∈ Pic(P1

𝒞
(Ξ)) with 𝜔 relatively ample, of
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the form

𝜔 = 𝑁𝐸 + 𝑓 , 𝑁 ≫ 0, 𝛽 ∈ Pic(P1
𝒞
(Ξ))

where 𝐸 is the class equivalent on the central surface to a smooth elliptic fiber.

In [2] we proposed a family Stab𝑙 𝑓 (P1
𝒞
(Ξ)) of stability conditions so that for

𝜎
𝜔,𝛽

∈ Stab𝑙 𝑓 (P1
𝒞
(Ξ)) ⊂ Stab(P1

𝒞
(Ξ))

the family deforms a stability condition on the central fiber in which the moduli spaces of framed

stable objects with specific framing and Mukai vector admit Lagrangian fibrations.

Theorem 4.3.3. [2]In type 𝐴−1 the family 𝜎
𝜔,𝛽

is a family of stability conditions on P1
𝒞
(Ξ). There

exist good moduli spaces 𝑀𝜎 (𝑣) projective over 𝐻𝐻0(𝒞) for the algebraic stacks M𝜎 (𝑣).

4.3.2 Moduli spaces

A relatively quasiprojective open subspace of the moduli spaces of Theorem 4.3.3 is most

relevant to geometric representation theory.

Over the entire space 𝐻𝐻0(𝒞) the divisor at infinity remains somehow commutative, in the

sense that there exist torsion free sheaves supported at points there. Relatedly, there is a restriction

map

𝑀𝑝𝑢𝑔 (P1
𝒞
(Ξ))

(−)|𝐷∞−−−−−→ 𝑀𝑝𝑢𝑔 (𝒞)

where 𝑀𝑝𝑢𝑔 (𝑋) represents the algebraic stack of perfect universally glueable complexes, con-

structed in [69] and more or less extended to the noncommutative surfaces in [68], c.f. [2]. At the

level of Koszul data the map is the cone of the composition

(𝑎, 𝑏, 𝜂) ↦→ Cone
(
𝑎 → 𝑎 ⊗𝒞 E

𝜂
−→ 𝑏

)
where 𝑎 → 𝑎 ⊗𝒞 E is induced by the inclusion OΔ → E.

Given F in the image of the structure sheaf O𝐷∞ under some derived equivalence of 𝒞 define
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relative framed moduli spaces

𝑀𝜎 (𝑣;F ) (4.3.4)

by the pullback
𝑀𝜎 (𝑣;F ) [F ]

M𝜎 (𝑣) M𝑝𝑢𝑔 (𝒞).(−)|𝐷∞

(4.3.5)

where we denote by the same letter F the pullback of the sheaf F to 𝒞𝐵.

The moduli space 𝑀𝜎 (𝑣;F ) admits an action of C∗
ℏ

and the structure morphism to 𝐵 is equiv-

ariant with respect to the action on 𝐵 ≃ 𝐻𝐻0(𝒞).

The main conjectures for the structure of the moduli space 𝑀𝜎 (𝑣;F ) describe their relationship

with the roots of the toroidal extended affine Lie algebra.

There is a wall-and-chamber structure on Stab𝑙 𝑓 (P1
𝒞
(Ξ)) such that for points in the chambers

all semistable sheaves are stable. For stability conditions 𝜎0 on a wall 𝑊 and 𝜎 in an adjacent

chamber, 𝜎-stability implies 𝜎0-semistability. Thus given𝑊 ⊂ Stab𝑙 𝑓 (P1
𝒞
(Ξ)) a wall there exist a

contraction morphism on 𝑀𝜎 (𝑣) over 𝐵 induced by the composition

𝑀𝜎 (𝑣) → M𝜎0 (𝑣) → 𝑀𝜎0 (𝑣).

The fibers consist of families of 𝜎-stable objects which become strictly semistable and 𝑆-

equivalent for 𝜎0.

Given a Mukai vector 𝑣 and a primitive class 𝛼 of a torsion sheaf on P1
𝒞
(Ξ) which we identify

with a root of 𝑅𝑒𝑙𝑙 , define a wall

𝑊Stab
𝛼 (𝑣) := {𝜎 ∈ Stab𝑙 𝑓 (P1

𝒞
(Ξ)) | ∃E ∈ 𝑀𝜎 (𝑣)𝑠𝑠\𝑀𝜎 (𝑣)𝑠, 𝛼 ∈ JH𝜎 (E)}

where JH𝜎 (E) is the set of Mukai vectors of Jordan-Holder factors of E.
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Also consider the wall

𝑊
𝐻𝐻0 (𝒞)
𝛼 (𝑣) := {𝜉 ⊂ 𝐻𝐻0(𝒞) | 𝑀𝜎 (𝑣)𝜉 → 𝑀𝜎0 (𝑣)𝜉 not biregular }

for 𝜎0 in𝑊Stab
𝛼 (𝑣).

Finally, under the identification ̂̂
𝔥 ≃ 𝐻𝐻0(𝒞) consider the wall 𝛼⊥.

Conjecture 4.3.6. The morphism 𝑀𝜎 (𝑣;F ) → 𝐻𝐻0(𝒞) is semiprojective under the C∗
ℏ

action.

There is a 1-1 correspondence between the set of non-empty walls𝑊Stab
𝛼 (𝑣) in Stab𝑙 𝑓 (P1

𝒞
(Ξ)), the

set of nonempty walls𝑊𝐻𝐻0 (𝒞)
𝛼 (𝑣) and the set of primitive roots 𝛼 such that ⟨𝛼, 𝑣⟩ ≤ 𝑣2/2.

Theorem 4.3.7 ([2]). Conjecture 4.3.6 is true for 𝑅 = 𝐴−1. The definition and semiprojectivity of

the central fiber bijection between walls𝑊Stab
𝛼 (𝑣) and roots holds in the 𝐷4, 𝐸6, 𝐸7, 𝐸8 cases.

The remaining results would follow from a careful proof that the proposed relative stability

conditions actually satisfy the hypotheses in [64]. Towards Conjecture 4.3.6 in the other cases, [2]

showed that there was an equivalence between the set of roots in 𝑅𝑒𝑙𝑙 and the set of hyperplanes in

𝐻𝐻0(𝒞) where there exist 𝑎 ∈ Coh(P1
𝒞
(Ξ)) of primitive class 𝛼 such that 𝑎 |𝐷∞ = 0.

The wall

𝑊
𝐻𝐻0 (𝒞)
𝛼 (𝑣)

, if nonempty for some particular 𝑣, corresponds to the locus of 𝑏 ∈ 𝐻𝐻0(𝒞) in the deformation

where there exit torsion sheaves of class 𝛼 on P1
𝒞
(Ξ𝑏) avoiding 𝐷∞. In general for a weighted

projective line 𝒞 with points 𝑥 of stabilizers of order 𝜆 corresponding to a star shaped Dynkin

diagram 𝐷 corresponding to an Kac-Moody algebra 𝔤𝐷 with root system 𝑅 ⊂ 𝔥∗, there is an

identification

𝐻𝐻0(𝒞) ≃ 𝔥̂ (4.3.8)

with the Cartan subalgebra of the affinized star shaped Lie algebra 𝔤̂ = 𝔤[𝑡±] ⊕k𝑐. This agreed with

an identification of 𝐾𝑛𝑢𝑚 (Coh𝑡𝑜𝑟𝑠 (𝒞)) with 𝑅. The identification (??) identifies root hyperplanes
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𝛼⊥ ⊂ 𝐻𝐻(𝒞) with the locus of 𝑏 ∈ 𝐻𝐻(𝒞) where there are torsion sheaves in P1
𝒞
(Ξ𝑏). See [2]

for more details.

4.4 Birational models

Given F ∈ Coh(𝐷∞) in the image of O𝐷∞ under Aut(𝐷𝑏 (Coh[𝐸/Γ])).

As a consequence of the analysis of the stability conditions in Stab𝑙 𝑓 (P1
𝒞
(Ξ)) under derived

equivalence we can obtain complete information about the holomorphic symplectic birational ge-

ometry of the moduli spaces 𝑀𝜎0
(𝑣;F ), and more generally of the family if we assume the inte-

grability of the stability conditions in Stab𝑙 𝑓 (P1
𝒞
(Ξ)).

Theorem 4.4.1. [2]

1. Assuming the integrability of the stability conditions Stab𝑙 𝑓 (P1
𝒞
(Ξ)) the moduli spaces

𝑀𝜎 (𝑣;F )

are all semiprojective and birational over 𝐻𝐻0( [𝐸/Γ]).

2. Every 𝐾-trivial birational model of the central fiber 𝑀𝜎0
(𝑣;F ) is of the form 𝑀𝜎′

0
(𝑣;F ) for

some 𝜎′
0.

3. Each birational model 𝑀𝜎 (𝑣;F ) is equivalent under a derived autoequivalence to a moduli

space 𝑀𝐻 (𝑣;F ) of Gieseker semistable framed torsionfree sheaves.

4. The moduli space 𝑀𝐻 (𝑣;F ) represents the stack of framed torsionfree sheaves.

As a consequence, all of the 𝑀𝜎 (𝑣;O𝐷∞) and all of the 𝑀𝜎 (𝑣;F ) are birational to 𝑋 [𝑛]
𝑅

for

some 𝑛.

The birational transformations between various 𝑀𝜎 (𝑣;O𝐷∞) may be explicitly described. The

morphism factors into a finite sequence of Gieseker-Uhlenbeck flops and stratified Mukai flops.

This would have followed in the analytic category and non-equivariantly from the relevant story
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on K3 surface [70] but Theorem 4.4.1 demonstrates the compatibility with the C∗
ℏ

action and with

the equivariant deformations.

4.5 Higher rank framing

The natural generalization of the framed moduli spaces 𝑀𝜎 (𝑣;F ) when the framing

F =

𝑘⊕
𝑖=1

F𝑘 (4.5.1)

is not stable, is the fiber of the diagram

M𝑡 𝑓 (𝑣;F ) [F ]

𝑀𝑡 𝑓 (𝑣) M𝑡 𝑓 (𝒞).(−)|𝐷∞

(4.5.2)

giving the stack M𝑡 𝑓 (𝑣;F ) of torsionfree sheaves framed at 𝐷∞. Here 𝑀𝑡 𝑓 (𝑣) a component

of the stack of torsionfree sheaves on P1
𝒞
(Ξ), and we denote by F its basechange to 𝒞𝐵 as usual.

The stack is equivalently described by the moduli functor which assigns to a scheme 𝑆 the set

{(E, 𝜙) | E ∈ 𝑆 × 𝑋𝑅 torsionfree flat over 𝑆, 𝜙 : E|𝐷∞×𝑆
∼−→ F ⊠ O𝑆}. (4.5.3)

We will see in Section 5.1.4 some analysis of the stability conditions on the stack M𝑡 𝑓 (𝑣;F ),

which are not irrelevant to geometric representation theory or enumerative geometry. Nevertheless,

they are the natural home for higher framing rank enumerative invariants, shift operators, for stable

envelopes and tensor structures on categories of modules for three-loop algebras. On account of

Theorem 4.4.1 this is a generalization of the stably framed case.

Brosius filtration

Many properties of M𝑡 𝑓 (𝑣;F ) depend on the Brosius filtration, in particular stabilizer of

points.
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Let 𝑋 = P𝒞 (E) be a geometrically ruled surface over a potentially orbifold curve 𝒞 = [𝐶/Γ]

where E is rank 2 and admits a quotient O𝒞.

Let (E, 𝜙) ∈ 𝑀𝑡 𝑓 (𝑣;F ) be a torsion-free sheaf. Let 𝔓 denote the generic fiber of 𝑝 : 𝑋 → 𝐶.

Let

E𝔓 ≃ O𝔓(𝑑1)⊕𝑢1 ⊕ · · · ⊕ O𝔓(𝑑ℓ)⊕𝑢ℓ

with be the restriction of E to the generic fiber.

Definition 4.5.4. The splitting type of E is the symbol (𝑑𝑢1
1 , . . . , 𝑑

𝑢ℓ
ℓ
) where 𝑑1 ⪈ . . . ⪈ 𝑑ℓ.

If ℓ = 1 the sheaf is said to have equal splitting type.

The Brosius filtration of E (which doesn’t use or depend on the framing) is the filtration

[𝜋∗(𝜋∗(E(−𝑑1𝐷∞)))] (𝑑1𝐷∞) ⊂ · · · ⊂ [𝜋∗(𝜋∗(E(−𝑑ℓ𝐷∞)))] (𝑑ℓ𝐷∞) ⊂ E .

Denote by

B𝑘 := [𝜋∗(𝜋∗(E(−𝑑𝑘𝐷∞)))] (𝑑𝑘𝐷∞) (4.5.5)

the 𝑘-th step in the filtration with Bℓ+1 = E and B0 = 0 and denote by Q𝑘 := E/B𝑘 the associated

quotient and T𝑘 ⊂ Q𝑘 the torsion subsheaf which is OP1 (𝑑𝑘 ) ⊗ I𝑍⊂𝑋 for 𝑋 supported on some P1

fibers with Z non-empty on each component of 𝑋 [71, §3.1.2].

Proposition 4.5.6. The stabilizer of any (E, 𝜙) ∈ 𝑀 (𝑣;F ) is unipotent.

Proof. The proof is by induction on the length ℓ of the canonical filtration. If ℓ = 1 and 𝛼 ∈ Aut(E)

preserves the framing 𝜙 then 𝛼 − Id acts by zero on the generic fiber of 𝜋, hence has torsion image

and is zero because E is torsionfree.

If ℓ > 1 then 𝛼 ∈ Aut(E) preserves B1 because of the long exact sequence

Hom(B1,B1) → Hom(B1, E) → Hom(B1,Q1) = 0

associated to the sequence defining Q1. The latter vanishing follows from the restriction of B1 to
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the fibres along which T𝑘 are supported and the non-emptiness of 𝑍 on these fibers, together with

the vanishing of Hom(B1,Q1/T1) by the same argument. Thus 𝛼 is induced by the identity on B1,

a unipotent element 𝛼′ ∈ Aut(Q1,Q1) and a map 𝛼′′ ∈ Hom(Q1,B1) and thus 𝛼 is unipotent. □

For the elliptic surface 𝑋𝐴−1 we have another criterion that guarantees trivial stabilizers.

Proposition 4.5.7. Suppose F is polystable and all F𝑖 are mutually nonisomorphic. Then any

F -framed torsion free sheaf (E, 𝜙) has trivial stabilizer.

Proof. The torsion-free sheaf is generically a vector bundle, and because 𝑋𝐴−1 is a product 𝐸 × P1

this is equivalent to a rational map

𝑓 : P1 → Bun[F ] (𝐸)

satisfying 𝑓 (∞) = F . Thus the generic point is sent to a polystable bundle with mutually noni-

somorphic factors and hence Aut((E, 𝜙)) is contained in the torus Aut(F ) and is hence trivial by

Proposition 4.5.6. □

Corollary 4.5.8. If F is polystable and all of the F𝑖 are mutually nonisomorphic then the stack

M𝑡 𝑓 (𝑣;F ) is representable by an algebraic space locally of finite presentation.

We expect to find a similar criterion for the other surfaces; in particular the result of Proposition

4.5.7 and Corollary 4.5.8 should hold when the framing sheaves are chosen appropriately.
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Chapter 5: Geometric representations and tensor products

5.1 Elliptic Ruijsenaars-Schneider system and stable envelopes

The classical elliptic Ruijsenaars-Schneider systems [72, 73] are families of commuting elliptic

difference equations and are deformations of the elliptic Calogero-Moser systems. The families of

moduli of framed objects studied in [2] are generalizations of the phase spaces of the elliptic spin

Calogero-Moser system based on the relation between noncommutative P1 bundles and Calogero-

Moser systems studied by Ben-Zvi and Nevins [74, 75]. The identification of special cases of

the difference analogue of the systems with the elliptic Ruijsenaars system was shown by Penciak

[76].

Stable envelopes [10] are perhaps the main geometric tool for the geometric construction of

quantum groups.

It turns out that the relativistic deformations of these systems behave much more nicely with

higher framing torus rank. Thus we study what we expect to be a generalization of the phase spaces

of the elliptic spin Ruijsenaars-Schneider system and show how they are related to the construction

of stable envelopes for these geometries.

5.1.1 Line bundle deformation

We restrict ot the 𝑋𝐴−1 surface.

There is another deformation of Δ∗T𝐸 ⊕ OΔ in the space of sheaf bimodules corresponding to

one of the C∗
ℏ
-fixed directions of the tangent space (4.2.5). This integrates to a family

P1
𝐸 (P∨ ⊕ O𝐸 ⊠ OJac(𝐸))/Jac(𝐸)
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where P is the Picard line bundle, so that the surface over L ∈ Jac(𝐸) is

P1(L∨ ⊕ O𝐸 ) = Tot𝐸 (L)
⊔

𝐷∞ (5.1.1)

and is smooth a projective over Jac(𝐸).

Define the relative stack of framed torsion-free sheaves

MP
𝑡 𝑓
(𝑣;F ) (5.1.2)

for a framing F which we assume to be formed from base change from 𝐸 using the analogue

of the diagram (4.5.2). Given L ∈ Jac(𝐸) a closed point let ML
𝑡 𝑓
(𝑣;F ) denote the fiber over 𝐿.

The results of Propositions 4.5.6 and 4.5.7 still hold although a different proof is needed for

4.5.6 because there is no longer a fibration over P1. Fortunately the argument of [71, Thm 5.4]

carry over to this more general situation exactly to show triviality of the stabilizer. In the polystable

mutually nonisomorphic case we denote the algebraic space with the symbol 𝑀L
𝑡 𝑓
(𝑣;F ). Likewise,

we expect the following.

Conjecture 5.1.3. For very general L and any polystable F with F𝑖 mutually nonisomorphic the

algebraic space 𝑀L
𝑡 𝑓
(𝑣;F ) is representable by a scheme.

Remark 5.1.4. This is a special case of Conjecture 5.1.11

The scheme will of course not be of finite type. This is a generalization, motivated by Theorem

4.4.1 (4) of the following result of Nevins.

Theorem 5.1.5 ([71]). Conjecture 5.1.3 is true when F = L1 ⊕ L2 is a sum of nonisomorphic line

bundles of the same degree.

The results of Theorem 5.1.5 seems to fail over the central surface 𝐸 × P1 where the separated-

ness of the algebraic space 𝑀𝑡 𝑓 (𝑣;F ) seems to fail.

The deformation (5.1.1) breaks most of the symmetry present on the central surface which is

related to the Lagrangian fibration structure and the associated derived equivalences. In particular
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the deformation is distinct from the deformation along the commutative hyperplane𝑊𝐻𝐻0 ( [𝐸])
𝛼 for

𝛼 = 𝛿pt the class of a point. The latter deformation is the family of P1 bundles associated to

the universal extension over Ext1(T𝐸 ,O𝐸 ), and is a union of an affine bundle over 𝐸 with 𝐷∞.

In particular, the relative derived equivalences of Theorem 4.2.10 exchange the latter family with

noncommutative deformations infinitesimally close to P1(T𝐸 ⊕O𝐸 ) related to differential operators

and twisted differential operators on 𝐸 .

The deformation of (5.1.1) instead exchange the family (5.1.1) with a family of finitely de-

formed noncommutative P1 bundles. A derived autoequivalence Φ ∈ Aut(𝐷𝑏 (Coh 𝐸)) das usual

lifts to a family of 𝑑𝑔 categories 𝐷Φ(L) with semiorthogonal decompositions

𝐷Φ(L) = ⟨𝐷𝑏 (Coh(𝐸)), 𝐷𝑏 (Coh(𝐸))⟩

the Koszul data for objects in this dg category consists of triples (𝑎, 𝑏, 𝜂) where 𝑎, 𝑏 ∈ Coh(𝐸)

and

𝜂 : Φ(Φ−1(𝑎) ⊗ (L ⊕ O)) → 𝑏. (5.1.6)

When Φ is the usual Fourier-Mukai transform acting via
©­­«

0 1

−1 0

ª®®¬ on 𝐾𝑛𝑢𝑚 (𝐸) with Φ( [pt]) =

[O𝐸 ] and Φ( [O𝐸 ]) = −[pt] The bimodule is of the form

E = OΔ ⊕ P∗ ◦ Δ∗L ◦ P

= OΔ ⊕ OΓ(−)+𝑠

where ◦ is convolution of coherent kernels, (−) + 𝑠 : 𝐸 → 𝐸 is translation by 𝑠 ∈ 𝐸 with graph

Γ(−)+𝑠. Here 𝑠 ∈ 𝐸 corresponds to L under the chosen identification 𝐸 ≃ Jac(𝐸).

Consider the family over 𝐸𝜏 ≃ 𝐸

P1
𝐸𝐸𝜏

(Γ) (5.1.7)
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of noncommutative P1 bundles over 𝐸 with sheaf bimodule

Γ := OΔ ⊕ Γ𝐸𝜏
(5.1.8)

where Γ𝐸𝜏
⊂ 𝐸 × 𝐸 × 𝐸 = O𝑚132 is the graph of multiplication from the first and third factor to the

second factor.

In summary we have the following, which is very likely able to be found somewhere in [68]

Proposition 5.1.9. The Fourier-Mukai transform Φ gives a family of equivalences of noncommu-

tative P1 bundles

𝐷𝑏 (Coh(P1
𝐸 (Γ)))/𝐸𝜏

Φ−→ 𝐷𝑏 (Coh(P1
𝐸 (P∨ ⊕ O)))/Jac(𝐸)

covering the identification 𝐷𝑏 (Coh(𝐸)) → 𝐷𝑏 (Coh(Jac(𝐸))) given by the identity.

Remark 5.1.10. The moduli spaces 𝑀𝜎 (𝑣;F ) from (4.5.2) are birational models for deformations

of the elliptic Calogero-Moser systems. Conjecture 5.1.3 thus becomes after Proposition 5.1.9 a

conjecture for the existence of a tower of infinite but finite dimensional generalizations of general-

izations of the classical elliptic Ruijsenaars-Schneider models related to the enumerative geometry

problems studied in the sequel. The Fourier transform over closed in 𝑊pt was studied in [76] to

identify tweaking flows on spectral sheaves with the flows of the elliptic RS system.

We expect the following

Conjecture 5.1.11. For very general 𝑏 ∈ 𝐸𝜏 × Jac(𝐸) and F polystable with F𝑖 mutually noniso-

morphic the algebraic space 𝑀𝑡 𝑓 (𝑣;F )𝑏 is representable by a scheme.

5.1.2 Spin generalization

The goal of this section is to describe a generalization of the identification in Theorem 4.3.7

between roots and walls in the difference deformation. We will need of course a larger space

containing both of the deformations exchanged by the Fourier transform in Proposition 5.1.9.
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One can of course study the entire stack 𝑠ℎ𝑏𝑖𝑚𝑜𝑑 (𝐸, 𝐸), or rather its substack denoted

𝑠ℎ𝑏𝑖𝑚𝑜𝑑 (𝐸, 𝐸)Δ

consisting of sheaf bimodules with a sub-bimodule

0 → OΔ → E

but for simplicity we restrict ourself to the good moduli space 𝐵 isomorphic to

𝐸𝜏 × Jac(𝐸)

where the fiber over the point (𝑠,L) is the bimodule of the form

OΔ ⊕ ΓL
(−)+𝑠

where

ΓL
(−)+𝑠 = 𝛾∗L

where 𝛾 : E → ΓL
(−)+𝑠 is the isomorphism with the third factor. The universal sheaf bimodule on

𝐸 × 𝐸 × 𝐸𝜏 × Jac(𝐸) therefore has the form

Λ = 𝜋∗14P ⊗ 𝜋∗123Γ

with Γ from (5.1.8).

We get a family of noncommutative P1 bundles

P1
𝐸𝐸×Jac(𝐸 )

(Λ) (5.1.12)

over 𝐵. Consider 𝛼 ∈ 𝐾𝑛𝑢𝑚 (𝐸) primitive. Recall that torsion sheaves of class 𝛼 are though of class
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(𝛼, 𝛼) ∈ 𝐾𝑛𝑢𝑚 (P1
𝐸
(E)) = 𝐾𝑛𝑢𝑚 (𝐸) ⊕ 𝐾𝑛𝑢𝑚 (𝐸).

Consider a torsion sheaf 𝑡 with Koszul data (𝑎, 𝑎, 𝜂). Recall that torsion sheaves lie in the heart

Coh(P1
𝐸
(E)) and also in the heart kos(E).

Definition 5.1.13. A torsion sheaf 𝑡 of primitive class 𝛼 is supported at the zero section if 𝑡 |𝐷∞ = 0

and the composition

𝜂 |𝑎⊗𝐸Γ
L
(−)+𝑠

= 0.

Definition 5.1.14. The elliptic wall 𝑊𝛼⊥ ⊂ 𝐸𝜏 × Jac(𝐸) is the subvariety of 𝐸 × Jac(𝐸) where

for 𝑏 ∈ 𝐵 there exist stable torsion sheaves 𝑡 on P1
𝐸
(Λ𝑏) of class 𝛼 with 𝑡 |𝐷∞ = 0 which are not

supported at the zero section.

Let [𝑛] : 𝐸 → 𝐸 be the multiplication by 𝑛 map.

Proposition 5.1.15. The elliptic wall𝑊𝛼⊥ for 𝛼 = 𝑚 [pt] +𝑛[O𝐸 ] primitive is the image of the map

[𝑛] × [𝑚] : 𝐸 → 𝐸 × Jac(𝐸).

Proof. This is exactly the locus of (𝑠,L) where there exists a non-zero map

𝜏∗𝑠 (𝑎 ⊗ L) → 𝑎

for 𝑎 a simple sheaf of class 𝑚 [pt] + 𝑛[O𝐸 ]. □

Let O(𝔬) be the degree 1 line polarization identifying Jac(𝐸) and 𝐸 .

Consider the action of GL(2,Z) on 𝐸𝜏 × Jac(𝐸) given on generators by
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𝑑 =
©­­«
−1 0

0 1

ª®®¬ ↦→ 𝜅 × Id

𝑠 =
©­­«

0 1

−1 0

ª®®¬ ↦→ [(𝑠,O(𝑥 − 𝔬)) ↦→ (𝑥,O(𝜅(𝑠) − 𝔬))]

𝑓 =
©­­«
1 0

1 1

ª®®¬ ↦→ [(𝑠,O(𝑥 − 𝔬)) ↦→ (𝑠,O(𝑥 + 𝑠 − 2𝔬))]

where 𝜅 : 𝐸 → 𝐸 is the Kummer involution 𝑠 ↦→ −𝑠.

Consider the assignment where 𝑑 is sent to the deformed Verdier duality transformation (4.2.8),

𝑠 is sent to conjugation of the bimodule by by ΦP and 𝑓 is sent to conjugation of the bimodule by

(−) ⊗ O(𝔬).

The following is an immediate generalization of Theorem 4.2.10.

Theorem 5.1.16. There is an action of GL(2,Z) be relative antiequivalence on P1
𝐸
(Λ) covering

the action on 𝐸𝜏×Jac(𝐸). Under this action the elliptic wall𝑊𝛼⊥ is sent to𝑊𝛾𝛼⊥ for 𝛾 ∈ GL(2,Z).

Then given F ∈ Coh(𝐷∞) we define the relative moduli stack of framed torsion free sheaves

𝑀𝑡 𝑓 (𝑣;F )

over 𝐸𝜏 × Jac(𝐸).

We expect results similar to Theorem 4.4.1 to hold for the moduli space 𝑀𝑡 𝑓 (𝑣;F ).

5.1.3 Fixed points

For F simple, C∗
ℏ
-fixed F -framed torsionfree sheaves on 𝐸 × P1 are equivalent by the Rees

construction to chains (A∗, 𝜙∗)

[A1
𝜙1−−→ A2

𝜙2−−→→ . . . → F → F → · · · ]
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such that

1. Each A𝑖 ∈ Coh(𝐸)

2. Each 𝜙𝑖 is injective

3. For 𝑖 ≫ 0 A𝑖 ≃ F and 𝜙𝑖 : F → F is the identity.

Definition 5.1.17. A F -terminating Coh(𝐸)-chain is a chain (A∗, 𝜙∗) satisfying the above condi-

tions. More generally define an F -terminating Coh(𝐶) chain for a smooth curve 𝐶.

Given a dimension vector 𝛼∗ = ( [A1], [A2] . . . , [A∞] = [F ]) the moduli space Filt(𝐸, 𝛼∗) is

a smooth connected projective variety [77].

For the other surfaces 𝑋𝑅 where the central fiber we only give the definition in rank 1. Let

(𝑥1, . . . , 𝑥𝑛) be the 𝑛 orbifold points of [𝐶/Γ] and suppose that that 𝑋𝑅 has 𝑟𝑘 fixed points coming

from the resolution of the singularity at the 𝑘-th orbifold point. Letting 𝐸0 denote the central fiber

of the fibration we define

Definition 5.1.18. An ( O𝐸0-terminating) Coh(𝐸0)-chain is a pair ((A∗, 𝜙∗), 𝜆) where where

(A∗, 𝜙∗) is an OP1-terminating Coh(P1)-chain if there is a P1 C∗
ℏ
-fixed component of 𝐸0 and the

𝜆 = (𝜆𝑖,𝑘 )𝑖=1,...𝑛, 𝑘 = 1, . . . , 𝑟𝑛−1 is a tuple such that the 𝜆𝑖,𝑘 are partitions.

The fixed points of ideal sheaves on 𝑋𝑅 with the singularities avoiding 𝐷∞ are given by

Coh(𝐸0)-chain and again their moduli are smooth projective varieties.

We now have descriptions of 𝐴 × C∗
ℏ
-fixed points on the algebraic spaces 𝑀𝑡 𝑓 (𝑣;F ) assuming

polystable mutually nonisomorphic F𝑖, as well as the 𝐴-fixed points of the difference deformation

along the 𝑊[pt]⊥ elliptic wall where 𝐴 scales the framing isomorphism under the torus acting as

automorphisms of F .

Recall MP
𝑡 𝑓
(𝑣;F ) from (5.1.2) which we now recognize as the base change of 𝑀𝑡 𝑓 (𝑣;F ) to

𝑊[pt] .

Proposition 5.1.19. Let F =
⊕𝑛

𝑖=1 F𝑖 be polystable with F𝑖 mutually nonisomorphic.

78



1. The 𝐴 × C∗
ℏ
-fixed points are isomorphic to the base change to𝑊[pt] of

𝑛∏
𝑖=1

Filt(𝐸, 𝛼(𝑖)
∗ )

for some dimension vectors 𝛼(𝑖)
∗ such that 𝛼(𝑖)

∞ = [F𝑖].

2. For a very general point 𝑝 ∈ 𝑊[pt] the 𝐴-fixed points of 𝑀𝑡 𝑓 (𝑣;F ) are isomorphic to

⊔
𝑣1+...+𝑣𝑛=𝑣

𝑛∏
𝑖=1

𝑀𝑡 𝑓 (𝑣𝑖;F𝑖).

Proof. (1) Given a ⊕𝑛
𝑖=1F𝑖-terminating Coh(𝐸)-chain the kernel in A𝑖 of the map to ⊕ 𝑗≠𝑖F𝑗 gives

the decomposition into a direct sum of F𝑖-terminating Coh(𝐸) chains.

For part (2) the argument of [71] carries over exactly. □

5.1.4 𝛿-stable framed objects

The notion of (𝜔, 𝛿)-stability where 𝛿 ∈ R[𝑡] is a polynomial for framed torsion-free sheaves

(E, 𝜙) was introduced by Huybrechts and Lehn in [78]. While moduli spaces of 𝜔-Gieseker

semistable torsion-free sheaves with Poincare polynomial 𝑃 on a projective variety 𝑋 arise as

GIT quotients of a quot scheme

Quot𝑃 (𝑉 ⊗ O𝑋 (−𝑚))

with respect to a line bundle L𝜔,𝑚, the moduli spaces of of stable sheaves framed at a module F

supported along a subvariety 𝐷 arise as GIT quotients of a closed subscheme of

Quot𝑃 (𝑉 ⊗ O𝑋 (−𝑚)) × P(Hom(𝑉, 𝐻0(𝜄∗F (𝑚))))

with respect to line bundles L𝜔,𝑚 ⊠ L𝛿.

When 𝑋 = 𝑆 is a projective surface and the framing sheaf is supported along a divisor, we

choose 𝛿(𝑚) to be a linear polynomial.
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Suppose 𝛿(𝑚) = 𝛿1𝑚 + 𝛿0 and a polarization 𝜔 ∈ Amp(𝑆). Given a framed torsion-free sheaf

(E, 𝜙) define its Hilbert polynomial to be

𝑃(E,𝜙) (𝑚) = 𝑃E (𝑚) − 𝜖𝛿(𝑚)

where

𝜖 =


1 if 𝜙 ≠ 0

0 otherwise
.

The reduced Hilbert polynomial of the pair is

𝑝 (E,𝜙) := 𝑃(E,𝜙) (𝑚)/rk(𝐸).

Definition 5.1.20. The pair (E, 𝜙) is said to be (𝜔, 𝛿)-(semi)stable if for every nontrivial submod-

ule E′ we have

𝑝 (E′,𝜙|E′ ) (≤)𝑝 (E,𝜙) .

In the case that we are only concerned with strictly stable sheaves it is common to let 𝛿 be a

real number, and then the relevant polynomial is 𝛿(𝑚) = 𝛿𝑚. In the case a framed torsion-free

sheaf (E, 𝜙) is (𝜔, 𝛿)-stable if for any subsheaf G of smaller rank have we have

𝑐1(G) · 𝜔
rk G <


𝑐1 (E)·𝜔−𝛿

rk E G ⊂ ker 𝜙

𝑐1 (E)·𝜔−𝛿
rk E + 𝛿

rk G otherwise.
(5.1.21)

Let 𝑃 be the class of the P1 fiber in 𝐸 × P1 Consider polarizations of the form

𝜔 = 𝐸 + 1/𝑁𝑃
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for 𝑁 > 0. The equations (5.1.21) for there to be a (𝜔, 𝛿)-stable direct sum of the form

(E, 𝜙) = (G1 ⊕ G2, 𝜙1 ⊕ 𝜙2)

include those with

G ∈ {(G1, 𝜙1), (G2, 𝜙2), (G1 ∩ ker(𝜙1), 0), (G2 ∩ ker(𝜙2), 0)}.

The resulting four equations define a region of the (𝛿, 1/𝑁) plane. We have plotted those regions

for varying 𝑐1(G1) when 𝑣(E) = (2, 𝑃,−1) in Figure 5.1.

Figure 5.1: Region plot of (𝜔, 𝛿) stability of summands of a framed sheaf of 𝑣(E) = (2, 𝑃,−1).

For a stable summand (𝐺𝑖) with 𝜙𝑖 : G𝑖 |𝐷∞
∼−→ F𝑖 the degree of F𝑖 determines the 𝑃-component

of the degree of (𝐺𝑖). We have the following structural result for the regions. Pick a direct sum-

mand F𝑖 of F . Assume for simplicity that 𝑐1(E) = ℓ𝑃 for some ℓ. Define C𝑣(G𝑖) to be the region

in the (𝛿, 1/𝑁)-plane where there is a (𝜔, 𝛿)-stable direct sum

(E, 𝜙) = (G𝑖 ⊕ G′, 𝜙𝑖 ⊕ 𝜙′).

We have the following structural statement. Let 𝑣(G) = (rk(G), 𝑣(G)𝐸𝐸 + 𝑣(G)𝑃𝑃, 𝑑).

Proposition 5.1.22. The region C𝑣(G𝑖) is bounded unless 𝑣(G)𝐸 = 0. For any two different values

of 𝑣(G)𝐸 the regions are disjoint. The region C𝑣(G𝑖) is empty unless there are no directs sums with
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nontrivial stabilizer.

Proof. Immediate consequence of (5.1.21). □

Thus as in Figure 5.2, for each F𝑖 we get a tower of regions C𝑖,𝑛 as 𝑛 varies over the possible

values of 𝑣(G)𝐸 . Furthermore, for a fixed 𝑖, the regions become translates of the same quadrilateral

after the change of coordinates 𝜌 = 𝛿𝑁, 𝑀 = 1/1/𝑁 = 𝑁 .
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Figure 5.2: Region plot in the (𝛿, 1/𝑁) plane of stable decompositions of 𝑣(𝐸) = (3, 2𝑃,−1) into
stable direct summands of type 𝑐(𝐺) = (1, 0𝑃 + 𝜃𝐸, ∗) for varying 𝜃 in one color and those of type
𝑐(𝐺) = (1, 𝑃 + 𝜃𝐸, ∗) in another.

Figure 5.3: The same diagram as Figure 5.2 under the coordinates (𝜌, 𝑁) where 𝜌 = 𝛿/(1/𝑁), 𝑁 =

1/(1/𝑁)
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Figure 5.4: A higher rank example for 𝑣(E) = (4, 3𝑃,−1) in the (𝜌, 𝑁)-plane.

5.2 Stable envelopes

When the equivariant cohomology group 𝐻∗
𝑇
(𝑋) of some variety 𝑋 is interpreted as a space

of states of a quantum integrable system where the Hamiltonian acts by cup product, the classes

supported at a given fixed point are eigenfunction if isolated, and some sort of generalized eigen-

function otherwise. The existence of a basis in which Hamiltonians are diagonalizable is not a

unique feature of quantum integrable systems: every unitary matrix is diagonalizable. Instead, it is

the existence of other bases which govern integrability. The 𝑅-matrix of a spin chain for example is

seen as an operator exchanging two different orderings on the spins and the Yang-Baxter equation
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satisfied by the 𝑅-matrix describes the compatibility of the reorderings. In the framework of [10]

the spin bases are generalized in geometry to the image of a stable envelope

Stabℭ : 𝐻∗
𝑇 (𝑋𝐴) → 𝐻∗

𝑇 (𝑋)

which depends on a choice of chamber ℭ ⊂ 𝔞R the Lie algebra of 𝐴, a torus preserving the

symplectic form on 𝑋 , and a polarization 𝜖 . The chamber lies in the wall-and-chamber structure

induced by the walls where there are more than generic fixed points. The polarization 𝜖 is a

choice of square root of the Euler class 𝑒(𝑁𝑍 ) of the normal bundle to 𝑍 in 𝑋 in 𝐾𝑇 (𝑍) for every

component 𝑍 ∈ 𝑋𝐴.

The main result of this section is the existence of stable envelopes under the condition that the

statement of Conjecture 5.1.3 is satisfied for some choice of L and framing F . For simplicity

of presentation and the relativistic deformations having been written down, we restrict to the case

𝑅 = 𝐴−1.

In our case, 𝑀𝑡 𝑓 (𝑣;𝑚𝑐𝐹) is not holomorphic symplectic but satisfies the weaker assumption

that there is a non-degenerate isomorphism 𝑇𝑀𝑡 𝑓 (𝑣;𝑚𝑐𝐹) → ℏ ⊗ 𝑇 𝑡𝑤
𝑀𝑡 𝑓 (𝑣;𝑚𝑐𝐹) where 𝑇 𝑡𝑤

𝑀𝑡 𝑓 (𝑣;𝑚𝑐𝐹) is a

vector bundle and a topological isomorphism 𝑇 𝑡𝑤
𝑀𝑡 𝑓 (𝑣;𝑚𝑐𝐹) ≃ 𝑇∨

𝑀𝑡 𝑓 (𝑣;𝑚𝑐𝐹) induced by Serre duality

and deformation over a base 𝐽 ≃ Jac(𝐸) from a bundle with fiber Ext1(E, E(−𝐷∞) ⊗ L) at L ∈ 𝐽

to a bundle with fiber Ext1(E, E(−𝐷∞)). We can thus define Lagrangians, Lagrangian residues as

in the usual story of holomoprhic symplectic geometry.

It is possible to formulate the stable envelopes purely on the algebraic space 𝑀𝑡 𝑓 (𝑣;F ) over the

central surface 𝐸 × P1 but the standard construction applies almost verbatim after the deformation.

In particular, the topological isomorphism induces equalities of all equivariant chern characters of

bundles.

Theorem 5.2.1 ([10]). Given ℭ and 𝜖 there exists a unique 𝑇-equivariant Lagrangian correspon-

0We are confident that nobody will confuse the notation for a stable envelope with that of the space of stability
conditions on a triangulated category. The latter will always be written with an argument.
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dence

𝐿ℭ ∈ 𝐻∗
𝑇 (𝑋𝐴 × 𝑋)

which is proper over 𝑋 satisfying the conditions in [10, Thm 3.3.4].

Assuming the result of Conjecture 5.1.3 is satisfied, so in particular in the rank 2 case of split

line bundles, 𝑀𝑡 𝑓 (𝑣;F ) is an infinite union of varieties 𝑋𝑁 under open embeddings so that for any

𝑥 ∈ 𝑋 we have 𝑥 ∈ 𝑋𝑁 for 𝑁 ≫ 0. We therefore obtain stable envelopes

Stabℭ,𝑁 : 𝐻∗
𝑇 (𝑋𝐴𝑁 ) → 𝐻∗

𝑇 (𝑋𝑁 ).

In the limit we obtain a limit stable envelope which is a map

Stabℭ : 𝐻∗
𝑇 (𝑋𝐴) →

∏
𝑍∈𝜋0 (𝑋𝐴)

𝐻∗
𝑇 (𝑍) (5.2.2)

obtained by restricting the stable envelope Stabℭ,𝑁 for large enough 𝑁 to a different fixed point.

Remark 5.2.3. It is reasonable to expect that there is a global choice of polarization would arise

from the construction of [2, §3.5.1].

The map (5.2.2) satisfies the usual upper triangularity with respect to the attracting order de-

pending on the chamber which now has analytic consequences.

In particular, the inverse operator

Stab−1
ℭ

: 𝐻∗
𝑇 (𝑋𝐴) →

∏
𝑍∈𝜋0 (𝑋𝐴)

𝐻∗
𝑇 (𝑍)𝑙𝑜𝑐

makes sense in a completion in localized equivariant cohomology.

Remark 5.2.4. The attracting partial ordering on 𝜋0(𝑋𝐴) for 𝑋 = 𝑀𝑡 𝑓 (𝑣;F ) is in general neither

bounded above or below. However, expressions such as

Stab−1
−ℭ ◦Stabℭ
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do not make sense a priori because even 𝐻∗
𝑇
(pt) coefficients of this expression contain infinite

sums. Likewise, the notation Stab−1
ℭ

should only be seen as suggestive because the source is only

a subspace of the target of Stabℭ.

5.3 Geometric actions

5.3.1 Elliptic surfaces

The identification of the cohomology for an equivariantly proper surface 𝑆 of

𝑉NS(𝑆) :=
⊕

𝑚,𝜆∈NS(𝑆)
𝐻∗
𝑇 (𝑀𝑆 (1, 𝜆, 𝑚))

with the Lattice vertex algebra𝑉𝑁𝑆(𝑆) tensor an auxiliary free bosonic field provides a large number

of operators with representation theoretic significance on this module.

In [79] it was shown that when 𝑆 is an 𝐴𝑛 surface, the Fourier coefficients of vertex operators

𝑌 (𝑒𝐸𝑖 , 𝑧)

provided the formula for the action of an algebra action defined by Nakajima in [80], which agrees

with operators from the Yangian action from [10] which are primitive under the coproduct Δ.

In [81] this was extended to the Lie algebra generated by real roots acting on 𝑉NS(𝑆) when 𝑆

is a K3 surface and NS(𝑆) satisfies some the property that it is generated by (−2) curves which

intersect pairwise transversally at at most one point.

Finally, this was used and extended in [2] to prove an identification of operators defined by

natural correspondences on the moduli space 𝑀𝜎 (𝑣;F ) for simple F associated to the surface 𝑋𝑅.

Theorem 5.3.1 ([2]). Under the identification of 𝑉𝑇∗𝐸 with the vertex algebra of Theorem 2.3.31,

the generators 𝑤𝑎,𝑏𝛾 of 𝔤𝑇∗𝐸 act via the specialization of Nakajima-Baranovsky operators on the

root hyperplane𝑊𝐻𝐻0 (𝐸)
𝛼⊥ where 𝛼 = 𝑎[𝐸] + 𝑏[pt].

Analogous claims were conjectured, and some proven, for the other surfaces.
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5.4 Coproduct

5.4.1 Tensor product of vertex algebras

Owing to Proposition 5.1.19 there is an isomorphism of vector spaces

𝑉𝑇∗𝐸 ⊗ 𝑉𝑇∗𝐸 ≃
⊕
𝑣

𝐻∗
𝑇 (𝑀𝑡 𝑓 (𝑣;F1 ⊕ F2))𝑙𝑜𝑐 (5.4.1)

when F1 and F2 are non isomorphic degree zero line bundles. More generally, we get an isomor-

phism ⊕
𝑣

𝐻∗
𝑇 (𝑀𝑡 𝑓 (𝑣;

⊕
𝑖

F𝑖))𝑙𝑜𝑐 ≃
⊗
𝑖

𝛾∗𝑉𝑇∗𝐸 (5.4.2)

where 𝛾 ∈ GL(2,Z) is the operator sending the class of F𝑖 to the class of O𝐸 in 𝐾𝑛𝑢𝑚 (𝐸), which

acts via algebra automorphisms on 𝔤𝑇∗𝐸 and then pushforward the action on an irreducible module.

Given a chamber ℭ and in the polystable degree zero case we fix an identification of 𝑉⊗𝑘
𝑇∗𝐸 with

a subspace of the completion of
⊕

𝑣 𝐻
∗
𝑇
(𝑀𝑡 𝑓 (𝑣;F )) using the stable envelope via

𝑉⊗𝑘
𝑇∗𝐸 ≃ 𝐻∗

𝑇

(⊔
𝑣

𝑀𝑡 𝑓 (𝑣;F )𝐴
)

Stabℭ−−−−→ 𝐻∗
𝑇

(⊔
𝑣

𝑀𝑡 𝑓 (𝑣;F )𝐴
)̂

where ()̂ denotes the completion from (5.2.2).

Explicitly, we then expect that the action of the operator of taking

𝑐1(𝜆) ∪ −

where 𝜆 is a determinant line bundle in the tensor product of two factors is given by the formula

Δ(𝑐1(𝜆) ∪ −) = 1 ⊗ 𝑐1(𝜆) ∪ +𝑐1(𝜆) ∪ ⊗1

− ℏ
∑︁

(𝑚,𝑛)∈Z≥0⊕Z\{0}×Z≤0
𝛼(𝜆)𝑤−𝑚,−𝑛

𝛾𝑖
⊗ 𝑤𝑚,𝑛

𝛾𝑖
(5.4.3)
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exactly matching [10, §10.1] and its algebraic analysis in affine Yangians in [82].

Note in particular that this operation only makes sense after taking the completion required to

define the inverse of the stable envelope owing to the fact that the weights of the representation of

𝔤𝑇∗𝐸 do not lie in a convex cone.

Let 𝑀 (F ) denote the completion of ⊗𝑖𝛾𝑖∗𝑉𝑇∗𝐸 required to define the iterated coproduct of

(5.4.3). Let 𝐴F denote the framing torus for framing sheaf F so that 𝑉𝑇∗𝐸 is a module over the

ring 𝐻∗
C∗
ℏ
×𝐴F

(pt).

We conclude with a definition.

Definition 5.4.4. The algebra Aℏ(𝔤𝑇∗𝐸 ) is defined to be the image of the action of 𝑐1(𝜆)∪ and Δ𝑥

for 𝑥 ∈ 𝔤𝑇∗𝐸 in ∏
F

End(𝑀 (F )).

5.5 Donaldson-Thomas module

We now state a conjecture concerning the the module structure of the vector space underlying

the Donaldson-Thomas invariants on local elliptic curves.

Many of the claims have immediate generalizations the the other equivariant elliptic surfaces

but we present only the 𝑇∗𝐸 case for simplicity.

Consider some some class 𝛼∗ of asymptotic Coh(𝐸)-chains (A∗, 𝜙∗) parametrizing a con-

nected component of the Filt space Filt(𝐸, 𝛼∗).

Definition 5.5.1. An 𝛼∗ terminal Coh(𝐸)-bichain is an commutative array (A𝑖, 𝑗 , 𝜙
↓
𝑖, 𝑗
, 𝜙→

𝑖, 𝑗
)𝑖, 𝑗≥1

where each A𝑖, 𝑗 ∈ Coh(𝐸) and maps

𝜙
↓
𝑖, 𝑗

: A𝑖, 𝑗 → A𝑖+1, 𝑗

𝜙→𝑖, 𝑗 : A𝑖, 𝑗 → A𝑖, 𝑗+1

such that
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1. Each 𝜙↓/→
𝑖, 𝑗

is injective.

2. (A𝑖,𝑁 , 𝜙
↓
𝑖,𝑁

) stabilizes to a fixed F -terminal Coh(𝐸)-chain (A𝑖,∞, 𝜙𝑖,∞) for large 𝑁 .

3. (A𝑁, 𝑗 , 𝜙
→
𝑁, 𝑗

) stabilizes to the trivial A∞,∞-terminal Coh(𝐸)-chain.

For example, the following gives a [A1,∞ → A2,∞ → · · · → F ]-terminal Coh(𝐸)-bichain if

all of the axioms on the maps are satisfied.

A1,1 A1,2 · · · A1,∞ A1,∞

A2,1 A2,2 · · · A2,∞ A2,∞

...
... · · · ...

...

F F · · · F F

F F · · · F F

𝜙↓

𝜙→

.

5.5.1 1-leg vertex

The moduli stack 𝑀𝛼∗,∗ of 𝛼∗,∞-terminal Coh(𝐸)-bichains of dimension vector 𝛼∗,∗ are smooth

and admit proper maps to Filt(𝛼∗). We assume that 𝛼∞ = F which satisfies the consequence of

Conjecture 5.1.11.

By the Rees construction, Coh(𝐸)-bichains correspond to C∗2𝑡1,𝑡2-fixed torsion-free sheaves on

𝐸 ×A2. We instead interpret them as C∗2𝑡1,𝑡2 fixed torsion-free sheaves on the total space of L ⊕ L∨

where L ∈ Jac(𝐸) is very general so that the vertical slicing maps are maps to smooth varieties.

The 1-leg DT vertex of Tot𝐸 (L ⊕ L∨) is the generating series
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𝑉𝛼∗ (𝑧, 𝑝) =
∑︁
𝛼∗,∗

𝑧𝜒𝑝𝑑
∫
[𝑀𝛼∗,∗ ]𝑣𝑖𝑟/Filt(𝛼∗)

1
𝑒(N 𝑣𝑖𝑟) ∈ 𝐻∗

𝑇 (𝑀𝑡 𝑓 (𝑣;F ))𝑙𝑜𝑐 [[𝑝, 𝑧]] (5.5.2)

where

1. The terms 𝜒 and 𝑑 are the euler characteristic and curve class of the C∗2𝑡1,𝑡2-fixed torsion-free

sheaf.

2. The 𝐾-theory class N 𝑣𝑖𝑟 is the virtual normal bundle to 𝑀𝛼∗,∗ in the moduli stack of torsion-

free sheaves.

5.5.2 DT module

In this section we conjecture a relation between the vector space underlying the DT-vertices to

representations of Aℏ(𝔤𝑇∗𝐸 ).

It is based on an analogy with the case of the DT vertex of C3. In that case the affine Yangian

Y𝑡1,𝑡2 (𝔤𝔩1) (5.5.3)

has a module

M =
⊕
𝜆∈Λ
k|𝜆⟩ (5.5.4)

called the MacMahon module [83, 84]. Here Λ is the set of plane partitions, in bijection with

C∗3𝑡1,𝑡2,𝑡3-fixed ideal sheaves in C3.

The affine Yangian also has its Fock module F (𝑎) which we identify with the vertex algebra

𝑉A2 where the zero mode of the generating field acts by 𝑎. The MacMahon module admits an

embedding

M→ F (𝑎) ⊗ F (ℏ + 𝑎) ⊗ F (2ℏ + 𝑎) ⊗ · · · (5.5.5)

obtained by projecting a plane partition onto the 𝑖 partition sliced in the 𝑧 direction [85] and it is
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the submodule generated by the action of Y𝑡1,𝑡2 (𝔤𝔩1) vacuum vector in this representation.

In the present situation, let

𝑉𝑇∗𝐸 (𝑎)

denote the Aℏ(𝔤𝑇∗𝐸 ) module where the universal bundle over 𝑀𝑡 𝑓 (𝑣;O𝐸 ) is given a weight of 𝑎.

Let

V0 =
⊕
𝛼∈{𝛼∗,∗ |
𝛼∗,∞=[O]}

𝐻∗
𝑇 (𝑀𝛼∗,∗) (5.5.6)

denote the vector space underlying the 0-leg DT vertex of Tot𝐸 (L ⊕ L∨).

We have an embedding

V0 → 𝑉𝑇∗𝐸 (𝑎) ⊗ 𝑉𝑇∗𝐸 (ℏ + 𝑎) ⊗ 𝑉𝑇∗𝐸 (2ℏ + 𝑎) ⊗ · · · (5.5.7)

Assuming (5.4.3) defines a completed coproduct on Aℏ(𝔤𝑇∗𝐸 ) we can let Aℏ(𝔤𝑇∗𝐸 ) act on V0.

Conjecture 5.5.8. The orbit of the vacuum in the target of (5.5.7) under the action of Aℏ(𝔤𝑇∗𝐸 ) is

V0.

In particular, this implies that V0 embeds into an infinite tensor product of cone vertex algebras

from Example 2.2.8.

Remark 5.5.9. If Conjecture 5.5.8 is true, then many formulas, in particular (5.4.3) make sense

without requiring a completion in the module V0 because the weight spaces in the tensor product

of cone vertex algebras lie in a convex come.
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[28] D. Adamović, “A realization of certain modules for the n= 4 superconformal algebra and
the affine lie algebra a 2 (1),” Transformation groups, vol. 21, 299–327, 2016.

94

https://arxiv.org/abs/1003.2352
https://arxiv.org/abs/2309.17308
https://arxiv.org/abs/1812.09257


[29] M. Kapranov and E. Vasserot, “The cohomological hall algebra of a surface and factoriza-
tion cohomology,” Journal of the European Mathematical Society, vol. 25, no. 11, 4221–4289,
2022.

[30] Y. Zhao, “On the k-theoretic hall algebra of a surface,” International Mathematics Research
Notices, vol. 2021, no. 6, 4445–4486, 2021.

[31] A. Mellit, A. Minets, O. Schiffmann, and E. Vasserot, “Coherent sheaves on surfaces, cohas
and deformed𝑊1+∞-algebras,” arXiv preprint arXiv:2311.13415, 2023.

[32] W.-P. Li, Z. Qin, and W. Wang, “Hilbert schemes and w-algebras,” International Mathemat-
ics Research Notices, vol. 2002, no. 27, 1427–1456, 2002.

[33] B. Davison, Affine bps algebras, w algebras, and the cohomological hall algebra of A2,
2022. arXiv: 2209.05971 [math.RT].

[34] T. Bridgeland, A. King, and M. Reid, “Mukai implies mckay: The mckay correspondence
as an equivalence of derived categories,” arXiv preprint math/9908027, 1999.

[35] Y. Yang and G. Zhao, “The cohomological hall algebra of a preprojective algebra,” Proceed-
ings of the London Mathematical Society, vol. 116, no. 5, 1029–1074, 2018.

[36] O. Schiffmann and E. Vasserot, Cohomological hall algebras of quivers and yangians, 2023.
arXiv: 2312.15803 [math.RT].

[37] T. M. Botta and B. Davison, Okounkov’s conjecture via bps lie algebras, 2023. arXiv:
2312.14008 [math.RT].

[38] O. Schiffmann and E. Vasserot, “On cohomological hall algebras of quivers: Yangians,”
arXiv preprint arXiv:1705.07491, 2017.

[39] D.-E. Diaconescu, M. Porta, and F. Sala, “Cohomological hall algebras and their represen-
tations via torsion pairs,” arXiv preprint arXiv:2207.08926, 2022.

[40] H. Nakajima, Lectures on Hilbert Schemes of Points on Surfaces (University Lecture Series).
Providence, Rhode Island: American Mathematical Society, Sep. 1999, vol. 18, ISBN: 978-
0-8218-1956-2.

[41] I. Grojnowski, “Instantons and affine algebras i: The hilbert scheme and vertex operators,”
Mathematical Research Letters, vol. 3, no. 2, 275–291, 1996.

[42] D. Huybrechts and M. Lehn, “The geometry of moduli spaces of sheaves,” p. 281,

[43] M. Wemyss, “Reconstruction algebras of type a,” Transactions of the American Mathemat-
ical Society, vol. 363, no. 6, 3101–3132, 2011.

95

https://arxiv.org/abs/2209.05971
https://arxiv.org/abs/2312.15803
https://arxiv.org/abs/2312.14008


[44] M. Wemyss, “The mckay correspondence,” Mathematische annalen, vol. 350, no. 3, 631–659,
2011.

[45] M. Reid, “Surface cyclic quotient singularities and hirzebruch-jung resolutions,” manuscript
available at http://www. warwick. ac. uk/masda/surf, 2012.

[46] W. Geigle and H. Lenzing, “A class of weighted projective curves arising in representation
theory of finite dimensional algebras,” Springer, 2006, 265–297.

[47] D. Happel and C. M. Ringel, “The derived category of a tubular algebra,” in Representation
Theory I Finite Dimensional Algebras (Lecture Notes in Mathematics), V. Dlab, P. Gabriel,
and G. Michler, Eds., Lecture Notes in Mathematics. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1986, vol. 1177, 156–180, ISBN: 978-3-540-16432-6.

[48] I. Burban and B. Kreußler, “Derived categories of irreducible projective curves of arithmetic
genus one,” Compositio Mathematica, vol. 142, no. 5, 1231–1262, Sep. 2006.

[49] I. Burban and O. Schiffmann, “The composition hall algebra of a weighted projective line,”
Journal für die reine und angewandte Mathematik (Crelles Journal), vol. 2013, no. 679,
75–124, 2013.

[50] T. Bridgeland, “Fourier-mukai transforms for elliptic surfaces,” Journal für die reine und
angewandte Mathematik (Crelles Journal), vol. 1998, no. 498, 115–133, 1998.

[51] D. Arinkin, “Autoduality of compactified jacobians for curves with plane singularities,”
arXiv preprint arXiv:1001.3868, 2010.

[52] S. Mukai, “Duality between d (x) and with its application to picard sheaves,” Nagoya Math-
ematical Journal, vol. 81, 153–175, 1981.

[53] D Kaledin, “How to glue derived categories,” Bulletin of Mathematical Sciences, vol. 8,
no. 3, 477–602, 2018.

[54] P. Seidel and R. Thomas, “Braid group actions on derived categories of coherent sheaves,”
2001.

[55] A. Ishii and K. Ueda, “The special mckay correspondence and exceptional collections,”
Tohoku Mathematical Journal, Second Series, vol. 67, no. 4, 585–609, 2015.

[56] A. Bondal and D. Orlov, “Semiorthogonal decomposition for algebraic varieties,” arXiv
preprint alg-geom/9506012, 1995.

[57] K. Saito and T. Takebayashi, “Extended affine root systems iii (elliptic weyl groups),” Pub-
lications of the Research Institute for Mathematical Sciences, vol. 33, no. 2, 301–329, 1997.

96



[58] K. Saito, “Extended affine root systems i (coxeter transformations),” Publications of the
Research Institute for Mathematical Sciences, vol. 21, no. 1, 75–179, 1985.

[59] M. Van den Bergh, “Non-commutative P1-bundles over commutative schemes,” Transac-
tions of the American Mathematical Society, vol. 364, no. 12, 6279–6313, 2012.

[60] A. Elagin, On equivariant triangulated categories, 2014.
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