2024 Theses Doctoral
Identification of Novel Candidate Risk Genes Associated with Thoracic Aortic Disease
Diseases of the aorta rank as the 20th leading cause of mortality in the US, contributing to 10,000 deaths annually. Thoracic aortic aneurysms are typically asymptomatic, often undetected until life-threatening aortic dissection or rupture occurs. Familial cases constitute one in five instances of thoracic aortic aneurysm and dissection (TAAD), with genetic causes being heterogeneous and known risk genes explaining only a small fraction of cases. We hypothesized that additional TAAD risk genes remain undiscovered.
This thesis aims to investigate the genetic etiology of TAAD using genetic and genomic approaches. Our methodological approach included: 1) exome sequencing of DNA from TAAD patients with subsequent genomic analysis, integrating clinical data, and 2) single-cell RNA sequencing (scRNA-seq) of the developing (embryonic) mouse aorta. We sequenced 1650 DNA samples from 1429 TAAD patients and, after quality control, analyzed genomic data from 1278 unrelated TAAD patients of European ancestry. For controls, we used 145,103 unrelated individuals of European ancestry from the UK BioBank. We conducted a per-gene and per-domain burden analysis using a binomial test. To improve the power of detection of novel risk genes, we integrated case-control association of rare damaging variants with cell-type specific gene expression data from scRNA-seq of the ascending and descending aorta of 17 mouse embryos (harvested at the E15 stage) with the hypothesis that true risk genes are highly expressed early in development.
Our analysis of known TAAD risk genes identified 52 pathogenic or likely pathogenic variants, explaining 4.1% of TAAD cases, and 75 variants of uncertain significance (5.9%). Next, two potential novel candidate genes emerged from the unbiased case-control analysis, which utilized AlphaFold domain-based annotation of protein structure: β-propeller domain of VPS8 (p = 8.8 × 10-9) and UTP11 (p = 3.9 × 10-8).
scRNA-seq of the developing mouse aorta revealed significant cell-type-specific expression differences between the ascending and descending aorta, identifying five subtypes of vascular smooth muscle cells in the ascending aorta and four in the descending aorta. Differentially expressed genes between major aortic cell types were also identified. Both, VPS8 and UTP11 were found to expressed in all three major aortic cell types – vascular smooth muscle cells, fibroblasts, and endothelial cells.
In conclusion, our case-control association analysis identified two promising candidate risk genes for TAAD (VPS8 and UTP11), warranting further investigation and confirmation in additional cohorts of patients with aortopathy.
Geographic Areas
Subjects
Files
This item is currently under embargo. It will be available starting 2025-09-11.
More About This Work
- Academic Units
- Genetics and Development
- Thesis Advisors
- Chung, Wendy K.
- Shen, Yufeng
- Degree
- Ph.D., Columbia University
- Published Here
- September 25, 2024