Articles

The development and validation of a novel, parameter-free, modelling strategy for electromembrane processes: Electrodialysis

Ledingham, Jack; Sedransk Campbell, Kyra L.; in ’t Veen, Ben; Keyzer, Lucas; Yip, Ngai Yin; Campbell, Alasdair N.

As the global water crisis worsens and natural resources of strategic inorganic elements dwindle, the need for efficient and effective salt separation methods is becoming ever more important. Electromembrane processes, and in particular electrodialysis, are emerging as efficient and effective separation technologies that use an electric field to drive the transport of ions against a concentration gradient. Modelling electromembrane processes allows for process design and optimisation, as well as the identification of what technological improvements would have the greatest effect. However, the wide use of empirical fitting parameters in most existing models greatly limits their globality. The presence of complex and confounding phenomena within electromembrane processes greatly exacerbates this. In this work, a novel, circuit-based modelling strategy for electromembrane processes is presented, avoiding the use of any fitting parameters. Conventional electrodialysis is adopted as a case study. The implementation of a novel transport number model and membrane resistance model are crucial for model accuracy over a wide range of process conditions. The model was experimentally validated and showed excellent agreement with experimental data across a range of concentrations and voltages. Consequently, this model will prove to be an excellent tool for researchers and process designers.

Files

  • thumnail for 1-s2.0-S0011916424000973-main.pdf 1-s2.0-S0011916424000973-main.pdf application/pdf 2.06 MB Download File

Also Published In

More About This Work

Academic Units
Earth and Environmental Engineering
Published Here
January 31, 2024