2024 Theses Doctoral
ADAMTS7 in Atherosclerosis
Atherosclerotic cardiovascular disease is a leading cause of death in the United States and worldwide. While much progress has been made in investigating dyslipidemia and inflammation regarding atherosclerotic disease, much is still unknown about the role of endogenous vascular cells in atherosclerosis. More importantly, as targeting dyslipidemia and inflammation has yielded successful therapies, can therapeutically targeting vascular dysfunction enhance existing therapies for treating cardiovascular disease?
In this thesis, I sought to investigate the role of the matrix metalloproteinase, ADAMTS7, a gene implicated in atherosclerosis by genome-wide association studies (GWAS). Subsequent to the human genetic studies associating ADAMTS7 with atherosclerotic cardiovascular disease, in vivo investigations demonstrated that ADAMTS7 is proatherogenic and induced in response to vascular injury. However, the mechanisms governing ADAMTS7's function and the causal cell type responsible for producing ADAMTS7 remain unclear.
To determine where ADAMTS7 expression occurs in atherosclerosis, we interrogated the largest single-cell RNA sequencing dataset of human carotid atherosclerosis. We found ADAMTS7 expression in endothelial cells, smooth muscle cells (SMCs), fibroblasts, and mast cells. We subsequently created both endothelial and SMC-specific Adamts7 conditional knockout and transgenic mice. The conditional knockout of Adamts7 in either cell type is insufficient to reduce atherosclerosis, but transgenic induction in either cell type increases peripheral atherosclerosis. In SMC transgenic mice, this increase coincides with decreased plaque stability and an expansion of lipid-laden SMC foam cells. RNA sequencing in SMCs revealed an upregulation of lipid uptake genes typically assigned to macrophages. Subsequent experiments demonstrated that Adamts7 increases SMC oxLDL uptake through Cd36. Furthermore, Cd36 expression is increased due to an Adamts7-mediated increase in Spi1, a known myeloid cell fate transcription factor. In summary, Adamts7 is expressed by multiple vascular cell types during atherosclerosis, and in SMCs, Adamts7 promotes oxLDL uptake, thereby increasing SMC foam cell and atherosclerosis.
While investigating ADAMTS7, we sought to identify a cell surface persistent marker of SMCs to aid investigations into ADAMTS7. SMCs play a central role in the development of atherosclerosis due in part to their capability to phenotypically transition into either a protective or harmful state. However, the ability to identify and trace SMCs and their progeny in vivo is limited due to the lack of well-defined SMC cell surface markers. Therefore, investigations into SMC fate must utilize lineage-tracing mouse models, which are time-consuming and challenging to generate and not feasible in humans. We, thus, employed CITE-seq to phenotypically characterize the expression of 119 cell surface proteins in mouse atherosclerosis. We found that CD200 is a highly expressed and specific marker of SMCs, which persists even with phenotypic modulation. We validated our findings using a combination of flow cytometry, qPCR, and immunohistochemistry, all confirming that CD200 can identify and mark SMCs and their derived cells in early to advanced mouse atherosclerotic lesions. Additionally, we describe a similar expression pattern of CD200 in human coronary and carotid atherosclerosis. Thus, CD200 is a lineage marker for SMCs and SMC-derived cells in mouse and human atherosclerosis.
In conclusion, this body of work investigated the role of vascular cells in atherosclerosis. We have identified a new marker of SMCs, adding an additional tool that can be broadly employed to investigate the vasculature. In addition, we have mechanistically unraveled how one vascular GWAS hit, ADAMTS7, can perpetuate atherosclerosis. Our findings demonstrate that ADAMTS7 can promote foam cell expansion in atherosclerosis. While more work is needed to understand the role of these SMC foam cells in atherosclerosis, our investigations thus far have demonstrated that ADAMTS7 can greatly expand these cells. As such, our work supports the development of a drug to inhibit ADAMTS7 for treating atherosclerotic cardiovascular disease.
Subjects
Files
This item is currently under embargo. It will be available starting 2026-10-15.
More About This Work
- Academic Units
- Nutritional and Metabolic Biology
- Thesis Advisors
- Bauer, Robert C.
- Degree
- Ph.D., Columbia University
- Published Here
- October 16, 2024