2022 Theses Doctoral

# Incremental Packing Problems: Algorithms and Polyhedra

In this thesis, we propose and study discrete, multi-period extensions of classical packing problems, a fundamental class of models in combinatorial optimization. Those extensions fall under the general name of incremental packing problems. In such models, we are given an added time component and different capacity constraints for each time. Over time, capacities are weakly increasing as resources increase, allowing more items to be selected. Once an item is selected, it cannot be removed in future times. The goal is to maximize some (possibly also time-dependent) objective function under such packing constraints.

In Chapter 2, we study the generalized incremental knapsack problem, a multi-period extension to the classical knapsack problem. We present a policy that reduces the generalized incremental knapsack problem to sequentially solving multiple classical knapsack problems, for which many efficient algorithms are known. We call such an algorithm a single-time algorithm. We prove that this algorithm gives a (0.17 - ⋲)-approximation for the generalized incremental knapsack problem. Moreover, we show that the algorithm is very efficient in practice. On randomly generated instances of the generalized incremental knapsack problem, it returns near optimal solutions and runs much faster compared to Gurobi solving the problem using the standard integer programming formulation.

In Chapter 3, we present additional approximation algorithms for the generalized incremental knapsack problem. We first give a polynomial-time (½-⋲)-approximation, improving upon the approximation ratio given in Chapter 2. This result is based on a new reformulation of the generalized incremental knapsack problem as a single-machine sequencing problem, which is addressed by blending dynamic programming techniques and the classical Shmoys-Tardos algorithm for the generalized assignment problem. Using the same sequencing reformulation, combined with further enumeration-based self-reinforcing ideas and new structural properties of nearly-optimal solutions, we give a quasi-polynomial time approximation scheme for the problem, thus ruling out the possibility that the generalized incremental knapsack problem is APX-hard under widely-believed complexity assumptions.

In Chapter 4, we first turn our attention to the submodular monotone all-or-nothing incremental knapsack problem (IK-AoN), a special case of the submodular monotone function subject to a knapsack constraint extended to a multi-period setting. We show that each instance of IK-AoN can be reduced to a linear version of the problem. In particular, using a known PTAS for the linear version from literature as a subroutine, this implies that IK-AoN admits a PTAS. Next, we study special cases of the generalized incremental knapsack problem and provide improved approximation schemes for these special cases.

In Chapter 5, we give a polynomial-time (¼-⋲)-approximation in expectation for the incremental generalized assignment problem, a multi-period extension of the generalized assignment problem. To develop this result, similar to the reformulation from Chapter 3, we reformulate the incremental generalized assignment problem as a multi-machine sequencing problem. Following the reformulation, we show that the (½-⋲)-approximation for the generalized incremental knapsack problem, combined with further randomized rounding techniques, can be leveraged to give a constant factor approximation in expectation for the incremental generalized assignment problem.

In Chapter 6, we turn our attention to the incremental knapsack polytope. First, we extend one direction of Balas's characterization of 0/1-facets of the knapsack polytope to the incremental knapsack polytope. Starting from extended cover inequalities valid for the knapsack polytope, we show how to strengthen them to define facets for the incremental knapsack polytope. In particular, we prove that under the same conditions for which these inequalities define facets for the knapsack polytope, following our strengthening procedure, the resulting inequalities define facets for the incremental knapsack polytope. Then, as there are up to exponentially many such inequalities, we give separation algorithms for this class of inequalities.

## Subjects

## Files

- Zhang_columbia_0054D_17542.pdf application/pdf 1.3 MB Download File

## More About This Work

- Academic Units
- Industrial Engineering and Operations Research
- Thesis Advisors
- Faenza, Yuri
- Degree
- Ph.D., Columbia University
- Published Here
- October 12, 2022