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Abstract

Lattice Calculation of the π0 → e+e− and the KL → γγ Decays

Yidi Zhao

In the standard model the rare kaon decay KL → µ+µ− is a highly suppressed, “strangeness

changing neutral current process” that requires the exchange of two weak bosons with an accurately

measured branching fraction B(KL → µ+µ−) = (6.84 ± 0.11) × 10−9 [1]. For this measurement

to become an important short-distance test of the standard model, the competing O(α2
EMGF) two-

photon contribution must be computed and removed from the total decay amplitude. While the

imaginary part of this contribution can be obtained from the KL → γγ decay rate and the optical

theorem, the real part must be computed in QCD [2]. Depending on a relative sign, a 10% calcu-

lation of the real part of the O(α2
EMGF) two-photon contribution would lead to a 6% or 17% test of

the standard model.

As a first step in developing a strategy for computing the two-photon contribution to the

KL → µ+µ− decay, we examine a simpler process π0 → e+e−. Here no weak interaction ver-

tex is involved and, more importantly, there is no intermediate hadronic state with a mass smaller

than that of the initial pion. The sole complication arises from the presence of the two-photon

intermediate state, only one of the difficulties offered by the KL → µ+µ− decay. We show that

the π0 → e+e− amplitude can be calculated with an analytic continuation method where the entire

decay amplitude including the imaginary part is preserved. The real part involves non-perturbative

QCD contribution and is of substantial interest, while the imaginary part of calculated amplitude

can be compared with the prediction of optical theorem to demonstrate the effectiveness of this



method. We obtain ReA = 18.60(1.19)(1.04) eV, ImA = 32.59(1.50)(1.65) eV and a more

precise value for their ratio ReA
ImA = 0.571(10)(4) from continuum extrapolation of two lattice en-

sembles, where A is the decay amplitude, the error in the first parenthesis is statistical and the

error in the second parenthesis is systematic.

Next, we develop a computational strategy to determine the KL → γγ decay amplitude. It

involves the same hadronic matrix element as the KL → µ+µ− decay as well as all the interme-

diate states whose energies are lower than or close to the initial kaon sate except for the |ππγ⟩

that is difficult to deal with. While the lattice QCD calculation is carried out in finite volume,

the emitted photons are treated in infinite volume and the resulting finite-volume errors decrease

exponentially in the linear size of the lattice volume. Only the CP-conserving contribution to the

decay is computed and we must subtract unphysical contamination resulting from single pion and

eta intermediate states which grow exponentially (or fall slowly) as the time separation between

the initial and final lattice operators is increased. Results from a calculation without disconnected

diagrams on a 243 × 64 lattice volume with 1/a = 1 GeV and physical quark masses are presented.
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Chapter 1: Introduction and background

The standard model of particle physics, based on the formulation of quantum field theory, is

the theory describing three of the four known fundamental forces – the electromagnetic, weak,

and strong interactions. The standard model is one of the most well-tested physics theories. Since

its establishment in the 1970s, the standard model has explained almost all experimental results

in particle physics with great accuracy and successfully predicted the existence of new particles,

including the W± and Z boson, top quark, tau neutrino, and the Higgs boson.

The electromagnetic interaction is described by quantum electrodynamics (QED) and is be-

lieved to be well understood because of the simplicity of QED theory and the excellent agreement

with experiments. One of the most famous examples is that the electron’s anomalous magnetic

moment was measured to agree with theory to an accuracy of around one part in one billion.

Quantum chromodynamics (QCD), established after the discovery of the quark model in the

1960s, is the fundamental quantum field theory that describes strong interactions through quarks

and gluons. It is a non-Abelian SU(3) gauge theory where the three kinds of charge are usually

referred to as colors . Because of the property of asymptotic freedom, QCD perturbation theory is

used to accurately explain experiments performed at very high energies. However, at low energies

close to or below the scale of ΛQCD, the value of the strong coupling constant αs is considerably

larger and the QCD perturbation theory breaks down. Various effective theories, like the chiral per-

turbation theory, are very successful in predicting the strong interaction process in the low-energy

regime. However, these methods are based on approximate symmetries and other approximations

instead of a calculation from the first principles.

The weak interaction is complicated and unique in many ways. It is the only interaction that

can change the flavor of quarks, the only interaction that violates CP symmetry, and also the only

interaction where gauge bosons have mass. Because of these intriguing properties, the weak inter-
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action provides great potential for discovering new physics beyond the standard model. Some of

the most important examples include the direct and indirect CP-violating parameters ε and ε′, the

rare kaon decays, and the KL-KS mass difference.

Since its inception about 40 years ago, lattice QCD is the only known method to define the

quantum field theory in a non-perturbative way and to perform nonperturbative QCD calcula-

tions from the first principles. Lattice methods augment traditional theoretical studies and extend

the reach of low energy, high-precision searches for physics beyond the standard model. First-

principles calculations of these standard model predictions using the methods of lattice QCD are

becoming increasingly accurate and applicable to a wider range of phenomena. With the advances

in supercomputers and lattice QCD algorithms in the last decades, direct calculation with physical

light and strange quark masses has become feasible. This removed the need for extrapolations to

obtain physical results and greatly reduced the errors in lattice calculations.

The weak interactions which occur in rare kaon decays provide an important opportunity to

search with high sensitivity for phenomena not predicted by the standard model. In this work, we

study the strangeness-changing neutral current process KL → µ+µ−. The short-distance contribu-

tion of this decay arises as a one-loop, second-order weak process involving the exchange of two

W± bosons or one W± and one Z0 [2]. The second-order decay amplitude can be computed in the

standard model with the kaon decay constant fK as the only required hadronic input. However, this

test of the standard model at second order is made complicated by the presence of an order α2
EMGF

decay amplitude from the two-photon contribution. Thus, for this process, we might hope to use

lattice QCD to perform an accurate calculation of this background, two-photon process so that the

complete decay could then be computed in the standard model.

The presence of various intermediate states whose energies are lower than kaon mass poses

great challenges to the computation of the two-photon contribution to KL → µ+µ− decay in lattice

QCD. To tackle these difficulties step by step, in this work, we developed methods to calculate

the π0 → e+e− decay and the KL → γγ decay. These two decays are similar to the two-photon

contribution to the KL → µ+µ− decay in some aspects and the lattice calculation of these two
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decays can be compared with experimental results to demonstrate the effectiveness of our methods.

This work is organized as follows. In Chapter 2, we briefly review the physics of the rare kaon

decay KL → µ+µ− in the standard model. In Chapter 3, we discuss the lattice QCD framework,

the computation of quark propagators, and how to measure physical quantities on the lattice. In

Chapter 4 we develop a new method of combining EM interactions and lattice QCD calculation and

deal with the two-photon intermediate state. We also present the first first-principles calculation

of the π0 → e+e− decay. In Chapter 5, we show the formalism that we have developed to carry

out the first calculation of the KL → γγ decay. The calculated decay amplitude agrees well with

experimental values. In Chapter 6, we summarize our results and discuss the future prospects for

calculating the KL → µ+µ− decay.
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Chapter 2: The physics of the KL → µ+µ− decay

In this chapter, we review the physics of the KL → µ+µ− decay in the standard model. In

Section 2.1, we examine the experimental measurements of the KL → µ+µ− decay amplitude and

show how a lattice calculation with 10% accuracy will lead to an important test of the standard

model. In Section 2.2, we show that an effective field theory with only u, d, and s quarks can

be obtained at low energies by integrating out the heavy degrees of freedom. The effective weak

Hamiltonian is composed of four-quark operators and can be calculated with lattice QCD. In Sec-

tion 2.3, we discuss the most important challenge in the lattice calculation of the KL → µ+µ−

decay, which is the presence of various intermediate states whose energies are lower than that of

the initial kaon state.

2.1 Overview of the KL → µ+µ− decay

The rare decays of K mesons provide important opportunities for the discovery of physics

beyond the standard model. For such processes, a combination of highly sensitive experiments

with increasingly accurate lattice QCD calculations should result in continually more sensitive

tests of the standard model.

We study the KL → µ+µ− decay because, in contrast to similar processes like the KS →

µ+µ− and KL → e+e− decay, it has larger branching ratio and its branching ratio is accurately

measured [1]:

BR(KL → µ+µ−) = (6.84 ± 0.11) × 10−9. (2.1)

The decay amplitude is composed of a short-distance contribution and a two-photon contribu-

tion. The short-distance contribution, as shown in Figure 2.1, is mediated by two W bosons or two
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Figure 2.1: The short-distance contribution to the KL → µ+µ− decay. The short-distance contri-
bution is mediated by two W bosons.
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Figure 2.2: The two-photon contribution to the KL → µ+µ− decay.

W bosons and a Z boson. The short-distance contribution has physics interest because it is a highly

suppressed strangeness-changing neutral current process that can provide an important test of the

standard model. However, there is also a two-photon contribution, as shown in Figure 2.2, that is

mediated by two photons and dominates the decay amplitude. In order to compare the standard

model prediction of short-distance contribution with the experiments, we must first calculate this

O(α2
EMGF) two-photon contribution and combine it with the short-distance contribution and then

compare with the observed experimental decay rate.

The two-photon contribution is described by a complex amplitude whose imaginary part is

determined by the optical theorem and the known KL → γγ decay rate. Using the notation of

Ref. [2]:
Γ(KL → µ+µ−)
Γ(KL → γγ) = 2βµ

(
αEM
π

mµ

MK

)2 (
|Fimag |2 + |Freal |2

)
, (2.2)

where αEM = 1/137 is the fine-structure constant of the electromagnetic interaction, mµ is the mass
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of muon, MK is the mass of kaon, and βµ is a dimensionless constant defined as

βµ =

√√
1 −

4M2
µ

M2
K

. (2.3)

The imaginary part gets contributions from several available on-shell states, but is completely

dominated by the γγ intermediate state:

Fimag =
π

2βµ
ln

(1 − βµ
1 + βµ

)
. (2.4)

The experimental decay rate and the known imaginary part determine |Freal | = 1.167 ± 0.094.

The real part of the decay amplitude gets contributions from both the two-photon part and the

short-distance part

Freal = (Freal)EM + (Freal)weak . (2.5)

The standard model predicts at one loop: (Freal)weak = −1.82 ± 0.04. Thus, a lattice calculation

of (Freal)EM with 10% accuracy would determine (Freal)weak to 6% or 17% depending on whether

Freal and (Freal)weak have the same or opposite signs, which could serve as an important test of the

standard model.

2.2 The operator product expansion and the effective weak Hamiltonian

In the standard model, the strangeness-changing processes with ∆S = 1 are allowed through

the exchange of W boson. Since the masses of heavy particles like the W boson are much larger

than the mass of kaon, at a low energy scale, the heavy degrees of freedom can be integrated out

and the interaction can be effectively described by the four-quark operators. The effective weak
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Hamiltonian with ∆S = 1 is a sum of local four-quark operators

H∆S=1
W =

GF√
2

V∗usVud(C1Q1 + C2Q2), (2.6)

where GF is the Fermi constant, Vus and Vud are the CKM matrix elements, C1 and C2 are the

Wilson coefficients, and Q1 and Q2 are the four-quark operators

Q1 = (s̄aγLda) (ūbγLub) =
∑
µ

(
s̄aγµ(1 − γ5)da

) (
ūbγµ(1 − γ5)ub

)
(2.7)

Q2 = (s̄aγLdb) (ūbγLua) =
∑
µ

(
s̄aγµ(1 − γ5)db

) (
ūbγµ(1 − γ5)ua

)
, (2.8)

where a and b are color indices and the spin indices are contracted within each pair of brackets. The

operators Q1 and Q2 are called current-current operators because they originate from the W boson

exchange between two quark currents, as shown by the diagrams in Figure 2.3. There are additional

8 operators in the weak Hamiltonian, called QCD penguin operators and electroweak penguin

operators. However, the decay amplitude is dominated by the two current-current operators and

we ignore the other 8 operators in this work.

The Wilson coefficients contain the contribution of the high energy part which has been inte-

grated out from the full theory. The low energy part is then described by the four-quark operators

Qi. Therefore, effectively, we divide the calculation in the full theory into two parts: the high

energy part is calculated perturbatively, while the low energy part, which is complicated because

of the inapplicability of the asymptotic freedom property of QCD, is calculated on the lattice in a

non-perturbative way.

2.3 Intermediate states in the two-photon contribution

The real part of the amplitude represented in Figure 2.2 can be obtained in Euclidean space.

However, such a Euclidean space evaluation will contain other, unphysical terms which will often

dominate the limit of large time separation needed in such a Euclidean space calculation to project
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Figure 2.3: Feynman diagrams in the full theory from which the current-current operators Q1 and
Q2 originate.

onto the kaon ground state. These additional terms are referred to as exponentially growing with

increasing time separation because they correspond to possible intermediate states with energy less

than that of the kaon. Suppose energy of such a state |n⟩ is En and is smaller than MK . As a result

as one increases the time separation T between the operator which creates the KL and the operators

which absorb the final muons, a large contribution will come when HW and Jν quickly convert

the kaon into a |n⟩ state with energy En. This light state propagates from the location of the kaon

to the leptonic E&M current which absorbs that photon. For the component of interest, a state

with energy MK propagates over the time interval T (as either the initial kaon or the final µ+µ−

pair), with a short-range interaction causing the KL → µ+µ− transition of interest over a time

interval of length 1/ΛQCD. The former dominates over the latter by the exponentially growing

factor exp{−(En − MK)T}.

The most important intermediate state with energy less than that of the kaon is the two-photon

intermediate state. In Chapter 4, we propose a method to tackle the problem of the two-photon

intermediate states based on analytic continuation and apply this method to perform a lattice com-

putation of a simpler process, the π0 → e+e− decay.

Besides the two-photon intermediate state, depending on the time order of the operator in the

matrix element ⟨T{Jµ(u)Jν(v)HW (x)KL(tk)}⟩, it will have the following intermediates states whose
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energies are lower than or close to that of kaon:

• ⟨Jµ(u)Jν(v)HW (x)KL(tk)⟩: There can be |π⟩ and |η⟩ states between Jν(v) and HW (x) or a

|γππ⟩ state between Jµ(u) and Jν(v).

Since we ignore CP violation, |0⟩ and |ππ⟩ intermediate states are not allowed between two

EM currents and weak Hamiltonian. We also ignore the three-pion state |πππ⟩ because its

phase space is much smaller than that of the single-pion state |π⟩.

• ⟨Jµ(u)HW (x)Jν(v)KL(tk)⟩: There can be |γππ⟩ state between Jµ(u) and HW (x).

• ⟨HW (x)Jµ(u)Jν(v)KL(tk)⟩: There are no intermediate states with energies lower than kaon

mass.

The presence of the |γππ⟩ state poses significant challenges to the computation of the decay

amplitude. Figure 2.4 shows such time order for which two pions and a photon can appear between

HW and the left-most EM current Jµ. Unlike the |π⟩ or |η⟩ intermediate states, the exponentially

growing contribution from the |γππ⟩ state is hard to calculate and remove. Because of the difficulty

of dealing with the |γππ⟩ immediate state, in this work, we first calculate a simpler decay, the

KL → γγ decay. Since the two photons are on-shell, the |ππ⟩ state has to carry momentum ®p that

whose magnitude is equal to half of the initial kaon energy,

| ®p| = MK

2
. (2.9)

Therefore, the energy of the |γππ⟩ intermediate state is larger than the kaon mass and does not

bring in exponential divergence.

In Chapter 5, we develop the formalism to calculate the KL → γγ decay amplitude in lattice

QCD and to deal with these intermediate states.
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Figure 2.4: Schematic diagram showing the two-photon contribution to KL → µ+µ− decay. The
dark solid line represents the hadronic part of the amplitude connecting the two E&M currents, the
weak Hamiltonian and the initial kaon, in specific time order.
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Chapter 3: General lattice QCD approach

In this chapter, we discuss the general lattice QCD procedures in calculating physical decay

amplitudes. In Section 3.1, we present the general lattice QCD framework to compute physical

quantities in a non-perturbative way. We introduce the Iwasaki gauge action and the domain wall

fermion action which are used to generate gauge configurations in the hybrid Monte Carlo pro-

cedure. In Section 3.2, we show how to extract matrix elements and hadron masses from the

Euclidean correlators of lattice interpolating operators. In Section 3.3, we explain the calculation

of quark propagators on the lattice, which is the most computationally expensive part of the lat-

tice QCD calculation. We also discuss the low-mode inflation and preconditioning techniques to

speed up the calculation of quark propagators using the conjugate gradient algorithm. We use a

special type of propagator called random volume source propagators to stochastically approximate

the self-contracting quark loops. In Section 3.4, we discuss the calculation of the Wilson coeffi-

cients and the renormalization of the ∆S = 1 weak Hamiltonian operator. In the last section 3.5,

we present the jackknife resampling method which is used in this work to estimate the statistical

errors for the physical quantities calculated on the lattice.

3.1 Introduction to lattice QCD

In lattice QCD, we discretize spacetime into a four-dimensional Euclidean grid. The gauge

field, denoted by Uµ(n), takes on the value of a SU(3) matrix for each link that connects the two

neighboring lattice sites n and n + µ̂. It can be viewed as the exponential of the continuum gauge

field Aµ(n)

Uµ(n) = exp(iagAµ(n)), (3.1)
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where a is the lattice spacing and g is the QCD coupling constant. Wilson introduced the first

lattice gauge action [3]

SG[U] =
β

3

∑
n

∑
µ<ν

Re tr[I −UP,µν(n)], (3.2)

where I is the identity matrix and UP,µν(n) is the 1 × 1 plaquette formed by four adjacent gauge

links

UP,µν(n) = Uµ(n)Uν(n + µ̂)U†µ(n + ν̂)U†ν (n). (3.3)

It is easy to show that the Wilson gauge action preserves the gauge invariance symmetry, and

with the choice of β = 6
g2 it converges to the following continuum gauge action in the limit of

β→∞:

Scont
G =

1
2

∫
d4x tr[Fµν(x)2], where Fµν(x) = ∂µAν(x) − ∂νAµ(x) + i[Aµ(x), Aν(x)]. (3.4)

In this work, we use an improved version of the Wilson gauge action that is called the Iwasaki

gauge action [4]. Besides the 1×1 square plaquette, it introduced another term, the 1×2 rectangular

plaquette:

SG[U] = β
∑

n

((
1 − c0

3

) ∑
µ<ν

Re tr[UP,µν(n)] +
(
1 − c1

3

) ∑
µ,ν

Re tr[UR,µν(n)]
)
, (3.5)

where c1 = −0.331 and c0 = 1 − 8c1 are two constants, and UR,µν(n) is the 1 × 2 rectangular

plaquette

UR,µν(n) = Uµ(n)Uµ(n + µ̂)Uν(n + 2µ̂)U†µ(n + µ̂ + ν̂)U†µ(n + ν̂)U†ν (n). (3.6)

Compared to the original Wilson action, the Iwasaki action has better rotation symmetry and chiral

symmetry when combined with a chiral fermion action such as the domain wall fermion (DWF)

12



action.

Fermions on the lattice are represented by anti-commuting Grassman numbers ϕ. The dis-

cretization of the fermion action is more complicated than the gauge action since a naive dis-

cretization would lead to certain lattice artifacts called doublers. Wilson introduced the so-called

Wilson fermion action in which an extra term is added to remove these doublers. However, the

additional term explicitly breaks chiral symmetry which plays an important role in quantum field

theory. The domain wall fermion (DWF) [5] is a formulation that is free of the fermion doubling

problem and has approximate chiral symmetry.

In the domain wall fermion action, we introduce a fifth dimension labeled by s. Let Ls be the

number of lattice points in the fifth dimension. Left-handed fermions and right-handed fermions

are bounded to the walls s = 0 and s = Ls − 1. The chiral symmetry breaking effects are expo-

nentially suppressed as the size of the fifth dimension gets larger, and exact chiral symmetry is

recovered as Ls goes to infinity. The domain wall fermion action is defined as

SF =
∑
n,n′

∑
s,s′

ψ̄(n, s)DDWF(n, s; n′, s′)ψ(n′, s′) (3.7)

DDWF(n, s; n′, s′) = δs,s′D
∥
n,n′ + δn,n′D⊥s,s′, (3.8)

where D∥n,n′ is basically the Wilson fermion Dirac operator but with negative mass −M5:

D∥n,n′ = (M5 − 4) δn,n′ +
1
2

∑
µ

[
(1 − γµ)Uµ(n)δn+µ̂,n′ + (1 + γµ)U†µ(n′)δn−µ̂,n′

]
, (3.9)

and

D⊥s,s′ =
1
2

[
(1 − γ5) δs+1,s′ + (1 + γ5)δs−1,s′ − 2δs,s′

]
(3.10)

−
m f

2
[
(1 − γ5) δs,Ls−1δs′,0 + (1 + γ5)δs,0δs′,Ls−1

]
. (3.11)

The new parameter M5 is called the domain wall height and is not to be confused with the fermion
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mass parameter m f . The DWF action is free of doublers when 0 < M5 < 2.

Even though the DWF action solves the fermion doubling problem and recovers chiral sym-

metry, it is computationally expensive because of the introduction of the fifth dimension. Mobius

domain wall fermions [6] is an improved version of the original DWF action that greatly reduces

chiral symmetry violations and allows us to use a smaller number of lattice points in the fifth

dimension while achieving the same level of chiral symmetry.

Once the actions are defined, the expectation value of any physical observable is calculated

from the Euclidean space path integral

⟨O
(
U, ψ, ψ̄

)
⟩ =

∫
D[U]D[ψ]D[ψ̄]e−SG[U]−SF [U,ψ,ψ̄]O

(
U, ψ, ψ̄

)∫
D[U]D[ψ]D[ψ̄]e−SG[U]−SF [U,ψ,ψ̄]

. (3.12)

The integral over the Grassmann variables can be computed analytically and will give us the de-

terminant of the fermion Dirac operator

⟨O
(
U, ψ, ψ̄

)
⟩ =

∫
D[U]e−SG[U]det(DDWF)⟨O⟩F (U)∫
D[U]e−SG[U]det(DDWF)

, (3.13)

where the subscript in ⟨O⟩F denotes that the fermion fields have been integrated out and ⟨O⟩F

typically consists of a combination of quark propagators and gamma matrices. Because det(D) =

exp (tr [ln(D)]), the fermion determinant can be interpreted as an additional term in the gauge action

and is called the effective fermion action. Then,

⟨O
(
U, ψ, ψ̄

)
⟩ =

∫
D[U]e−S[U]⟨O⟩F (U)∫
D[U]e−S[U]

(3.14)

where S[U] = SG[U] + Seff[U] (3.15)

Seff[U] = −tr [ln(DDWF)] . (3.16)

This path integral can be approximated by importance sampling Monte Carlo integration. In

lattice QCD, we first use the Hybrid Monte Carlo (HMC) method to generate a sequence of gauge

configurations Ui that are distributed according to e−S[U]. Then, the functional integral is approxi-
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mated by an average over these gauge configurations

⟨O
(
U, ψ, ψ̄

)
⟩ = lim

N→∞

1
N

N∑
i=1
⟨O⟩F(Ui). (3.17)

3.2 Measuring physical quantities on the lattice

In lattice QCD, the measurement of physical quantities is performed through computing the

Euclidean correlators of operators. Let O1 and O2 be two Euclidean operators. We have

⟨0|O1(t)O2(0)|0⟩ =
∑

n

⟨0|O1(t)|n⟩⟨n|O2(0)|0⟩ (3.18)

=
∑

n

⟨0|eHtO1(0)e−Ht |n⟩⟨n|O2(0)|0⟩ (3.19)

=
∑

n

⟨0|O1(0)|n⟩⟨n|O2(0)|0⟩e−Ent, (3.20)

where H is the Hamiltonian, |n⟩ represents a complete set of eigenstates, and En is the energy of

state |n⟩. In the first line, we insert a complete set of eigenstates that have non-zero overlap with

two operators. In the second line, we use the following properties of Euclidean operators under

time translation

O(t) = eHt O(0) e−Ht . (3.21)

Because of the exponential factor in Equation 3.20, as time separation of the two operators

approaches infinity, the value of the correlator will be dominated by the ground state with lowest

energy, denoted by m, and the excited states with higher energies will be exponentially suppressed

compared to the ground state

⟨0|O1(t)O2(0)|0⟩
t→∞→ ⟨0|O1(0)|m⟩⟨m|O2(0)|0⟩e−Emt . (3.22)

From this expression, we can extract the energy of ground state Em, as well as the product of matrix

15



elements ⟨0|O1(0)|m⟩⟨m|O2(0)|0⟩.

The simplest and most common example is hadron spectroscopy, i.e., computing the masses

of hadrons on the lattice. The hadron interpolating operators used in this work are listed in Ap-

pendix B.1. The choice of interpolating operator is not unique and any choice is allowed as long

as it has the same quantum numbers as the target hadron. We use the K0 as an example. The

point-like K0 interpolating operator is

K0(x) = id̄(x)γ5s(x). (3.23)

An improvement of the point-like K0 operator that has a better overlap with the zero momentum

|K0⟩ ground state is the wall-like interpolating operator that spans the entire time slice

K0(t) = i
∑
®x

d̄(®x, t)γ5s(®x, t). (3.24)

An even better overlap is achieved by a non-local kaon operator in which the spatial positions of

the down and anti-strange quark operators are separated as they are in a physical kaon.

Using Equation 3.22, the kaon mass can be extracted from the two point function

C(t) = ⟨0|K0(t)K0(0)|0⟩ t→∞→ |⟨0|K0(0)|m⟩|2e−MK t (3.25)

≡ N2
K e−MK t . (3.26)

We impose periodic boundary condition on the lattice which allows mesons to propagate

through the boundary. The two-point correlation function then becomes

C(t) t→∞→ N2
K

(
e−MK t + e−MK (T−t)

)
, (3.27)

where T is the size of the time direction.

Kaon mass can be obtained by directly fitting the two-point correlation function in the above
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equation with two unknown parameters NK and MK , or by calculating the following effective mass

at small time separations t

meff(t +
1
2
) = ln

C(t)
C(t + 1) . (3.28)

By examining the plateau region in an effective mass plot meff(t) versus t, we can also learn

where the contamination of the higher excited states becomes negligible due to the exponential

decaying factor.

The hadronic matrix element involved in the KL → µ+µ− decay and the KL → γγ decay is

⟨Jµ(u)Jν(v)Hw(x)|KL⟩. It can be extracted from the four-point function

⟨Jµ(u)Jν(v)Hw(x)KL(tK)⟩ =
∑

n

⟨Jµ(u)Jν(v)Hw(x)|n⟩⟨n|KL(tK)⟩ (3.29)

tK→−∞−→ ⟨Jµ(u)Jν(v)Hw(x)|KL⟩⟨KL |KL(tK)⟩ (3.30)

= ⟨Jµ(u)Jν(v)Hw(x)|KL⟩NK eMK tK . (3.31)

In this thesis, the normalization of infinite-volume meson states is chosen to be

⟨n(p)|n(q)⟩ = (2π)32Epδ
3( ®p − ®q). (3.32)

Under this convention, we have an extra factor of 2MK from the normalization of |KL⟩ states. So

we have

⟨Jµ(u)Jν(v)Hw(x)|KL⟩ = lim
tK→−∞

2MKV
NK

e−MK tK ⟨Jµ(u)Jν(v)Hw(x)KL(tK)⟩. (3.33)

where NK is the normalization factor of the K̂L interpolation operator

NK = ⟨KL(p = 0)|K̂L(0)|0⟩ =
√

2MKVeMK |t | ⟨0|K̂L(t)K̂L(0)|0⟩, (3.34)
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where V is the number of lattice sites on each time slice.

3.3 Quark propagators

On the lattice, Green functions are calculated by contracting quark propagators. The quark

propagator from spacetime point y to spacetime point x is defined as the matrix element of the

inverse of the Dirac operator:

S(x, y) = D−1(x, y), (3.35)

where x is called the sink, y is called the source, and we have suppressed the spin and color indices.

However, in practice, the lattice Dirac operator is a huge matrix and it is impossible to invert the

entire matrix. Let N be the number of lattice sites in five dimensions. The size of the Dirac matrix

is then 12N × 12N , where the factor 12 arises from the number of spin and color indices. To

reduce the computational complexity, we only calculate the propagator for some special sources

by solving the linear equation

(DS)(x) = η(x), (3.36)

where η(x) is the source vector.

The point source propagator is computed by choosing the source vector to be a delta function

(DS)(x) = δx,x0 , where δx,x0 =


1, if x = x0

0, otherwise
. (3.37)

Solving this equation gives us one matrix element of the inverse of the Dirac matrix, i.e., S(x, x0) =

D−1(x, x0).

Another common type of propagator is the Coulomb gauge fixed wall source propagator, which

is used in kaon and pion meson interpolating operators so that they have a larger overlap with
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meson states. This wall source propagator is defined by summing over all points on the time slice

of the sink

S(x, ty) =
∑
®y

D−1(x; ty, ®y). (3.38)

To compute the wall source propagator, we set the source for all the space-time points at a

specific time t0 to be 1 and set the source for all other times to be 0

(DS)(x) = δt,t0 , where δt,t0 =


1, if tx = t0

0, otherwise
. (3.39)

In addition, when using wall source propagators to calculate contractions, the average over

gauge degrees of freedom will make the contraction zero. To solve this problem, we have to fix

the gauge of the lattice configuration before computing wall source propagators. In this work, we

always calculate Coulomb gauge fixed wall source propagators.

Another type of propagator used in this work is the sequential source propagator, where two

propagators are connected at spacetime point z with a sum over z. To compute a sequential source

propagator, we choose the source to be another propagator

(DSseq)(z) = S(z, y0). (3.40)

Multiplying D−1 on both sides, it is easy to see that the sequential propagators are basically two

propagators connected together

Sseq(x, y0) =
∑

z

D−1(x, z)S(z, y0) (3.41)

=
∑

z

S(x, z)S(z, y0). (3.42)

19



3.3.1 CG algorithm, low mode inflation, and preconditioning

The most computationally expensive part of the lattice QCD calculation procedure is solving

for the quark propagator in Equation 3.36. The most commonly used method to efficiently solve the

equation is the conjugate gradient (CG) algorithm, which is a numerical algorithm for iteratively

solving a system of linear equations. The CG algorithm requires that the coefficient matrix must

be Hermitian and positive definite. So we convert Equation 3.36 to the following form

(
D†D

)
S = D†η = η′. (3.43)

The CG algorithm, unlike many other numerical algorithms for solving linear equations, is

guaranteed to converge in N steps where N is the dimension of the matrix and sufficient precision

is assumed, and the convergence rate is determined by the condition number

κ(D†D) = Largest eigenvalue of D†D
Smallest eigenvalue of D†D

. (3.44)

The CG algorithm converges very slowly when the smallest eigenvalue is close to 0 and the con-

dition number is large. Thus, besides the large size of Dirac matrix D, another major difficulty in

solving the propagators is the small eigenvalues in D, especially when the fermion mass in Dirac

operator is close to physical light quark mass. We use the so-called low-mode-deflation method

to directly subtract a certain number of eigenvectors with the smallest eigenvalues from the Dirac

operator and compute their contribution to the propagator directly, and hence accelerate the con-

vergence speed of the CG algorithm on the remaining eigenvectors.

Suppose λi is the i-th smallest eigenvalues of D†D and hi is the corresponding eigenvector.
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Then, the matrix D†D can be split into a low-mode part and a high-mode part

(D†D)low =

k∑
i=1

λihih
†
i (3.45)

(D†D)high = D†D −
k∑

i=1
λihih

†
i . (3.46)

Then, the low mode part is straightforward to solve

(D†D)lowSlow = η
′ → Slow =

∑
i

1
λi
(h†i η

′)hi (3.47)

For the high-mode part, the condition number of (D†D)high is λN/λk+1 which can be much larger

than the condition number of the original (D†D), which is λN/λ1. Therefore, solving the high-

mode part can be much faster than solving the original equation.

The smallest eigenvalue of the Dirac operator depends on the fermion mass. In our calculation,

we use the low mode deflation method for the computation of light quark propagators, where

the fermion mass is small and there is considerable improvement of CG convergence rate after

removing the low modes. However, for strange quark propagators whose fermion mass is large,

the benefit of low mode deflation is not significant and we use the plain CG algorithm.

Another trick to speed up the calculation of propagators is to use even-odd preconditioning,

which is based on the observation that when both x and y are even sites, the domain wall fermion

operator D(x, y) is easy to invert.

We first group the matrix elements by the parity of spacetime coordinate, i.e., (x1 + x2 + x3 +

x4)|2:

D =
©­­«

Mee Meo

Moe Moo

ª®®¬ . (3.48)

where e standards for even index and o standard for odd index. Then, the inverse of the Shamir
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DWF Dirac operator is

D−1 =
©­­«
1 −M−1

ee Meo

0 1

ª®®¬
©­­«
M−1

ee 0

0 D−1
oo

ª®®¬
©­­«

1 0

−MoeM−1
ee 1

ª®®¬ (3.49)

=
©­­«
1 −M−1

ee Meo

0 1

ª®®¬
©­­«
M−1

ee 0

0
(
D†ooDoo

)−1
ª®®¬
©­­«
1 0

0 D†oo

ª®®¬
©­­«

1 0

−MoeM−1
ee 1

ª®®¬ , (3.50)

where

Doo = Moo − MoeM−1
ee Meo. (3.51)

Now, instead of inverting the entire Dirac matrix D†D, we just need to invert the odd sites D†ooDoo,

whose size is twice smaller.

In this work, we use the Mobius Dirac operator instead of the Shamir Dirac operator. The only

difference in preconditioning turns out to be an extra D− operator

D−1 =
©­­«
1 −M−1

ee Meo

0 1

ª®®¬
©­­«
M−1

ee 0

0
(
D†ooDoo

)−1
ª®®¬
©­­«
1 0

0 D†oo

ª®®¬
©­­«

1 0

−MoeM−1
ee 1

ª®®¬ D−. (3.52)

It is straightforward to combine the low mode inflation technique with the even-odd precon-

ditioning. Let λi be the eigenvalues of D†ooDoo and let hi be the corresponding eigenvectors. The

low-mode and high-mode parts of the inverse Dirac operator are

D−1 = D−1
low + D−1

high (3.53)

D−1
low =

©­­«
1 −M−1

ee Meo

0 1

ª®®¬
©­­«
0 0

0
∑

i
1
λi

hih
†
i

ª®®¬
©­­«
1 0

0 D†oo

ª®®¬
©­­«

1 0

−MoeM−1
ee 1

ª®®¬ D− (3.54)

D−1
high =

©­­«
1 −M−1

ee Meo

0 1

ª®®¬
©­­«
M−1

ee 0

0
(
D†ooDoo

)−1
−∑

i
1
λi

hih
†
i

ª®®¬
©­­«
1 0

0 D†oo

ª®®¬
©­­«

1 0

−MoeM−1
ee 1

ª®®¬ D−. (3.55)
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3.3.2 Random volume source propagators

For some diagrams of the matrix element
⟨
Jµ(u)Jν(v)H ′W (x)|K

⟩
, we have to deal with quark

self-loops which represent the propagators whose source and sink are on the same lattice site

S(x, x) =
∑
®y

D−1(x, x). (3.56)

Since it is prohibitively expensive to invert the Dirac matrix for all sources x, we must find

a way to calculate these self-loops more efficiently. In this work, we use random volume source

propagators to calculate these self-loops in an approximate way.

We first generate a set of independent white noise vectors ηi(x) that satisfies

⟨ηi(x)η†i (x
′)⟩ = δx,x′, (3.57)

where x represents spacetime, color, and spin indices, and i = 1, 2, . . . , Nhits. Here, Nhits is the

number of white noise random vectors for each configuration and is called the number of random

hits. Then, the self-loops can be re-written as

D−1(x, x) =
∑

x′
D−1(x, x′)δx,x′ (3.58)

≈ 1
Nhits

∑
x′

∑
i

D−1(x, x′)ηi(x)η†i (x
′). (3.59)

We introduce the notations of v and w vectors:

vi(x) = D−1(x, x′)ηi(x′) (3.60)

wi(x) = ηi(x), (3.61)

where w vectors are simply the noise vector, and v vectors can be obtained by solving the following
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linear equations with noise vectors as sources:

D(x, x′)vi(x′) = ηi(x′).

Finally, the self-loops can be approximately calculated from v and w vectors

D−1(x, x) = 1
Nhits

∑
i

vi(x)w†i (x). (3.62)

To reduce the noise and accelerate the convergence, we use the deflation technique and use the

eigenvectors with small eigenvalues to construct the low mode part of the Dirac operator and only

approximate the high energy part with random vectors. Let λi be the i-th smallest eigenvalue of the

Dirac operator, hi be the corresponding eigenvector, and Nev be the number of eigenvectors used

for deflation. We have

D−1
deflate ≡ D−1 −

Nev∑
i=1

hih
†
i

λi
(3.63)

D−1 =

Nev∑
i=1

hih
†
i

λi
+

1
Nhits

∑
x′

∑
i

D−1
deflate(x, x′)ηi(x)η†i (x

′). (3.64)

We define the low modes and high modes of v/w vectors separately and define them as

vlow,i =
1
λi

hi, wlow,i = hi, where1 ≤ i ≤ Nev (3.65)

vhigh,i = D−1
deflateηi, whigh,i = ηi, where1 ≤ i ≤ Nhits. (3.66)

Furthermore, with even-odd preconditioning, as discussed in the Section 3.3.1, we calculate

eigenvalue and eigenvectors of D†ooDoo, denoted as λi and hi. Then, we define the v and w vectors
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based on Equation 3.54 and Equation 3.55. The low modes are

vi =
1
λi

©­­«
−M−1

ee Meohi

hi

ª®®¬ (3.67)

wi = D†−
©­­«
−M−1,†

ee M†oeDoohi

Doohi

ª®®¬ . (3.68)

The high modes are

vi = D−1
deflateηi (3.69)

wi = ηi, (3.70)

where the Ddeflate now is the high-mode part of preconditioned Dirac operator as defined in Equa-

tion 3.55.

In this thesis, we use zMobius eigenvectors in place of Mobius eigenvectors, which introduces

no bias into the resulting all-to-all propagator. The zMobius Dirac operator is a five-dimensional

Dirac operator with complex coefficients appearing in the derivatives in the s direction. It allows

us to approximate a large-Ls Mobius domain wall operator by a small-Ls zMobius domain wall

operator, achieving nearly a factor of two speedup in the Direc operator inversion. We denote the

smaller-Ls space for zMobius operator with label 5′, and the larger-Ls space for Mobius operator

with label 5. Then, the Dirac operator can be decomposed in the following way:

[
D−1]4

=
∑

i

V45′
[

1
λi

hih
†
i

]5′

U5′4 (3.71)

−
∑

i

V45′
[

1
λi

hih
†
i

]5′

U5′4
Nh∑
j=1

η jη
†
j

+ V45 [
D−1]5

U54
Nh∑
j=1

η jη
†
j .

where hi is the zMobius eigenvector, Nh is the number of high modes, matrix U54 converts a 4D
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vector into a 5D vector by projecting out the left and right handed components and poking onto

the corresponding walls and matrix V45 performs the inverse procedure

U54χ =

©­­­­­­­­­­­­«

PR

0
...

0

PL

ª®®®®®®®®®®®®¬
χ (3.72)

V45
Ψ = (PL, 0, . . . , 0, PR)Ψ = PLΨ0 + PRΨLs−1. (3.73)

Equation 3.71 is an unbiased estimation of the Dirac operator because the first two terms cancel

each other as the number of high modes becomes large and the equation reduces to

lim
Nh→∞

[
D−1]4

= V45 [
D−1]5

U54. (3.74)

With preconditioning, the low modes are

vi = V45′ 1
λi

©­­«
−M−1

ee MeoM−1
oo hi

M−1
oo hi

ª®®¬ (3.75)

wi = U5′4†D†−
©­­«
−M−1,†

ee M†oeDoohi

Doohi

ª®®¬ . (3.76)

The high modes are

vi = V45 [
D−1]5

D−U54ηi (3.77)

− V45′ ©­­«
1 −M−1

ee Meo

0 1

ª®®¬
©­­«
0 0

0
∑

i
1
λi

hih
†
i

ª®®¬
©­­«

1 0

−MoeM−1
ee D†oo D†oo

ª®®¬ D−U5′4ηi (3.78)

wi = ηi . (3.79)

26



3.4 Wilson coefficients and non-perturbative renormalization

The Wilson coefficients Ci(µ) in Section 2.2 incorporates the contribution of short-distance

interaction from heavy particles. The values of the Wilson coefficients are known in the MS

scheme [7]. In this section, we discuss the non-perturbative renormalization (NPR) procedure

of determining the conversion matrix from the lattice operators to the operators in the MS scheme.

The first step is to replace the 10, linearly dependent lattice operators Q1−10 with a new basis

of 7 linearly independent operators Q′1−7. The conventional seven independent operators Q′1−7 can

be defined in terms of the original ten dependent operators by the equations:

Q′1 = 3Q1 + 2Q2 −Q3 (3.80)

Q′2 =
1
5
(2Q1 − 2Q2 +Q3) (3.81)

Q′3 =
1
5
(−3Q1 + 3Q2 +Q3) (3.82)

Q′4 = Q5 (3.83)

Q′5 = Q6 (3.84)

Q′6 = Q7 (3.85)

Q′7 = Q8. (3.86)

As discussed in Section 2.2, we only calculate Q1 and Q2 which can be expressed with the 7

linearly independent operators as follows:

Q1 =
1
5

Q′1 +Q′2 (3.87)

Q2 =
1
5

Q′1 +Q′3. (3.88)

The NPR procedure is performed with the aid of an intermediate scheme, the regularization-

independent (RI) scheme [8]. There are four different types of RI/SMOM schemes: the (/q, /q)

scheme, the (γµ, γµ), the (/q, γµ) scheme, and the (γµ, /q) scheme. The first /q or γµ represents the
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projection operator used to define the operator renormalization and the second /q or γµ represents

the projection operator we use in the wave function renormalization. In this work, we only use the

(/q, /q) scheme.

The conversion matrix from lattice operators Q′lat to operators in RI/SMOM scheme has to be

calculated on the lattice. We denote the conversion matrix as ZRI←lat

QRI
i =

∑
j

(
ZRI←lat

)
7×7,i j

Q′lat
j . (3.89)

The RI operators are defined by requiring that when inserted into five point functions with

four gauge-fixed off-shell external quark lines the resulting Greens functions when evaluated at

an energy scale µ have a specific from, usually equal to the correlation function F that would be

obtain in free field theory. The conversion matrix is calculated by

ZRI←lat = Z2
q FM−1, (3.90)

where Zq is the quark wave function renormalization constant and is used to renormalize the ex-

ternal quark fields of the four-quark Green’s function, and M is the amputated correlation function

made up of the lattice operators. Both Zq and M require numerical calculation on the lattice.

Then, the conversion from RI/SMOM scheme operators to MS scheme operators are worked

out in [9]

QMS
i =

∑
j

[(
T + ∆TMS

I

)
10×7

(
1 + ∆rMS←RI

)
7×7

]
i j

QRI
j , (3.91)

where ∆rMS←RI is computed at one loop and can be found in Tab. XI of the reference [9]. The

other two constant matrices T and ∆TMS
I are used to express the operators in the 10 operator basis in

terms of the operators in the 7 operator basis and are given in Equation 59 and 65 of that reference.

The expression of ∆rMS←RI involves the QCD coupling constant αs(µ). At two-loop order, the
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solution of renormalization group equation for α f
s (µ) is [10]

α
f
s (µ) =

4π

β0 ln
(
µ2/Λ2

f

) ©­­«1 − β1

β2
0

ln ln
(
µ2/Λ2

f

)
ln

(
µ2/Λ2

f

) ª®®¬ ,
where f is the number of flavors, Λ f is the QCD energy scale and is dependent on the number of

flavors, and β0 and β1 are two constants

β0 =
11Nc − 2 f

3
(3.92)

β1 =
34
3

N2
c −

10
3

Nc f − N2
c − 1
Nc

f . (3.93)

The QCD energy scale in five-flavor theory Λ5 is determined from the known value of the cou-

pling constant in five-flavor theory at the energy scale of MZ . The value in the PDG table [11] is

α
(5)
s (MZ ) = 0.1179. The four-flavor theory Λ4 is determined by requiring that the values of cou-

pling constant at the bottom quark mass are the same for four-flavor and five-flavor theories, i.e.

α
(4)
s (Mb) = α(5)s (Mb). After obtainingΛ4, the three-flavor theoryΛe is determined by requiring that

the values of coupling constant at charm quark mass are the same for three-flavor and four-flavor

theories, i.e. α(3)s (Mc) = α(4)s (Mc). The following set of equations sums up this process

α
(5)
s (MZ ) = 0.1179⇒ Λ5 = 0.2250 GeV (3.94)

α
(5)
s (Mb) = α(4)s (Mb) ⇒ Λ4 = 0.3217 GeV (3.95)

α
(4)
s (Mc) = α(3)s (Mc) ⇒ Λ3 = 0.3673 GeV. (3.96)

After obtaining Λ3, the QCD coupling constant α(3)s (µ) can be calculated for any energy scale

based on Equation 3.92. In this work, we choose to use µ = 4.00 GeV to calculate the Wilson

coefficient. So we have

α
(3)
s (4.00 GeV) = 0.2167. (3.97)
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Table 3.1: Input parameters for the calculation of the QCD coupling constant αs

MZ 91.1876 GeV
Mb 4.18 GeV
Mc 1.275 GeV
α
(5)
s (MZ ) 0.1179
Λ5 0.2250 GeV
Λ4 0.3217 GeV
Λ3 0.3673 GeV
α
(3)
s (4.00 GeV) 0.2167

The input constant parameters used for calculating the QCD coupling constant αs are listed in

Table 3.1.

In conclusion, the complete procedure of converting the seven lattice operators Q′lat
i to the ten

operators in the MS scheme can be expressed by the following equation

QMS
i =

∑
j

[(
T + ∆TMS

I

)
10×7

(
1 + ∆rMS←RI

)
7×7

(
ZRI←lat

)
7×7

]
i j

Q′lat
j (3.98)

≡
∑

j

[(
ZMS←lat

)
10×7

]
i j

Q′lat
j . (3.99)

Therefore, the lattice Wilson coefficients can be calculated from the Wilson coefficients in the

MS scheme

C′lat
j =

∑
i

CMS
i

[(
Z MS←lat

)
10×7

]
i j
. (3.100)

In this work, the ensemble for which we calculated the Wilson coefficients is the 24ID ensem-

ble. We calculate the conversion matrix ZRI←lat at the energy scale µ = 1.24 GeV. Although the

NPR renormalization is meaningful at all energy scales, the switch between NPR and MS and the

MS renormalization itself relies on perturbation theory and is thus best done at a high energy scale.

Thus, we use another 32IF ensemble to transit the energy scale from 1.24 GeV to 4 GeV. This
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procedure is called step scaling. The final conversion matrix is

ZRI←lat(4 GeV, 24ID) = ZRI←lat(4 GeV, 32I)
[
ZRI←lat(1.24 GeV, 32I)

]−1
(3.101)

ZRI←lat(1.24 GeV, 24ID).

Finally, we obtain the following values of Wilson coefficients for the 24ID ensemble and for

the RI/SMOM(/q, /q) scheme

C1 = −0.5746(2) (3.102)

C2 = 1.3278(2), (3.103)

where the numbers in the parenthesis are the statistical errors.

3.5 Jackknife resampling for estimating statistical errors

The jackknife resampling method is a widely used statistical method for estimating the standard

deviation of an estimated parameter.

Suppose we have a sample of n data points, S = (x1, . . . , xN ), and get an estimator θ̂ = f (S) of

the true parameter θ. The jackknife resampling method works in the following procedure

1. Generate N jackknife samples by leaving out one sample at a time.

Si = (x1, x2, . . . , xi−1, xi+1 . . . , xN ) , for 1 ≤ i ≤ N . (3.104)

2. Calculate N estimators based on each Jackknife sample

θ̂i = f (Si), for 1 ≤ i ≤ N . (3.105)
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3. The variance of the estimator is then

s2
θ̂
=

N − 1
N

N∑
i=1
(θ̂i − θ̂(.))2. (3.106)

where

θ̂(.) =
1
N

N∑
i=1

θ̂i . (3.107)
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Chapter 4: Calculating the π0 → e+e− decay amplitude

In this chapter, we discuss the calculation of π0 → e+e− as a first step toward the calculation

of the two-photon component of KL → µ+µ− decay. As a step in this direction, we have developed

a new method that can be directly applied to the decay π0 → e+e− to compute both the real and

imaginary parts of the amplitude of this simper decay process [12].

This chapter is organized as follows. In Section 4.1, we review the basics of the π0 → e+e− de-

cay, including the status of current experimental and theoretical results, and the real and imaginary

part of the decay amplitude. The imaginary part of the decay amplitude can be obtained from the

optical theorem with an on-shell two-photon state, while the first-principles calculation of the real

part requires lattice methods. In Section 4.2, we develop an analytic continuation method to deal

with the intermediate two-photon state which is the major difficulty in the lattice calculation of the

π0 → e+e− decay. The decay amplitude is then decomposed into a leptonic part and a hadronic

part. In Section 4.3, we develop strategies to calculate the hadronic matrix element on the lattice

and to handle the disconnected diagram. In Section 4.4, we work out the analytic formula for the

leptonic part. In Section 4.5, we present the lattice calculation result of the π0 → e+e− decay

amplitude and compare it with experiment values.

4.1 Overview of the π0 → e+e− decay

The neutral pion, as the lightest hadron in the standard model, has played an important role

in the development of particle physics. The neutral pion decay is completely dominated by the

two-photon mode with branching ratio B(π0 → γγ) = 0.988. The theoretical prediction of the
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π0 → γγ decay width is

Γ(π0 → γγ) = 1
4
πα2M3

πF2
πγγ . (4.1)

At the leading order of chiral perturbation theory, the form factor Fπγγ is given by

Fπγγ =

√
2

4π2 fπ
, (4.2)

where fπ ≈ 132 MeV is referred to as the pion decay constant. This formula is exact in the chiral

limit where the u and d quarks are massless.

In this chapter, we study the rare decay of the neutral pion into a dielectron. Its decay amplitude

is much smaller than the main mode π0 → γγ because it involves a second-order QED process. In

addition, the π0 → e+e− decay is helicity-suppressed because the final state electron and positron

have the same helicity due to momentum conservation and angular momentum conservation. Thus,

the decay amplitude is suppressed by an additional factor of me

mπ
.

The π0 → e+e− decay rate was well measured in the KTeV experiment at Fermilab in 2007.

After the elaborate reanalysis of radiative corrections [13][14], the experimental branching ratio of

this decay is

B(π0 → e+e−) = (6.87 ± 0.36) × 10−8. (4.3)

The theoretical prediction of this decay rate was first proposed in 1958 [15], and has been improved

in the later decades. However, so far the experimental result is still larger than many theoretical

results [16], like the result from dispersion relations, by the order of 2σ.

The rare pion decay π0 → e+e− decay is dominated by the electromagnetic contribution that

is mediated by two virtual photons π0 → γ∗γ∗ → e+e− as shown in the QED one-loop diagram in

Figure 4.1. The π0 → e+e− decay also has weak interactions contributions that is mediated by Z0

boson. However, these are many orders of magnitude smaller than the electromagnetic two-photon
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π0

e−

e+

γ

γ

Figure 4.1: The electromagnetic contribution to the π0 → e+e− decay mediated by two photons.
The blob represents the pion transition form factor that is not analytically known and requires
lattice calculations.

contribution and is negligible [17]

Γπ0→Z0→e+e−

Γπ0→γγ

= 9
(

GF

4πα

)
(memπ)2 ≈ 10−15. (4.4)

Therefore, in this work, we only consider the leading-order electromagnetic contribution.

We use A to denote the π0 → e+e− decay amplitude. The transition amplitude and the decay

width are then

⟨e+(k+)e−(k−)|π0(P)⟩ = (2π)4δ4(P − k− − k+)iA. (4.5)

Γ(π0 → e+e−) = β

8πMπ
|A|2, where β =

√
1 − 4m2

e

M2
π

, (4.6)

where me is the mass of electron and Mπ is the mass of pion.

The decay amplitude is composed of an imaginary part and a real part A = Areal + iAimag.

The imaginary part can be obtained using the optical theorem where we cut the two virtual photon

lines in Figure 4.1 and split the diagram into two separate diagrams with on-shell photons. Then,

the imaginary part of the decay amplitude will be equal to the product of these two diagrams. We

obtain the following result

Aimag = πmeMπα
2Fπγγ

1
β

ln
1 − β
1 + β

, (4.7)
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where Fπγγ is the pion transition form factor in Equation 4.2. Plugging it into Equation 4.6, the

imaginary part contribution to the decay width is

Γ(π0 → e+e−)imag =
1
8
πm2

e Mπα
4F2 1

β

(
ln

1 − β
1 + β

)2
. (4.8)

The contribution of the imaginary part gives us a lower bound of the branching ratio of the

π0 → e+e− decay

R ≡ Γ(π
0 → e+e−)

Γ(π0 → γγ)
≥
Γ(π0 → e+e−)imag

Γ(π0 → γγ)
(4.9)

=
1
2
α2

(
me

Mπ

)2 1
β

(
ln

1 − β
1 + β

)2
(4.10)

= 4.75 × 10−8. (4.11)

This lower bound is commonly referred to as the unitarity bound. It is also model-independent

because the dependence on the pion transition form factor has been canceled in the ratio.

4.2 Analytic continuation

Even though the imaginary part of the π0 → e+e− decay amplitude can be directly obtained

from the optical theorem, the real part is more complicated and requires the lattice method for a

first-principles calculation. In this section, we develop an analytic continuation method to calculate

the entire decay amplitude including both the real part and the imaginary part on the lattice.

We start by writing down the usual expression for the π0 → e+e− decay in Minkowski space

where the assignment of the variables is indicated in Figure 4.2. The conventional Minkowski-

space decay amplitude can be decomposed into leptonic and hadronic pieces, explicitly integrated

over the average positions of the two hadronic and the two leptonic E&M currents to impose

four-momentum conservation and the result written as a combination of position and momentum
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integrals:

A =

∫
d4w ⟨0|T

{
Jµ

(w
2
)
Jν

(
−w

2
)}
|π0⟩ (4.12)∫

d4pe−ip·w
[

gµµ′

(p + P
2 )2 + m2

γ − iϵ

] [
gνν′

(p − P
2 )2 + m2

γ − iϵ

]
u(k−)γµ′

[
γ · (p + P

2 − k−) + me

(p + P
2 − k−)2 + m2

e − iϵ

]
γν′v(k+).

Here all expressions, including the matrix element ⟨0|T
{

Jµ
(
w
2
)
Jν

(
−w

2
)}
|π0⟩ are intended to be

standard Minkowski-space quantities with the metric (1,1,1,-1). We have chosen to hold the aver-

age position of the two hadronic E&M currents in Eq. (4.12) fixed at the origin so that the overall

energy and momentum conserving delta function has been removed. We have also introduced k±

as the four-momenta of the e+ and e− while P is the four-momentum of the π0.

π0Jµ(v)

e+(~k+)

e−(~k
−
)

Jµ(u)

p− P
2

p + P
2

p + P
2
− k+ P

Figure 4.2: The diagram showing the two-photon contribution to the π0 → e+e− decay amplitude.
The assignment of momenta corresponds to that used in the expression for the decay amplitude
given in Eq. (4.12).

While Eq. (4.12) is a correct expression for the π0 → e+e− decay amplitudeA, the appearance

of the Minkowski-space hadronic amplitude ⟨0|T
{

Jµ
(
w
2
)
Jν

(
−w

2
)}
|π0⟩ prevents a direct evaluation

using lattice QCD. However, if the integration contour for the time variable w0 could be rotated

so that instead of w0 following the real axis, the complex contour w0e−iϕ is followed where w0

remains real but the angle ϕ is increased from zero to π/2, then the hadronic matrix element would

become a Euclidean quantity which can be computed in lattice QCD. Because of the simple form
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of the hadronic matrix element and the explicit expression given in Eq. (4.12) this transformation

from a Minkowski- to a Euclidean-space quantity is not difficult to achieve.

We will first examine the hadronic matrix element by writing out the time ordering explictly

and introducing a sum over a complete set of intermediate states:

⟨0|T
{

Jµ(u)Jν(v)
}
|π0⟩ =

∑
n

{
⟨0|Jµ(u)|n⟩ ⟨n|Jν(v)|π0⟩θ(u0 − v0)

+⟨0|Jν(v)|n⟩ ⟨n|Jµ(u)|π0⟩θ(v0 − u0)
}

= eiP·W
∑

n

{
⟨0|Jµ(0)|n⟩ ⟨n|Jν(0)|π0⟩eiw·(Pn−P/2)θ(w0)

+⟨0|Jν(0)|n⟩ ⟨n|Jµ(0)|π0⟩e−iw·(Pn−P/2)θ(−w0)
}
, (4.13)

where we have introduced the Minkowski four-vectors W = (u + v)/2 and w = u − v and used

Pn to represent the momentum four-vector for the state |n⟩. Note, the hadronic matrix element

⟨0|T
{

Jµ
(
w
2
)
Jν

(
−w

2
)}
|π0⟩ in Eq. (4.12) can be obtained from Eq. (4.13) if we change the space-

time integration variables from u and v to W and w and set W = 0.

As can be seen from Eq. (4.13), the time component w0 enters the hadronic matrix element in

the complex exponent e−iw0(En−mπ/2) if w0 > 0 and as eiw0(En−mπ/2) for w0 < 0. Thus, both factors

will fall exponentially for large |w0 | if we rotate the w0 integration contour as described above.

However, we must also consider the second exponential factor that appears in the expression for

the complete amplitude given in Eq. (4.12): eip0w0 . Without taking further steps, this factor will

introduce exponential growth which for sufficiently large values of the integration variable p0 will

result in diverging behavior for the integral over w0.

Of course, this behavior can be avoided if the p0 contour is Wick rotated with a compensating

phase so that for large p0 the p0 contour follows the path p0eiπ, at least for large |p0 |. Here the

variable p0 is taken to be real and the angle ϕ is the same as that appearing in the definition of the

Wick-rotated w0 contour: w0 → w0e−iϕ. Increasing ϕ to π/2 results in an explicit amplitude in

which the hadronic matrix element ⟨0|Jµ
(
w
2
)
Jν

(
−w

2
)
|π0⟩ is now evaluated in Euclidean space and

can be directly computed using lattice QCD.
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The actual p0 contour C shown in Figure 4.3 does not precisely follow the imaginary axis. This

implies that for portions of the p0 contour the exponent in the factor eiw0p0 in Eq. (4.12) will not be

purely imaginary and an exponentially growing behavior as w0 increases will appear. For this Wick

rotation to be possible, it is necessary that this exponential growth be overcome by the exponential

fall-off coming from the w0 behavior of the Euclidean-space hadronic matrix element. As can be

seen from Figure 4.3 this exponential growth of the electron-photon amplitude is minimized when

the p0 contour is routed as close to the poles mπ/2 − | ®p| and −mπ/2 + | ®p| as possible. Thus, the

matrix element ⟨0|T
{

Jµ
(
w
2
)
Jν

(
−w

2
)}
|π0⟩ must fall more rapidly than e−mπ |w0 |/2 for large w0 if the

Wick-rotated integral over w0 is to converge. Fortunately, the lightest intermediate state which can

appear in this hadronic matrix element is the two-pion state so the resulting exponential decrease

is e−3mπ/2|w0 | which is sufficient to guarantee convergence.

Re(p0)

Im(p0)

−mπ

2
− |~p| −

√

(~p− ~k+)2 +m2
e

mπ

2
− |~p|

−mπ

2
+ |~p|

√

(~p− ~k+)2 +m2
e

mπ

2
+ |~p|

Contour C

Figure 4.3: A diagram of the complex p0 plane showing the Minkowski p0 contour before the
analytic continuation (the horizontal black line) and a possible choice of contour after the analytic
continuation (the blue line). The six crosses correspond to the six poles of the integrand on the
right hand side of Eq. (4.12).

The conventional Minkowski-space amplitude that appears in the second and third lines of

Eq. (4.12) is little changed in this procedure. The only effect is that the p0 contour is rotated from

the usual integration along the real axis into the more elaborate contour shown in Figure 4.3. This
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procedure does not change the value of the final decay amplitude and the result will continue to be

complex with the imaginary part given by the optical theorem. Thus, with what is an application of

Cauchy’s theorem we have Wick-rotated the integral over w0 so that the hadronic matrix element

is now evaluated in Euclidean space. The result can be written:

A = e4
∫

d4w ⟨0|T
{

Jµ
(w
2
)
Jν

(
−w

2
)}
|π0⟩E (4.14)∫

d3p
∫

C
dp0e−i ®p· ®we+p0w0

[
g̃µµ′

(p + P
2 )2 − iϵ

] [
g̃νν′

(p − P
2 )2 − iϵ

]
u(k−)γµ′

[
γ · (p + P

2 − k−) + me

(p + P
2 − k−)2 + m2

e − iϵ

]
γν′v(k+).

In this equation, the subscript E on the hadronic matrix element indicates that it is evaluated us-

ing Euclidean time dependence and conventions. The diagonal metric tensor g̃µµ′ with elements

(1, 1, 1, i) has been introduced to correctly connect the Minkowski conventions for the E&M cur-

rents in the electron and photon part of the expression with the Euclidean conventions used in the

hadronic matrix element. The p0 contour to be used in Eq. (4.14) is that labeled C in Figure 4.3.

Note for large p0 factor e+p0w0 in Eq. (4.14) contains an imaginary exponent and oscillates with no

exponential growth.

Finally, we should observe that the analytic portion of the result given in Eq. (4.14) appears to

be straightforward to evaluate. We begin by expressing the right-hand side of this equation as the

space-time integral of the product of leptonic and hadronic factors:

A =
∫

d4wLµν(w)Hµν(w). (4.15)

Here the four integration variables are real and integrated over infinite volume. The two factors in
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this equation are given by:

Lµν(w) = e4
∫

d3p
∫

C
dp0e−i ®p· ®we+p0w0

[
g̃µµ′

(p + P
2 )2 − iϵ

] [
g̃νν′

(p − P
2 )2 − iϵ

]
u(k−)γµ′

[
γ · (p + P

2 − k−) + me

(p + P
2 − k−)2 + m2

e − iϵ

]
γν′v(k+) (4.16)

Hµν(w) = ⟨0|T
{

Jµ
(w
2
)
Jν

(
−w

2
)}
|π0⟩E . (4.17)

Because the integral over w in Equation (4.15) converges exponentially at least as fast as e−mπ |w |

where |w | =
√∑

µ w
2
µ, truncating the infinite-volume integral over w, as is needed if Hµν(w) is to

be computed using lattice methods, will introduce errors which are exponentially suppressed.

This change of integration contour is an application of Cauchy’s theorem which does not

change the quantity Aπ0→e+e− . The amplitude Aπ0→e+e− remains a complex, Minkowski-space

quantity. Therefore, both the real part and the imaginary part of the decay amplitudeAπ0→e+e− can

be computed directly on the lattice.

4.3 Calculating the hadronic factor

The hadronic factor Hµν(w) = ⟨0|T
{

Jµ
(
w
2
)
Jν

(
−w

2
)}
|π0⟩ can be extracted from the lattice three-

point function through the following relationship:

⟨0|T
{

Jµ(x)Jν(0)
}
|π0⟩ = Z2

V
2mπV

Nπ
lim

t→−∞
emπ |t | ⟨0|T

{
Jµ(x)Jν(0)π0(t)

}
|0⟩, (4.18)

where ZV is the renormalization factor that relates the non-conserved local lattice currents on the

right hand side of the equation to the conserved global currents, V is the number of lattice sites

on each time slice, 2mπV comes from the normalization of pion state, and Nπ is the normalization

factor for pion ground state. In this calculation, we use wall-like pion interpolating operator with

zero momentum defined as π0(t) = ∑
®z π

0(®z, t).

There are two diagrams involved in computing the three-point function, a connected diagram

and a disconnected diagram, as shown in Figure 4.4 and Figure 4.5. In the next sections, we discuss
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Jµ(u)

Jν(v)

Figure 4.4: The connected diagram involved in the calculation of hadronic three point function.
The dashed line on the left represents the location of the wall-like pion interpolating operator.

the strategies of calculating these two diagrams on the lattice.

4.3.1 Connected diagram

The connected diagram involved in the three-point function ⟨0|T
{

Jµ(u)Jν(v)π0(t)
}
|0⟩ is shown

in Figure 4.4. Let S(x, y) be the propagator from y to x. Then, the contraction can be written as

⟨Jµ(u)Jν(v)π0(tπ)⟩connected = −
2i

3
√

2
Re[tr(γ5S(tπ, v)γµS(v, u)γνS(u, tπ))]. (4.19)

Because we use wall-like pion interpolating operator, the contraction comprises two wall

source propagators and one point source propagator. The electromagnetic currents must be sep-

arated far enough from the pion interpolating operator such that the contamination from excited

states with higher energies are small enough. We always keep the time difference from the pion

wall source at t to the closer current to be a fixed constant ∆t. To put it more concretely, consider-

ing the periodic boundary conditions, for every lattice site tu and tv in [0,T), we always choose a

tπ such that

min ((tu − tπ + T)%T, (tv − tπ + T)%T) = ∆t. (4.20)
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Jµ(u)

Jν(v)

Figure 4.5: The disconnected diagram involved in the calculation of hadronic three point function.
The dashed line on the left represents the location of the wall-like pion interpolating operator.

The values of ∆t for each ensemble can be found in Table 4.1. In addition, we impose the constraint

that the distance from tu and tv to pion wall can not exceed T/2.

To increase statistics, it is easy to observe that the case where the pion wall is on the left side

of electromagnetic currents should describe the same physical process as the case where the pion

wall is on the right side. Therefore, we average over these two cases to get more statistics and

reduce noise.

4.3.2 Disconnected diagram

Another diagram involved in the three-point function is the disconnected diagram shown in

Figure 4.5. Disconnected diagrams typically involve large noise and are more difficult to calcu-

late. In our calculation, we use the random volume source propagators discussed in Section 3.3.2

to compute the quark self-loops formed by one electromagnetic current. The random volume

source propagators are computed in the hadronic vacuum polarization calculation carried out by

the RBC/UKQCD collaboration [18] [19].

Using the same notations as last section, the contraction of the disconnected diagram is

⟨Jµ(u)Jν(v)π0(t)⟩disconnected =
2i

3
√

2
tr
[
γµS(u, u)

]
tr
[
γνS(v, t)γ5S(t, v)

]
. (4.21)

43



The amplitude from this disconnected diagram can be separated into a function of u and a

function of v. We use Fµ(u) and Gν(v) to denote these two functions

eMπ tv ⟨Jµ(u)Jν(v)|π0⟩disconnected = Fµ(u)Gν(v). (4.22)

Since the amplitude on the left hand side is independent of v given the relative distance between

two electromagnetic r = u − v, we can average over the position of one electromagnetic current

for a given relative distance r to increase statistics. The average can be efficiently calculated using

the convolution theorem and Fourier transformation:

⟨Jµ(r)Jν(0)|π0⟩disconnected =
1
N

∑
v

Fµ(v + r) · Gν(v) (4.23)

=
1
N
F −1

[
F̃µ(k) · G̃ν(−k)

]
, (4.24)

where N is the total number of lattice sites, F −1 represents inverse Fourier transform, F̃µ(k) is

the Fourier transform of Fµ(u), and G̃ν(k) is the Fourier transform of Gν(v). The convention of

Fourier transforms is in Appendix B.4. Since the complexity of performing a fast Fourier transform

is O(N log(N)), this approach is much faster than directly averaging over v for every r whose time

complexity is O(N2).

Even though the disconnected diagram is much noisier than the connected diagram, we are

able to determine the amplitude of the disconnected diagram up to an error of about 60%.

4.3.3 Properties of the hadonic factor

In this section, we derive some important properties of the hadronic factor that will be used to

simplify the calculation of the leptonic factor in the next section. The hadronic factor is closely

related to the π0 → γγ decay

∫
d4x e−ipx ⟨Jµ(x)Jν(0)|π0(q)⟩ = ϵµναβpαp′βFπγγ(p2), (4.25)

44



where Fπγγ is the pion form factor, q is the momentum of initial pion state, and p and p′ are the

momentum of two photons. Let Hµν(x) = ⟨0|T
{

Jµ
(
x
)
Jν

(
0
)}
|π0⟩. We have

Hµν(x) = ϵµναβ
∫

d4p
(2π)4

eipx pαp′βFπγγ(p2) (4.26)

= ϵµναβ

∫
d4p
(2π)4

eipx pα(q − p)βFπγγ(p2) (4.27)

= ϵµναβ

∫
d4p
(2π)4

eipx pαqβFπγγ(p2), (4.28)

where we used ϵµναβpαpβ = 0 from the second line to the last line. If we assume that the initial

poin is stationary, i.e., q = (Mπ, 0, 0, 0), then

Hµν(x) = ϵ0µναMπ

∫
d4p
(2π)4

eipx pαFKLγγ(p2). (4.29)

Based on the formula in Equation 4.29, the hadronic factor should have the following properties

• The hadronic factor is 0 at time components where µ = 0 or ν = 0

• The hadronic factor at each lattice site is an antisymmetric matrix, i.e., Hµν(x) = −Hνµ(x)

• Using the property of Fourier transform, because pαFKLγγ(p2) is an odd function of p, the

hadronic factor is an odd function of x, i.e., Hµν(x) = −Hµν(−x)

4.4 Calculating leptonic factor

In this section, we evaluate the leptonic factor in Equation 4.16. We first calculate the factor

that involves spinors and Gamma matrices

M̃µν = g̃µµ′g̃νν′γµ′

[
γ · (p + P

2
− k−) + me

]
γν′v(k+). (4.30)

Because the hadronic part Hµν is antisymmetric in µ and ν, we only need to calculate the antisym-

metric part Mµν = (M̃µν − M̃νµ)/2, which turns out to be much simpler than the original matrix.
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Using the conventions in Appendix B.2 and B.3, we can analytically calculate the matrix Mµν. If

the spin of electron is positive and the spin of positron is negative, we get

Mµν = 2ime

©­­­­­­­­«

0 p3 k−,2 − p2 0

−p3 0 p1 − k−,1 0

p2 − k−,2 k−,1 − p1 0 −Mπ

2

0 0 Mπ

2 0

ª®®®®®®®®¬
, (4.31)

where we assume that the last row and last column is for the time direction. On the other hand,

if the spin of electron is negative and the spin of positron is positive, the matrix Mµν is the same

except that time components have opposite signs

Mµν = 2ime

©­­­­­­­­«

0 p3 k−,2 − p2 0

−p3 0 p1 − k−,1 0

p2 − k−,2 k−,1 − p1 0 Mπ

2

0 0 −Mπ

2 0

ª®®®®®®®®¬
. (4.32)

In Section 4.3.3, we showed that the time components of the hadronic factor Hµν are 0. So we can

ignore the time components in Mµν where µ = 0 or ν = 0. In addition, the amplitude in Equa-

tion 4.16 would be odd in ®k− when Mµν contains k−,i. Therefore, these parts do not contribution to

the final amplitude and we can ignore the k− in Mµν. Finally, the spinor part Mµν can be effective

written as Mµν = 2imeϵ0µνρpρ, and the leptonic factor can be written as

Lµν(w) = 2imeϵ0µνρ

∫
d3 ®p

∫
C

dp0e−i ®p· ®we+p0w0

[
1

(p + P
2 )2 + m2

γ − iϵ

] [
1

(p − P
2 )2 + m2

γ − iϵ

]
[

1
(p + P

2 − k−)2 + m2
e − iϵ

]
pρ. (4.33)

The next step in the evaluation of Lµν(w) is to perform the p0 integral using Cauchy’s theorem.

Because of the factor of ep0w0 appearing in Eq. (4.17) we must close the p0 contour in the left-

46



half plane when w0 is positive and obtain three terms coming from the poles at ±mπ/2 − | ®p| and

−
√
( ®p − ®k+)2 + m2

e . If w0 is negative then we must close the contour in the right-half plane and

pick the residues of the poles at ±mπ/2 + | ®p| and
√
( ®p − ®k+)2 + m2

e . The result can be written as

Lµν(w) =
1
π
α22meϵ0µνρ

∫
d3 ®p

[
e−| ®p| |w0 |e

1
2 Mπ |w0 |

Mπ | ®p|(Mπ − 2| ®p|)(−Mπ | ®p| + 2 ®p · ®k−)

+
e−| ®p| |w0 |e−

1
2 Mπ |w0 |

Mπ | ®p|(Mπ + 2| ®p|)(Mπ | ®p| + 2 ®p · ®k−)

+
e−Epe |w0 |

Epe(Mπ | ®p| + 2 ®p · ®k−)(−Mπ | ®p| + 2 ®p · ®k−)

]
pρe−i ®p· ®w, (4.34)

where Epe =

√(
®k− − ®p

)2
+ m2

e is the energy of the virtual electron.

To obtain the final amplitude, we need to sum over all possible directions of the momentum of

the outgoing electron and positron. Thus, to simplify the expression of the leptonic factor, we can

average of the direction of ®k− in three-dimensional space

1
4π

∫
dΩ(®k−) Lµν(w), (4.35)

where Ω(®k−) is the solid angle of ®k−. Let θ′ be the angle between ®p and ®k−. Then, using the

integrals in Equation C.1 and Equation C.2 in Appendix C,

Lµν(w) =2me
α2

π
ϵ0µνρ

∫
d3 ®p 1
| ®p|2

[
−e−| ®p| |w0 |e

1
2 Mπ |w0 |

Mπ(Mπ − 2| ®p|)
1

4| ®k− |
ln(1 + β

1 − β )

+
e−| ®p| |w0 |e−

1
2 Mπ |w0 |

Mπ(Mπ + 2| ®p|)
1

4| ®k− |
ln(1 + β

1 − β )

+
1
2

∫
d cos θ′

e−Epe |w0 |

Epe(Mπ + 2| ®k− | cos θ′)(−Mπ + 2| ®k− | cos θ′)

]
× pρe−i ®p· ®w . (4.36)

Note that because Epe =

√(
®k− − ®p

)2
+ m2

e is also dependent on the angle θ′ because ®k− and p, the

integration over cos θ′ in the third term can not be analytically calculated out.
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Using Equation C.5 in Appendix C, we integrate out the direction of ®p in three-dimensional

space and simplify the leptonic part to the following form

Lµν(w) = 2meα
2ϵ0µνρ

wρ

| ®w |2

(
−e

Mπ
2 |w0 |

Mπ | ®k− |
ln

(
1 + β
1 − β

) ∫ ∞

0
d| ®p| e−| ®p| |w0 |

Mπ − 2| ®p|

[
cos(| ®p| | ®w |) − sin(| ®p| | ®w |)

| ®p| | ®w |

]
+

e−
Mπ
2 |w0 |

Mπ | ®k− |
ln

(
1 + β
1 − β

) ∫ ∞

0
d| ®p| e−| ®p| |w0 |

Mπ + 2| ®p|

[
cos(| ®p| | ®w |) − sin(| ®p| | ®w |)

| ®p| | ®w |

]
+ 2

∫ ∞

0
d| ®p| d cos θ′

e−Epe |w0 |

Epe(−Mπ + 2| ®k− | cos θ′)(Mπ + 2| ®k− | cos θ′)

[
cos(| ®p| | ®w |) − sin(| ®p| | ®w |)

| ®p| | ®w |

])
.

(4.37)

The leptonic factor has a pole at | ®p| = Mπ

2 , which corresponds to the case where two virtual

photons are on-shell. The real part of the decay amplitude is obtained by taking the principal value

of the integral. In this work, we use the CUBA library [20] to numerically calculate the integrals

in Equation 4.37 for every lattice site w. On the other hand, the imaginary part is obtained by

replacing the pole 1
| ®p|−Mπ/2 with a delta function iπδ(| ®p| − Mπ/2), which gives us

Lim
µν(w) = 2πα2 me

M2
π

ϵ0µνρ
wρ

| ®w |2
1
β

ln
(
1 + β
1 − β

) [
cos(Mπ

2
| ®w |) −

sin(Mπ

2 | ®w |)
Mπ

2 | ®w |

]
. (4.38)

4.5 Lattice results of the π0 → e+e− decay amplitude

The hadronic matrix element is calculated on four different ensembles, whose parameters are

listed in Tab. 4.1. All ensembles use Möbius domain wall fermions, which can achieve good

chiral symmetry with a much smaller size in the 5th dimension compared to Shamir domain wall

fermions. All ensembles are generated with the Iwasaki gauge action. In addition, the 24ID,

32ID, and 32IDF ensembles use the Dislocation Suppressing Determinant Ratio (DSDR) action

term to suppress chiral symmetry breaking effects. For every configuration, we have 1024 or 2048

point source propagators with randomly distributed sources and Coulomb gauge-fixed wall source

propagators with sources on every time slice where the source for each propagators lies on a single
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time slice. The number of point source propagators for each ensemble is listed in Tab. 4.1.

24ID 32ID 32IDF 48I 64I
a−1 (GeV) 1.015 1.015 1.37 1.73 2.36
Mπ (MeV) 140 140 143 135 135

size 243 × 64 323 × 64 323 × 64 483 × 96 643 × 128
LS 24 24 12 24 12
ZV 0.72672(35) 0.7260(19) 0.77700(8) 0.71076(25) 0.74293(14)

Configuration separation 10 10 10 10 20
Number of Configurations 47 47 61 32 49

Point Sources 1024 2048 1024 1024 1024
∆t 10 10 14 16 22

Table 4.1: Table of lattice ensembles used in this work. All ensembles are generated by the
RBC/UKQCD collaborations [21][22][23] . Here, ∆t is the time difference from the pion wall
source at t to the closer current, as explained in Section 4.3.1. For the ensemble names, “I” stands
for Iwasaki action and “ID” means Iwasaki action + DSDR. To distinguish between two 32ID
ensembles, a trailing “F” is added to the name of the finer ensemble.

The calculated real and imaginary parts of the decay amplitude are listed in Table 4.2. The ex-

perimental value for the imaginary part is evaluated using the optical theorem and the experimental

pion lifetime; the experimental real part is obtained by subtracting the imaginary part contribution

from the total experimental decay rate. In Figure 4.6 and Figure 4.7, we plot the calculated am-

plitude as a function of the upper limit of the sum over the Euclidean relative time w0 for the

imaginary part and real part, respective. We see a good plateau for all ensembles as the cutoff

increases. In the table and the plots, only the contribution from the connected diagram is included,

while the contribution from the disconnected diagram will be treated as a source of systematic

error.

Source Im A (eV) Re A (eV) Re A / Im A
24ID 38.58(54) 23.06(40) 0.5976(24)
32ID 39.80(36) 23.88(29) 0.6000(20)

32IDF 36.17(47) 21.48(33) 0.5939(22)
48I 35.19(81) 20.70(66) 0.5881(52)
64I 33.99(54) 19.73(42) 0.5803(35)

Experiment 35.07(37) 21.51(2.02) 0.68(6)

Table 4.2: Table for comparison between the lattice results and experimental results. The error in
parenthesis is statistical or experimental.
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Figure 4.6: Plot of lattice results for the imaginary part of the π0 → e+e− decay amplitude. The
x-axis is the upper limit of the sum over the relative time w0. The green line and yellow band are
the experimental results with errors.
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Figure 4.7: Plot of lattice results for the real part of the π0 → e+e− decay amplitude. The x-axis
is the upper limit of the sum over the relative time w0. The green line and yellow band are the
experimental results with errors.
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Figure 4.8: Plot of continuum limit extrapolation for the imaginary part of the amplitude. The
horizontal green line and yellow band represent experimental value and error. From left to right,
the three points are respectively the continuum limit, 64I, and 48I results. The errors shown in the
plot are statistical.

The 48I and 64I are the two ensembles with the finest lattice spacing and therefore should

have the smallest finite lattice spacing errors. Therefore, we use the continuum limit extrapolation

from the 48I and 64I ensembles as our final result. Figure 4.8 and Figure 4.9 show the process

of extrapolation assuming that finite lattice spacing error is proportional to a2, where a is lattice

spacing.

The estimation of a variety of systematic errors is presented in Table 4.4. The finite volume

error is estimated by evaluating the difference between the 24ID and 32ID results and assuming that

the finite volume error behaves as e−MπL , where L is the size of the lattice in the spatial direction.

We treat this volume dependence as a physical effect and neglect the varying finite lattice spacing

when determining this estimate. The error of omitting the disconnected diagram is estimated by

comparing the contributions of connected and disconnected diagrams for the 24ID ensemble. We

again neglect any dependence of this estimate on the lattice spacing. The disconnected diagrams

are calculated using the convolution method discussed in Section 4.3.2. The contributions of the
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Figure 4.9: Plot of continuum limit extrapolation for the real part of the amplitude. The horizontal
green line and yellow band represent experimental value and error. From left to right, the three
points are respectively the continuum limit, 64I, and 48I results. The errors shown in the plot are
statistical.

connected diagrams and disconnected diagrams for the 24ID ensemble are listed in Table 4.3. As

shown in the table, the amplitude of the disconnected diagrams is much smaller than the amplitude

of the connected diagrams, and we are able to determine the amplitude of the disconnected diagram

up to an error of about 60% which makes this error estimate correspondingly uncertain. The

renormalization factor for local electromagnetic current ZV is measured in Ref. [21], where the

error is also estimated. Finally, the errors in the numeral integrals including the leptonic factor are

easy to control and are ignored.

Diagram ImA (eV) ReA (eV)
Connected 38.58(54) 23.06(40)

Disconnected -1.11(55) -0.62(40)

Table 4.3: The contribution to the amplitude from the connected and disconnected diagrams for
the 24ID ensemble. The errors in parenthesis are statistical.
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Sources Im A (eV) Re A (eV) Re A / Im A
Finite volume 1.33 0.89 0.0026

Disconnected diagram 0.98 0.53 0.0031
ZV 0.013 0.074 0

Total systematic error 1.65 1.04 0.0040

Table 4.4: Sources of systematic error for the imaginary and real part of the amplitude.

Our final result is

ImA = 32.59(1.50)(1.65) eV (4.39)

ReA = 18.60(1.19)(1.04) eV, (4.40)

where the error in the first parenthesis is statistical and the error in the second parenthesis is sys-

tematic.

The real and imaginary parts of the decay amplitude are computed from the same hadronic

matrix element and are significantly correlated on each lattice configuration. Therefore, the ratio

ReA/ImA will have smaller statistical and systematic errors and give a more precise continuum

limit1. We could then use the very accurate experimental value for the imaginary part to obtain

a more accurate prediction for the real part. In Table 4.2, we list the calculated ratio ReA/ImA

from each ensemble, where the statistical errors are estimated with the jackknife method. The

continuum extrapolation from the 48I and 64I ensembles is shown in Figure 4.10. The systematic

errors of the ratio are estimated in the same way as the real and imaginary parts and are shown in

Table 4.4. Our final result for the ratio is

ReA
ImA = 0.571(10)(4), (4.41)

where the error in the first parenthesis is statistical and the error in the second parenthesis is sys-

tematic.
1The author would like to thank Amarjit Soni for the suggestions about reducing errors by calculating the ratio of

the real and imaginary part.
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Figure 4.10: Plot of continuum limit extrapolation for the ratio of the imaginary part to real part of
the decay amplitude. The horizontal green line and yellow band represent experimental value and
error. From left to right, the three points are respectively the continuum limit, 64I, and 48I results.
The errors shown in the plot are statistical.

Combining the optical theorem and the lattice result for the ratio of the real to imaginary

parts, we obtain the branching ratio B
(
π0 → e+e−

)
= 6.30(5)(2) × 10−8, where the error in the

first parenthesis is statistical and the error in the second parenthesis is systematic. This result falls

within two standard deviations of the experimental branching ratio B
(
π0 → e+e−

)
exp = 6.87(36)×

10−8.
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Chapter 5: Calculating the KL → γγ decay amplitude

In this chapter, we present a general strategy for the calculation of the CP conserving part of

the rare kaon decay KL → γγ together with further details of possible methods for computing each

of the four types of connected diagram. We then apply these strategies to a physical-mass lattice

QCD calculation of this decay amplitude. The two emitted photons are treated in infinite volume

while the hadronic portion of the calculation is carried out in finite volume in a fashion that insures

that all finite volume errors vanish exponentially in the size of this finite volume.

In Section 5.1, we review the experimental results of the KL → γγ decay rate as well as the

properties of its decay amplitude. The only unknown quantity in the decay amplitude is a scalar

factor FKLγγ. In Section 5.2, we develop a strategy to decompose the scalar factor FKLγγ into an

analytically known electromagnetic part Eµν(r) and a hadronic part Hµν(u, v)which is a matrix ele-

ment that can be calculated on the lattice. Calculating the hadronic part is much more complicated

than the calculation of the hadronic amplitude that enters the π0 → e+e− decay because of the

presence of the additional weak Hamiltonian operator and intermediate states whose energies are

lower than kaon mass. In Section 5.3, we discuss the general strategy of calculating the hadronic

matrix element, with an emphasis on demonstrating the successful removal of the contribution

from these intermediate states which grows exponentially as the time increases between the cre-

ation of the kaon and the absorption of the two final-state photons. In Section 5.4, we discuss the

direct subtraction of the exponentially-growing contribution from the |π0⟩ intermediate state and

the use of the s̄d term to remove the |η⟩ intermediate state. In Section 5.5, we present the strategies

of calculating each type of diagram in more detail. In Section 5.6, we show the results from the lat-

tice calculation of the KL → γγ decay amplitude on the 24ID ensemble from connected diagrams

and compare it with the experimental values. The calculated amplitude is incomplete because the

disconnected diagrams have been omitted because of their large statistical noise. In Section 5.7,
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Figure 5.1: Feynman diagram for the KL → γγ decay.

we show the amplitude for disconnected diagrams and discuss attempts to reduce the statistical

noise. In Section 5.8, we discuss the removal of the η intermediate state with the total divergence

term cs
(
s̄d + d̄s

)
.

5.1 Overview of the KL → γγ decay

In this section, we review the basics of the flavor changing radiative transition KL → γγ. This

decay is dominated by the long-distance contribution of order O (αEMGF) as shown by the diagram

in Figure 5.1, while the other contributions are much smaller and neglected here [24][25][26]. The

branching ratio for the KL → γγ decay is well measured in experiment [11]:

B(KL → γγ) = Γ(KL → γγ)
ΓKL

= (5.47 ± 0.04) × 10−4 (5.1)

Γ(K → γγ) = 7.03(6) × 10−12 eV. (5.2)

We will neglect CP violation so the final two-photon state will be parity odd and the most

general form of the decay amplitude compatible with gauge invariance and the CP odd property of

KL is

⟨γ(p)γ(q)|Hw |KL(q)⟩ = (2π)4δ(4)(p + p′ − q)iM, (5.3)

where the amplitudeM is can be written as

iM = ϵµναβϵ∗µ(p)ϵ∗ν (p′)pαp′β

[
e2 GF√

2
VusVud FKLγγ

]
. (5.4)
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Here p =
(
i MK

2 , ®p
)

and p′ =
(
i MK

2 ,−®p
)

are the momenta of the two on-shell photons in the final

state, q = (iMK, ®0) is the momentum of the initial stationary kaon state, GF is the Fermi constant,

Vus and Vud are the CKM matrix element, and FKLγγ is a scalar factor and is the only unknown

quantity in the expression for decay amplitude. The tensor structure factor ϵµναβ reflects the fact

that the two photons have perpendicular polarization because KL is CP odd. The decay rate can be

written as a function of the scalar factor FKLγγ

Γ(KL → γγ) =
M3

K

64π

[
e2 GF√

2
VusVud FKLγγ

]2
(5.5)

=
π

4
M3

K

[
α

GF√
2

VusVud FKLγγ

]2
, (5.6)

where α = 1
137 is the fine-structure constant of electromagnetic interaction. Then, it is easy to work

out the experimental value of the scalar factor FKLγγ

FKLγγ = 0.02047(9) GeV. (5.7)

In the next sections, we develop the lattice method to calculate FKLγγ whose result can be

compared with the experimental value.

5.2 Position space calculation of the KL → γγ decay amplitude

In this section, we develop a method to calculate the KL → γγ decay amplitude in posi-

tion space, where we separate the scalar factor FKLγγ into an electromagnetic part and a hadronic

part. We will directly use the Euclidean-space formulation that underlies lattice QCD calcula-

tions, following a different approach than was used in Chapter 4. In that chapter we began with

a conventional Minkowski-space formulation of the π0 → e+e− decay amplitude and then used

Cauchy’s theorem to express the hadronic portion of the amplitude as a Euclidean-space quantity.

In the present section we begin with an O(4)-symmetric Euclidean evaluation of the KL → γγ

transition amplitude. The real exponential time dependence of the Euclidean-space Green’s func-
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tions that we evaluate then lead to the imaginary energies which appear in Equation 5.4. As has

been discussed, this Euclidean-space evaluation is complicated by the presence of easily-identified

unphysical terms with exponential growth in the time separation between the kaon source and

the two-photon sink. These exponentially growing terms must be explicitly subtracted caused to

vanish by some other mechanism.

We denote the relative distance between two electromagnetic currents as r = u − v and define

the hadronic part of the amplitude as

Hµν(r) =
⟨
Jµ(r)Jν(0)H′w |KL

⟩
, (5.8)

where H′w = C1Q1 + C2Q2 is weak Hamiltonian without the constant coefficients.

Then, we have

∫
d4re−ipr Hµν(r) = ϵµναβpαp′βFKLγγ (5.9)

= ϵµναβpαqβFKLγγ, (5.10)

where p =
(
i MK

2 , ®p
)

and p′ =
(
i MK

2 ,−®p
)

are the momenta of the two on-shell photons in the final

states, q = (iMK, ®0) is the momentum of initial kaon state, and we use momentum conservation

q = p′ + p from the first line to the second line. We multiply both sides by ϵµνρσpρqσ and sum

over µ and ν,

ϵµναβϵµνρσpαqβpρqσFKLγγ = ϵµνρσpρqσ

∫
d4re−ipr Hµν(r). (5.11)

Using the property of the Euclidean-space Levi-Civita symbol and the two photons and kaon

being on-shell (p2 = 0 and q2 = −M2
K), it is easy to show that

ϵµναβϵµνρσpαqβpρqσ = 2(p · q)2 =
M4

K

2
. (5.12)
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Thus, we have

FKLγγ =
2

M4
K

ϵµναβpαqβ

∫
d4re−ipr Hµν(r) (5.13)

=
2

M4
K

ϵµναβqβ

∫
d4re−ipr

(
−i

∂

∂rα

)
Hµν(r). (5.14)

Because the initial kaon is stationary and q = (iMK, ®0),

FKLγγ =
2

M3
K

ϵµνα0

∫
d4re−ipr ∂

∂rα
Hµν(r) (5.15)

=
2

M3
K

ϵµνα0

∫
dteMK t/2

∫
d3®re−i ®p·®r ∂

∂rα
Hµν(r). (5.16)

Averaging over the spatial direction of final-state photon ®p, we obtain

FKLγγ =
4

M3
K

ϵµνα0

∫
dteMK t/2

∫
d3®r sin (MK |®r |/2)

|®r |
∂

∂rα
Hµν(r) (5.17)

=
2

M4
K

ϵµνα0

∫
dteMK t/2

∫
d3®rrα

−MK |®r | cos (MK |®r |/2) + 2 sin (MK |®r |/2)
|®r |3

Hµν(r) (5.18)

=

∫
d4r

(
2

M4
K

eMK t/2ϵµνα0rα
−MK |®r | cos (MK |®r |/2) + 2 sin (MK |®r |/2)

|®r |3

)
Hµν(r). (5.19)

We refer to the expression in the parenthesis as the electromagnetic factor and denote it as Eµν(r).

Then, the scalar factor FKLγγ can be written as the product of the electromagnetic factor and the

hadronic factor

FKLγγ =

∫
d4rEµν(r)Hµν(r) (5.20)

Eµν(r) =
2

M4
K

eMK t/2ϵµνα0rα
−MK |®r | cos (MK |®r |/2) + 2 sin (MK |®r |/2)

|®r |3
(5.21)

Hµν(r) =
⟨
Jµ(r)Jν(0)Hw |KL

⟩
. (5.22)

We can also fix the position of the weak Hamiltonian and sum over the position of two EM

59



currents. Using the time translation property of Euclidean operators, we get

FKLγγ =

∫
d4u

∫
d4v eMKv0 Eµν(u − v)

⟨
Jµ(u)Jν(v)Hw(0)|KL

⟩
, (5.23)

whereHw(x) is the weak Hamiltonian density and Hw =
∫

d4x Hw(x).

5.3 Computational strategy

Based on Equation 5.23 from last section, the KL → γγ decay amplitude can be computed

from the following integrated product of the known amplitude Eµν(u − v) and the infinite-volume

Euclidean-space four-point function:

FKLγγ =
2MKV

NK

∑
u,v

eMK (v0−tK )Eµν(u − v)
⟨
Jµ(u)Jν(v)Hw(®x, x0)KL(tK)

⟩
, (5.24)

where Eµν(u− v) is the infinite-volume electromagnetic factor representing the coupling to the two

final-state photons, Jµ(u) and Jν(v) two electromagnetic currents, Hw(x) the weak Hamiltonian

density, KL(tK) a wall-source interpolating operator which creates a long-lived K meson, and NK

is the normalization factor for the KL operator. The desired decay amplitude can be obtained from

the Green’s function in this equation provided time difference x0−tK is sufficiently large that only a

kaon intermediate state between the operators H(®x, x0) and KL(tK) contributes and the component

of the amplitude coming from a pion intermediate state appearing between the current-current

product Jµ(u)Jν(v) and H(®x, x0) has been removed. After the exponentially growing contribution

of this π0 state has been removed, the sums over u and v in Equation 5.24 are exponentially

convergent and the infinite-volume hadronic Green’s function can be replaced by a finite volume

expression, introducing errors which vanish exponentially in the linear size of this finite volume.

Increased precision might be achieved by summing over the position ®x and averaging data for

different values of x0 and tK , provided the difference x0 − tK is kept sufficiently large.

While in principle keeping x0 − tK sufficiently large and subtracting a single-pion intermediate

contribution is all that is required to obtain a physical result, in an exploratory lattice calculation
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such as this it is critical to examine the dependence on various time separations to demonstrate that

sufficiently large values of x0 − tK have been chosen, that the contribution from the single-pion

intermediate state has been successfully removed and that any limitations in the range of the sums

over u and v have not omitted non-zero data.

There are many techniques available to reduce the large number of operations suggested by

the sums over u and v required by Equation 5.24 as well as those in possible selective averages

over ®x and x0 and tK introduced to reduce the statistical noise. These include the introduction of

sequential sources and convolution methods as well omitting regions from which the contribution

is negligible or theoretically redundant terms that do not lead to a reduction the statistical errors.

In Section 5.5, we discuss the details of the strategies for calculating each type of diagram.

It is clearly desirable that the methods used to evaluate each type of graph be chosen to provide

the same high-level information so that the result of the calculation is not only the physical decay

amplitude which can be obtained from Equation 5.24 but also the complete physical amplitude as

a function of various time separations that can be used to identify the plateaus necessary to justify

the choices made when evaluating the physical amplitudes. This motivates choosing evaluation

strategies for the various types of graphs that will yield results for the same treatments (either

summed over or fixed) of the times entering the four operators in Equation 5.24.

To that end, we begin by deciding the temporal regions in which we wish to evaluate Equa-

tion 5.24. These choices will then constrain the detailed methods used to evaluate each type of

diagram.

1. Since we need to study the effects of the exponentially growing contribution for a single pion

intermediate state that appears between Hw(®x, x0) and the current-current product Jµ(u)Jν(v),

we will break the symmetry between the positions u and v and assume that u0 ≥ v0. This will

ensure that when v0 > x0 we can identify a contribution to Equation 5.24 in which a single

pion state can be inserted between these two sets of operators and consistently identify and

remove the expected exponentially growing behavior e(MK−Mπ )(v0−x0).

To implement the constraint u0 ≥ v0 or equivalently r0 ≥ 0 on the lattice, we transform
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Eµν(r) in the following way

Eµν(r) →



Eµν(r), where r0 = 0

2Eµν(r), where r0 > 0

0, r0 < 0

(5.25)

2. When u0 and v0 are far separated, phenomenology (e.g. vector meson dominance) suggests

a suppression factor of e−|u0−v0 |mρ . Therefore will treat the range of the variable u0 − v0 as

safe to simply make large without further study and will ensure that for each diagram the

region 10 ≥ (u0 − v0)%T ≥ 0 is included. Here we are accommodating the details needed

for our periodic lattice with T lattice units in the time direction and the usual convention that

the time coordinate is a positive number between 0 and T − 1.

3. In order to demonstrate that we are computing the decay rate of a kaon without contam-

ination from a kaon excited state, we need to show a plateau as the separation x0 − tK is

increased. Thus, we propose to calculate the amplitude in Equation 5.24 for the following

values of x0 − tK : {6, 8, 10, 12, 14}. These choices should both allow us to demonstrate the

necessary plateau as x0 − tK is increased and to provide a sufficient number of points in the

plateau region to allow an error-weighted average to reduce that statistical errors on the final

result.

4. Finally if we are to show control over the challenging exponentially growing contribution of

a single pion intermediate state appearing between the current-current product and Hw we

need to examine how the result depends on the time separation v0 − x0 both before and after

the subtraction of the single-pion contribution. Of course, our final result requires a sum

over all positive and negative values of v0 − x0 after that subtraction has been performed.

Thus, we plan to compute the resulting amplitude in Equation 5.24 for all possible value of

(v0 − x0)%T .
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In Section 5.5, we will describe how this is to be accomplished for each type of diagram.

Finally, we should be able to obtain the amplitude A(tK, x0 = 0, v0) and study the amplitude as a

function of x0 − tK and v0 − x0.

5.4 Removing unphysical contribution from intermediate states

The matrix element
⟨
Jµ(u)Jν(v)Hw(x)K(tK)

⟩
has two intermediate states whose energies can

be lower than or close to that of the initial kaon mass, the single pion state |π0⟩ and the single eta

state |η⟩, as shown in Figure 5.2(a). These states have unphysical contributions that increase expo-

nentially (or decrease too slowly) as we regulate the time direction integral by an increasing finite

cutoff T in Euclidean space. In this section, we show how the removal of these two intermediate

states can be achieved on the lattice.

Of the possible intermediate states with energy less than MK that should be considered, the

vacuum and two-pion state do not appear because we are studying the decay of a KL and neglecting

the small CP violating contribution. Likewise the ππγ intermediate state shown in Figure 5.2(b)

must have an energy above MK because the two pions are not at rest but carry the momentum of the

photon with a magnitude MK/2 which implies Eππγ ≥ 2
√
(MK/4)2 + M2

π + MK/2 = 616MeV >

MK . While this inequality implies that for large T the unphysical term coming from the ππγ

intermediate state will vanish, the size of its actual contribution should be investigated carefully.

For our present study this term will be ignored.
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Figure 5.2: Schematic representations of three possible intermediate states which may have lower
energy than that of the kaon and contribute unphysical terms which grow exponentially in the
difference between the time when the two final-state photons are absorbed and the time at which
the weak operatorHW is inserted.
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5.4.1 Single pion intermediate state

The π0 intermediate state dominates the Euclidean correlation function being studied but its

unphysical contribution can be accurately computed because it only involves connected diagrams.

In this work, we directly calculate the unphysical contribution of the π0 intermediate state and

subtract it from the total amplitude. The contribution of the pion intermediate state is

1
2mπ

∫
u0≥v0
v0≥0

dudv emKv0 Eµν(u − v)⟨Jµ(u)Jν(v)|π0⟩⟨π0 |H(0)|KL⟩ (5.26)

=
1

2mπ

∫ ∞

0
dv0 e(mK−mπ )v0

∫
r0≥0

dr Eµν(r)⟨Jµ(r)Jν(0)|π0⟩⟨π0 |H(0)|KL⟩, (5.27)

where the factor 1
2mπ

comes from the normalization of the |π0⟩ state. There is an explicit expo-

nential factor e(mK−mπ )v0 in the above formula, which is consistent with the our expectation that

the contribution of |π0⟩ grows exponentially with the behavior e(mK−mπ )v0 as the two electromag-

netic currents are separated farther from the weak Hamiltonian. Regulating the time integral by

introducing a finite upper limit T on the v0 integral, the pion contribution can be written as

1
2mπ

[
e(mK−mπ )T − 1

mK − mπ

] ∫
r0≥0

dr Eµν(r)⟨Jµ(r)Jν(0)|π0⟩⟨π0 |H(0)|KL⟩, (5.28)

where the “-1” term inside the square bracket is the physical contribution of the π0 intermediate

state to the KL → γγ decay amplitude while the term that grows exponentially with increasing T is

not of physical interest and must be removed from the Euclidean expression. After subtracting this

unphysical contribution of the |π0⟩ intermediate state, the decay amplitude should be well-defined

on finite volume lattice with exponentially suppressed errors.

In a lattice calculation the subtraction of the unphysical pion intermediate state contribution

must be performed more carefully to avoid introducing O(a) errors. We introduce the notation

Aπ =
1

2mπ

∑
r,r0≥0

Eµν(r)⟨Jµ(r)Jν(0)|π0⟩⟨π0 |H(0)|KL⟩. (5.29)
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We first subtract the entire pion contribution on each time slice

F sub
KLγγ
(v0) = FKLγγ(v0) − Aπ f (v0), (5.30)

where FKLγγ(v0) is the original amplitude without subtracting pion state, and f (v0) is the exponen-

tial factor

f (v0) =



e(MK−Mπ )v0, v0 > 0

1
2, v0 = 0

0, v0 < 0

. (5.31)

Then, we must add back the physical part of the pion intermediate state contribution

F final
KLγγ

=

T∑
v0=−∞

F sub
KLγγ
(v0) −

cosh((MK − Mπ)/2)
2 sinh((MK − Mπ)/2)

Aπ, (5.32)

where the second term is the physical contribution of pion state that should not be subtracted. It

is easy to show that the second term converges to the physical contribution in continuum limit in

Equation 5.28, i.e. − 1
MK−Mπ

Aπ, in the limit of a→ 0.

Since this procedure of removing the unphysical single-pion contribution may be unfamiliar

and the present case somewhat more complicated that the similar problem of removing unphysical

single-pion contribution from the calculation of the KK − KS mass difference, we will provide

the logic behind the method described above. We begin with the continuum amplitude specified

in Equation 5.23. As worked out above, a single pion at rest makes a contribution to the right

hand side of Equation 5.23 given by Equation 5.28 where the two terms in square brackets are

easy to recognize. The exponentially growing term corresponds precisely to the contribution to the

Euclidean path integral from the process in which the operator HW (0) and the product of the two

currents are separated by a large time and an intermediate pion travels between them. This term

is not part of the process we are studying and should be removed. The second “−1” term is the
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standard contribution of the pion to the decay process of interest and should be retained.

Since the contribution of the single-pion state is well understood, there is no difficulty dis-

tinguishing these two terms analytically in the continuum and this procedure can be carried out

analytically on the lattice as well since the product Aπe(MK−Mπ )T is known. While T may be large,

we need not take the limit T → ∞ since T should only be sufficiently large that a similar, expo-

nentially converging term AX e(MK−MX )T can be neglected, where X labels the lightest intermediate

state whose (vanishing) unphysical contribution has not been removed. For example, if we have

removed the contribution of the η state entirely by a choice of the sd term in HW , then X = η′ or

another energetic three-pion state.

However, we must take care that we do not introduce O(a) errors when we remove the contin-

uum Aπe(MK−Mπ )T contribution. This can be done in two ways. The most easily derived approach is

to recognize that the integral defining the expression in Equation 5.23 must be performed carefully

on the lattice since an upper limit T must be introduced and the presence of the pion intermediate

state implies that the contribution to the integral does not vanish near the end point v0 = T . How-

ever, this is easily done if we evaluate the integral using a trapazoidal rule and include the final

v0 = T term with a coefficient of 1/2. Then we are calculating the cut-off integral without O(a)

errors and can safely subtract the continuum term Aπe(MK−Mπ )T , introducing finite lattice spacing

errors that begin at O(a2).

In a second approach we might simply perform the sum over lattice time up to and including

the upper limit T . However, since we know the time-dependence of the single-pion contribution to

such a lattice sum, we would then subtract, the T-dependent part of that geometric series sum. The

geometric series sum is

Aπ
T∑

t=n

e(MK−Mπ )t = Aπ
e(MK−Mπ )(T+1/2) − e−(MK−Mπ )(1/2−n)

2 sinh
[

Mk−Mπ

2

] . (5.33)

where n is an arbitrary lower bound of the summation, and, as elsewhere in this thesis, all quantities
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are expressed in lattice units. The T-dependent part that we should subtract is

Aπ
e(MK−Mπ )(T+1/2)

2 sinh
[

Mk−Mπ

2

] (5.34)

Both methods give the same result to O(a) and we expect the second method may be more accurate.

The presentation given in this thesis involves an extra step with an additional issue. We would

like to examine the explicit sum over v0 in our lattice calculation after we have subtracted the π0

contribution to show that the subtracted integrand has reached zero by the time we have reached

the upper limit T . This may give a more precise estimate for the size of the terms discarded by

our finite time integration than would be learned from looking for a plateau in the integrated result

as the upper limit T is varied. In order to do this we subtract the “contribution of the single-pion

state” for each value of v0, 0 ≤ v0 ≤ T . Here we must be careful that this new procedure does not

change the subtraction that has been justified above.

This “single-integration” procedure is used to reveal the systematic errors introduced by the

finite integration range T and does not provide further insight into the O(a) errors. The concept of

subtracting the single-pion contribution when v0 = 1 or 2 lattice units has no continuum limit and

O(a) errors cannot be recognized this level of detail. Instead we are free to introduce a reasonable

ansatz for the v0-dependent single-pion subtraction that has the correct continuum behavior for

large v0 where it is actually being used. Our procedure for doing this is defined in Equation 5.31.

We then evaluated the sum of the terms we have subtracted and introduced a correction so that

the final subtraction is only that determined by the lattice treatment of the upper limit, i.e. the

subtraction shown in Equation 5.34 above, appropriate for the choice in Equation 5.31. This is the

origin of the right-hand term appearing in the right-had side of Equation 5.32.

The two matrix elements in Equation 5.27 can be extracted from the following three-point
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correlation functions on the lattice

⟨π0 |Hw(0)|K0⟩ = lim
tK→−∞
tπ→∞

2MKV
NK

2MπV
Nπ

1
V

∑
®x

eMK (tw−tK )eMπ (tπ−tw)⟨0|π0(tπ)Hw(®x, tw)K0(tK)|0⟩

(5.35)

⟨0|Jµ(r)Jν(0)|π0⟩ = lim
tπ→−∞

Z2
V

2MπV
Nπ

eMπ |tπ | ⟨0|Jµ(r)Jν(0)π(tπ)|0⟩, (5.36)

where Nπ = ⟨π0 |π0(tπ = 0)|0⟩ and NK = ⟨K0 |K0(tK = 0)|0⟩ are the normalization constants of

pion and kaon interpolating operators, and V is the number of lattice sites on each time slice. The

average over spatial component ®x in the first equation is not necessary but can increase statistics

and reduce noise. The contraction diagrams involved in computing the two three-point functions

are in Figure D.6, Figure D.7, and Figure D.8 in Appendix D. We do not include the disconnected

diagrams in the calculation of ⟨0|Jµ(r)Jν(0)|π0⟩, because their contribution is much smaller than

the connected diagram as shown in Section 4.4, and because we also ignored all diagrams where

an electromagnetic current contracts with itself in later calculation of the KL → γγ amplitude.

5.4.2 Single eta intermediate state

The unphysical contribution of η state is more difficult to remove. While Mη > MK their

difference is not large making the exponential fall-off of the unwanted term slow and the MK −Mη

energy denominator, similar to the MK − Mπ in Equation 5.28, is also small. Since disconnected

diagrams play a large role in this KL − η amplitude, this term also has a large statistical uncertainty

and we expect that it is best to add an extra cs(sd + ds) term toHW with the coefficient cs adjusted

to make the matrix element ⟨η |HW |KL⟩ = 0. This was the most effective strategy for dealing with

the η intermediate state in the calculation of ∆MK [27].

The s̄d term is a total divergence term [28][29] and can be written as

s̄d =
−i

ms − md

∂

∂xµ

(
s̄γµd

)
. (5.37)
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Thus, adding the s̄d term into the Hamiltonian does not change the integral of the Hamiltonian

in the entire spacetime

∫
d4x (Hw(x) + cs s̄d(x)) =

∫
d4x Hw(x), (5.38)

where cs is any constant number and the subscript s represents that the operator s̄d is a scalar rather

than a pseudo-scalar. We should observe that Equation 5.37 is valid for the combination of QCD

and QED so that the presence of the two electromagnetic currents in our matrix element do not

invalidate this lack of dependence on cs.

The |η⟩ intermediate state can be removed by properly choosing the coefficient cs such that the

transition matrix element from kaon to eta is zero

⟨η |Hw(x) + cs s̄d(x)|K0⟩ = 0. (5.39)

Then, the desired value of cs can be solved from the above equation

cs = −
⟨η |Hw(x)|K0⟩
⟨η | s̄d(x)|K0⟩

. (5.40)

The two matrix elements in the above equation can be extracted from the three-point Green

functions

⟨η |Hw(x)|K0⟩ = lim
tK→−∞
tη→∞

2MKVemK |tK |

NK

2MηVemη |tη |

Nη
⟨0|η(tη)Hw(x)K0(tK)|0⟩ (5.41)

⟨η | s̄d(x)|K0⟩ = lim
tK→−∞
tη→∞

2MKVemK |tK |

NK

2MηVemη |tη |

Nη
⟨0|η(tη)s̄d(x)K0(tK)|0⟩. (5.42)

Since the values of the matrix elements are not dependent on the spatial coordinate ®x, we can aver-

age over all ®x on each time slice to increase the statistics and reduce noise. The diagrams involved

in calculating the two matrix elements in cs are listed in Appendix D.4 and Appendix D.5. After

determining cs, we need to calculate an additional correlator ⟨Jµ(u)Jν(v)s̄d(x)KL(tK)⟩, whose dia-
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grams are listed in Appendix D.6. It is worth noting that these correlators all involve disconnected

diagrams which contain large noise but play an important role in the dynamics associated with the

η particle.

5.5 Strategies for each type of the diagrams

The leading order diagrams for calculating the four-point correlator
⟨
Jµ(u)Jν(v)Hw(®x, x0)KL(tK)

⟩
are listed in Appendix D.1. We divide the diagrams into 5 types based on their topologies, where

each type may contain one or multiple diagrams. In addition, because we break the symmetry be-

tween two electromagnetic currents u and v and always assume u0 ≥ v0, the two diagrams with u

and v swapped are different and we must calculate them separately. In this work, the diagrams with

label (a) and the diagrams with label (b) are identical except that (u, µ) and (v, ν) are exchanged.

Calculating these diagrams is not a trivial task, and more complicated techniques are often required

besides simple combinations of propagators. In this section, we discuss the strategies of calculat-

ing each type of diagram and demonstrate how to obtain the amplitude as of function of the x0− tK

and v0 − x0 as discussed in Section 5.3.

5.5.1 Type I and type II diagrams

The type I diagrams are shown in Figure D.1. We choose the position of the weak Hamiltonian

x as the source of point source propagators and put the kaon wall at a fixed distance from the weak

Hamiltonian. Suppose x is fixed at 0, these diagrams can be factored into a sum of products of a

function of u multiplied by a function of v

Hµν(r) =
∑
v,ρ

Fµρ(u = v + r)Gνρ(v). (5.43)
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Combining it with the electromagnetic factor, we obtain

A =
∑

r

Hµν(r)Eµν(r) (5.44)

=
∑

r

(∑
v

Fµρ(v + r)Gνρ(v)
)

Eµν(r). (5.45)

Since we want to obtain the amplitude as a function of v0, we can sum over r first, and then sum

over the spatial directions of v, i.e.,

A(v0) =
∑
®v

(∑
r

Fµρ(v + r)Eµν(r)
)

Gνρ(v). (5.46)

Directly summing over r for every lattice site v has computational cost of order V2 where V is the

spatial volume and is prohibitively expensive. However, we can use the convolution theorem and

fast Fourier transform to reduce the computational cost to one of order V ln(V)

∑
r

Eνµ(r)Fµρ(v + r) (5.47)

=F −1[Ẽνµ(−k) · F̃µρ(k)], (5.48)

where F −1 represents inverse Fourier transform, F̃µρ(k) is the Fourier transform of Fµρ(u), and

Ẽνµ(k) is the Fourier transform of Eνµ(r).

The type II diagrams are shown in Figure D.2. These are evaluated using the same convolution

strategy as was employed for type I. As is the case for type I, three point-source propagators are

needed with the point source located at the position of the weak operator x, and the amplitude can

factored into a sum of products of a function of u multiplied by another function of v. For the case

of type II, one of those point-source propagators is evaluated at the location of the weak operator

forming the closed loop.
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5.5.2 Type III diagrams

The type III diagrams are shown in Figure D.3. These are difficult to calculate because of the

loop formed by three point source propagators as shown in the diagram. If we choose v as the

source for point source propagators, the propagator from u to x will be hard to calculate. To deal

with this problem, we compute a sequential source propagator from v to u to x. The calculation of a

sequential source propagator is discussed in Section 3.3 and is typically performed by choosing the

source to be another propagator. In our calculation, in addition to another propagator, the source

also contains the electromagnetic factor

(DdwfSseq)(u) =
∑
µ,ν

γµL(u, v)γν Eµν(u, v), (5.49)

where L(u, v) represents the light quark point source propagator from v to u. Solving this equation

would give us the following sequential propagator

Sseq(x, v) =
∑

u

∑
µ,ν

L(x, u)γµL(u, v)γν Eµν(u, v). (5.50)

It is worth noting that point u has been implicitly summed over the allowed region on the lattice

when solving the sequential source propagators. The allowed region of u is controlled by trans-

forming Eµν(u, v) in the way shown in Equation 5.25.

After computing the sequential source propagator, we sum the position of weak Hamiltonian x

over each time slice x0, and average over all point sources v over each time slice v0. Then, we get

the amplitude A′(tK, x0, v0) as a function of tK , x0, and v0. Finally, we use translational invariance

to average over the center of mass time coordinate

A(tK, x0 = 0, v0) =
1
T

∑
x0

A′(tK + x0, x0, v0 + x0). (5.51)

72



5.5.3 Type IV diagrams

The type IV diagrams are shown in Figure D.4. The type IV diagrams contain a quark self-

loop S(x, x) in which the weak Hamiltonian contracts with itself. The self-loops S(x, x) must be

calculated on all lattice sites x but directly solving them by inverting the Dirac matrix on specific

sources is prohibitively expensive. As discussed in Section 3.3.2, we use random volume source

propagators to stochastically approximate the quark self-loop.

Diagram 1(a) and diagram 2(a) are easy to calculate. We choose v as the source of point source

propagators. Point u is summed over the entire spacetime with constraint u0 ≥ v0. We also sum

the position of weak Hamiltonian x over each time slice x0, and average over all point sources v

over each time slice v0. Then, we get the amplitude A′(tK, x0, v0) as a function of tK , x0, and v0.

Finally, similar to the type III diagrams, we use translational invariance to average over the center

of mass time coordinate

A(tK, x0 = 0, v0) =
1
T

∑
x0

A′(tK + x0, x0, v0 + x0). (5.52)

Diagram 1(b) and diagram 2(b) are a little more complicated. We choose u as the source of

point source propagators. Then, both v and x are summed over each time slice, and the point

source u is averaged over each time slice. We obtain amplitude A′′(tK, x0, v0, u0). Finally as for

the other diagrams we sum over all u0 within the allowed region with u0 ≥ v0

A′(tK, x0, v0) =
∑
u0

A′′(tK, x0, v0, u0). (5.53)

Finally, similar to the type III diagrams, we can average over the center of mass coordinate

A(tK, x0 = 0, v0) =
1
T

∑
x0

A′(tK + x0, x0, v0 + x0). (5.54)
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5.5.4 Type V diagrams

The type V diagrams are shown in Figure D.5 and are calculated in the same way as the type

IV (a) diagrams. However, type V diagrams are disconnected and are subject to large noise. In the

next section, we show the lattice calculation results for the KL → γγ decay without considering the

contribution from the disconnected diagrams. In Section 5.7, we discuss our attempts to calculate

the disconnected diagram and to reduce noise.

5.6 Lattice results for the KL → γγ decay amplitude

In this section, we show the lattice calculation results for the KL → γγ amplitude and compare

it with experimental values. The calculation is performed on the 24ID ensemble that is introduced

in Section 4.5 with parameters listed in Table 4.1. For each configuration, we have 512 point

source propagators with randomly distributed sources for both the light quark and strange quark

and Coulomb gauge-fixed wall source propagators with sources on every time slice. We generate

512 sequential source propagators for every configuration, one for each point source propagator.

We also compute random volume source propagators with 2000 low modes and 768 high modes

(64 hits with spin and color dilution). The calculation is performed on 117 gauge configurations

with the separation between two configurations being 10 Molecular Dynamics time units.

We ignore all disconnected diagrams in this section because they contain uncontrollably large

noise on the 24ID ensemble and we have been unable to obtain a meaningful result. Also, based

on the Okubo-Zweig-Iizuka rule [30][31][32], the contributions of disconnected diagrams are sup-

pressed and we can often obtain a reasonably accurate decay amplitude from only the connected

diagrams. For the KL → γγ decay, the connected diagrams are the type I to type IV diagrams in

Appendix D.1.

We perform an error-weighted average of multiple values of the distance between the kaon wall

and weak Hamiltonian x0 − tK to gather more statistics for the amplitude and control the distance

between electromagnetic currents and the weak Hamiltonian v0 − x0. The statistical errors are
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Figure 5.3: Amplitude FKγγ v.s. v0 before subtracting the pion intermediate state. The position of
the weak Hamiltonian is fixed at x0 = 0.

estimated with the aid of the double jackknife method, where the inner jackknife resampling is

used to calculate the errors for each position of kaon wall, and different positions of kaon wall are

averaged with weights proportional to the inverse of the square of estimated errors.

Although we must ultimately sum over the earliest time coordinate v0 appearing in the product

of the electromagnetic currents, it is important to begin by obtaining this correlation function for

each value of v0 − x0. This will allow us to identify the exponentially increasing contribution

of the π0 intermediate state and demonstrate that this contribution has been removed when the

independently computed π0 contribution has been subtracted. We plot the amplitude as a function

of v0 with weak Hamiltonian fixed at origin in Figure 5.3, where there is evident exponential growth

in the amplitude as the electromagnetic currents and weak Hamiltonian are separated farther from

each other.

To demonstrate that the exponential increase in the amplitude is indeed caused by the pion

intermediate state, we directly fit the amplitude for v0 ∈ [4, 14] with the following exponential
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M 0.365(7) GeV
C 0.0060(5)
b -0.004(18)

Table 5.1: Result of fitting the amplitude v.s. v0 with an exponential function to demonstrate
that the exponential increase caused by the pion intermediate state. The errors in parenthesis are
statistical.

function

A(v0) = C exp (Mv0) + b, (5.55)

where C, M and b are three parameters to fit. We start from v0 = 4 because for small values of v0

the pion intermediate state is not dominant and the amplitude is affected by the contributions of

other states with higher energies. Based on the plot of amplitude after subtracting pion contribution

in Figure 5.7 that we will discuss later, the exponentially decaying physical amplitude gets very

close to 0 at v0 ≥ 2. The parameters are fitted by minimizing the chi-squared value. The fitted

curve is shown in Figure 5.4, where the exponential function agrees well with the growth pattern.

The results of fitted parameters are listed in Table 5.1. It is worthwhile to note that the fitted mass

parameter M = 0.365(7) GeV is consistent with our expected exponential growth rate which is

MK − Mπ = 0.364 GeV.

Because all disconnected diagrams are ignored, there will be both I = 0 and I = 1 neutral

pseudoscalar mesons with the same mass. It is only when the disconnected diagrams are included

that this I = 0 state combines with the is̄γ5s contribution to become the η and η′ mesons. Effec-

tively, we have two independent “pion” intermediate states with the same mass, iūγ5u and id̄γ5d

[33]. The contributions of both states can be calculated from Equation 5.27 and their unphysical

contributions are directly subtracted. The first half in the equation
∫

r0>0 dr Eµν(r)⟨Jµ(r)Jν(0)|π0⟩

is essentially the same as the calculation of π0 → γγ decay amplitude, except that the exponential

factor in electromagnetic part Eµν(r) involves the kaon rather than the pion mass. In Figure 5.5,

we plot its amplitude against the cutoff in time direction, where r0 is summed within the cutoff.

We choose the cutoff as r0 = 10 where the plateau is formed and the statistical error is small
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Figure 5.4: Fitting the amplitude v.s. v0 with an exponential function. The red line is the fitted
curve. The chi-square per degree of freedom is 0.41.

compared to what would be obtained had we integrated over the entire lattice. The second factor

⟨π0 |Hw(0)|KL⟩ is extracted from three point function ⟨π0(tπ)Hw(x0)KL(tK)⟩ whose diagrams are

listed in Appendix D.3. In Figure 5.6, we plot matrix element ⟨iūγ5u|Hw |KL⟩ and ⟨id̄γ5d |Hw |KL⟩

as a function of the separation between Hw and KL . We also perform an error-weighted average

of multiple positions of kaon wall to increase statistics. As shown in the plot, we fit the plateau

for x0 − tK ∈ [8, 15] and mean values and errors of the plateau are plotted as three straight lines

extending over the fitting range.

After subtracting the pion intermediate state, the exponential increase in the amplitude van-

ishes, and the amplitude of connected diagrams converges rapidly to 0 at small values of v0, as

shown in Figure 5.7. The total decay amplitude is obtained by summing over v0 from -8 to 4,

where the upper and lower limits are selected based on Figure 5.7. In addition, the physical part of

pion contribution in Equation 5.28 must be added back.

In Table 5.2, we list the amplitude for each type of diagram and for Q1 and Q2 separately
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Figure 5.5: Plot of the amplitude
∑
®r,tr>0 Eµν(r)⟨Jµ(r)Jν(0)|iūγ5u⟩ against cutoff in tr .

Q1 Q2
Type I 0.1624(13) -0.1077(10)
Type II 0.00006(14) 0.0010(7)
Type III 0.0146(6) -0.0055(11)
Type IV 0.0036(5) 0.0256(14)

Table 5.2: Amplitude for each type of diagram and for Q1 and Q2 separately. The errors in paren-
thesis are statistical.

before subtracting the unphysical contribution from the pion intermediate state. The amplitudes in

the table include the factor of the Wilson coefficients.

The systematic errors from different sources are listed in Table 5.3. The finite lattice spacing

error is estimated by comparing the real part of the π0 → e+e− decay amplitude calculated on

the 24ID ensemble with its continuum limit extrapolation. The finite volume error is estimated

by comparing the π0 → e+e− decay amplitude calculated on the 24ID and 32ID ensembles. The

error from choosing v0 = 4 as the integration upper limit is computed as the difference between

cutting off at v0 = 4 and cutting off at v0 = 5. We can get approximate estimate of the systematic

errors for Wilson coefficients from those that were estimated in an earlier work [34] done at a

similar but somewhat smaller lattice spacing and with two of the same operators. The error from
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Figure 5.6: The matrix elements ⟨iūγ5u|Hw |KL⟩ and ⟨id̄γ5d |Hw |KL⟩ plotted as a function of the
time separation between Hw and KL . The plateau is formed between 8 and 15 whose mean value
and errors are plotted as three straight lines extending over the fitting range.
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Figure 5.7: Amplitude FKγγ v.s. v0 after subtracting the pion intermediate state. Weak Hamiltonian
is fixed at x0 = 0. The positions of kaon wall are averaged in an error weighted-way with the
requirement that the separation between electromagnetic current and kaon wall is at least 5 lattice
spacings.

omitting the disconnected diagrams is difficult to estimate especially because of the presence of

the eta intermediate state.

Our final result is

FKLγγ = 0.0129(27)(30) GeV, (5.56)

Source Error
Finite lattice spacing 0.0025

Finite volume 0.00069
Cutoff of v0 0.00021

Wilson Coefficients 0.0016
Disconnected diagram -
Total systematic error 0.0030

Table 5.3: Table of systematic errors in FKLγγ. The error from disconnected diagrams is hard to
estimate and omitted in this table.
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where the error in the first parenthesis is the statistical error estimated with the double jack-

knife method, and the error in the second parenthesis is the systematic error excluding the er-

ror arising from omitting disconnected diagrams. Considering both statistical and systematic

errors, the calculated result is about two standard deviations away from the experimental value

FKLγγ = 0.02047(9)GeV.

5.7 Disconnected diagrams

The leading order diagrams for the matrix element
⟨
Jµ(u)Jν(v)Hw(x)K(tK)

⟩
involve two kinds

of disconnected diagrams: the diagrams with one electromagnetic current contracted with itself,

and the diagrams with two electromagnetic currents contracted with each other. The latter are

referred to as type V diagrams and is shown in Figure D.5.

For the disconnected diagrams with one electromagnetic current contracted with itself, because

the electromagnetic current Jµ(u) or Jν(v) is charge conjugation odd and does not carry color

charge, it must be connected with the rest of the diagram through at least 3 gluons. Thus, these

diagrams are suppressed by a factor of α3
s , where αs is the coupling constant of strong interaction.

On the other hand, the type V diagrams have two electromagnetic currents contracted with each

other which is charge-even and thus can be connected with the rest of the diagram through only 2

gluons. In addition, the diagrams with one electromagnetic current contracted with itself vanish in

the leading order of chiral perturbation theory where the masses of quarks are ignored, because the

sum of the charges of up, down, and strange quarks is 0. Moreover, in Section 4.5 we calculated the

diagrams with one electromagnetic current contracted with itself for the π0 → e+e− decay, where

these diagrams are very noisy and their contribution is only about 3% of the connected diagrams.

Because of these reasons, we ignore the disconnected diagrams with one electromagnetic current

contracted with itself, and only consider the type V diagrams.

The amplitude from the type V diagrams, computed as a function of the time separation be-

tween the electromagnetic currents and weak Hamiltonian, is shown in Figure 5.8. If we sum

over v0 from -8 to 4, as was done for the connected diagrams in Section 5.6, the total type V
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Figure 5.8: Type V diagram contribution to amplitude FKγγ v.s. v0. Weak Hamiltonian is fixed at
x0 = 0. The positions of kaon wall are averaged in an error-weighted way with the requirement
that the separation between electromagnetic current and kaon wall is at least 5 lattice spacings.

diagram amplitude is -0.057(23), where the error in the parenthesis is statistical. The statistical

error is too large to obtain a meaningful result for the total decay amplitude. Thus, we ignored the

disconnected diagrams in Section 5.6.

It would be interesting to examine the dependence of the amplitude on the spatial distance

between electromagnetic and weak Hamiltonian R = |®v− ®x |. The region with large R contains large

noise but small signal. Therefore, if the amplitude forms a plateau at a small value of R, we can set

a cutoff at this value to reduce the noise. The plot of type V diagram amplitude against cutoff in R

is shown in Figure 5.9, where the position of electromagnetic is integrated to the upper limit v0 = 4.

A plateau is formed at roughly R = 13 where the amplitude is -0.067(19). and the statistical error

is reduced by about 20% compared to the error of total amplitude 0.023. A possible improvement

to this method is to subtract the pion intermediate state contribution in the amplitude v.s. R plot,

which might make the plateau form at a smaller value of R and thus reduce the statistical error

in the cutoff quantity. We can add one-half of the connected diagram amplitude which contains

two copies of pion intermediate states into the disconnected diagram amplitude to cancel its pion
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Figure 5.9: Type V diagram contribution to amplitude FKγγ v.s. cutoff in R = |®v − ®x |. The x-axis
is the cutoff of the spatial distance between weak Hamiltonian and electromagnetic current Jν(v).
The position of electromagnetic is integrated to upper limit v0 = 4.

intermediate state contribution. The result is shown in Figure 5.10, where the plateau is formed at

approximately the same position as the case without subtracting pion intermediate state. Thus, at

least for our kinematics, little appears be gained even from this well-implemented introduction of

a spatial cutoff.

5.8 Removing the η state

Because of the small difference between eta mass and kaon mass, the unphysical part of the eta

state contribution decays with a slow rate behaving as exp
(
−(Mη − MK) T

)
and will bring large

errors into the calculation when disconnected diagrams are included. As discussed in Section 5.4.2,

we add a total divergence term cs(s̄d + d̄s) term into the Hamiltonian to remove the η intermediate

state. Calculations that involve the η state typically contain large statistical noise because of the

presence of the disconnected diagrams. The effective mass plot for η is shown in Figure 5.11,

where we use Coulomb gauge-fixed wall source propagators for the η and average over all time
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Figure 5.10: Type V diagram contribution to amplitude FKγγ v.s. cutoff in R = |®v− ®x |. The position
of electromagnetic is integrated to upper limit v0 = 4. The blue points are the amplitude before
removing pion, while the red points are the amplitude after removing pion.

slices. The effective mass is calculated as

Meff(t) = cosh−1
[
C(t + 1) + C(t − 1)

2C(t)

]
, (5.57)

where C(t) is the two-point eta-eta correlator function C(t) = ⟨η(t)η(0)⟩. The effective mass at

t = 4 is 0.546(88) GeV and is close to the actual physical eta mass. The range of fitting is often

determined based on the plateau in the plot of effective mass. However, in Figure 5.11 we see a

very short “plateau” of 1 or 2 lattice sites at around t = 4, which implies that a finer lattice with a

smaller lattice spacing is required to obtain a better plateau for the calculations involving the eta

state.

5.8.1 Calculating cs

The coefficient cs is calculated based on Equation 5.40 from the two three-point correlators

⟨η(tη)Hw(x)K0(tK)⟩ and ⟨η(tη)s̄d(x)K0(tK)⟩. We average ®x on each time slice to increase the statis-
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Figure 5.11: Effective mass plot for η state from the ⟨η(t)η(0)⟩ correlator. The black line represents
physical eta mass.

tics, and denote the resulting three-point function as C(tη, tx, tK). Because the eta state carries large

statistical noise, we preserve the distance between eta interpolating operator and tx and average

over other variables to further increase the statistics. Let δ = tη − tx , we have

C(δ) =
⟨
C(tη, tη + δ, tK)

⟩
tη,tK

, (5.58)

where the subscript of the right bracket represents that we average over all allowed values of tη and

tK . In practice, we first average over the center of mass coordinate of three positions tη, tx , and tK ,

and then perform an error-weighted average of the following values of source-sink separation

tη − tK = {10, 12, 14, 16, . . . , 24}. (5.59)

For the 24ID ensemble used in this work, the weights are completely dominated by tη − tK =

14, 16, 18, 20.

The contraction diagrams involved in these two three-point correlators are listed in Appendix D.4
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Figure 5.12: Calculated value of cs1 plotted as a function of the separation between the Hw/s̄d
operator and eta source δ. The positions of the kaon interpolating operator have been averaged in
an error-weighted way.

and Appendix D.5. In Figure 5.12 and Figure 5.13, we plot the calculated values of cs1 and cs2

against δ = tη − tx which is the distance from the Hw/s̄d operator to eta interpolating operator

cs1 = −
⟨η |Q1(x)|K0⟩
⟨η | s̄d(x)|K0⟩

(5.60)

cs2 = −
⟨η |Q2(x)|K0⟩
⟨η | s̄d(x)|K0⟩

. (5.61)

Both cs1 and cs2 contain large statistical noise because of the presence of the disconnected dia-

grams. At δ = 4, we obtain cs1 = 0.014(33) and cs2 = 0.002(13). Similar to the type V diagrams,

we would need more gauge configuration or a lattice ensemble with smaller lattice spacing to fit

the plateau and obtain a meaningful result for cs.

5.8.2 Calculating amplitude from the s̄d + d̄s operator

After the introduction of the cs
(
s̄d + d̄s

)
term, we need to calculate an additional contribution

to the amplitude from the matrix element
⟨
Jµ(u)Jν(v)s̄d(0)|KL

⟩
. The leading order diagrams for
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Figure 5.13: Calculated value of cs2 plotted as a function of the separation between the Hw/s̄d
operator and eta source δ. The positions of the kaon interpolating operator have been averaged in
an error-weighted way.

this matrix element are listed in Appendix D.6. The type I, type II, and type III diagrams of⟨
Jµ(u)Jν(v)s̄d(0)|KL

⟩
are calculated in the same way as the type II, type IV, and type V diagrams

of
⟨
Jµ(u)Jν(v)Hw(0)|KL

⟩
, respectively.

If we ignore the disconnected diagrams, we can compute the contribution of this new s̄d op-

erator to the decay KL → γγ in the same way as our earlier calculation of the contribution of

HW . This will also require dealing with the unphysical contribution of the pion intermediate state

as discussed in Section 5.4.1. The K → γγ amplitude resulting from the s̄d operator alone plot-

ted against v0 is shown in Figure 5.14, where there is clear exponential increase arising from the

unphysical pion intermediate state contribution. Note we expect a non-zero s̄d contribution to the

unphysical pion intermediate state amplitude because this amplitude does not conserve energy. Af-

ter subtracting the pion intermediate state contribution on each time slice, the exponential increase

is removed and the plot of amplitude is shown in Figure 5.15. This also shows a non-zero value

because although this is now a part of the physical, energy-conserving KL → γγ decay we have

also removed the physical contribution of the π0 intermediate state to that decay, as discussed in
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Figure 5.14: Connected diagram amplitude from the s̄d term plotted as a function of v0.

Section 5.4.1. Finally, we add back the physical part of the pion intermediate state contribution

calculated to be 1.93(3), and obtain the final amplitude -0.95(90) by summing over v0 with the

upper limit v0 = 8. The amplitude from the s̄d term should be 0 because it is a total divergence

term. Therefore, this calculation serves as a test of our procedure of removing the unphysical part

of the pion contribution.

The amplitude of the disconnected diagram, as shown in Figure 5.16, again contains large

statistical noise, and requires more gauge configurations and a finer lattice to calculate it.

88



−5 0 5 10

−1.5

−1

−0.5

0

0.5

v 0 

sd
 A

m
pl

itu
de

Figure 5.15: Amplitude from the s̄d term plotted as a function of v0, after subtracting the pion
intermediate state contribution on each time slice.
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Figure 5.16: Disconnected diagram amplitude of the s̄d term plotted as a function of v0.
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Conclusion and outlook

In this work, we develop computational strategies and perform the first first-principles calcula-

tion of the π0 → e+e− and KL → γγ decay amplitudes. The successful lattice calculation of these

two processes establishes a theoretical foundation for the future calculation of a more complicated

process, the two-photon contribution to the rare kaon decay KL → µ+µ−, which should serve as

an important test of the standard model at one-loop.

In the calculation of the π0 → e+e− decay, we develop a general computational strategy for

dealing with the two-photon intermediate state. By combining Minkowski- and Euclidean-space

methods we are able to calculate the complex amplitude describing this decay directly from the

underlying theories of QCD and QED. The leading connected and disconnected diagrams that

enter this decay are computed. A continuum limit amplitude is extrapolated from two ensem-

bles 48I and 64I with an inverse lattice spacing a−1 = 1.73 GeV and a−1 = 2.36 GeV, respec-

tively. The systematic errors in the calculation include finite volume error, error from ZV , and

estimated error from omitting disconnected diagrams. We find ReA = 18.60(1.19)(1.04) eV,

ImA = 32.59(1.50)(1.65) eV and a more precise value for their ratio ReA
ImA = 0.571(10)(4) where

A is the decay amplitude, the error in the first parenthesis is statistical, and the error in the second

parenthesis is systematic. Using the more precise ratio of amplitudes we obtain the branching ratio

B
(
π0 → e+e−

)
= 6.30(5)(2)×10−8 which falls within two standard deviations of the experimental

branching ratio B
(
π0 → e+e−

)
exp = 6.87(36) × 10−8.

Next, we compute the KL → γγ decay amplitude. The emitted photons are treated in infinite

volume and the decay amplitude is decomposed into an analytically known electromagnetic part

90



and a hadronic part given by the matrix element of the product of two electromagnetic currents

and weak Hamiltonian evaluated between the KL state and the vacuum. The matrix element is

computed using lattice methods, with the unphysical part of the pion intermediate state contribution

directly subtracted. We obtain calculated decay amplitude FKLγγ = 0.0129(27)(30)GeV where the

error in the first parenthesis is statistical and the error in the second parenthesis is the systematic

error that includes finite lattice spacing and finite volume error but does not include the error from

leaving out the disconnected diagrams. Considering both statistical and systematic errors, this

result is about two standard deviations lower than the experimental value F exp
KLγγ

= 0.02047(9)GeV.

The calculated amplitude is incomplete because the contribution of the disconnected diagrams

has not been included. While we have computed what we expect to be the leading disconnected

diagram, the type V diagram shown in Figure D.5, the results have large statistical errors. Because

of the near degeneracy of the kaon and η mesons, we must also remove the η intermediate state by

adding an sd + ds term to HW , an added complication made more difficult by the large statistical

noise from disconnected diagrams.

A more extensive calculation will be needed to determine the disconnected diagram contri-

bution in the KL → γγ decay. We may need to add more gauge configurations to the current

calculation or to work at a much smaller lattice spacing, as has been done in the calculation of

∆MK where meaningful results for the disconnected diagrams have been obtained [27]. Our goal

of computing the two-photon contribution to KL → µ+µ− decay will also require that the statistical

noise present in the disconnected parts be controlled.

In addition, it will also be necessary to develop additional techniques to treat the ππγ interme-

diate state. While in the KL → γγ case the two-pion state must carry the momentum of one of

the photons and has energy greater than the initial kaon, this is no longer true for the two-muon

decay and the effects of this three-particle state must be understood. These effects include both the

unphysical exponentially growing terms that arise because the energy of the ππγ can be less than

MK and the potentially large finite-volume errors that can arise from kinematics where the ππγ has

energy close to MK . Treating this second effect will require a generalization of the two-particle
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analysis given in Ref. [35]. Thus, considerable further effort will be needed before the two-photon

contribution to KL → µ+µ− can be computed.
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Appendix A: Physical constants

Parameter Value

MKL 497.611(13)MeV

τKL (5.116 ± 0.021) × 10−8 s

Mπ0 134.9768(5)MeV

τπ0 (8.52 ± 0.18) × 10−17 s

MW 80.379(12) GeV

MZ 91.1876(21) GeV

GF 1.1663787(6) × 10−5GeV−2

Vud 0.97446(10)

Vus 0.22452(44)

α = e2

4π
1

137

Table A.1: Physical constants that we used in this work. All values are from the 2020 PDG tables.
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Appendix B: Conventions

B.1 Conventions for interpolating operators and states

The interpolating operators used in this work are defined as

π0 =
i
√

2

(
ūγ5u − d̄γ5d

)
(B.1)

η =
i
√

6

(
ūγ5u + d̄γ5d − 2s̄γ5s

)
(B.2)

Jµ =
2
3

ūγµu − 1
3

ūγµu − 1
3

s̄γµs (B.3)

K0 = id̄γ5s (B.4)

K
0
= is̄γ5d (B.5)

KL ≈
K0 + K

0

√
2
= i

d̄γ5s + s̄γ5d
√

2
. (B.6)

For the case of the interpolating operators for the four pseudoscalar operators defined above

only their spin and color structure are represented with the individual quark sources taken to be

Coulomb gauge fixed wall sources making the interpolating operators non-local in space.

The normalization convention for meson states, using pion as an example, is

⟨π(p)|π(q)⟩ = (2π)32Epδ
3( ®p − ®q), (B.7)

where Ep is the energy of the pion state with momentum p.
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B.2 Conventions and properties of gamma matrices

In this work, Euclidean gamma matrices are defined as:

γ1 =

©­­­­­­­­«

0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0

ª®®®®®®®®¬
, γ2 =

©­­­­­­­­«

0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

ª®®®®®®®®¬
(B.8)

γ3 =

©­­­­­­­­«

0 0 i 0

0 0 0 −i

−i 0 0 0

0 i 0 0

ª®®®®®®®®¬
, γ4 =

©­­­­­­­­«

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

ª®®®®®®®®¬
(B.9)

γ5 = γ1γ2γ3γ4 =

©­­­­­­­­«

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

ª®®®®®®®®¬
. (B.10)

In addition, we define

γL,µ = γµ(1 − γ5) (B.11)

γR,µ = γµ(1 + γ5). (B.12)
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Some important properties of the gamma matrices that are used in this work:

{γµ, γν} = 2δµν I, ∀µ, ν = 1, 2, 3, 4 (B.13)

γ†µ = γµ (B.14)

γ†5 = γ5 (B.15)

γ†L = γR (B.16)

γ5γL = γL (B.17)

γLγ5 = −γL . (B.18)

B.3 Conventions for Dirac spinors

Let χ+ = (1, 0)T and χ− = (0, 1)T . The conventions for spinors are

u+ =
©­­«
√

E − pχ+
√

E + pχ+

ª®®¬ , u− =
©­­«
√

E + pχ−
√

E − pχ−

ª®®¬ , v+ =
©­­«
√

E − pχ−

−
√

E + pχ−

ª®®¬ , v− =
©­­«
√

E + pχ+

−
√

E − pχ+

ª®®¬ , (B.19)

where “+” denotes spin 1
2 and “−” denotes spin −1

2 .

The normalization conventions for spinors are

ūr(p)us(p) = 2mδrs (B.20)

v̄r(p)vs(p) = −2mδrs . (B.21)

B.4 Conventions of Fourier transform

In this thesis, the conventions of Fourier transform and inverse Fourier transform are

f̃ (k) =
∑

x

f (x)e−i 2π
N k x (B.22)

f (x) = 1
N

∑
k

f̃ (k)ei 2π
N k x . (B.23)
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Appendix C: Useful integrals

In this section, we show some integrals that are used in calculating the leptonic factor of the

π0 → e+e− decay in Section 4.4.

From Equation 4.34 to Equation 4.36, we average over the direction of ®k− in three-dimensional

space using the following integrals

1
4π

∫
dΩ′

1
−Mπ + 2| ®p− | cos θ′

= − 1
4| ®p− |

ln(1 + β
1 − β ) (C.1)

1
4π

∫
dΩ′

1
Mπ + 2| ®p− | cos θ′

=
1

4| ®p− |
ln(1 + β

1 − β ), (C.2)

where dΩ′ = d cos θ′dϕ′ is the surface area element on the unit sphere, and β is a constant defined

as

β =
2| ®k− |
Mπ

=

√
1 − 4m2

e

M2
π

. (C.3)

From Equation 4.36 to Equation 4.37, we integrate out the direction of ®p in three-dimensional

space and need to calculate an integral of the following form

∫
d3 ®p f (| ®p|)pie−i ®p· ®w, (C.4)

where f (| ®p|) is a function of the norm of ®p. We write pie−i ®p· ®w as a derivative of e−i ®p· ®w with respect
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to wi and then exchange the order of integration and differentiation

∫
d3 ®p f (| ®p|)pie−i ®p· ®w = i

∂

∂wi

∫
d3 ®p f (| ®p|)e−i ®p· ®w

= 2πi
∂

∂wi

∫
d | ®p|d cos θ | ®p|2 f (| ®p|)e−i | ®p| | ®w | cos θ

= 2πi
∂

∂wi

∫
d | ®p| | ®p|2 f (| ®p|)2 sin (| ®p| | ®w |)

| ®p| | ®w |

= 4πi
wi

| ®w |2
∫

d | ®p| | ®p|2 f (| ®p|)
(
cos(| ®p| | ®w |) − sin(| ®p| | ®w |)

| ®p| | ®w |

)
. (C.5)
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Appendix D: Diagrams

In this Appendix, we list the diagrams involved in the calculation of the KL → γγ decay. The

diagrams are drawn with the following conventions

• The dotted line is the position of the kaon/pion/eta wall. When there are two mesons in the

diagram, the kaon wall is always on the left.

• The dark lines with label s represent strange quark propagators, and the dark lines without

label s represent light quark propagators.

• The circle with a cross inside represents the position of the weak Hamiltonian or the s̄d

operator.

• Diagram (a) and Diagram (b) are identical except that the positions of two electromagnetic

currents u and v are exchanged.
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D.1 Diagrams for ⟨Jµ(u)Jν(v)H(x)KL(tK)⟩

u

v

s

(a) Type I diagram 1(a)

v

u

s

(b) Type I diagram 1(b)

u

v

s

s

(c) Type I diagram 2(a)

v

u

s

s

(d) Type I diagram 2(b)

Figure D.1: ⟨Jµ(u)Jν(v)Hw(x)K0(tK)⟩ Type I diagrams
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u

v

s

s

(a) Type II diagram 1(a)

v

u

s

s

(b) Type II diagram 1(b)

Figure D.2: ⟨Jµ(u)Jν(v)Hw(x)K0(tK)⟩ Type II diagrams

u

vs

(a) Type III diagram 1(a)

u

v

s

(b) Type III diagram 1(b)

Figure D.3: ⟨Jµ(u)Jν(v)Hw(x)K0(tK)⟩ Type III diagrams
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u

v
s

(a) Type IV diagram 1(a)

v

u
s

(b) Type IV diagram 1(b)

u

vs

s

s

(c) Type IV diagram 2(a)

v

us

s

s

(d) Type IV diagram 2(b)

Figure D.4: ⟨Jµ(u)Jν(v)Hw(x)K0(tK)⟩ Type IV diagrams

u

vs

(a) Type V diagram 1

u

vs

ss

(b) Type V diagram 2

Figure D.5: ⟨Jµ(u)Jν(v)Hw(x)K0(tK)⟩ Type V diagrams
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D.2 Diagrams for ⟨Jµ(u)Jν(v)π0(tπ)⟩

u

v

Figure D.6: ⟨Jµ(u)Jν(v)π0(tπ)⟩ diagram
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D.3 Diagrams for ⟨π0(tπ)Hw(x)K0(tK)⟩

s

Figure D.7: ⟨π0(tπ)Hw(x)K0(tK)⟩ Type I diagram

s

Figure D.8: ⟨π0(tπ)Hw(x)K0(tK)⟩ Type II diagrams
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D.4 Diagrams for ⟨0|η(tη)s̄d(x)K0(tK)|0⟩

s

(a) Type I diagram 1

s

s

(b) Type I diagram 2

Figure D.9: ⟨0|η(tη)s̄d(x)K0(tK)|0⟩ Type I diagrams

s

(a) Type II diagram 1

s

s

(b) Type II diagram 2

Figure D.10: ⟨0|η(tη)s̄d(x)K0(tK)|0⟩ Type II diagrams
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D.5 Diagrams for ⟨η(tη)Hw(x)K0(tK)⟩

s

Figure D.11: ⟨η(tη)Hw(x)K0(tK)⟩ Type I diagram

s

(a) Type II diagram 1

s

s

(b) Type II diagram 2

Figure D.12: ⟨η(tη)Hw(x)K0(tK)⟩ Type II diagrams
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s

(a) Type III diagram 1

s

s

(b) Type III diagram 2

Figure D.13: ⟨η(tη)Hw(x)K0(tK)⟩ Type III diagrams
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D.6 Diagrams for ⟨Jµ(u)Jν(v)s̄d(x)K0(tK)⟩

u

v

s

s

(a) Type I diagram 1(a)

v

u

s

s

(b) Type I diagram 1(b)

Figure D.14: ⟨Jµ(u)Jν(v)s̄d(x)K0(tK)⟩ Type I diagrams
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u

v
s

(a) Type II diagram 1(a)

v

u
s

(b) Type II diagram 1(b)

u

vs

s

s

(c) Type II diagram 2(a)

v

us

s

s

(d) Type II diagram 2(b)

Figure D.15: ⟨Jµ(u)Jν(v)s̄d(x)K0(tK)⟩ Type II diagrams

u

vs

(a) Type III diagram 1

u

vs

ss

(b) Type III diagram 2

Figure D.16: ⟨Jµ(u)Jν(v)s̄d(x)K0(tK)⟩ Type III diagrams
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Appendix E: Contractions

In this Appendix, we list the contractions and their coefficients for each diagram involved in

the calculation of the KL → γγ decay. We use the following conventions

• The light quark propagators are denoted as L.

• The heavy quark propagators are denoted as H.

• “Tr” represents the trace on color and spin indices, while “TrS” represents the trace on spin

indices only.

• If a type of diagrams has diagram (a) and diagram (b), we only list the contractions and

coefficients for diagram (a). Its counterpart diagram (b) has the same coefficients and can be

obtained by switching (u, µ) with (v, ν).
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E.1 Contractions for ⟨Jµ(u)Jν(v)H(x)KL(tK)⟩

Q1 Q2

K0 −2
9Tr[γL L(x, v)γνL(v, x)]

Tr[γL L(x, u)γµL(u, tK)γ5H(tK, x)]
−2

9TrS[γL L(x, v)γνL(v, x)]c1,c2

TrS[γL L(x, u)γµL(u, tK)γ5H(tK, x)]c2,c1

K
0 −2

9Tr[γL L(x, v)γνL(v, x)]
Tr[γL[L(x, u)γµL(u, tK)γ5H(tK, x)]†]

−2
9TrS[γL L(x, v)γνL(v, x)]c1,c2

TrS[γL[L(x, u)γµL(u, tK)γ5H(tK, x)]†]c2,c1

Table E.1: Contractions for ⟨Jµ(u)Jν(v)Hw(x)KL(tK)⟩ type I diagram 1(a)

Q1 Q2

K0 −2
9Tr[γL L(x, v)γνL(v, x)]

Tr[γL L(x, tK)γ5H(tK, u)γµH(u, x)]
−2

9TrS[γL L(x, v)γνL(v, x)]c1,c2

TrS[γL L(x, tK)γ5H(tK, u)γµH(u, x)]c2,c1

K
0 −2

9Tr[γL L(x, v)γνL(v, x)]
Tr[γL[L(x, tK)γ5H(tK, u)γµH(u, x)]†]

−2
9TrS[γL L(x, v)γνL(v, x)]c1,c2

TrS[γL[L(x, tK)γ5H(tK, u)γµH(u, x)]†]c2,c1

Table E.2: Contractions for ⟨Jµ(u)Jν(v)Hw(x)KL(tK)⟩ type I diagram 2(a)

Q1 Q2

K0
1
9Tr[γL L(x, x)]

Tr[γL L(x, u)γµL(u, tK)γ5H(tK, v)γνH(v, x)]
−1

9Tr[γL L(x, x)
γL L(x, u)γµL(u, tK)γ5H(tK, v)γνH(v, x)]

K
0 −1

9Tr[γL L(x, x)]
Tr[γL[L(x, u)γµL(u, tK)γ5H(tK, v)γνH(v, x)]†]

1
9Tr[γL L(x, x)

γL[L(x, u)γµL(u, tK)γ5H(tK, v)γνH(v, x)]†]

Table E.3: Contractions for ⟨Jµ(u)Jν(v)Hw(x)KL(tK)⟩ type II diagram 1(a)

Q1 Q2

K0
4
9Tr[γL L(x, tK)γ5H(tK, x)]

Tr[γL L(x, u)γµL(u, v)γνL(v, x)]
−4

9Tr[γL L(x, tK)γ5H(tK, x)
γL L(x, u)γµL(u, v)γνL(v, x)]

K
0 −4

9Tr[γL[L(x, tK)γ5H(tK, x)]†]
Tr[γL L(x, u)γµL(u, v)γνL(v, x)]

4
9Tr[γL[L(x, tK)γ5H(tK, x)]†
γL L(x, u)γµL(u, v)γνL(v, x)]

Table E.4: Contractions for ⟨Jµ(u)Jν(v)Hw(x)KL(tK)⟩ type III diagram 1(a)
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Q1 Q2

K0
1
9Tr[γL L(x, x)]

Tr[γL L(x, v)γνL(v, u)γµL(u, tK)γ5H(tK, x)]
−1

9Tr[γL L(x, x)
γL L(x, v)γνL(v, u)γµL(u, tK)γ5H(tK, x)]

K
0 −1

9Tr[γL L(x, x)]
Tr[γL[L(x, v)γνL(v, u)γµL(u, tK)γ5H(tK, x)]†]

1
9Tr[γL L(x, x)

γL[L(x, v)γνL(v, u)γµL(u, tK)γ5H(tK, x)]†]

Table E.5: Contractions for ⟨Jµ(u)Jν(v)Hw(x)KL(tK)⟩ type IV diagram 1(a)

Q1 Q2

K0
1
9Tr[γL L(x, x)]

Tr[γL L(x, tK)γ5H(tK, u)γµH(u, v)γνH(v, x)]
−1

9Tr[γL L(x, x)
γL L(x, tK)γ5H(tK, u)γµH(u, v)γνH(v, x)]

K
0 −1

9Tr[γL L(x, x)]
Tr[γL[L(x, tK)γ5H(tK, u)γµH(u, v)γνH(v, x)]†]

1
9Tr[γL L(x, x)

γL[L(x, tK)γ5H(tK, u)γµH(u, v)γνH(v, x)]†]

Table E.6: Contractions for ⟨Jµ(u)Jν(v)Hw(x)KL(tK)⟩ type IV diagram 2(a)

Q1 Q2

K0 −5
9Tr[γµL(u, v)γνL(v, u)]

Tr[γL L(x, tK)γ5H(tK, x)]Tr[γL L(x, x)]
5
9Tr[γµL(u, v)γνL(v, u)]

Tr[γL L(x, tK)γ5H(tK, x)γL L(x, x)]

K
0 5

9Tr[γµL(u, v)γνL(v, u)]
Tr[γL[L(x, tK)γ5H(tK, x)]†]Tr[γL L(x, x)]

−5
9Tr[γµL(u, v)γνL(v, u)]

Tr[γL[L(x, tK)γ5H(tK, x)]†γL L(x, x)]

Table E.7: Contractions for ⟨Jµ(u)Jν(v)Hw(x)KL(tK)⟩ type V diagram 1

Q1 Q2

K0 −1
9Tr[γµH(u, v)γνH(v, u)]

Tr[γL L(x, tK)γ5H(tK, x)]Tr[γL L(x, x)]
1
9Tr[γµH(u, v)γνH(v, u)]

Tr[γL L(x, tK)γ5H(tK, x)γL L(x, x)]

K
0 1

9Tr[γµH(u, v)γνH(v, u)]
Tr[γL[L(x, tK)γ5H(tK, x)]†]Tr[γL L(x, x)]

−1
9Tr[γµH(u, v)γνH(v, u)]

Tr[γL[L(x, tK)γ5H(tK, x)]†γL L(x, x)]

Table E.8: Contractions for ⟨Jµ(u)Jν(v)Hw(x)KL(tK)⟩ type V diagram 2

115



E.2 Contractions for ⟨π0(tπ)Hw(x)KL(tK)⟩

Q1 Q2

K0
√

2
2 Tr[γL L(x, tπ)γ5L(tπ, x)]
Tr[γL L(x, tK)γ5H(tK, x)]

−
√

2
2 Tr[γL L(x, tπ)γ5L(tπ, x)
γL L(x, tK)γ5H(tK, x)]

K
0

√
2

2 Tr[γL L(x, tπ)γ5L(tπ, x)]
Tr[γLH(x, tK)γ5L(tK, x)]

−
√

2
2 Tr[γL L(x, tπ)γ5L(tπ, x)
γLH(x, tK)γ5L(tK, x)]

Table E.9: Contractions for ⟨π0(tπ)Hw(x)KL(tK)⟩ type I diagram 1

Q1 Q2

K0 −
√

2
2 Tr[γL L(x, x)]

Tr[γL L(x, tπ)γ5L(tπ, tK)γ5H(tK, x)]

√
2

2 Tr[γL L(x, x)
γL L(x, tπ)γ5L(tπ, tK)γ5H(tK, x)]

K
0 −

√
2

2 Tr[γL L(x, x)]
Tr[γLH(x, tK)γ5L(tK, tπ)γ5L(tπ, x)]

√
2

2 Tr[γL L(x, x)
γLH(x, tK)γ5L(tK, tπ)γ5L(tπ, x)]

Table E.10: Contractions for ⟨π0(tπ)Hw(x)KL(tK)⟩ type II diagram
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E.3 Contractions for ⟨η(tη)s̄d(x)K0(tK)⟩

K0 − 1√
6
Tr

[
γ5L(tη, tK)γ5H(tK, x)L(x, tη)

]
K

0 − 1√
6
Tr

[
γ5L(tη, x)H(x, tK)γ5L(tK, tη)

]
Table E.11: Contractions for ⟨η(tη)s̄d(x)K0(tK)⟩ type I diagram 1

K0 2√
6
Tr

[
γ5H(tη, x)L(x, tK)γ5H(tK, tη)

]
K

0 2√
6
Tr

[
γ5H(tη, tK)γ5L(tK, x)H(x, tη)

]
Table E.12: Contractions for ⟨η(tη)s̄d(x)K0(tK)⟩ type I diagram 2

K0 2√
6
Tr

[
γ5L(tη, tη)

]
Tr [L(x, tK)γ5H(tK, x)]

K
0 2√

6
Tr

[
γ5L(tη, tη)

]
Tr [H(x, tK)γ5L(tK, x)]

Table E.13: Contractions for ⟨η(tη)s̄d(x)K0(tK)⟩ type I diagram 1

K0 − 2√
6
Tr

[
γ5H(tη, tη)

]
Tr [L(x, tK)γ5H(tK, x)]

K
0 − 2√

6
Tr

[
γ5H(tη, tη)

]
Tr [H(x, tK)γ5L(tK, x)]

Table E.14: Contractions for ⟨η(tη)s̄d(x)K0(tK)⟩ type I diagram 2
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E.4 Contractions for ⟨η(tη)Hw(x)K0(tK)⟩

Q1 Q2

K0
1√
6
Tr[γL L(x, tη)γ5L(tη, x)]

Tr[γL L(x, tK)γ5H(tK, x)]
− 1√

6
Tr[γL L(x, tη)γ5L(tη, x)
γL L(x, tK)γ5H(tK, x)]

K
0 1√

6
Tr[γL L(x, tη)γ5L(tη, x)]

Tr[γLH(x, tK)γ5L(tK, x)]
− 1√

6
Tr[γL L(x, tη)γ5L(tη, x)
γLH(x, tK)γ5L(tK, x)]

Table E.15: Contractions for ⟨η(tη)Hw(x)KL(tK)⟩ type I diagram

Q1 Q2

K0
1√
6
Tr[γL L(x, x)]

Tr[γL L(x, tη)γ5L(tη, tK)γ5H(tK, x)]
− 1√

6
Tr[γL L(x, x)

γL L(x, tη)γ5L(tη, tK)γ5H(tK, x)]

K
0 1√

6
Tr[γL L(x, x)]

Tr[γLH(x, tK)γ5L(tK, tη)γ5L(tη, x)]
− 1√

6
Tr[γL L(x, x)

γLH(x, tK)γ5L(tK, tη)γ5L(tη, x)]

Table E.16: Contractions for ⟨η(tη)Hw(x)KL(tK)⟩ type II diagram 1

Q1 Q2

K0 − 2√
6
Tr[γL L(x, x)]

Tr[γL L(x, tK)γ5H(tK, tη)γ5H(tη, x)]

2√
6
Tr[γL L(x, x)

γL L(x, tK)γ5H(tK, tη)γ5H(tη, x)]

K
0 − 2√

6
Tr[γL L(x, x)]

Tr[γLH(x, tη)γ5H(tη, tK)γ5L(tK, x)]

2√
6
Tr[γL L(x, x)

γLH(x, tη)γ5H(tη, tK)γ5L(tK, x)]

Table E.17: Contractions for ⟨η(tη)Hw(x)KL(tK)⟩ type II diagram 2

Q1 Q2

K0 − 2√
6
Tr

[
γ5L(tη, tη)

]
Tr[γL L(x, x)]Tr[γL L(x, tK)γ5H(tK, x)]

2√
6
Tr

[
γ5L(tη, tη)

]
Tr[γL L(x, x)γL L(x, tK)γ5H(tK, x)]

K
0 − 2√

6
Tr

[
γ5L(tη, tη)

]
Tr[γL L(x, x)]Tr[γLH(x, tK)γ5L(tK, x)]

2√
6
Tr

[
γ5L(tη, tη)

]
Tr[γL L(x, x)γLH(x, tK)γ5L(tK, x)]

Table E.18: Contractions for ⟨η(tη)Hw(x)KL(tK)⟩ type III diagram 1
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Q1 Q2

K0
2√
6
Tr

[
γ5H(tη, tη)

]
Tr[γL L(x, x)]Tr[γL L(x, tK)γ5H(tK, x)]

− 2√
6
Tr

[
γ5H(tη, tη)

]
Tr[γL L(x, x)γL L(x, tK)γ5H(tK, x)]

K
0 2√

6
Tr

[
γ5H(tη, tη)

]
Tr[γL L(x, x)]Tr[γLH(x, tK)γ5L(tK, x)]

− 2√
6
Tr

[
γ5H(tη, tη)

]
Tr[γL L(x, x)γLH(x, tK)γ5L(tK, x)]

Table E.19: Contractions for ⟨η(tη)Hw(x)KL(tK)⟩ type III diagram 2
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E.5 Contractions for ⟨Jµ(u)Jν(v)(s̄d(x) + d̄s(x))KL(tK)⟩

K0 −1
9 Tr[γµL(u, tK)γ5H(tK, v)γνH(v, x)L(x, u)]

K
0 −1

9Tr[γµL(u, x)H(x, v)γνH(v, tK)γ5L(tK, u)]

Table E.20: Contractions for ⟨Jµ(u)Jν(v)(s̄d(x) + d̄s(x))KL(tK)⟩ type I diagram 1(a)

K0 −1
9 Tr[γµL(u, tK)γ5H(tK, x)L(x, v)γνL(v, u)]

K
0 −1

9 Tr[γµL(u, v)γνL(v, x)H(x, tK)γ5L(tK, u)]

Table E.21: Contractions for ⟨Jµ(u)Jν(v)(s̄d(x) + d̄s(x))KL(tK)⟩ type II diagram 1(a)

K0 −1
9 Tr[γµH(u, v)γνH(v, x)L(x, tK)γ5H(tK, u)]

K
0 −1

9 Tr[γµH(u, tK)γ5L(tK, x)H(x, v)γνH(v, u)]

Table E.22: Contractions for ⟨Jµ(u)Jν(v)(s̄d(x) + d̄s(x))KL(tK)⟩ type II diagram 2(a)

K0 5
9 Tr[γµL(u, v)γνL(v, u)]Tr[L(x, tK)γ5H(tK, x)]

K
0 5

9 Tr[γµL(u, v)γνL(v, u)]Tr[H(x, tK)γ5L(tK, x)]

Table E.23: Contractions for ⟨Jµ(u)Jν(v)(s̄d(x) + d̄s(x))KL(tK)⟩ type III diagram 1

K0 1
9 Tr[γµH(u, v)γνH(v, u)]Tr[L(x, tK)γ5H(tK, x)]

K
0 1

9 Tr[γµH(u, v)γνH(v, u)]Tr[H(x, tK)γ5L(tK, x)]

Table E.24: Contractions for ⟨Jµ(u)Jν(v)(s̄d(x) + d̄s(x))KL(tK)⟩ type III diagram 2
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