Articles

Polygenic Scores For Major Depressive Disorder And Risk Of Alcohol Dependence

Andersen, Allan M.; Pietrzak, Robert H.; Kranzler, Henry R.; Ma, Li; Zhou, Hang; Liu, Xiaoming; Kramer, John; Kuperman, Samuel; Edenberg, Howard J.; Nurnberger, John I.; Rice, John P.; Tischfield, Jay A.; Goate, Alison; Foroud, Tatiana M.; Meyers, Jacquelyn L.; Porjesz, Bernice; Dick, Danielle M.; Hesselbrock, Victor; Boerwinkle, Eric; Southwick, Steven M.; Krystal, John H.; Weissman, Myrna M.; Levinson, Douglas F.; Potash, James B.; Gelernter, Joel; Han, Shizhong

OBJECTIVE To examine whether AD and MDD overlap genetically, using a polygenic score approach. DESIGN, SETTINGS, AND PARTICIPANTS Association analyses were conducted between MDD polygenic risk score (PRS) and AD case-control status in European ancestry samples from 4 independent genome-wide association study (GWAS) data sets: the Collaborative Study on the Genetics of Alcoholism (COGA); the Study of Addiction, Genetics, and Environment (SAGE); the Yale-Penn genetic study of substance dependence; and the National Health and Resilience in Veterans Study (NHRVS). Results from a meta-analysis of MDD (9240 patients with MDD and 9519 controls) from the Psychiatric Genomics Consortium were applied to calculate PRS at thresholds from P < .05 to P Յ .99 in each AD GWAS data set. MAIN OUTCOMES AND MEASURES Association between MDD PRS and AD. RESULTS Participants analyzed included 788 cases (548 [69.5%] men; mean [SD] age, 38.2 [10.8] years) and 522 controls (151 [28.9.%] men; age [SD], 43.9 [11.6] years) from COGA; 631 cases (333 [52.8%] men; age [SD], 35.0 [7.7] years) and 756 controls (260 [34.4%] male; age [SD] 36.1 [7.7] years) from SAGE; 2135 cases (1375 [64.4%] men; age [SD], 39.4 [11.5] years) and 350 controls (126 [36.0%] men; age [SD], 43.5 [13.9] years) from Yale-Penn; and 317 cases (295 [93.1%] men; age [SD], 59.1 [13.1] years) and 1719 controls (1545 [89.9%] men; age [SD], 64.5 [13.3] years) from NHRVS. Higher MDD PRS was associated with a significantly increased risk of AD in all samples (COGA: best P = 1.7 × 10−6, R2 = 0.026; SAGE: best P = .001, R2 = 0.01; Yale-Penn: best P = .035, R2 = 0.0018; and NHRVS: best P = .004, R2 = 0.0074), with stronger evidence for association after meta-analysis of the 4 samples (best P = 3.3 × 10−9). In analyses adjusted for MDD status in 3 AD GWAS data sets, similar patterns of association were observed (COGA: best P = 7.6 × 10−6, R2 = 0.023; Yale-Penn: best P = .08, R2 = 0.0013; and NHRVS: best P = .006, R2 = 0.0072). After recalculating MDD PRS using MDD GWAS data sets without comorbid MDD-AD cases, significant evidence was observed for an association between the MDD PRS and AD in the meta-analysis of 3 GWAS AD samples without MDD cases (best P = .007). CONCLUSIONS AND RELEVANCE These results suggest that shared genetic susceptibility contributes modestly to MDD and AD comorbidity. Individuals with elevated polygenic risk for MDD may also be at risk for AD.

Files

  • thumnail for Andersen et al. - 2017 - Polygenic Scores for Major Depressive Disorder and.pdf Andersen et al. - 2017 - Polygenic Scores for Major Depressive Disorder and.pdf application/pdf 188 KB Download File

Also Published In

More About This Work

Academic Units
Epidemiology
Psychiatry
Published Here
February 1, 2022