HomeHome

Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits

Siegfried D. Schubert; Ronald E. Stewart; Hailan Wang; Mathew Barlow; Ernesto H. Berbery; Wenju Cai; Martin P. Hoerling; Krishna K. Kanikicharla; Randal D. Koster; Bradfield Lyon; Annarita Mariotti; Carlos R. Mechoso; Omar V. Müller; Belen Rodriguez-Fonseca; Richard Seager; Sonia I. Seneviratne; Lixia Zhang; Tianjun Zhou

Title:
Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits
Author(s):
Schubert, Siegfried D.
Stewart, Ronald E.
Wang, Hailan
Barlow, Mathew
Berbery, Ernesto H.
Cai, Wenju
Hoerling, Martin P.
Kanikicharla, Krishna K.
Koster, Randal D.
Lyon, Bradfield
Mariotti, Annarita
Mechoso, Carlos R.
Müller, Omar V.
Rodriguez-Fonseca, Belen
Seager, Richard
Seneviratne, Sonia I.
Zhang, Lixia
Zhou, Tianjun
Date:
Type:
Articles
Department(s):
International Research Institute for Climate and Society
Lamont-Doherty Earth Observatory
Volume:
29
Persistent URL:
Book/Journal Title:
Journal of Climate
Abstract:
Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST) anomalies, land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and theMaritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, and central and eastern Canada stand out as regions with few SST-forcedimpacts on precipitation oninterannual time scales.Decadal changesin SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s ‘‘climate shifts’’ in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land–atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.
Subject(s):
Droughts
Precipitation (Meteorology)
Seas
Meteorology
Publisher DOI:
https://doi.org/10.1175/JCLI-D-15-0452.1
Item views
34
Metadata:
text | xml
Suggested Citation:
Siegfried D. Schubert, Ronald E. Stewart, Hailan Wang, Mathew Barlow, Ernesto H. Berbery, Wenju Cai, Martin P. Hoerling, Krishna K. Kanikicharla, Randal D. Koster, Bradfield Lyon, Annarita Mariotti, Carlos R. Mechoso, Omar V. Müller, Belen Rodriguez-Fonseca, Richard Seager, Sonia I. Seneviratne, Lixia Zhang, Tianjun Zhou, , Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits, Columbia University Academic Commons, .

Columbia University Libraries | Policies | FAQ