HomeHome

Essays on Inventory Management and Conjoint Analysis

Yupeng Chen

Title:
Essays on Inventory Management and Conjoint Analysis
Author(s):
Chen, Yupeng
Thesis Advisor(s):
Iyengar, Garud
Date:
Type:
Dissertations
Department(s):
Operations Research
Persistent URL:
Notes:
Ph.D., Columbia University.
Abstract:
With recent theoretic and algorithmic advancements, modern optimization methodologies have seen a substantial expansion of modeling power, being applied to solve challenging problems in impressively diverse areas. This dissertation aims to extend the modeling frontier of optimization methodologies in two exciting fields inventory management and conjoint analysis. Although the three essays concern distinct applications using different optimization methodologies, they share a unifying theme, which is to develop intuitive models using advanced optimization techniques to solve problems of practical relevance. The first essay (Chapter 2) applies robust optimization to solve a single installation inventory model with non stationary uncertain demand. A classical problem in operations research, the inventory management model could become very challenging to analyze when lost sales dynamics, non zero fixed ordering cost, and positive lead time are introduced. In this essay, we propose a robust cycle based control policy based on an innovative decomposition idea to solve a family of variants of this model. The policy is simple, flexible, easily implementable and numerical experiments suggest that the policy has very promising empirical performance.The policy can be used both when the excess demand is backlogged as well as when it is lost; with non zero fixed ordering cost, and also when lead time is non zero. The policy decisions are computed by solving a collection of linear programs even when there is a positive fixed ordering cost. The policy also extends in a very simple manner to the joint pricing and inventory control problem. The second essay (Chapter 3) applies sparse machine learning to model multimodal continuous heterogeneity in conjoint analysis. Consumers' heterogeneous preferences can often be represented using a multimodal continuous heterogeneity (MCH) distribution. One interpretation of MCH is that the consumer population consists of a few distinct segments, each of which contains a heterogeneous sub population. Modeling of MCH raises considerable challenges as both across and within segment heterogeneity need to be accounted for. In this essay, we propose an innovative sparse learning approach for modeling MCH and apply it to conjoint analysis where adequate modeling of consumer heterogeneity is critical. The sparse learning approach models MCH via a two-stage divide and conquer framework, in which we first decompose the consumer population by recovering a set of candidate segmentations using structured sparsity modeling, and then use each candidate segmentation to develop a set of individual level representations of MCH. We select the optimal individual level representation of MCH and the corresponding optimal candidate segmentation using cross-validation. Two notable features of our approach are that it accommodates both across and within segment heterogeneity and endogenously imposes an adequate amount of shrinkage to recover the individual level partworths. We empirically validate the performance of the sparse learning approach using extensive simulation experiments and two empirical conjoint data sets. The third essay (Chapter 4) applies dynamic discrete choice models to investigate the impact of return policies on consumers' product purchase and return behavior. Return policies have been ubiquitous in the marketplace, allowing consumers to use and evaluate a product before fully committing to purchase. Despite the clear practical relevance of return policies, however, few studies have provided empirical assessments of how consumers' purchase and return decisions respond to the return policies facing them. In this essay, we propose to model consumers' purchase and return decisions using a dynamic discrete choice model with forward looking and Bayesian learning. More specifically, we postulate that consumers' purchase and return decisions are optimal solutions for some underlying dynamic expected utility maximization problem in which consumers learn their true evaluations of products via usage in a Bayesian manner and make purchase and return decisions to maximize their expected present value of utility, and return policies impact consumers' purchase and return decisions by entering the dynamic expected utility maximization problem as constraints. Our proposed model provides a behaviorally plausible approach to examine the impact of return policies on consumers' purchase and return behavior.
Subject(s):
Operations research
Item views
549
Metadata:
text | xml
Suggested Citation:
Yupeng Chen, , Essays on Inventory Management and Conjoint Analysis, Columbia University Academic Commons, .

Center for Digital Research and Scholarship at Columbia University Libraries | Policies