Lithosphere versus asthenosphere mantle sources at the Big Pine Volcanic Field, California

Esteban Gazel Dondi; Terry A. Plank; Donald W. Forsyth; Claire Bendersky; Cin-Ty A. Lee; Erik H. Hauri

Lithosphere versus asthenosphere mantle sources at the Big Pine Volcanic Field, California
Gazel Dondi, Esteban
Plank, Terry A.
Forsyth, Donald W.
Bendersky, Claire
Lee, Cin-Ty A.
Hauri, Erik H.
Lamont-Doherty Earth Observatory
Earth and Environmental Sciences
Persistent URL:
Book/Journal Title:
Geochemistry, Geophysics, Geosystems
Here we report the first measurements of the H2O content of magmas and mantle xenoliths from the Big Pine Volcanic Field (BPVF), California, in order to constrain the melting process in the mantle, and the role of asthenospheric and lithospheric sources in this westernmost region of the Basin and Range Province, western USA. Melt inclusions trapped in primitive olivines (Fo82–90) record surprisingly high H2O contents (1.5 to 3.0 wt.%), while lithospheric mantle xenoliths record low H2O concentrations (whole rock <75 ppm). Estimates of the oxidation state of BPVF magmas, based on V partitioning in olivine, are also high (FMQ +1.0 to +1.5). Pressures and temperatures of equilibration of the BPVF melts indicate a shift over time, from higher melting temperatures (∼1320°C) and pressures (∼2 GPa) for magmas that are >500 ka, to cooler (∼1220°C) and shallower melting (∼1 GPa) conditions in younger magmas. The estimated depth of melting correlates strongly with some trace element ratios in the magmas (e.g., Ce/Pb, Ba/La), with deeper melts having values closer to upper mantle asthenosphere values, and shallower melts having values more typical of subduction zone magmas. This geochemical stratification is consistent with seismic observations of a shallow lithosphere-asthenosphere boundary (∼55 km depth). Combined trace element and cryoscopic melting models yield self-consistent estimates for the degree of melting (∼5%) and source H2O concentration (∼1000 ppm). We suggest two possible geodynamic models to explain small-scale convection necessary for magma generation. The first is related to the Isabella seismic anomaly, either a remnant of the Farallon Plate or foundered lithosphere. The second scenario is related to slow extension of the lithosphere.
Publisher DOI:
Item views
text | xml
Suggested Citation:
Esteban Gazel Dondi, Terry A. Plank, Donald W. Forsyth, Claire Bendersky, Cin-Ty A. Lee, Erik H. Hauri, , Lithosphere versus asthenosphere mantle sources at the Big Pine Volcanic Field, California, Columbia University Academic Commons, .

Columbia University Libraries | Policies | FAQ