
Towards a Common System Architecture for

Dynamically Deploying Network Services in

Routers and End Hosts

Jae Woo Lee

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2012

c©2012

Jae Woo Lee

All Rights Reserved

ABSTRACT

Towards a Common System Architecture for

Dynamically Deploying Network Services in

Routers and End Hosts

Jae Woo Lee

The architectural simplicity of the core Internet is a double-edged sword. On the one

hand, its agnostic nature paved the way for endless innovations of end-to-end applications.

On the other hand, the inherent limitation of this simplicity makes it difficult to add new

functions to the network core itself. This is exacerbated by the conservative tendency of

commercial entities to “leave well-enough alone”, leading to the current situation often

referred to as the ossification of the Internet. For decades, there has been practically no

new functionality that has been added to the core Internet on a large scale.

This thesis explores the possibility of enabling in-network services towards the goal of

overcoming the ossification of the Internet. Our ultimate goal is to provide a common run-

time environment supported by all Internet nodes and a wide-area deployment mechanism,

so that network services can be freely installed, removed, and migrated among Internet

nodes of all kinds–from a backbone router to a set-top box at home. In that vision of

a future Internet, there is little difference between servers and routers for the purpose of

running network services. Services can run anywhere on the Internet. Application service

providers will have the freedom to choose the best place to run their code.

This thesis presents NetServ, our first step to realize the vision of network services run-

ning anywhere on the Internet. NetServ is a node architecture for dynamically deploying

in-network services on edge routers. Network functions and applications are implemented

as software modules which can be deployed at any NetServ-enabled node on the Internet,

subject to policy restrictions. The NetServ framework provides a common execution envi-

ronment for service modules and the ability to dynamically install and remove the services

without restarting the nodes. There are many challenges in designing such a system. The

main contribution of this thesis lies in meeting those challenges.

First, we recognize that the primary impetus for adopting new technologies is economics.

To address the challenge of providing economic incentives for enabling in-network services,

we demonstrate how NetServ can facilitate an economic alliance between content providers

and ISPs. Using NetServ, content providers and the ISPs operating at the network edge

(aka eyeball ISPs) can enter into a mutually beneficial economic relationship. ISPs make

their NetServ-enabled edge routers available for hosting content providers’ applications and

contents. Content providers can operate closer to end users by deploying code modules on

NetServ-enabled edge routers. We make our case by presenting NetServ applications which

represent four concrete use cases.

Second, our node architecture must support both traditional server applications and

in-network packet processing applications since content providers’ applications running on

ISPs’ routers will combine the traits of both. To address this challenge, NetServ framework

can host a packet processing module that sits in the data path, a server module that uses

the TCP/IP stack in the traditional way, or a combined module that does both. NetServ

provides a unified runtime environment between routers and servers, taking us a step closer

to the vision of the unified runtime available on all Internet nodes.

Third, we must provide a fast and streamlined deployment mechanism. Content providers

should be able to deploy their applications at any NetServ-enabled edge router on the Inter-

net, given that they have proper authorizations. Moreover, in some application scenarios,

content providers may not know the exact locations of the target routers. Content providers

need a way to send a message to install or remove an application module towards a network

destination, and have the NetServ-enabled routers located in the path catch and act on

the message. To address this challenge, we adopted on-path signaling as the deployment

mechanism for NetServ. A NetServ signaling message is sent in an IP packet towards a

destination. The packet gets forwarded by IP routers as usual, but when it transits a

NetServ-enabled router, the message gets intercepted and passed to the NetServ control

layer.

Fourth, a NetServ-enabled router must support the concurrent executions of multiple

content providers’ applications. Each content provider’s execution environment must be

isolated from one another, and the resource usage of each must be controlled. To address

the challenge of providing a robust multi-user execution environment, we chose to run

NetServ modules in user space. This is in stark contrast to most programmable routers,

which run service modules in kernel space for fast packet processing. Furthermore, NetServ

modules are written in Java and run in Java Virtual Machines (JVMs). Our choice of

user space execution and JVM allows us to leverage the decades of technology advances in

operating systems, virtualization, and Java.

Lastly, in order to host the services of a large number of content providers, NetServ

must be able to scale beyond the single-box architecture. We address this challenge with

the multi-box lateral expansion of NetServ using the OpenFlow forwarding engine. In this

extended architecture, multiple NetServ nodes are attached to an OpenFlow switch, which

provides a physically separate forwarding plane. The scalability of user services is no longer

limited to a single NetServ box.

Additionally, this thesis presents our prior work on improving service discovery in local

and global networks. The service discovery work makes indirect contribution because the

limitations of local and overlay networks encountered during those studies eventually led

us to investigate in-network services, which resulted in NetServ. Specifically, we investigate

the issues involved in bootstrapping large-scale structured overlay networks, present a tool

to merge service announcements from multiple local networks, and propose an enhancement

to structured overlay networks using link-local multicast.

Table of Contents

1 Introduction 1

1.1 Main Contribution: Meeting the Challenges for In-Network Services Framework 2

1.2 Overview of the Thesis . 6

I Prelude: Improving Service Discovery in Local and Global Networks

9

2 Creating Global Networks: Bootstrapping Large-scale DHT networks 10

2.1 Introduction . 10

2.2 Related work . 13

2.2.1 DHT construction proposals . 13

2.2.2 Common assumptions . 13

2.3 System model . 14

2.4 Simulation results . 16

2.4.1 Simulation setup . 16

2.4.2 Convergence time . 18

2.4.3 Aggressive join . 19

2.5 Conclusion . 26

3 Enhancing Global Networks Using Local Networks: Multicast-augmented

DHT 27

3.1 Introduction . 27

3.2 Background . 28

i

3.2.1 Evolution of P2P Architecture . 28

3.2.2 Zeroconf: Local Service Discovery Using Multicast 29

3.2.3 Multicast-based Superpeer Architecture 31

3.3 mDHT Architecture . 32

3.3.1 Overview . 32

3.3.2 Routing Table . 33

3.3.3 Host Set Maintenance . 34

3.3.4 Host Join and Leave . 34

3.3.5 Data Replication in Subnet . 35

3.4 Discussion . 36

3.4.1 Benefits of mDHT . 36

3.4.1.1 Immunity to Churn . 36

3.4.1.2 High Availability . 36

3.4.1.3 Easy Bootstrapping . 36

3.4.1.4 Parallel Queries and Load Balancing on Single Node 37

3.4.1.5 Awareness of Physical Proximity 37

3.4.2 Analysis of Assumption . 38

3.5 Conclusion . 39

4 Extending Local Services to Global Networks: Zeroconf-to-Zeroconf

Bridging 40

4.1 Introduction . 40

4.2 Background and Approach . 42

4.2.1 Zeroconf, mDNS, DNS-SD, and Bonjour 42

4.2.2 OpenDHT . 45

4.2.3 Architecture Overview of z2z . 45

4.3 Design and Implementation . 46

4.3.1 Usage Examples . 47

4.3.2 Message Flow . 48

4.3.2.1 Exporting . 48

4.3.2.2 Importing . 49

ii

4.3.3 Implementation . 51

4.3.3.1 C++ Prototype . 51

4.3.3.2 Open-source Java Implementation 52

4.3.3.3 Implementation Issues . 53

4.4 Related Work . 54

4.5 Discussion . 55

II Enabling In-Network Services 57

5 NetServ: Activating the Network Edge 58

5.1 Motivation . 58

5.2 Design Goals . 59

5.3 Node Architecture . 60

5.4 End-to-end Service Scenario . 62

6 NetServ Node Implementation 64

6.1 NetServ on Linux Netfilter Transport . 64

6.1.1 Signaling . 66

6.1.2 NetServ Controller . 70

6.1.3 Forwarding Plane . 71

6.1.4 Service Container and Modules . 72

6.2 Security . 74

6.2.1 Resource Control and Isolation . 75

6.2.2 Authentication and Authorization 76

6.3 Performance Evaluation of NetServ on Linux Netfilter 77

6.3.1 Setup . 78

6.3.2 Results . 78

7 Economic Model: NetServ Applications 85

7.1 ActiveCDN . 85

7.2 KeepAlive Responder . 87

iii

7.3 Media Relay . 89

7.4 Overload Control . 90

7.5 Discussion on Signaling Mode . 92

7.5.1 Reverse Data Path . 92

7.5.2 Off-path Signaling . 92

8 Scaling NetServ using OpenFlow 94

8.1 Introduction . 94

8.2 Overview of OpenFlow . 95

8.3 NetServ on OpenFlow . 96

9 Active Networking and NetServ 99

9.1 Introduction . 99

9.2 Addressing Three Challenges of Active Networks 101

9.2.1 Hybrid Approach: User Code, but Not in Data Packets 101

9.2.2 Striking the Right Balance: Security and Performance 102

9.2.3 Economic Alliance between Content Providers and ISPs 103

9.3 Earlier Active Network Systems and Other Related Work 104

9.3.1 Active Networks . 104

9.3.2 Programmable Routers . 106

9.3.3 GENI . 106

9.3.4 Content Caching . 107

III Conclusions 108

10 Conclusions 109

IV Bibliography 111

Bibliography 112

iv

V Appendices 124

A Making Real-world Impact: NetServ on GENI 125

B Autonomic Management Using NetServ 126

B.1 Introduction . 126

B.2 Autonomic Management Architecture . 127

B.3 Demo Scenario . 128

v

List of Figures

2.1 (a) Delivery rate for 10,000 nodes joining a Chord overlay at the rate of

1,000 nodes per second. Convergence time is 20 seconds. (b) Delivery rate

for 10,000 nodes joining a Kademlia overlay at the rate of 1,000 nodes per

second. Convergence time is 15 seconds. 17

2.2 Increase in convergence time as the overlay size doubles. 19

2.3 Node n joins a Chord ring between its successor and predecessor. 20

2.4 Pseudocode for the original Chord stabilization protocols, reproduced from

the Chord paper. 21

2.5 Delivery rates for three different STABILIZE and FIXFINGERS intervals,

with aggressive join disabled. (1,000 nodes joining at the rate of 1,000

nodes/sec in all three cases.) . 22

2.6 Topology snapshot of 250 nodes forming a Chord network, taken at 50 sec-

onds after they all started JOIN. 23

2.7 An extremely slow process by which a hub turns into a ring. 24

2.8 An extremely slow process by which a chain turns into a ring. 25

3.1 (a) Two-tier superpeer architecture. The overlay network of superpeers can

be an unstructured network or a DHT. (b) A multicast-based superpeer ar-

chitecture. (This is not our mDHT.) A superpeer is a single point of failure

in a subnet. (c) Our mDHT architecture. A subnet is a node in a DHT. The

node IDs are chosen by hashing the subnet IP addresses. 30

3.2 Ratio of the hosts that are participating alone in their subnets. 38

vi

4.1 Two Zeroconf subnets A and B are exchanging local services with each other.

Of course, z2z is not limited to only two subnets. Any number of subnets

can export and import services to and from OpenDHT using z2z. 46

4.2 Exporting services: (1) z2z discovers a service instance of the type daap. tcp

by issuing a PTR query; (2) The service instance is further resolved to obtain

the host name, IP address, and other additional information, using SRV, A,

and TXT queries; (3) z2z constructs a key-value pair from the information

and sends a put message to OpenDHT. 48

4.3 Importing services: (1) z2z retrieves a service item from OpenDHT by send-

ing a get message for the key “tomsmusic”. (2) The service item is registered

as if it had originated locally. This is done by inserting PTR, SRV, TXT,

and A records into the local mDNS daemon. 50

5.1 Overview of NetServ node architecture. 61

5.2 Deploying modules on a NetServ-enabled edge router. 62

6.1 NetServ node implementation using Linux Netfilter packet processing frame-

work and Java OSGi module system. 65

6.2 NetServ signaling flow. 67

6.3 An example of NetServ SETUP message. 68

6.4 Request and response exchange. 70

6.5 User space service container process. 73

6.6 Test configurations 1 to 6. 79

6.7 Forwarding rates of the router with different configurations. 80

6.8 Microbenchmark. 82

6.9 NetServ node with many containers. 83

7.1 How ActiveCDN works. 86

7.2 Operation of KeepAlive Responder. 88

7.3 Operation of NetServ Media Relay. 89

7.4 NetServ as SIP overload protection. 91

vii

8.1 How OpenFlow works. 95

8.2 NetServ with OpenFlow extension. 97

8.3 Multiple NetServ nodes attached to an OpenFlow switch. 98

A.1 ActiveCDN demo. 125

B.1 NetServ node internal architecture. 127

B.2 Network topology for the DoS scenario. 128

B.3 Signaling flow in the GENI experiment. 128

viii

List of Tables

6.1 List of available headers in NetServ requests. (S: SETUP, R: REMOVE, P: PROBE,

*: mandatory) . 69

ix

Acknowledgments

First and foremost, I would like to thank my advisor, Prof. Henning Schulzrinne, whose

influence on my life goes far beyond my research. I walk away with many lessons that will

carry me through all my future endeavors. He taught me that things are not always what

they seem at first, that I shouldn’t believe everything I read, and that I should always think

critically and for myself. He taught me to have a vision, to plan for long term, to see the big

picture, but at the same time, to be practical and pay attention to detail. For the past six

years, he has shown me that a highly accomplished person can be completely down-to-earth,

infinitely patient, and simply nice. Hopefully some of those traits have rubbed off on me

during the years.

I would like to thank my thesis committee: Prof. Gil Zussman, Prof. Roxana Geambasu,

Dr. Volker Hilt, and Prof. Yechiam Yemini. Their criticisms and encouragements have been

invaluable for reexamining and improving my work. I hope they allow me to keep seeking

their advice as I continue my research in the future.

I would also like to thank Zoran Despotovic and Wolfgang Kellerer, who sponsored part

of my research and provided much needed guidance during the early years of my research.

My heartfelt thanks to the NetServ team members: Roberto Francescangeli, Wonsang

Song, Emanuele Maccherani, Jan Janak, Suman Srinivasan, Michael Kester, Eric Liu, and

Salman Baset. The design and implementation of NetServ is a result of a group effort, thus

I share the sense of ownership with the team.

Many thanks to Mark Berman and Niky Riga of the GENI Project Office for their

continued support for NetServ.

Thanks to all my colleagues at the IRT lab. A genuine camaraderie on the team made

this place such a great place to work. Thanks to other graduate students at Columbia

University for their friendship.

x

Thanks also to Mauro Femminella and Gianluca Reali for feedback and discussion, and

to Raynald Seydoux, Abhishek Srivastava and Nathan Miller for their assistance with im-

plementation. I also acknowledge the funding organizations that sponsored my research.

Teaching has been a big part of my graduate school years. I thank all my former students

and teaching assistants in the Advanced Programming classes for their enthusiasm.

My sincere thanks to John Kender, Mike Kester, Rosemary Addarich, Adam Cannon,

and Shree Nayar for their support and encouragement for my teaching.

I must give thanks to my parents, Dong Hee Lee and Hae Rim Lee, who have endured

the long years of their son not acting his age. There would be no thesis without their

support and patience. And thanks, and a big hug, to my boys, Adrian and Tristan. None

of these mean much without them.

Last but not least, Mia, my love, sorry it took a while. I’m done now.

xi

To my family.

xii

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The architectural simplicity of the core Internet is a double-edged sword. On the one hand,

its agnostic nature paved the way for endless innovations of end-to-end applications. On the

other hand, the inherent limitation of this simplicity makes it difficult to add new functions

to the network core itself. This is exacerbated by the conservative tendency of commercial

entities to “leave well-enough alone”, leading to the current situation often referred to as the

ossification of the Internet. For decades, there has been practically no new functionality that

has been added to the core Internet on a large scale. When there were needs, researchers and

entrepreneurs had to find clever roundabout ways to implement the desired functionalities

in the application layer rather than in the network layer even though the latter would have

led to superior solutions.

This is changing now. Many researchers believe that it is no longer possible to patch

up the Internet in the face of exploding bandwidth usage and ever-increasing demand for

new in-network functionalities. Bold proposals that advocate clean-slate redesigns of the

Internet architecture are no longer perceived as merely satisfying academic curiosity. In

fact, the National Science Foundation of the United States has launched GENI [12], a large-

scale project involving academic and industrial teams across the country, which aims to

provide an Internet-scale testbed for such disruptive proposals that cannot be tested on the

current Internet.

This thesis explores the possibility of enabling in-network services towards the goal of

overcoming the ossification of the Internet. What types of in-network services are helpful

CHAPTER 1. INTRODUCTION 2

for today’s and tomorrow’s Internet applications? What characteristics do those in-network

services have in common? Can the current Internet architecture support such in-network

services? If not, what new functions are needed? How do we get there?

We start by assuming that two fundamental characteristics of today’s Internet will

survive in the future: the packet transport (think IP today) and the concept of addressable

services (think web servers today.) We jettison, however, the dichotomy that the two

characteristics impose on the Internet actors today. On the one hand, ISPs operate routers

which process packets in the network core–forwarding, monitoring and manipulating them–

but routers do not normally provide addressable services. On the other hand, service

providers and end users operate host computers which provide addressable services, but

the providers and users do not usually have a means to process in-coming packets in the

network core. What if service providers can deploy network services on a backbone router?

What if end users can deploy a packet monitoring tool on their ISPs’ edge routers?

Our ultimate vision calls for a common runtime environment supported by all Internet

nodes and a wide-area deployment mechanism, so that network services can be freely in-

stalled, removed, and migrated among Internet nodes of all kinds–from a backbone router

to a set-top box at home. In that vision of a future Internet, there is little difference be-

tween servers and routers for the purpose of running network services. Services can run

anywhere on the Internet. Application service providers will have the freedom to choose

the best place to run their code.

1.1 Main Contribution: Meeting the Challenges for In-Network

Services Framework

This thesis presents NetServ, our first step to realize the vision of network services run-

ning anywhere on the Internet. NetServ is a node architecture for dynamically deploying

in-network services on edge routers. Network functions and applications are implemented

as software modules which can be deployed at any NetServ-enabled node on the Internet,

subject to policy restrictions. The NetServ framework provides a common execution envi-

ronment for service modules and the ability to dynamically install and remove the services

CHAPTER 1. INTRODUCTION 3

without restarting the nodes.

There are many challenges in designing such a system. The main contribution of this

thesis lies in meeting those challenges. In this section, we identify the challenges and describe

how NetServ addresses the challenges.

Economic incentive

We recognize that the primary impetus for adopting new technologies is economics. Our

argument for enabling in-network services will ring hollow if we fail to present compelling

use cases that demonstrate clear economic benefits for all the stakeholders involved in

developing, deploying and hosting the services.

To address the challenge of providing economic incentives for enabling in-network ser-

vices, we demonstrate how NetServ can facilitate an economic alliance between content

providers and ISPs. The two Internet stakeholders are currently in a tussle. As the tradi-

tional lines between different Internet actors begin to disappear, they frequently encroach

what used to be each other’s territory.

Using NetServ, content providers and the ISPs operating at the network edge (aka eyeball

ISPs) can enter into a mutually beneficial economic relationship. ISPs make their NetServ-

enabled edge routers available for hosting content providers’ applications and contents.

Content providers can operate closer to end users by deploying code modules on NetServ-

enabled edge routers. We discuss this model in detail in Chapter 5. We make our case

by presenting four concrete use cases. Chapter 7 presents the use cases through NetServ

applications that we have built.

In fact, our focus on the economic story limits the scope of this thesis. We do not

present NetServ as the solution to fulfill the ultimate vision of enabling services everywhere.

NetServ is the first step towards the vision, which focuses on activating edge routers, where

we found compelling economic story. Applying NetServ to other Internet nodes remains as

future work and thus outside the scope of this thesis.

CHAPTER 1. INTRODUCTION 4

Unified runtime environment

Content providers’ applications running on ISPs’ routers will combine the traits of both

traditional end-to-end network services and in-network router functions. Our node archi-

tecture must support both traditional server applications and in-network packet processing

applications.

To address the challenge of accommodating both server applications and router functions

in a single node, NetServ framework can host a packet processing application module that sits

in the data path, a server application module that uses the TCP/IP stack in the traditional

way, or a combined application module that does both. The showcase applications in

Chapter 7 use both features.

NetServ provides a unified runtime environment between routers and servers, taking us

a step closer to the vision of the unified runtime available on all Internet nodes.

Wide-area deployment

For the cooperation between content providers and ISPs to be effective, providing a fast and

streamlined deployment mechanism is crucial. Content providers should be able to deploy

their applications at any NetServ-enabled edge router on the Internet, given that they have

proper authorizations.

Consider a scenario where a content publisher wants to deploy a web caching application

module near a certain group of end users, due to a sudden surge in traffic from that region,

for instance. In this case, the content provider needs to deploy its application module at

a NetServ-enabled edge router in that general vicinity, but it does not need to know the

precise location of the router. In fact, the location information may not be available to

the content provider since ISPs may not wish to disclose their network topologies to their

customers.

Content providers need a way to send a message to install or remove an application

module towards a network destination, and have the NetServ-enabled routers located in

the path catch and act on the message. To address this challenge, we adopted on-path

signaling as the deployment mechanism for NetServ. NetServ signaling is based on the

Next Steps in Signaling (NSIS) protocol suite [76], an IETF standard for signaling. A

CHAPTER 1. INTRODUCTION 5

NetServ signaling message is sent in an IP packet towards a destination. The packet gets

forwarded by IP routers as usual, but when it transits a NetServ-enabled router, the message

gets intercepted and passed to the NetServ control layer. We describe this mechanism in

detail in Section 6.1.1.

Multi-user execution environment

A NetServ-enabled router must support the concurrent executions of multiple content

providers’ applications. Each content provider’s execution environment must be isolated

from one another, and the resource usage of each must be controlled.

To address the challenge of providing a robust multi-user execution environment, we

chose to run NetServ modules in user space. This is in stark contrast to most programmable

routers, which run service modules in kernel space for fast packet processing. Furthermore,

NetServ modules are written in Java and run in Java Virtual Machines (JVMs). Our choice

of user space execution and JVM allows us to leverage the decades of technology advances

in operating systems, virtualization, and Java. We discuss these mechanisms in detail in

Section 6.2.

Performance and Scalability

Running service modules in user space JVM raises the question on whether NetServ can

provide adequate performance. Moreover, in order to host the services of a large number of

content providers, NetServ must be able to scale beyond the single-box architecture.

Our evaluation of a Java service module performing deep packet inspection and mod-

ification indicates that the overhead is indeed significant, but not prohibitively so. The

throughput achieved on a modestly equipped Linux server matches the average traffic seen

by a typical edge router, indicating that the solution is quite usable in a low traffic envi-

ronment.

The real answer to the performance and scalability challenge is the multi-box lateral

expansion of NetServ using the OpenFlow [99] forwarding engine. In this extended archi-

tecture, multiple NetServ nodes are attached to an OpenFlow switch, which provides a

physically separate forwarding plane. The scalability of user services is no longer limited to

CHAPTER 1. INTRODUCTION 6

a single NetServ box. We describe the OpenFlow extension in Chapter 8.

1.2 Overview of the Thesis

This thesis is divided into two parts. Part I consists of Chapters 2, 3 and 4. This series

of work, prior to our NetServ work, focuses on improving service discovery in local and

global networks. They make indirect contribution because the limitations of local and over-

lay networks encountered during those studies eventually led us to investigate in-network

services, which resulted in NetServ, our main contribution. Thus, Part I can be regarded

as a prelude to Part II which describes NetServ. Part II consists of Chapters 5 to 9. A brief

overview of each chapter is as follows.

Chapter 2 investigates the issues involved in bootstrapping large-scale DHT networks [95].

It has been claimed that the standard DHT join protocols are not adequate for bootstrap-

ping large DHT networks from scratch. We debunk the claim by showing that Chord and

Kademlia DHT take less than 20 seconds to form a stable overlay of 10,000 nodes. Kademlia

bootstraps quickly without any modification to its JOIN protocol. Chord, however, requires

a slight modification to its JOIN protocol. We analyze the behavior of the unmodified Chord

JOIN protocol in detail and illustrate its failure mode, which reveals a danger inherent in

designing a p2p system that may be subject to extreme churn.

Chapter 3 presents mDHT, a novel architectural enhancement to DHT using multicast

service discovery [94]. In mDHT, a group of host computers in a subnet participate in a

DHT overlay as a single node. A query is routed from subnet to subnet until it reaches

the final destination subnet, where it is resolved among the hosts using link-local multicast.

Under a reasonable deployment assumption, mDHT offers many benefits over standard

DHTs, such as locality, easy bootstrapping, high availability, and near imperviousness to

node churn.

Chapter 4 presents the Zeroconf-to-Zeroconf Toolkit (z2z) [93]. Zeroconf, better known

as Apple Bonjour, solves configuration and service discovery problems in local networks

using link-local multicast. Our z2z interconnects multiple Zeroconf subnets, extending the

CHAPTER 1. INTRODUCTION 7

reach of existing Zeroconf-enabled applications beyond the local link.

Chapter 5 of Part II introduces NetServ [91,92,112], the main contribution of this thesis.

We begin by developing the economic motivation of our work: activating ISPs’ edge routers

for the purpose of hosting content providers’ services. This motivation leads to our design

goals, which in turn leads to the high level node architecture we discuss in this chapter. We

also describe the end-to-end service scenario that underlies the NetServ applications that

we have built. Detailed descriptions of the applications are deferred until Chapter 7.

Chapter 6 describes the NetServ node implementation. We describe in detail each com-

ponent of a NetServ node–signaling daemons, NetServ controller, forwarding engine, service

container, and the building block and application modules–and discuss how they interact.

We also consider the security features of the implementation and provide performance eval-

uation.

Chapter 7 presents four NetServ applications: ActiveCDN, KeepAlive Responder, Media

Relay, and Overload Control. The applications demonstrate the economic benefits for the

content providers and the ISPs who enter into a cooperative relationship using NetServ.

ActiveCDN provides provider-specific content distribution and processing. The other three

applications illustrate how NetServ can be used to develop more efficient and flexible systems

for real-time multimedia communication. In particular, we show how Internet Telephony

Service Providers (ITSPs) can deploy NetServ applications that help overcome the most

common problems caused by the presence of Network Address Translators (NATs) in the

Internet, and how NetServ helps to make ITSPs’ server systems more resilient to traffic

overload.

Chapter 8 describes the OpenFlow extension of NetServ, which provides a solution for

scalability. We give a brief overview of how OpenFlow works, and then describes how it is

integrated with the NetServ node architecture that we have described in Chapter 6.

Chapter 9 compares NetServ with active networks. The idea to enable in-network ser-

vices is not new. Active networking articulated the same vision more than a decade ago. In

fact, active networks went even further, advocating the infamous integrated approach, where

every packet can carry a program that can alter the behavior of network nodes. We explain

CHAPTER 1. INTRODUCTION 8

how NetServ addresses the main challenges of active networks. We argue, in fact, that

NetServ can be viewed as the first fully integrated active network system that provides all

the necessary functionality to be deployable, addressing the core problems that prevented

the practical success of earlier approaches.

9

Part I

Prelude: Improving Service

Discovery in Local and Global

Networks

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 10

Chapter 2

Creating Global Networks:

Bootstrapping Large-scale DHT

networks

2.1 Introduction

Structured overlay networks based on distributed hash tables (DHT) have become a pop-

ular substrate for large-scale peer-to-peer (p2p) systems. DHTs provide efficient lookup of

distributed data by assigning numerical keys to the peer nodes and the data items, storing

each data item at the node whose key is the closest to the item’s key, and locating in a

small number of hops the node responsible for any given key. In order to achieve the small

number of hops–usually a logarithm of the number of nodes in the network–DHTs dictate

overlay topology by imposing certain constraints on the entries in each node’s routing table.

In Chord [115], for example, the keys are m-bit integers arranged in a circle modulo 2m,

and each node’s routing table is filled in such a way that the ith routing table entry is at a

distance of at least 2i−1 in the key circle, aka the Chord ring.

Maintaining such an overlay structure when nodes are joining and leaving the network

very frequently–referred to as a high churn rate–has been the focus of much academic

research. However, we found only a handful of studies that investigate the extreme case

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 11

of churn, namely, bootstrapping a DHT from scratch by having all nodes join at the same

time. The massive join scenario is not contrived. A campus-wide or city-wide power outage

will result in a large number of computers starting up at the same time. In fact, a large

fraction of computers connected to the Internet today routinely reboot nearly at the same

time when they receive a periodic operating systems update. In August 2007, one such

massive reboot triggered a hidden bug in the Skype client software, causing a world-wide

failure of the Skype voice-over-IP network for two days [34]. A DHT-based overlay multicast

system such as SplitStream [56] provides another example. A large number of users may

join the overlay at the same time for a live streaming of a popular event.

A few proposals address the problem of bootstrapping a DHT from scratch [44, 45,

83, 100, 119], but they all forgo the standard DHT join protocols in favor of their own

distributed algorithms that build routing tables directly. They motivate their algorithms

by claiming that the standard join protocols are not designed to handle the huge number

of concurrent join requests involved in bootstrapping a DHT from scratch. (Some even

assume, incorrectly, that the join protocols expect nodes to be inserted sequentially into an

overlay.) We find the claim unsubstantiated.

Another problem with the existing proposals is the assumption that they make about

the initial state of the nodes before they start forming a DHT. Each node is assumed to hold

a handful of pointers to a random selection of other nodes in the network. These pointers

in effect provide an unstructured overlay network (termed a knowledge graph by [45]) as a

starting point for the algorithms of the proposals. The algorithms thus take the approach

of transforming a pre-existing unstructured overlay into a DHT. We question the validity

of the assumption. One can argue that such a pre-existing overlay might be a reasonable

model for the state of a DHT after a massive failure, where each node still has the old

routing table. However, it is certainly not applicable to bootstrapping a DHT from scratch,

which is the scenario that the proposals claim to address.

We take a step back and examine how the standard join protocols behave under a large

number of concurrent join requests. We will use the term “JOIN protocol” to refer to the

standard join protocol of a DHT, and “JOIN call” to refer to the remote procedure call

to implement the protocol. When the meaning is clear from context, we will simply use

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 12

“JOIN”. Our system model is simple and realistic: we assume that every node knows a

single global bootstrap server which is responsible for handing out a contact node when

asked. Each node asks the bootstrap server for a contact node, and then sends a message

to the contact node to start a JOIN. The bootstrap server keeps a list of every node that

has successfully joined the overlay, and picks one at random when it is asked to provide a

contact node. We simulate bootstrapping a Chord [115] and a Kademlia [98] DHT where a

large number of nodes join the network nearly simultaneously, at a rate of 1,000 nodes per

second, and measure the time it takes to form a stable overlay. In contrast to the claim made

by the existing proposals, our results indicate that both Chord and Kademlia handle a large

number of concurrent JOINs quite well. For 10,000 nodes joining at a rate of 1,000 nodes

per second, Chord and Kademlia took less than 20 and 15 seconds, respectively, to form

a stable overlay. It should be noted, however, that Chord requires a slight modification

to its join protocol, proposed by Baumgart et al. [50], to achieve the fast bootstrapping

performance. We discuss this modification in detail in Section 2.4.3.

This chapter makes two contributions to p2p research. First, we call into question the

claim that JOIN protocols cannot handle a large number of nodes joining simultaneously,

and provide empirical evidence disputing that claim. Second, we elucidate the reason why

the Chord JOIN protocol needs a modification to deliver fast bootstrapping. We demon-

strate the failure mode of the unmodified Chord JOIN protocol, which is not only interesting,

but also edifying for the designers of distributed systems that may be subject to extreme

conditions.

The rest of this chapter is organized as follows. Section 2.2 summarizes the existing

proposals and discusses the common assumption that they all seem to make. Section 2.3

describes our system model. Section 2.4 presents our simulation results and discusses the

modification to the Chord JOIN protocol. Finally, we conclude and discuss future work in

Section 2.5.

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 13

2.2 Related work

2.2.1 DHT construction proposals

Angluin et al. [45] present a series of distributed algorithms that build a linked list of all

nodes sorted by their identifiers. The sorted list can then be used as a basis to construct

DHTs that are based on linear overlay topologies such as Chord [115] or SkipNet [77].

For DHTs using fixed key space partitioning schemes such as P-Grid [43] or Pastry [107],

Aberer et al. [44] propose a decentralized algorithm motivated by the requirements of peer-

to-peer database applications.

Montresor, Jelasity and Babaoglu [100] describe a gossiping algorithm called T-MAN.

Each node starts out with a view, which is just a handful of pointers to other nodes, and

keeps exchanging its view with the neighboring nodes. The overlay topology defined by the

views converges to that of Chord as each node refines its view to bring it closer to a Chord

routing table when exchanging views with neighbors. Jelasity, Montresor and Babaoglu [83],

and Voulgaris and van Steen [119], present similar gossiping algorithms that build a Pastry

overlay instead.

2.2.2 Common assumptions

In [45], it is assumed that the nodes are initially organized as a weakly-connected knowledge

graph of bounded degree d, where an edge from node u to node v indicates that u knows

v’s network address. A knowledge graph is therefore a model for an unstructured overlay

network where each node has a handful of pointers to other nodes. In fact, all other

proposals described in Section 2.2.1 make the same assumption about the initial state of

the nodes, although the others do not use the term knowledge graph. Random walks on a

pre-existing unstructured overlay network start the algorithm in [44]. The starting point

for the gossiping algorithms in [83, 100, 119] is an unstructured overlay built by running

another gossiping protocol (similar but separate from the one that builds DHT) called

NEWSCAST [82] proposed by some of the same authors.

The NEWSCAST protocol can build a knowledge graph from scratch. The authors

show that NEWSCAST will produce a sufficiently randomized knowledge graph even when

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 14

every node is initialized with only a pointer to a single well-known node. (This is clearly

the minimal assumption one can make.) There are a few other proposals that construct

networks which can be considered knowledge graphs as well [90, 101,118].

Thus, with all the proposals described in Section 2.2.1, building a DHT from scratch–

that is, making no assumption except the existence of a single well-known node–actually

becomes a two-step process that requires a knowledge graph to be built first using one of

the knowledge graph construction proposals. This escalates the complexity and cost of the

algorithms. And at the root of all the proposals, there is the premise that JOIN cannot

handle massive concurrency involved in DHT bootstrapping. Our results challenge that

premise.

2.3 System model

We simulate a scenario where a large number of nodes join a Chord or Kademlia overlay

nearly simultaneously. Each node starts the bootstrapping process by contacting the single

well-known bootstrap server. The bootstrap server, which has been keeping a list of every

node that has successfully joined the overlay, responds to the newly joining node by handing

out a contact node selected at random from the list. The newly joining node then initiates a

JOIN call by sending a message to the contact node that was handed out by the bootstrap

server. When the new node receives a response from the contact node indicating that the

JOIN was successful, the new node contacts the bootstrap server once again, so that the

new node can be added to the list of successfully bootstrapped nodes. We assume that

initially the bootstrap server has one node in its list of successfully bootstrapped nodes, so

that it has something to hand out from the very beginning. That is, we start our simulation

with an overlay already containing a single node. In practice, the initial node can be the

bootstrap server itself if the bootstrap server participates in the overlay.

The exact meaning of “a large number of nodes joining nearly simultaneously” is defined

by setting the join rate, which is the average rate at which the nodes contact the bootstrap

server to start JOIN. This is a reasonable model for the real-life situation where the incoming

requests would be throttled by the maximum throughput of the bootstrap server. We use

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 15

the join rate of 1,000 nodes per second, which will generate 2,000 hits per second on the

bootstrap server because every joining node contacts the bootstrap server twice. This hit

rate is well within the capability of today’s servers. Root name servers were required to

handle 1,200 requests per second more than a decade ago [97], and a measurement in 2002

reports an average rate of nearly 2,000 requests per second, with much higher loads at peak

times [120].

Note that there is a significant latency from the time that a node starts a JOIN protocol

until the time that the node is considered successfully bootstrapped. The latency consists

of the initial round trip to the bootstrap server, the JOIN remote procedure call (which can

involve multiple hops), and the final notification to the bootstrap server. This means that,

in the beginning, all newly joining nodes will send their JOIN calls to the single first node,

because that node is the only contact node that the bootstrap server can hand out until the

list of bootstrapped nodes starts growing after the initial bootstrapping latency. This seems

to create another potential bottleneck in addition to the bootstrap server. However, unlike

the load on the bootstrap server which is an integral part of our system model, the load

on the single first node can be controlled easily by starting out with an overlay containing

many nodes rather than a single node. We start with an overlay containing a single node

for simplicity.

After initiating a JOIN protocol, each node begins to send a test query to a random

key every second on average. The interval between the successive test queries by a node

is drawn from the normal distribution with a mean of 1 second and a standard deviation

of 0.1 second, truncated to non-negative values. At another fixed interval, we collect the

total number of test messages sent by all nodes during that interval and the total number

of messages that have been delivered successfully during the same interval, and calculate

the ratio which we call delivery rate. We measure the convergence time of an overlay, which

we define as the time it takes for the delivery rate to reach 95%. We also make sure that

the average hop count of the delivered messages is O(logN) because an overlay should

not be considered stable if messages are delivered in O(N) hops. Since we focus on the

bootstrapping stage where all nodes are just joining the overlay, we assume that the nodes

stay alive after they join the overlay; i.e., we assume that there is no churn.

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 16

2.4 Simulation results

2.4.1 Simulation setup

We used the OverSim simulator [50], version 20080919 [23]. Conveniently, the DHT im-

plementations included in OverSim follow a bootstrapping procedure very close to that of

our system model. A singleton object called the BootstrapOracle assumes the role of our

bootstrap server, except that the BootstrapOracle is a global C++ object accessed by the

nodes without incurring any network delay. We modified the Chord and Kademlia imple-

mentations to include communication delays when nodes access the BootstrapOracle. The

join rate is controlled by a configuration parameter, which we set to 1,000 nodes per second.

OverSim also includes a test application called KBRTestApp. We modified it to produce

our measurements.

Between any pair of nodes, we used a constant packet delay of 50 milliseconds, plus a

random jitter of around 10%. The random jitter was drawn from the normal distribution

with a mean of 0 and a standard deviation of 5 milliseconds, truncated to non-negative

values. This is a conservative estimate of the average packet delay experienced in the

Internet today. We do not explicitly model the processing delays in each node, which should

be nearly negligible, but not zero. We consider that the processing delays are absorbed into

the packet delays.

Unless noted otherwise, we used the following configuration settings for Chord. We used

iterative routing, and the successor list size was set to 8. When a JOIN call fails, a node

waits 5 seconds before it sends another. The stabilize() maintenance procedure (STABI-

LIZE) and fix fingers() maintenance procedure (FIXFINGERS) are run immediately after

a node successfully joins the overlay, and afterwards they are run every 5 and 10 seconds,

respectively. The STABILIZE procedure updates a node’s immediate successor and the

FIXFINGERS procedure updates all other routing table entries. We found the STABILIZE

and FIXFINGERS intervals of 5 and 10 seconds to be optimal for bootstrapping, but in

general, the intervals would be considered somewhat aggressive. A real-life implementation

can use an adaptive approach, where it switches to longer intervals once the overlay reaches

a stable state.

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 17

0%

25%

50%

75%

100%

 0 10 20 30 40 50 60 70 80 90 100 110 120

R
at

io
 o

f s
uc

ce
ss

fu
lly

 d
el

iv
er

ed
 m

es
sa

ge
s

(s
am

pl
ed

 e
ve

ry
 5

 s
ec

on
ds

)

Time (sec)

Reaches 95% between 15 and 20 seconds

All 10k nodes started JOIN by the end of first 10 seconds

10,000 nodes joining a Chord overlay at 1,000 nodes/sec

(a)

0%

25%

50%

75%

100%

 0 10 20 30 40 50 60 70 80 90 100 110 120

R
at

io
 o

f s
uc

ce
ss

fu
lly

 d
el

iv
er

ed
 m

es
sa

ge
s

(s
am

pl
ed

 e
ve

ry
 5

 s
ec

on
ds

)

Time (sec)

Reaches 95% between 10 and 15 seconds

All 10k nodes started JOIN by the end of first 10 seconds

10,000 nodes joining a Kademlia overlay at 1,000 nodes/sec

(b)

Figure 2.1: (a) Delivery rate for 10,000 nodes joining a Chord overlay at the rate of 1,000

nodes per second. Convergence time is 20 seconds. (b) Delivery rate for 10,000 nodes

joining a Kademlia overlay at the rate of 1,000 nodes per second. Convergence time is 15

seconds.

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 18

For Kademlia, we set k = 16, α = 1, and b = 1. That is, the k-bucket size was set to 16,

no parallel queries were used, and the optimization technique of considering IDs b bits at

a time described in Section 4.2 of [98] was not used. OverSim’s Kademlia implementation

uses a sibling list, an extension described in [51]. We set the sibling list size to 8.

The simulations were performed on a PC equipped with Intel Core 2 Duo CPU and

4 GB RAM running Ubuntu Linux 8.04, except the simulations involving more than 50,000

nodes, which required more RAM. Those were run on a similar PC with 16 GB RAM.

2.4.2 Convergence time

Figure 2.1 shows our main result. It plots the delivery rates, sampled at every 5 seconds,

when 10,000 nodes join a Chord and a Kademlia overlays at a rate of 1,000 nodes per

second. Note that a delivery rate is simply the ratio of the number of successfully delivered

messages to the number of messages sent in a given interval. Those messages that are sent

and received across the interval boundaries add jitter to the delivery rates, and that is why

some data points go over 100% in Figure 2.1. The join rate of 1,000 nodes/sec implies that

all 10,000 nodes have started the JOIN calls after about 10 seconds. Figure 2.1(a) shows

that it takes 10 more seconds for the nodes to form a stable Chord overlay that correctly

routes over 95% of the queries, resulting in a fast convergence time of only 20 seconds.

Figure 2.1(b) shows that Kademlia converges even faster, taking less than 15 seconds to

reach the 95% delivery rate.

Convergence time remains fast when we increase the size of the overlay network. Fig-

ure 2.2 plots the increase in convergence time as we keep doubling the number of nodes.

Convergence time seems to increase very slowly against the overlay size. The convergence

time for Chord increases only to 45 seconds when the network size reaches 128,000 nodes.

For Kademlia, the curve stays almost flat under 15 seconds.

The superior performance of Kademlia can be attributed to the symmetric nature of

its routing architecture. In Kademlia, a node receives queries from the same nodes that it

would contact when it wants to send a query. This enables Kademlia to use the information

contained in regular queries to maintain the routing table, eliminating the need to have

separate maintenance protocols. Every node sends a query every second in our simulation,

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 19

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1000 2000 4000 8000 16000 32000 64000 128000

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
)

Number of nodes (log scale)

Nodes joining a Chord overlay at 1000 nodes/sec
Nodes joining a Kademlia overlay at 1000 nodes/sec

Figure 2.2: Increase in convergence time as the overlay size doubles.

resulting in a large number of messages from which the Kademlia nodes can extract useful

information to adjust their routing tables. Chord does not have this symmetry, hence the

need for the separate stabilization protocols, STABILIZE and FIXFINGERS.

For the large overlay sizes, a stable overlay can form before all nodes have started

the JOIN calls. It takes 128 seconds for all 128,000 nodes to start the JOIN calls. In

both Chord and Kademlia, stable overlays form well before all nodes have joined, and the

overlays remain stable as the rest of the nodes join them.

2.4.3 Aggressive join

Our Chord simulations in Section 2.4.2 use a JOIN protocol called aggressive join, which

contains a slight modification to the JOIN protocol described in the original Chord paper.

Aggressive join was proposed by Baumgart et al. [50] and included in the OverSim’s Chord

implementation [23].

A node n joins a Chord ring by asking an existing node in the ring to find n’s successor.

In other words, n makes a JOIN call to an arbitrary contact node. Figure 2.3(a) shows the

successor (solid line) and predecessor (dotted line) pointers among the three nodes, p, n

and s, right after n has found its successor s. In the original Chord specification, the JOIN

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 20

(a) (b)

Figure 2.3: Node n joins a Chord ring between its successor and predecessor.

protocol stops here. Fixing up the rest of the successor and predecessor pointers to make

the node n a full participant of the ring, as depicted in Figure 2.3(b), is delayed until the

next STABILIZE cycle. The pseudocode for JOIN and STABILIZE from the Chord paper

is reproduced in Figure 2.4.

Aggressive join, on the other hand, proceeds to complete all the pointers between the

three nodes immediately after JOIN:

s.predecessor = n

n.predecessor = p

p.successor = n

When s receives a join request from n (or when the FIND SUCCESSOR call initiated by

n’s JOIN call terminates at s, to be more precise), s immediately sets its predecessor to

n, s then includes p in its join response message to n, enabling n to set its predecessor to

p, and finally s sends a message to its old predecessor p, indicating that the newly joining

node n would be a better successor for p.

It turns out that aggressive join is essential for fast convergence. Figure 2.5 shows

convergence times when we disabled aggressive join. With our standard STABILIZE and

FIXFINGERS intervals of 5 and 10 seconds, it took 4,500 seconds to form a stable overlay.

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 21

// create a new Chord ring

n.create() {

predecessor = nil;

successor = n;

}

// join a Chord ring containing node n’

n.join(n’) {

predecessor = nil;

successor = n’.find_successor(n);

}

// called periodically:

// verifies immediate successor of n

// and tells the successor about n

n.stabilize() {

x = successor.predecessor;

if (x in (n,successor))

successor = x;

successor.notify(n);

}

// n’ thinks it might be our predecessor

n.notify(n’) {

if (predecessor is nil

or n’ in (predecessor,n))

predecessor = n’;

}

Figure 2.4: Pseudocode for the original Chord stabilization protocols, reproduced from the

Chord paper.

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 22

0%

25%

50%

75%

95%

100%

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
at

io
 o

f s
uc

ce
ss

fu
lly

 d
el

iv
er

ed
 m

es
sa

ge
s

(s
am

pl
ed

 e
ve

ry
 5

0
se

co
nd

s)

Time (sec)

Reaches 95%
in 650 secs

Reaches 95%
in 2000 secs

Reaches 95%
in 4500 secs

STABILIZE interval = 1 sec, FIXFINGERS interval = 2 secs
STABILIZE interval ~ U(1,5), FIXFINGERS interval ~ U(2,10)
STABILIZE interval = 5 secs, FIXFINGERS interval = 10 secs

Figure 2.5: Delivery rates for three different STABILIZE and FIXFINGERS intervals,

with aggressive join disabled. (1,000 nodes joining at the rate of 1,000 nodes/sec in all

three cases.)

When we tried to compensate for the lack of aggressive join by running STABILIZE and

FIXFINGERS extremely frequently–STABILIZE every second and FIXFINGERS every

two seconds–we were able to bring the convergence time down to 650 seconds, but it is

still orders of magnitude slower than the 15 seconds convergence time with aggressive join

enabled. Randomizing the intervals did not improve the convergence time. When we set

each STABILIZE interval from a uniform distribution between 1 and 5 seconds and each

FIXFINGERS interval between 2 and 10 seconds, the convergence time was 2,000 seconds,

indicating no significant benefit from randomization.

Figure 2.6 illustrates the circumstance under which bootstrapping a Chord network

without aggressive join suffers from a slow convergence. It is a topology snapshot of 250

nodes trying to bootstrap a Chord network, taken at 50 seconds after they all started

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 23

Figure 2.6: Topology snapshot of 250 nodes forming a Chord network, taken at 50 seconds

after they all started JOIN.

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 24

Figure 2.7: An extremely slow process by which a hub turns into a ring.

JOIN nearly simultaneously (at the rate of 1,000 nodes/sec.) The arrows indicate successor

pointers. The massive number of concurrent join requests, combined with the fact that the

standard Chord JOIN protocol delays fixing successor and predecessor pointers, resulted in

a tree-like topology containing long chains and high in-degree hubs.

Without aggressive join, when fixing successors and predecessors are left to the STA-

BILIZE procedure, such chains and hubs converge to a ring extremely slowly. Figure 2.7

illustrate the process for a hub. Nodes 1 to 5 all have their successors set to node 0, and

thus send NOTIFY calls to node 0, telling node 0 that they might be 0’s predecessors.

As node 0 receives NOTIFY calls from different nodes, it keeps updating its predecessor,

eventually settling on node 5, since node 5 is the best predecessor for node 0 among nodes

1 to 5. This is shown in Figure 2.7(a). During the next STABILIZE cycle, nodes 1 to

4 discover that node 0 has a new predecessor, and they all set their successors to node 5

because node 5 is a better successor for them than node 0, as shown in Figure 2.7(b). Node

5 then receives NOTIFY calls from node 1 to 4, and sets its predecessor to node 4, which in

turn causes node 1 to 3 to flock to node 4 during the next STABILIZE cycle, as shown in

Figure 2.7(c). This process continues until the nodes forms a ring, as in Figure 2.7(e). From

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 25

Figure 2.8: An extremely slow process by which a chain turns into a ring.

the STABILIZE algorithm in Figure 2.4, we see that a successor is changed only when the

previous successor acquires a new predecessor, and that happens when NOTIFY is called.

But in a hub topology, of all the NOTIFY calls sent by the nodes pointing to the central

node, only one of them will have an effect, yielding just one chance for a successor change.

Since the size of the ring can never be greater than the number of unique successors, at

each iteration, the size of the ring increases only by one.

Figure 2.8 illustrates a similar process by a long chain rather than a hub. As the sequence

of predecessor changes works its way backward towards the end of the chain, the ring gets

expanded one node at a time. Note that a chain will necessarily have the nodes lined up

in the order of their IDs, due to the fact that a JOIN process is finding the successor node

and setting the successor pointer to it.

Aggressive join sets successors and predecessors immediately to the freshly joined nodes,

therefore increasing the number of unique successors as quickly as possible. This behavior is

enough to break the previous pattern, as evidenced by the fast bootstrapping performance.

The fact that aggressive join effectively solves the problem of the unmodified Chord

JOIN protocol provides a clue as to why Kademlia does not suffer from the same problem.

CHAPTER 2. CREATING GLOBAL NETWORKS: BOOTSTRAPPING
LARGE-SCALE DHT NETWORKS 26

Recall that Kademlia does not use separate protocols for maintaining routing tables; instead

it simply uses the regular query traffic for the purpose. Kademlia’s JOIN protocol is simply

a series of lookup queries, from which the corresponding nodes update their routing tables

as needed. In effect, Kademlia’s JOIN protocol is already as “aggressive” as it can be.

The lesson for a distributed systems designer seems to be that a decision to defer topology

corrections to a later time should be carefully vetted to make sure there is no adverse effect,

especially when the system may be subject to a high churn environment.

2.5 Conclusion

It has been claimed that the standard DHT join protocols are not adequate for bootstrap-

ping large DHT networks from scratch. We debunk the claim by showing that Chord and

Kademlia DHT take less than 20 seconds to form a stable overlay of 10,000 nodes. Kadem-

lia bootstraps quickly without any modification to its JOIN protocol. Chord, however,

requires a slight modification to its JOIN protocol. The modified JOIN protocol, called

aggressive join, fixes the successor and predecessor pointers immediately after a node has

joined, as opposed to waiting until the next STABILIZE cycle. We analyze the behavior of

the unmodified Chord JOIN protocol in detail and illustrate its failure mode, which reveals

a danger inherent in designing a p2p system that may be subject to extreme churn.

CHAPTER 3. ENHANCING GLOBAL NETWORKS USING LOCAL NETWORKS:
MULTICAST-AUGMENTED DHT 27

Chapter 3

Enhancing Global Networks Using

Local Networks:

Multicast-augmented DHT

3.1 Introduction

We have witnessed two significant advances in peer-to-peer (p2p) networking technology in

recent years, driven by the consumers’ desire to interconnect at the two opposite ends of

networking scale. On the global scale, distributed hash tables (DHTs) [98, 107, 114] solved

the scalability problem of the Internet-wide overlay networks. DHTs impose certain struc-

tures into the overlay topologies in order to achieve logarithmic-time lookup of a resource

in the network. On the local scale, Zero Configuration Networking (Zeroconf) [39] all but

eliminated the need to configure applications and devices to discover and talk to each other

in a same subnet. Zeroconf implements service discovery by exchanging link-local multicast

packets.

This chapter describes an architectural enhancement to DHT using Zeroconf multicast,

which we call mDHT. In mDHT, the meaning of a “node” is changed from an individual

host computer to an entire subnet, i.e., an entire subnet participates in a DHT overlay as a

single node. A lookup query is routed from subnet to subnet in mDHT until it reaches the

CHAPTER 3. ENHANCING GLOBAL NETWORKS USING LOCAL NETWORKS:
MULTICAST-AUGMENTED DHT 28

subnet for which the query is destined. The query is then resolved within the subnet using

multicast.

Our mDHT architecture can be applied to any existing DHT system. Under a reason-

able deployment assumption (the validity of which we reinforce with a measurement of an

existing p2p system), mDHT offers numerous benefits including locality, load balancing,

easy bootstrapping, high availability, and near imperviousness to node churn.

The rest of this chapter is organized as follows. We give background information on

hierarchical DHTs and Zeroconf technology in Section 3.2. We delve into mDHT architec-

ture in Section 3.3, starting with an overview and then describing each aspect of mDHT

architecture in detail. In Section 3.4, we discuss the benefits of mDHT, and analyze our

deployment assumption using a measurement of a real-world p2p system. We conclude in

Section 3.5.

3.2 Background

3.2.1 Evolution of P2P Architecture

The p2p systems architecture has evolved continuously in order to accommodate the demand

of ever-increasing scale of p2p overlay networks. The scalability limit of flat unstructured

p2p systems such as the early version of Gnutella, which performed content lookup by

flooding the network, inspired the development of structured p2p systems based on DHTs.

A DHT network is characterized by an efficient algorithm to map an arbitrary string to

a particular node in the network and to produce a routing path of a bounded number of

hops from any node to that node. The mapping is deterministic and results in a balanced

distribution of the strings among the participating nodes. This enables efficient lookup of

distributed data items when each data item is associated with a string (a file name, for

example) and the item is stored in the node to which the associated string maps.

Another way to overcome the scalability limit of flat unstructured systems was to in-

troduce hierarchy. In a two-tier hierarchical organization used in the later versions of

Gnutella [13], the core overlay network is formed not by every participating node, but by a

selected subset called superpeers. Each non-superpeer maintains a connection to a superpeer

CHAPTER 3. ENHANCING GLOBAL NETWORKS USING LOCAL NETWORKS:
MULTICAST-AUGMENTED DHT 29

who will act as a gateway to the services offered by the overlay. Figure 3.1(a) illustrates

this arrangement.

The idea of hierarchical overlay can be applied to DHTs as well as unstructured net-

works, and the depth of hierarchy can be more than just two levels. Many system proposals

exhibit complexities that go well beyond that of the simple two-tier superpeer architec-

ture [46, 70, 71]. In addition to the obvious advantage of reduced overlay size, hierarchical

designs can offer various other advantages, such as taking account of physical network and

node heterogeneity, better resilience to churn, administrative control and autonomy, and

more efficient caching and load balancing strategies. These advantages apply both to DHTs

and unstructured networks, but they are especially beneficial to DHTs, since the rigid over-

lay structures of DHTs make it harder to incorporate those considerations into flat overlays.

Those hierarchical designs that are more complex than the simple two-tier superpeer archi-

tecture tend to focus on maximizing performance in one or two of those areas. The simple

two-tier architecture, however, still provides some benefits in all those areas compared to

the flat overlay design. Moreover, the simplicity of the two-tier architecture is an impor-

tant advantage over other more complex hierarchical designs, when it comes to developing,

deploying and maintaining a large scale overlay network. For these reasons, the simple two-

tier superpeer architecture of Figure 3.1(a) is often the preferred choice for p2p networks

on the Internet [16,52].

3.2.2 Zeroconf: Local Service Discovery Using Multicast

When multiple IP-enabled devices are physically connected with one another, Zeroconf

makes it possible for one device to use the services provided by another without requiring the

user to configure the devices manually. For example, when a user connects two computers

either directly using an Ethernet crossover cable or via an Ethernet switch, he will be

able to accomplish his file-transfer task by simply starting up the appropriate Zeroconf-

enabled applications at both ends. The applications use Zeroconf technology to discover

each other, without the user having to furnish them with the connection information such

as IP addresses and port numbers.

Zeroconf performs local service discovery by exchanging DNS packets via link-local

CHAPTER 3. ENHANCING GLOBAL NETWORKS USING LOCAL NETWORKS:
MULTICAST-AUGMENTED DHT 30

(a) (b)

(c)

Figure 3.1: (a) Two-tier superpeer architecture. The overlay network of superpeers can be

an unstructured network or a DHT. (b) A multicast-based superpeer architecture. (This

is not our mDHT.) A superpeer is a single point of failure in a subnet. (c) Our mDHT

architecture. A subnet is a node in a DHT. The node IDs are chosen by hashing the subnet

IP addresses.

CHAPTER 3. ENHANCING GLOBAL NETWORKS USING LOCAL NETWORKS:
MULTICAST-AUGMENTED DHT 31

multicast, the details of which are described in a pair of specifications, DNS-based Service

Discovery (DNS-SD) [58] and Multicast DNS (mDNS) [59]. DNS-SD defines a set of naming

rules for certain DNS record types that it uses for advertising and discovering services. PTR

records are used to enumerate service instances of a given service type. A service instance

name is mapped to a host name and a port number using a SRV record. If a service instance

has more information to advertise than the host name and port number, the additional

information is carried in a TXT record.

The DNS records are stored in a collection of mDNS daemons, which are limited-

functionality DNS servers running on each host in a local subnet. The mDNS daemons

collectively manage a special top-level domain, “.local.”, which is used for names that are

meaningful only in a local subnet. The queries and answers are sent via link-local multi-

cast using UDP port 5353 instead of 53, the conventional port for DNS. An application

can advertise a network service to the subnet by creating appropriate DNS records and

depositing them into the mDNS daemon running on the same host. The mDNS daemon

will then respond with these records when it hears a multicast query for a matching service.

Creating DNS records and storing them with mDNS are usually done by invoking API calls

in a DNS-SD/mDNS client library implementation.

Zeroconf technology is widespread today. Bonjour, Apple [3]’s Zeroconf implementa-

tion, is an integral part of Mac OS X operating system. Bonjour is also installed on a

large fraction of computers running Windows, thanks to the popularity of iTunes—Apple’s

music playing application—which installs Bonjour for Windows as part of its installation

process. For UNIX-like platforms, there is a mature open-source implementation of Zero-

conf called Avahi [4], which comes preinstalled in a number of major Linux distributions

such as Ubuntu [33].

3.2.3 Multicast-based Superpeer Architecture

Figure 3.1(b) illustrates a possible hybrid of Zeroconf and superpeer-based DHT. A node

in a subnet is elected as a superpeer and participates in the DHT. The other nodes in

the subnet learn the identity of the superpeer through the superpeer’s Zeroconf service

announcement, and therefore are able to access the DHT through the superpeer.

CHAPTER 3. ENHANCING GLOBAL NETWORKS USING LOCAL NETWORKS:
MULTICAST-AUGMENTED DHT 32

At first glance, this architecture seems to offer a reasonable alternative to the regular

superpeer architecture of Figure 3.1(a) if we assume that, on average, a significant number

of nodes are found in a single subnet. It is unclear, however, that the use of multicast

provides much benefit at all. Moreover, a major weakness of superpeer architectures is

still present: the superpeer is a single point of failure among the nodes attached to that

superpeer. We will not consider this model any further. It is presented here as a conceptual

bridge leading to our mDHT architecture, and to ensure that the reader does not conjure

up this model as his or her mental image of mDHT.

3.3 mDHT Architecture

3.3.1 Overview

Figure 3.1(c) illustrates our mDHT architecture. An entire subnet, not an individual host,

becomes a “node” and participates in a DHT. A node identifier (node ID) must be assigned

to a subnet as a whole, so it cannot be based on an IP address of any individual host.

Figure 3.1(c) shows one way to assign node IDs on subnet level: node IDs are chosen by

hashing subnet IP addresses. Other methods of ID assignment can be used as long as a

single ID is assigned to an entire subnet and that ID is propagated to all participating hosts

in the subnet.

Messages are routed in the same way they are routed in regular DHTs. A query is routed

among the nodes until it reaches its destination according to the particular DHT algorithm

used in the overlay. In mDHT, a node is a subnet. Once a query reaches the destination

subnet, the query is resolved among the hosts in the subnet using link-local multicast.

Our mDHT can be applied to any DHT since its operation depends only on the generic

facilities common to all DHTs such as routing tables or node identifiers. Nevertheless,

it is often helpful to use a specific DHT when referring to a part of data structure or

a maintenance procedure, since terminology varies across DHTs. In those cases, we use

Chord [114]. Also, when we use the term node, we mean a logical entity that is given a

node ID, which is a host computer in a regular DHT, but a subnet in mDHT. We use the

term host to refer to individual computers.

CHAPTER 3. ENHANCING GLOBAL NETWORKS USING LOCAL NETWORKS:
MULTICAST-AUGMENTED DHT 33

3.3.2 Routing Table

We explained that a query is routed in mDHT just as it is routed in a regular DHT, passing

through intermediate nodes and finally reaching the node to which it is destined. Once

the query arrives in the destination subnet, it is resolved among the hosts in the subnet

using multicast. But how does the message travel from a node to another when a node is a

subnet, not a host? Message transfer is still based on TCP/IP networking, and there is no

such thing as sending a message to a subnet.

Suppose a subnet A is a node in a mDHT overlay and, among the hosts in the subnet

A, three hosts a1, a2, a3 have joined the overlay. (The three hosts share a single node ID,

hash(A) for example, as explained in Section 3.3.1.) Suppose a subnet B is also a node, with

hosts b1, b2, b3 participating. Imagine that a1 has issued a query, and the DHT algorithm

has determined that the node B is the next hop. In order for a1 to send a message to the

subnet B, it needs to know at least one specific host in that subnet. Let’s assume that a1

knows that b1 and b2 reside in B. The host a1 randomly picks one of the two hosts in B,

say b2, and sends the message. If B is the final destination for the message, b2 will switch

to multicast to resolve the query in its subnet. If not, it will find the next hop, say C, and

proceed in the same way as a1 did before. (This is assuming that recursive query routing

is used in the DHT; if iterative routing is used, b2 will tell a1 where the next hop is and a1

will repeat the procedure.)

Each host in a DHT carries a routing table that has a list of nodes. In Chord, a routing

table entry (called a finger) points to a host node, and it consists of the node’s ID, IP

address and port number. In mDHT, a node is a subnet, and the routing table entry for

a node needs to include a host set, the IP addresses and port numbers of the participating

hosts in the subnet. For example, a mDHT implementation based on Chord may redefine

the finger as a collection of the following information: SHA-1 hash of a subnet IP address

as a node ID, the subnet IP address, and a host set of maximum 8 IP addresses and port

numbers.

In our example of a1 sending a message to B, a1 randomly picked one host from the

host set for B. When iterative query routing is used, there is another option. The same

message can be sent to multiple hosts in the host set. In the example, a1 can send the

CHAPTER 3. ENHANCING GLOBAL NETWORKS USING LOCAL NETWORKS:
MULTICAST-AUGMENTED DHT 34

query to both b1 and b2, and take the faster response. This will shorten the overall lookup

latency by reducing timeout delays from failed hosts. It will also help maintain the host

sets, as unresponsive hosts can be removed from them. This mechanism is similar to sending

parallel queries to multiple adjacent nodes, available in some DHTs such as Kademlia [98].

The difference is that, in mDHT, parallel queries are sent to a single node.

3.3.3 Host Set Maintenance

The host sets in the routing tables need to be periodically updated. The authoritative list of

active hosts in a subnet comes from the hosts in the subnet themselves. Each host monitors

the multicast announcements sent by other hosts as they join and leave the overlay, and

keeps track of the list of active hosts in the subnet. Zeroconf API makes this easy.

This list of active hosts in a subnet is propagated to all the routing table entries that

point to this subnet using a combination of push and pull methods. Every host periodically

refreshes its own routing table entries by contacting one of the hosts for an up-to-date list

of active hosts. This can be incorporated into the regular DHT maintenance procedures

such as Chord’s FIX FINGERS(). An updated list can also be pushed, on a join or leave

event in a subnet, onto the neighboring nodes such as Chord’s successor and predecessor.

3.3.4 Host Join and Leave

When there is no other participating host in a subnet, host join and leave in mDHT follow

the same procedures of regular DHTs.

When a subnet already contains one or more participating hosts, joining and leaving

the mDHT overlay from that subnet is almost trivial. A newly joining host simply makes

a multicast announcement. The other hosts, which are monitoring the multicast announce-

ments, add the new host into their lists of active hosts, which will eventually find their way

to the routing tables of other nodes (Section 3.3.3). A leaving host also makes a multi-

cast announcement, telling the other hosts to remove it from their lists of active hosts. In

addition, a host may need to transfer data when joining or leaving, according to the data

replication policy in place (Section 3.3.5).

CHAPTER 3. ENHANCING GLOBAL NETWORKS USING LOCAL NETWORKS:
MULTICAST-AUGMENTED DHT 35

3.3.5 Data Replication in Subnet

When DHT is used as a data storage and lookup facility, a data item is mapped to a

particular node by the DHT algorithm. In the case of mDHT, where a node is a subnet,

there is a question of which host (or which set of hosts) will store a data item mapped to

the subnet.

The simplest strategy is to have one host store a particular data item, most likely the

host that happened to receive the initial message for depositing the data item into the DHT.

If a lookup request for that data item arrives at a different host in the subnet, it will issue a

multicast query, to which the host owning the data will respond. When the host owning the

data item leaves the overlay, it must transfer the data item to another participating host.

This strategy does not provide any shield against host failures at mDHT level. However,

the data replication schemes of regular DHTs such as Chord’s successor-list can still be

used.

On the opposite end, another strategy is to replicate all data items fully within the

subnet. When a host receives a new data item, it is immediately propagated to all par-

ticipating hosts in the subnet. This results in a high data injection cost, but the lookup

latency caused by the multicast query is eliminated. A host failure is not a problem as long

as there is another participating host in the subnet. On the other hand, a newly joining

host needs to copy all existing data from a neighbor.

The optimal strategy is likely to be somewhere in the middle. A simple, yet reasonable

approach might be to try to replicate data in a fixed number of hosts. Obviously the number

represents a maximum since there may not be as many participating hosts in the subnet.

Another possible strategy is to start with a low number of replicas and increase the number

per data item as the node receives more and more lookup queries for the item.

CHAPTER 3. ENHANCING GLOBAL NETWORKS USING LOCAL NETWORKS:
MULTICAST-AUGMENTED DHT 36

3.4 Discussion

3.4.1 Benefits of mDHT

3.4.1.1 Immunity to Churn

High rate of churn—the continuous process of hosts joining and leaving an overlay—has been

a difficult problem in DHT design. In mDHT, as long as there are other participating hosts

in a subnet, hosts joining and leaving in that subnet has no effect on the DHT structure.

The subnet remains as the same node in the DHT as individual hosts come and go, and

there is no need to fix anything in the DHT structure.

Contrast this with the superpeer architecture we saw earlier in Figure 3.1(a). A super-

peer represents a single point of failure among the nodes attached to it. If a superpeer leaves

the overlay, presumably one of the non-superpeers can step up to become a new superpeer

to hold the same group together, but even then, the new superpeer needs to be repositioned

in the DHT overlay because its node ID is different from that of the previous superpeer.

3.4.1.2 High Availability

Many DHTs use data replication and parallel queries to increase the availability of data

items stored in a DHT as a whole. Achieving high availability of a specific node, however,

is not so straightforward. Our mDHT, on the other hand, can increase the availability of a

node simply by adding more hosts to the subnet. This ability to strengthen a specific node

would be particularly useful when it is used with a DHT that also provides administrative

autonomy and controlled data placement, such as SkipNet [77].

3.4.1.3 Easy Bootstrapping

The use of multicast makes it easy for a new node to discover and join an mDHT overlay

when there is another participating host already present in the subnet. This may reduce the

load on the global bootstrapping servers in some systems, since only the first participating

host in a subnet needs to contact a bootstrapping server.

CHAPTER 3. ENHANCING GLOBAL NETWORKS USING LOCAL NETWORKS:
MULTICAST-AUGMENTED DHT 37

3.4.1.4 Parallel Queries and Load Balancing on Single Node

As explained in Section 3.3.2, the fact that a node is a subnet consisting of multiple hosts

enables mDHT to send parallel queries to a single node, as opposed to Kademlia’s parallel

queries which are sent to multiple adjacent nodes.

Within a subnet in mDHT, the participating hosts naturally share the load, since a

random subset of the hosts receive each query. This is again in contrast with the superpeer

architecture of Figure 3.1(a), where a superpeer represents a single point of failure and

possibly a bottleneck.

There is a subtle issue, however, when we consider load balancing among all the hosts

in the whole overlay. The fact that a node in mDHT is a subnet, and therefore contains a

varying number of hosts in it, may conceivably result in a load deviation worse than those

of standard DHTs. We conjecture that a DHT load balancing strategy such as [53] will be

as effective on mDHT as it is on standard DHTs. Analysis and simulation to support this

conjecture is planned as a future work.

Another point to note is that DHT load balancing is not such a serious problem in

practice, since the expectation is that most hosts will only consume a small fraction of the

host’s resources. A more important task is mitigating “hot spots” caused by exceedingly

popular items. Standard DHTs use replication to deal with hot spots. Our mDHT can do

the same. In addition, node redundancy can be increased when the DHT algorithm allows

controlled data placement (Section 3.4.1.2).

3.4.1.5 Awareness of Physical Proximity

A mDHT node represents a grouping of p2p participants in closest proximity to one another.

A p2p application built on top of mDHT can take advantage of this locality property in

various ways. For example, a file sharing application can reduce data traffic by having a

host computer cache popular contents, not only for the purpose of repeated retrieval, but

for making it available for the other hosts in the subnet. The cache inventories can then be

exchanged via multicast among the hosts.

CHAPTER 3. ENHANCING GLOBAL NETWORKS USING LOCAL NETWORKS:
MULTICAST-AUGMENTED DHT 38

Figure 3.2: Ratio of the hosts that are participating alone in their subnets.

3.4.2 Analysis of Assumption

The claimed benefits of mDHT depend on the assumption that the majority of the subnets

contain multiple hosts participating in the overlay network. In order to test this assumption

on a real-world p2p network, we examined the IP addresses of 9582 Skype relay hosts, which

were collected as part of an experiment by Kho et al. [88], measuring Skype relay calls over

a three-month period.

Since it is difficult to determine the subnet mask of an arbitrary IP address, we simply

fix a hypothetical subnet mask of certain number of bits, and group those IP addresses

that fall into the same subnets under the fixed subnet mask. Figure 3.2 shows the ratios

of the isolated hosts, the hosts that are alone in their subnets, as we vary the subnet mask

from 32 to 0 bits. (The 32-bit subnet mask is the vacuous one where each host IP address

becomes its own subnet; and the 0-bit mask is the degenerate one where the whole Internet

is a single subnet.) The dotted line plots a result for the whole data set of 9582 hosts, and

the solid line for a subset of 2150 hosts that belong in the .EDU domain.

The result from the .EDU hosts (the solid line) supports our assumption. With 24-

CHAPTER 3. ENHANCING GLOBAL NETWORKS USING LOCAL NETWORKS:
MULTICAST-AUGMENTED DHT 39

bit subnet mask (i.e., /24 subnet), half of the hosts have at least one other host in their

subnets. Moreover, subnets in University campuses tend to be larger than /24. The 21-bit

mask reduces the ratio of isolated hosts down to 25%.

It is harder to justify our assumption if we include not only the .EDU hosts, but all

the hosts in the data set (the dotted line). It takes the 21-bit mask to achieve 50%, and

the 19-bit mask to get down to 25%. It should be noted, however, that the majority of

the IP addresses in this data set belong in the domains of residential ISPs [88], indicating

that they are home computers. The access networks of residential ISPs are not likely to

allow multicast between subscribers, so they represent hostile environments for mDHT. But

we observe two encouraging trends that point to a future direction of residential networks

that is more favorable to mDHT. First is the rise of home networks. Many households

have multiple networked devices, and the use of a NAT router to form a home network is

becoming commonplace. (The residential IP addresses in our data set do not include any

host behind NAT, since Skype does not choose such a host as a relay.) Second, residential

ISPs are increasingly concerned about the traffic generated by p2p applications, and they

are looking for ways to reduce the traffic [14]. A residential ISP can reduce the traffic

generated by a mDHT-based application simply by enabling multicast among the users in

a neighborhood, so that they can share content cache as described in Section 3.4.1.5.

3.5 Conclusion

We presented mDHT, a novel hybrid architecture that augments DHT with multicast ser-

vice discovery. Our mDHT shares some of the positive traits of the traditional two-level

superpeer architecture, but we eliminate the single point of failure in a peer cluster. In

addition, the redundancy within a node makes mDHT impervious to churn, and offers an

easy way to increase node availability.

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 40

Chapter 4

Extending Local Services to Global

Networks: Zeroconf-to-Zeroconf

Bridging

4.1 Introduction

Zero Configuration Networking (Zeroconf) [39] solves the following problem: when mul-

tiple IP-enabled devices are physically connected with one another, one device should be

able to use the services provided by another without requiring the user to configure the

devices manually. For example, when a user connects two computers either directly using

an Ethernet crossover cable or via an Ethernet switch, he should be able to accomplish

his file-transfer task by simply starting up the appropriate applications at both ends. The

applications should discover each other without the user telling them where to find them.

Today, Zeroconf technology is one of the most widespread solutions for service discov-

ery in local area networks. Bonjour is Apple [3]’s Zeroconf implementation, and it is an

integral part of Mac OS X operating system. Bonjour is also installed on a large fraction

of the personal computers running Windows operating system, thanks to the popularity

of iTunes—Apple’s music playing application—which installs Bonjour for Windows as part

of its installation process. For UNIX-like platforms, there is a mature open-source imple-

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 41

mentation of Zeroconf called Avahi [4], which comes preinstalled in a number of major

Linux distributions such as Debian [7] and Ubuntu [33]. On the hardware side, virtually

every printer sold today supports Zeroconf. The number of Zeroconf-enabled applications

is rapidly increasing as well, as evidenced by the growing number of Zeroconf service types

registered in [8].

The multicast-based design of Zeroconf, however, effectively limits its usage to the local

subnet. This presents no problem for the discovery scenarios that are primarily motivated

by hardware devices, such as discovering the printers in a network. But as the focus of

Zeroconf is shifting towards more sophisticated services provided by software applications,

the limited reach of the services often makes the technology unsuitable for many discovery

scenarios that would otherwise be perfect candidates for Zeroconf. For example, a number

of chat applications (such as Apple’s iChat) use Zeroconf to discover other users in the

local link and display them in their ad hoc buddies window. A straightforward extension of

this mechanism is to discover those people who have convened for the same purpose even if

their computers are not in the same local network, such as a group of people attending an

academic conference scattered in a number of adjacent buildings, or using a mixture of wired

and wireless networks which are usually separate subnets. As another example, iTunes lets

a group of officemates share their music. It would be nice to include the coworkers working

at home or at a remote satellite location.

In this chapter, we present an approach to extend the reach of Zeroconf service discovery,

inspired by the recent innovation in peer-to-peer network research. Structured peer-to-peer

overlay networks based on distributed hash tables (DHT) became popular as the substrates

on which global-scale distributed systems are built. A DHT network is characterized by an

efficient algorithm to map an arbitrary string to a particular node in the network and to

produce a routing path of a bounded number of hops from any node to that node. The

mapping is deterministic and results in a uniform distribution (or other desired distributions

for some algorithms) of the strings among the participating nodes. This enables efficient

implementations of a number of global-scale services such as file sharing and overlay mul-

ticast. Our approach is to connect multiple Zeroconf subnets using a DHT network. We

have designed and implemented the Zeroconf-to-Zeroconf Toolkit (z2z) that connects Ze-

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 42

roconf subnets using OpenDHT, a publicly accessible DHT service. A z2z process running

in a subnet exports locally available Zeroconf services into OpenDHT. Another z2z process

running in a different subnet can then look up the services in OpenDHT, and import them

into its own local network as if they had originated locally. Such imported services are

indistinguishable from the real local services in the eyes of the applications, and thus the

imported services simply show up along with other locally available services in the existing,

unmodified Zeroconf-enabled applications.

Our contributions are twofold. First, we propose a hybrid architecture that combines

the ease of Zeroconf with the scalability of DHT-based peer-to-peer networks. Second,

we developed a practical tool that can extend the reach of any existing Zeroconf-enabled

application without modification. The modular software design also makes it a suitable

framework on which to build a global service discovery system based on Zeroconf.

The remainder of the chapter is organized as follows. Section 4.2 starts with background

information on Zeroconf and OpenDHT, and ends with an architecture overview of z2z.

Section 4.3 describes the usage of the z2z command line executable, provides a message

flow based explanation of how it works, and finally delves into the implementation detail.

Section 4.4 lists related work. Lastly, Section 4.5 discusses possible future directions of this

effort.

4.2 Background and Approach

4.2.1 Zeroconf, mDNS, DNS-SD, and Bonjour

There is some confusion about what exactly the term Zeroconf means. The term came

from the IETF Zero Configuration Networking Working Group [40], which was chartered

to develop a requirements specification for networking in the absence of configuration and

administration. The working group identified three requirements for zero configuration

networks:

1. IP address assignment without a DHCP server;

2. Host name resolution without a DNS server;

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 43

3. Local service discovery without any rendezvous server.

For the first requirement, the working group produced the self-assigned link-local addressing

standard (RFC 3927) [57], which is implemented in major operating systems today. The

working group never reached a consensus regarding the second and third requirements, and

it became inactive without producing any further specification.

Meanwhile, Apple introduced Bonjour. Bonjour is the implementation of Multicast

DNS (mDNS) [59] and DNS-based Service Discovery (DNS-SD) [58] protocols, which are

Apple’s proposals for the second and third requirements of Zeroconf. As Bonjour became

widespread, the term Zeroconf became synonymous with the abstraction that Bonjour im-

plements, namely the mDNS and DNS-SD protocols. Our use of the term Zeroconf is in

this spirit.

The self-assigned link-local addressing described in RFC 3927 establishes the foundation

for Zeroconf by ensuring that IP networking is functional as long as the link layer is present.

This aspect of Zeroconf is not relevant in our discussion of z2z, however, since we assume

that the subnets are connected to the Internet.

The second requirement of Zeroconf is satisfied by mDNS. An mDNS daemon is essen-

tially a DNS server. It uses the same DNS record types and the same packet layout. In fact,

an application querying for a DNS record would not be able to tell whether a response came

from mDNS or a conventional unicast DNS server. There are, however, a few important

differences:

• mDNS is run by every host in a local link whereas a conventional DNS system runs

on a single server host.

• Queries are sent via multicast to all hosts in the local link using UDP port 5353

instead of 53, the conventional port for DNS.

• All mDNS record names must end in “.local.”. The resolution of such names are

routed to mDNS by the operating system.

A mDNS daemon provides local host name resolution using A type records. For example,

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 44

Toms-Computer.local. A 160.39.243.99

DNS-SD, together with mDNS, satisfies the third requirement of Zeroconf. DNS-SD

defines the naming conventions for PTR, SRV, and TXT records carried by mDNS daemons.

PTR records are used to enumerate the service instances of a particular type. The service

instances are mapped to the host names and port numbers using SRV records. TXT records

accompany the SRV records in order to provide additional information about the service

instances. The following example illustrates this concept:

_daap._tcp.local. PTR

Tom’s Music._daap._tcp.local.

_daap._tcp.local. PTR

Joe’s Music._daap._tcp.local.

Tom’s Music._daap._tcp.local. SRV

0 0 3689 Toms-Computer.local.

Tom’s Music._daap._tcp.local. TXT

"Version=196613" "Password=false"

"Media Kinds Shared=3"

Toms-Computer.local. A 160.39.243.99

This is a textual representation (edited for clarity) of a few DNS records produced by Apple’s

iTunes music player application when its music sharing option is enabled. The PTR records

are used to enumerate the two service instances (Tom’s Music and Joe’s Music) that are

currently available in the local network for the “ daap. tcp” service type. The host name

and port number for a specific service instance (Tom’s Music in this case) is provided by

a SRV record. A TXT record with the same name as the SRV record carries additional

information about the service instance. Finally, an A record maps the local host name to

an IP address.

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 45

The mDNS daemons running on each host in a local link collectively store and manage

the PTR, SRV, TXT, and A records for the services registered in the local subnet. The

queries and the answers are then exchanged via link-local multicast.

4.2.2 OpenDHT

OpenDHT is a publicly accessible DHT service [104]. It consists of 200–300 globally dis-

tributed hosts running the Bamboo DHT algorithm [30]. Each host also acts as a client

gateway exposing a simple put and get interface. From a client application’s point of view,

it is simply a remote storage facility where the client application can put or get key-value

pair data items.

The put and get operations are performed via XML RPC [37]. This black-box approach

greatly simplifies application development because the client applications do not need to

integrate DHT access libraries. On the flip side, since OpenDHT does not reveal the nodes in

the DHT routing path, it is difficult to implement an application that uses such information,

such as an overlay multicast built atop a DHT substrate [55].

We chose OpenDHT for the initial implementation of z2z, mainly because of its ease

of use. OpenDHT is sufficient for our current use of DHT, which is limited to storing and

retrieving service announcements. Other DHT algorithms and implementations can easily

be substituted in the future when OpenDHT no longer satisfies our needs.

Any OpenDHT node can act as a gateway to which a client application sends a put or

get request, but for the best performance, a gateway node should be chosen so that it is

close to the client host in terms of the network topology. For locating the nearest gateway,

OpenDHT uses an overlay anycast service called OASIS [68]. Our z2z uses the OASIS

mechanism by default, but it also lets the user specify a particular OpenDHT gateway as a

command line option.

4.2.3 Architecture Overview of z2z

The basic design of z2z is simple. A z2z process running in a Zeroconf subnet gathers all

the service announcements of a particular type (specified by the user) and exports them into

OpenDHT. Another z2z process running in a different subnet can then import those services

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 46

Figure 4.1: Two Zeroconf subnets A and B are exchanging local services with each other.

Of course, z2z is not limited to only two subnets. Any number of subnets can export and

import services to and from OpenDHT using z2z.

by getting those announcements from OpenDHT and register them in its own subnet as if

they had originated locally. Figure 4.1 depicts such a scenario. Multiple z2z processes can

be present in a single subnet as well. Section 4.5 discusses this case.

Since each data item in OpenDHT is a key-value pair, z2z associates a key with each

service item that it exports into OpenDHT. By default, z2z uses the service name as the

key (after prepending it with “z2z.opendht.” to avoid name collision in OpenDHT). For

example, an iTunes music share might be exported by z2z under the key, “z2z.opendht.Tom’s

Music”, where “Tom’s Music” is the name under which Tom is sharing his music library in

iTunes. Section 4.3.1 explains this in more detail.

4.3 Design and Implementation

The current version of z2z is a command line program written in Java. This section starts

with a few examples of command line usage to explain the basics. Then it shows how z2z

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 47

works under the hood by following the message flows when exporting and importing service

items. Finally we discuss some of the issues we encountered in implementing z2z.

4.3.1 Usage Examples

z2z exports local Zeroconf service announcements to OpenDHT, which then can be imported

by other z2z processes anywhere in the world. For example:

z2z --export:opendht _daap._tcp

will export the iTunes music shares found in the local network to OpenDHT. When ex-

porting to OpenDHT, z2z always stores each service using its service name as the key. For

example, if one of the music shares exported by the command above is “Joe’s Music”, Joe’s

friend in a different network who wants to listen to Joe’s music needs to issue the following

command:

z2z --import:opendht --key "Joe’s Music"

indicating that he wants to bring in any service stored under the name “Joe’s Music”. (If

Joe’s music share was password-protected, the friend should use as key “Joe’s Music PW”

because iTunes adds the postfix to the service name of a protected share.) Also, any

character that is neither a letter nor a digit will not be used in matching the key, and the

comparison is case-insensitive, so the command above is same as:

z2z --import:opendht --key "joesmusic"

It is also possible to tell the exporter to use additional keys in addition to the service’s own

service name:

z2z --export:opendht _daap._tcp

--key "music from office network"

will make z2z export the local iTunes shares not only under their own service names but

also under the string “music from office network”. This lets an employee working at home

issue the following command to bring in all music shares of his office network.

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 48

Figure 4.2: Exporting services: (1) z2z discovers a service instance of the type daap. tcp

by issuing a PTR query; (2) The service instance is further resolved to obtain the host

name, IP address, and other additional information, using SRV, A, and TXT queries; (3)

z2z constructs a key-value pair from the information and sends a put message to OpenDHT.

z2z --import:opendht

--key "music from office network"

Multiple keys are also allowed in the command line, in which case z2z will store multiple

records in OpenDHT for the same service, one for each specified key.

4.3.2 Message Flow

4.3.2.1 Exporting

Figure 4.2 shows how z2z exports a service announcement to OpenDHT. First, z2z sends out

a PTR query via multicast to discover service instances of the type daap. tcp. In Bonjour

parlance, this is called browsing, and it is performed by calling a Bonjour API function.

Tom’s iTunes music share is shown here as the example service instance discovered.

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 49

The discovered instance is then resolved in order to obtain the details of the service.

This is also done by calling a Bonjour API function, which makes SRV and TXT queries to

obtain the local host name, port number, and any other additional information about the

service stored in the TXT record. (Figure 4.2 has the Password attribute as an example

of what is stored in the TXT records.) In a normal Zeroconf service discovery situation,

the IP address is not needed since the local host name can identify the host in the local

network. However, since the service information that z2z exports to OpenDHT can be used

from anywhere on the Internet, the local host name is not sufficient to locate the host. For

this reason, z2z resolves the local host name to its IP address and includes it in the service

information that it publishes to OpenDHT. Currently z2z does not export the service if the

IP address is in the private address space [103]. A future version will address this issue

(Section 4.5).

Once z2z obtains all the relevant information about a service instance, it makes a put

call into OpenDHT in order to store the service item under the specified keys (as explained

in Section 4.3.1). Each data item in OpenDHT has a Time-To-Live (TTL) value associated

with it. A record is expired in OpenDHT unless it is refreshed with its TTL. Sending the put

message again refreshes the record. Thus, z2z keeps sending the put request to OpenDHT

as long as the service instance is present in the local network. The TTL of the service

item and the interval by which z2z resends the put request are by default 5 minutes and 60

seconds, respectively, and they can be changed using the command line parameters.

4.3.2.2 Importing

Figure 4.3 shows another z2z process in another network importing Tom’s music share that

had been previously exported. First, z2z makes a get call to OpenDHT to retrieve the

records stored under the key, “tomsmusic”. z2z then registers the retrieved service into

its local network. All the hosts in the network (including the same host on which the z2z

process is running) will see the service as if it had originated from the local network, i.e.,

the iTunes applications running on this network will show “Tom’s Music” as one of the

shared music libraries in the network. This is accomplished by the Bonjour API functions

that inject PTR, SRV, TXT, and A records into the local mDNS daemon.

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 50

Figure 4.3: Importing services: (1) z2z retrieves a service item from OpenDHT by sending

a get message for the key “tomsmusic”. (2) The service item is registered as if it had

originated locally. This is done by inserting PTR, SRV, TXT, and A records into the local

mDNS daemon.

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 51

Note that an A type record for a fake host name is added to mDNS. (We use names

such as “ remote-160.39.243.99.local.”, but any name can be used as long as it ends with

“.local.” and does not conflict with other host names in the local network.) This record

points to the remote IP address of the machine that is actually providing the service. This

trick of registering a remote service masquerading as a local one is called proxy registering

in Bonjour terminology.

It is tricky to manage the lifetime of an imported service because the only way to learn

that the service has been expired from OpenDHT is to try to get it. The approach taken

by z2z is as follows. z2z keeps making get calls cycling through the keys specified by the

user. There can be multiple keys and for each key there can be multiple service items.

For each service item retrieved, it imports it if it is a new service. If an already imported

service is retrieved again, it updates its refresh time-stamp. There is a thread that collects

stale services (those that have not been refreshed for a while) and removes them from the

network. The interval between get calls and the stale threshold are by default 10 seconds

and 5 minutes, respectively, and they can be changed using the command line parameters.

If there is another z2z process in the local subnet and it is exporting, the imported

services will be discovered by that z2z exporter. We need a mechanism to prevent the

exporter from exporting the imported service again. A short signature is added as a TXT

attribute so that the exporter can distinguish the imported services from the native local

services.

4.3.3 Implementation

4.3.3.1 C++ Prototype

The first prototype of z2z was implemented in C++ using the C version of the Bonjour

client API. We developed and tested it in Mac OS X first and subsequently ported it to

Windows. For OpenDHT access, we used the open-source xmlrpc-c library [36]. Using

Cygwin environment [6], we were able to build and use the library in Windows as well.

This approach was problematic because the Bonjour client library in Windows uses the

Winsock library, which is incompatible with Cygwin’s socket-related functions. In partic-

ular, Cygwin’s select() function fails when called with socket descriptors opened by the

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 52

Bonjour library. Our workaround was to build two separate executables: one under native

Windows environment (Microsoft Visual C++ compiler) and another under Cygwin envi-

ronment (gcc compiler). The two executables communicated through a socket connection.

4.3.3.2 Open-source Java Implementation

The porting issues of the C++ prototype led us to rewrite z2z from scratch in Java. We

used the Java version of the Bonjour client API, and for OpenDHT access, we used Apache

XML-RPC [2]. The Zeroconf-to-Zeroconf Toolkit, version 1.0, was released under BSD

license and is now available for download from SourceForge.net [41].

It is developed and tested under Mac OS X and Windows. In Windows, it requires

Bonjour for Windows available from Apple [5]. (Bonjour for Windows is also automati-

cally installed when iTunes is installed.) The support for Linux or other POSIX-compliant

platforms providing Zeroconf through Avahi is planned for a future version.

The Java classes that make up z2z are designed to be modular and have well-defined

interfaces. They are intended to serve as the foundation for the future developments that

go beyond the current z2z executable. (We outline some of those ideas in Section 4.5.) Here

is a brief summary of the main classes:

Exporter browses and resolves the local Bonjour services of a given type, keeping the list of

the currently active services. It provides start and stop operations, event notification

interface for service additions and removals, and a method to get the current snapshot

of the active services.

Importer provides the methods to add or remove remote services into or from the local

network.

ExporterToStream and ExporterToOpenDHT use an Exporter to gather the local

Bonjour services of a given type, and export them out to the standard output or to

OpenDHT, respectively. ExporterToStream uses Exporter’s event notification inter-

face to export services as they come and go. ExporterToOpenDHT takes the snapshot

of the active services periodically and refreshes them in the OpenDHT storage.

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 53

StreamToImporter and OpenDHTToImporter use an Importer to bring in the ser-

vice announcements it retrieved from the standard input or from OpenDHT, respec-

tively. StreamToImporter adds and removes the services as they come and go through

the standard input. OpenDHTToImporter keeps retrieving the specified services pe-

riodically from OpenDHT, injecting them into the local network if they are new and

refreshing it if they have been imported already. OpenDHTToImporter expires the

imported services that have not been refreshed beyond their TTL.

OpenDHTClient provides the access interface to OpenDHT using XML-RPC as the un-

derlying transport. The class is generic and it can be used outside z2z.

ServiceItem encapsulates a single Bonjour service. It provides the methods for serializing

and deserializing it into and out of a stream.

4.3.3.3 Implementation Issues

The proxy registering mechanism described in Section 4.3.2.2 is unfortunately not available

in the current Java Bonjour client API. The problem is that the current version of Java

Bonjour API does not provide a way to inject a type A record into the local mDNS daemon.

(The C API does provide this functionality.) As a workaround, z2z currently does a reverse

lookup on the IP address and puts in the real, global host name as the value of the SRV

record representing the service instance (as opposed to the fake .local name used when

proxy registering is available). This eliminates the need of adding a type A record, but it

makes it impossible to import services from those IP addresses that are reachable, but do

not have global names associated with them. For example, two private address networks

might be connected through a router.

A better workaround might be to use the fake .local host names, but instead of injecting

a type A record into mDNS, z2z can listen for multicast and answer the A query itself.

We will consider implementing this solution in a future version if the proxy registering API

continues to be unavailable in the Java Bonjour client library.

The Bonjour API function for registering a service takes as a parameter the network

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 54

interface index for which the service is registered. Usually it is set to a special value

indicating all available interfaces. An interesting value one can pass here is one that indicates

that the service should be registered for the local machine only. This option is supposed

to register a service in such a way that it is only visible on the machine that registered the

service, not any other host in the same local network. This is useful in z2z because it is

sometimes undesirable to pollute the network with the imported services that are intended

only for a single user. It is an issue especially in a large bridged wireless network where

mDNS traffic can have a significant impact on the network performance. (See [21] for an

example of such networks.)

Unfortunately, we were not able to incorporate this feature into z2z successfully. Under

certain conditions, registering services for local machine only caused internal errors on the

mDNS daemon in Mac OS X. Another problem with this option is that certain applications

(iTunes being one of them) ignore the services registered in such a way, severely limiting

the usefulness of the option.

4.4 Related Work

Apple’s solution for Zeroconf beyond local link is Wide-area Bonjour [60]. Wide-area Bon-

jour replaces the Multicast DNS in Bonjour with the conventional unicast DNS, thereby

removing the link-local confinement of Bonjour services. This comes at a cost of setting

up and maintaining a real DNS server, which makes Wide-area Bonjour unsuitable for a

discovery solution for transient or ad hoc services. Moreover, the client hosts need to know

the DNS servers to which they can send queries and publish services. In short, Wide-area

Bonjour requires configuration.

We believe that z2z is the first attempt at interconnecting Zeroconf subnets using a

DHT-based peer-to-peer network. But there have been a number of attempts at making

Zeroconf services available beyond the local subnet.

Rendezvous Proxy [24] offers a simple GUI interface for a user to enter the information

about a remote Zeroconf service, such as the IP address and port number where the service

can be found. It makes the service available locally by performing the proxy registration,

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 55

the same technique described in Section 4.3.2.2. It is intended as a way to establish a simple

point-to-point connection when the user knows the exact nature and location of the service

that he wishes to bring into his local network.

LogMeIn Hamachi [17] is a peer-to-peer virtual private network (VPN) solution that

provides a virtual LAN connectivity over the Internet. Service discovery is not the main

focus of this solution, but Zeroconf is claimed to work in the virtual LAN environment.

The fact that it operates on top of a virtual LAN imposes a practical limit on the number

of networks it can connect.

Simplify Media [28] applies the idea of social network to iTunes music sharing. Instead

of the open peer-to-peer network used by z2z, it uses a private social network to enable

iTunes music sharing among friends. Currently Simplify Media is an iTunes-only solution,

whereas z2z is a generic solution for all Zeroconf services.

4.5 Discussion

The current implementation of z2z allows multiple z2z processes running in a network to

export or import the same set of services. Normally this is not a problem. When a service

is exported to OpenDHT by multiple z2z processes, the effect is simply that the service

gets refreshed more frequently. When a service is imported into a network by multiple z2z

processes, Bonjour recognizes that the DNS resource records being registered are identical,

and it treats them as the redundant announcements for a single service. In fact, Apple

suggests this as a possible fault-tolerance mechanism [29].

The effect of such redundant registrations on a large local area network, however, needs

to be investigated. The multicast traffic from mDNS can have a significant impact on the

performance of a large network. This has led some network operators to employ filtering

of mDNS traffic [21]. We plan to investigate if, and to what extent, the presence of z2z

processes exacerbate the problem. If the redundant registration turns out to be a significant

factor, it is straightforward to ensure that only one z2z process is responsible for importing

a given remote service.

On the export side, we can eliminate the redundant OpenDHT refreshes by ensuring that

CHAPTER 4. EXTENDING LOCAL SERVICES TO GLOBAL NETWORKS:
ZEROCONF-TO-ZEROCONF BRIDGING 56

only one z2z process is exporting a service type under a given key. This can be implemented

using Bonjour. A z2z process can advertise a name constructed from the service type and

the key that it intends to export, and then use Bonjour’s built-in name conflict resolution

mechanism to see if another z2z process is already exporting the type under the same key. It

is unclear, however, that the reduction of OpenDHT calls outweighs the additional multicast

traffic.

Privacy is another important consideration when z2z is used in a large network, espe-

cially when there are a large number of users, such as in a University campus network.

When a user publishes a service using a Bonjour-enabled application (when a user shares

his music library in iTunes for example), he expects his service to be available in the local

network, but he may not be aware that the service can be carried outside the local net-

work by z2z. Therefore we emphasize that z2z should be used in a way that respects the

privacy of the users in the local network. It should be noted, however, that z2z does not

introduce any new technology that facilitates the invasion of privacy. One can easily browse

and resolve the local services using many other readily available tools, and then post the

information on a web page, for example.

57

Part II

Enabling In-Network Services

CHAPTER 5. NETSERV: ACTIVATING THE NETWORK EDGE 58

Chapter 5

NetServ: Activating the Network

Edge

5.1 Motivation

There are two types of Internet Service Providers (ISPs): content and eyeball [64]. Content

ISPs provide hosting and connectivity for content publishers, and eyeball ISPs provide last-

mile connectivity to a large number of end users. It has been noted that eyeball ISPs

wield increased bargaining power in peering agreements because they own the eyeballs [64].

Eyeball ISPs have another unique asset, edge routers, which they are currently under-

utilizing.

Content publishers1 are motivated to operate at the network edge, close to end users, as

evidenced by the success of Content Distribution Network (CDN) operators like Akamai [1]

and Limelight [15]. The edge routers of eyeball ISPs, due to their proximity to end users,

occupy an excellent location to host content and services. Placing content and services on

edge routers would provide an alternate hosting platform for publishers, and a new revenue

opportunity for eyeball ISPs (which we simply refer to as ISPs for the remainder of this

1 We use the term content publishers in a broad sense, referring not only to CNN and YouTube who pro-

vide content, but also to Amazon and Skype who provide services like e-commerce and telephony. “Content,

application, and service provider”, sometimes referred to as CASP, might be a more descriptive term, but

we use “publishers” when we need to clearly distinguish them from Internet Service Providers.

CHAPTER 5. NETSERV: ACTIVATING THE NETWORK EDGE 59

thesis).

Programmable routers [62,80,86,89], traditionally software routers based on commodity

operating systems or more recently commercial routers with an SDK [87], have been used to

implement new network functions. Many of the following functions have become ubiquitous:

QoS, firewall, VPN, IPsec, NAT, web cache, rate limiting, and enhanced congestion control

algorithms. This model, however, is inadequate for hosting publishers’ custom functionality

in edge routers. If a publisher wishes to deploy a specifically tailored function, it must go

through a very slow, highly coordinated development cycle involving the developers at the

publisher, the network administrators at the ISP, and in some cases even the router vendor.2

This presents a barrier to many publishers, particularly if they want to deploy functions

on edge routers across different ISPs. The deployment process is equally cumbersome. De-

ployment has been a secondary concern for previous programmable router platforms. Thus,

adding functionality to a router usually means an administrator installing and configuring

a software module. This may be acceptable for a limited set of functions that are largely

static, but it is clearly inadequate if a publisher wants to dynamically reconfigure a function

quickly and frequently.

5.2 Design Goals

We propose NetServ, a programmable node architecture with the primary focus of facili-

tating the interaction between ISPs and content publishers. From a technical standpoint,

NetServ is similar to existing programmable router proposals. We start with a general pur-

pose open-source operating system as the forwarding engine, and layer a dynamic module

system on top of it so that new functions can be added and removed. However, the design

decisions we have made reflect a significant rethinking of the role that we envision an edge

router will play in the future. An edge router is recast as a hosting platform for publishers’

content and services. The primary users of NetServ routers are not the network operators

of the ISPs that own them, but the content publishers who deploy their services on them.

The shift of focus led us to the following goals in our design:

2Developing a Juniper SDK application requires a partnership agreement, for instance.

CHAPTER 5. NETSERV: ACTIVATING THE NETWORK EDGE 60

Wide-area deployment A content publisher should be able to deploy its functions at

any edge router on the Internet, subject to policy restrictions. The publisher may not

even know the precise target, as is the case when it wants to deploy a web cache near

a certain group of end users, for example.

Multi-user execution environment The node architecture must support concurrent ex-

ecutions of functions from multiple publishers. Each publisher’s execution environ-

ment must be isolated from one another and the resource usage of each must be

controlled.

Economic incentive The current dynamic between content publishers and ISPs is clearly

driven by economic concerns. Our proposal must provide clear economic incentives.

Specifically, we must find compelling use cases that demonstrate economic benefits to

both.

Unified runtime environment Content publishers’ applications running on ISPs’ routers

will combine the traits of both traditional end-to-end network services and in-network

router functions. Our node architecture must support both traditional server appli-

cation and in-network packet processing application.

5.3 Node Architecture

Figure 5.1 depicts the architecture of a NetServ node. The service modules, represented as

ovals, run in a virtual execution environment. The virtual execution environment provides

a basic API as a building block layer, consisting of preloaded modules.

We took heed of Calvert’s reflection on active networking in 2006 [54]. He noted that

“late binding”–i.e., leaving things unspecified–did not help the case. We picked the JVM as

the execution environment for service modules to achieve service mobility and a platform-

independent programming interface. Java is the natural choice today. No other technology

matches its maturity, features, track record of large-scale deployments, extensive libraries

and wide-spread use among developers.

The execution environments communicate with the packet transport layer. The packet

CHAPTER 5. NETSERV: ACTIVATING THE NETWORK EDGE 61

NetServ packet transport

Virtual execution

 environment

Building block layer

Virtual execution

 environment

Building block layer

Virtual execution

 environment

Building block layer

Service modules Service modules Service modules

NetServ controller

Module download

Module install

Signaling message

to install module

Signaling message

forwarded to next hop

Data packets processed

by service modules

Figure 5.1: Overview of NetServ node architecture.

CHAPTER 5. NETSERV: ACTIVATING THE NETWORK EDGE 62

Service Container for

Provider 1

1) User Request

3) Install Module

2) NSIS Signal

Provider 1

End Users

NetServ Router

N
e

tS
e

rv
C

o
n

tr
o

lle
r

1) User Request
3) Install Module

2) NSIS Signal

Provider 2
End Users

N
e

tS
e

rv

Service Container for

Provider 2

Figure 5.2: Deploying modules on a NetServ-enabled edge router.

transport layer provides the TCP/IP stack for server application modules. For packet

processing application modules, the packet transport layer provides a mechanism to filter

IP packets and route them to appropriate modules.

The NetServ controller downloads and installs an application module when it receives

a signaling message. A user sends a signaling message towards a destination of his inter-

est. Every NetServ node on-path intercepts the message, takes an appropriate action, and

forwards it to the next hop.

5.4 End-to-end Service Scenario

Figure 5.2 places a NetServ node in a broader context of an end-to-end service. (1) End user

requests are received by a content provider’s server, triggering signaling from the server. (2)

As a signaling message travels towards an end user, it passes through a mixture of regular IP

CHAPTER 5. NETSERV: ACTIVATING THE NETWORK EDGE 63

routers and NetServ-enabled routers between the content provider and the user. Regular IP

routers simply forward the message towards the destination. (3) When the message passes

through a NetServ router, however, it causes the NetServ router to download and install

an application module from the content provider. The exact condition to trigger signaling

and what the module does once installed will depend on the application. For example, a

content provider might send a signal to install a web caching module when it detects web

requests above a predefined threshold. The module can then act as a transparent web proxy

for downstream users.

CHAPTER 6. NETSERV NODE IMPLEMENTATION 64

Chapter 6

NetServ Node Implementation

6.1 NetServ on Linux Netfilter Transport

We implemented the NetServ architecture on Linux. We have released source code1 in con-

junction with NetServ tutorials we have held at the 11th, 12th, and 13th GENI Engineering

Conferences (GEC11, GEC12, GEC13). We will continue to release new versions of our

software and give NetServ tutorials at future GECs.

Figure 6.1 describes our Linux implementation. The arrow at the bottom labeled “sig-

naling packets” indicates the path a signaling packet takes. The packet is intercepted by

the signaling daemons, which unpack the signaling packet and pass the contained message

to the NetServ controller. The controller acts on the message by issuing commands to the

appropriate service containers, to install or remove a module, for example.

Service containers are user space processes with embedded JVMs. Each container holds

one or more application modules created by a single user. The JVMs run the OSGi module

framework [22]. Thus, the application modules installed in service containers are OSGi-

compliant JAR files known as bundles. The OSGi framework allows bundles to be loaded

and unloaded while the JVM is running. This enables a NetServ container to install and

remove application modules at runtime. There are a number of implementations of the

OSGi framework; we use Eclipse Equinox [9].

1 http://www.cs.columbia.edu/irt/project/netserv

http://www.cs.columbia.edu/irt/project/netserv

CHAPTER 6. NETSERV NODE IMPLEMENTATION 65

NetServ

NSLP

GIST

GIST packet
interception

UNIX
socket

NetServ

Controller

Linux kernel

T
ra

n
s
p

o
rt

 l
a

y
e

r

Service
Container

Service
Container

Service
Container

Java OSGi

Java OSGi

Java OSGi

Server

application

modules

C
o

n
ta

in
e

r
c
o

n
tr

o
l
c
o

m
m

a
n

d
s

Client-

Server

data
packets

Forwarded

data

packets

Signaling

packets

iptables

command

Netfilter NFQUEUE #2 NFQUEUE #1

N
e

tS
e

rv
 C

o
n

tr
o

l

M
e

s
s
a

g
e

s

Packet

processing

application
modules

N
S

IS
 s

ig
n

a
lin

g
 d

a
e

m
o

n
s

Figure 6.1: NetServ node implementation using Linux Netfilter packet processing framework

and Java OSGi module system.

CHAPTER 6. NETSERV NODE IMPLEMENTATION 66

There are two types of application modules shown in Figure 6.1. Server application

modules, shown as two circles on the upper-right service container, act as standard network

servers, communicating with the outside world through the Linux TCP/IP stack. Packet

processing application modules, shown as two circles on the lower-left container, are placed

in the packet path of the router. The arrow labeled “forwarded data packets” shows how

an incoming packet is routed from the kernel to a service container process running in user

space. The packet then visits two modules in turn before being pushed back to the kernel.

The distinction between server module and packet processing module is a logical one.

A single application module can be both. This is an important feature of a NetServ node:

it eliminates the traditional distinction between a router and a server. The applications

deployed by content publishers typically include both functionalities.

6.1.1 Signaling

We use on-path signaling as the deployment mechanism. Signaling messages carry com-

mands to install and remove modules, and to retrieve information–like router IP address

and capabilities–about NetServ routers on-path. We use the Next Steps in Signaling (NSIS)

protocol suite [76], an IETF standard for signaling. NSIS consists of two layers, a generic

signaling transport layer and an application-specific signaling application layer:

“a ‘signaling transport’ layer, responsible for moving signaling messages around,

which should be independent of any particular signaling application; and

a ‘signaling application’ layer, which contains functionality such as message for-

mats and sequences, specific to a particular signaling application.”(RFC 4080 [76])

The two boxes in Figure 6.1, labeled “GIST” and “NetServ NSLP,” represent the two

NSIS signaling layers used in a NetServ node. GIST, the General Internet Signalling Trans-

port protocol [110], is an implementation of the transport layer of NSIS. GIST is a soft

state protocol that discovers other GIST nodes and maintains associations with them in

the background, transparently providing this service to the upper signaling application

layer.

CHAPTER 6. NETSERV NODE IMPLEMENTATION 67

NE

Sender

NetServ‐aware

Application

NE = NSIS Entity

NE

NetServ

Router
IP RouterReceiver

= Data messages

Last

Node

= Signaling messages

NE

NetServ

Router

ICMP

Timeout

Figure 6.2: NetServ signaling flow.

NetServ NSLP is the NetServ-specific application layer of NSIS. It contains the signaling

logic of NetServ and relays messages to the NetServ controller. The current implementation

of the NetServ signaling daemons is based on NSIS-ka [20], whereas the previous version of

our prototype used FreeNSIS [11].

GIST peer discovery depends on the ability to intercept certain UDP packets. GIST’s

standard method of intercepting packets is through the use of the IP Router Alert Option

(RAO) [85]. However, the RAO is not well-defined in IPv4 networks and different devices

tend to behave incongruously. As an alternative, packet filtering can be used to intercept

packets destined for port 270, the port assigned by IANA for GIST. NSIS-ka uses this

method. Specifically, it uses the Netfilter packet filtering system in Linux.

Figure 6.2 shows a possible NetServ signaling scenario. A signaling message is sent from

an application, through several routers, to the receiver. The receiver and the generic IP

Router are unaware of NSIS signaling. Thus, the IP router performs only IP layer forward-

ing. The sender and the two NetServ routers are NSIS enabled; once GIST associations

between the nodes are set up, NSIS signaling messages can flow in both directions.

Content providers want to place content and services as close to end users as possible.

Therefore, while setting up GIST associations, discovering the last NetServ node on-path

becomes especially important. The GIST layer determines that its host is the last NSIS

node on-path when it fails to discover a peer further along the path. It retransmits discovery

packets with exponential back-off up to a predefined threshold. Depending on the threshold

CHAPTER 6. NETSERV NODE IMPLEMENTATION 68

SETUP NetServ.apps.NetMonitor_1.0.0 NETSERV/0.1

dependencies:

filter-port:5060

filter-proto:udp

notification:

properties:visualizer_ip=1.2.3.4,visualizer_port=5678

ttl:3600

user:janedoe

url:http://content-provider.com/modules/netmonitor.jar

signature:4Z+HvDEm2WhHJrg9UKovwmbsA71FTMFykVa0Y\xGclG8o=

<blank line>

Figure 6.3: An example of NetServ SETUP message.

this can take a long time. To shorten last node discovery time, we modified NSIS-ka to

detect an ICMP port unreachable message. Although this is not always reliable, it shortens

the discovery in many cases.

There are two kinds of NetServ signaling messages: requests and responses. Typically,

a content provider’s server sends a request toward an end user. The last on-path NetServ

node generates a response to the server.

There are three types of NetServ requests: SETUP, REMOVE, and PROBE. The SETUP mes-

sage is used to install a module on the NetServ nodes on-path. The REMOVE message

uninstalls it. The PROBE message is used to obtain the NetServ nodes’ statuses, capabilities,

and policies. Figure 6.3 shows an example of a SETUP message. It requests that an applica-

tion module called NetMonitor be downloaded from the given URL, installed in the packet

path to process UDP packets for port 5060, and automatically removed after 3600 seconds.

REMOVE and PROBE messages are similar. Table 6.1 describes available header fields used in

request messages and in which type of request they may appear.

CHAPTER 6. NETSERV NODE IMPLEMENTATION 69

Headers Where Description

dependencies† S Lists the modules necessary to run the application module

being installed

filter-port S Destination port of packets that should be intercepted &

delivered to the module

filter-proto S Protocol of packets that should be intercepted & delivered

to the module

notification† SR XML-RPC URL that should be called after the module

has been successfully installed

node-id SRP Identifies a specific NetServ node

probe P* Identifies the information being probed

properties S Additional parameters for the module being installed

ttl S* The number of seconds after which the module is auto-

matically uninstalled

signature S*R*P* The signature of the message authenticating the request

user S*R*P The owner of the NetServ service container

†Not fully implemented in the current version.

Table 6.1: List of available headers in NetServ requests. (S: SETUP, R: REMOVE, P: PROBE,

*: mandatory)

CHAPTER 6. NETSERV NODE IMPLEMENTATION 70

NetServ‐aware

Application

Setup/Remove Request

Setup/Remove Response

Probe Request

Probe Response

NetServ

Router

Probe Request

Probe Response

NetServ

Router

Probe Request

NetServ

Router
End User

Setup/Remove Response
Setup/Remove Response

Setup/Remove Request
Setup/Remove Request

Probe stack

Probe Response

Last node detection

Last node detection

NOT PRESENT

DOWNLOADING

ACTIVE

Probe stack

DOWNLOADING

ACTIVE

Probe stack

ACTIVE

Figure 6.4: Request and response exchange.

Figure 6.4 shows how response messages are generated at the last node and returned

along the signaling path back to the requester. The responses to SETUP and REMOVE requests

simply acknowledge the receipt of the messages. A response to a PROBE request carries the

probed information in the response message. As the message transits NetServ nodes along

the return path, each node adds its own information to the response stack in the message.

The full response stack is then delivered back to the requester. Figure 6.4 shows a response

to a module status probe being collected in a response stack.

6.1.2 NetServ Controller

The NetServ controller coordinates three components within a NetServ node: NSIS dae-

mons, service containers, and the forwarding plane. It receives control commands from the

NSIS daemons, which may trigger the installation or removal of application modules within

service containers, and in some cases filtering rules in the forwarding plane.

The controller is responsible for setting up and tearing down service containers. The

current prototype pre-forks a fixed number of containers. Each container is associated with

a specific user account. The controller maintains a persistent TCP connection to each

container, through which it tells the container to install or remove application modules.

It uses an XML configuration file which specifies user name, public key, container IP

CHAPTER 6. NETSERV NODE IMPLEMENTATION 71

address, ports authorized for listening, destination IP prefixes authorized for filtering, and

the sandbox directory of the container.

6.1.3 Forwarding Plane

The forwarding plane is the packet transport layer in a NetServ node, which is typically an

OS kernel in an end host or forwarding plane in a router. The architecture requires only

certain minimal abstractions from the forwarding plane. Packet processing modules require

a hook in user space and a method to filter and direct packets to the appropriate hook.

Server modules require a TCP/IP stack, or its future Internet equivalent. The forwarding

plane must also provide a method to intercept signaling messages and pass them to the

GIST daemon in user space.

Currently we use Netfilter, the packet filtering framework in the Linux kernel, as the

packet processing hook. When the controller receives a SETUP message containing filter-*

headers, it verifies that the destination is within the allowed range specified in the configu-

ration file. It then invokes an iptables command to install a filtering rule to deliver match-

ing packets to the appropriate user space service container using Netfilter queues. The user

space service container retrieves the packets from the queue using libnetfilter queue.

The Linux TCP/IP stack allows server modules to listen on a port. The allowable ports

are specified in the configuration file.

NetServ can use forwarding planes other than the Linux kernel. We have prototyped

alternate forwarding planes for NetServ using the Click router [89] and the OpenFlow [99]

switch. We are also currently porting NetServ to Juniper routers using the JUNOS SDK [87].

Click is a modular software router platform where a directed graph of elements repre-

sents the packet path. We implemented a packet processing hook using the IPClassifier,

FromUserDevice, and ToUserDevice elements. A user space container retrieves packets from

/dev/fromclickN which is backed by the ToUserDevice element, and similarly sends pack-

ets to /dev/toclickN which is backed by the FromUserDevice element. The IPClassifier

element provides filtering functionality and can be controlled using a proc-like pseudo-file

system.

Juniper provides the JUNOS SDK, an API for developing third-party plug-ins. JUNOS

CHAPTER 6. NETSERV NODE IMPLEMENTATION 72

SDK has two parts. RE SDK is intended for developing daemons running on the control

plane of a Juniper router, called the Routing Engine. The Routing Engine can host the

NSIS daemons and the NetServ controller. Services SDK provides APIs for developing

packet processing applications running on a hardware board attached to the forwarding

plane through a 10Gb/s internal link. The board contains a multi-core network processor

to perform packet processing at line rate. We plan to explore the possibility of running

NetServ container on the board.

OpenFlow is a programmable switch architecture which exposes its flow table through a

standard network protocol called the OpenFlow Protocol. OpenFlow provides an interesting

possibility for NetServ: a physically separate forwarding plane. When a NetServ node is

connected to an OpenFlow switch via a local 10Gb/s link, the NetServ node acts as an

outboard packet processing engine, which is dynamically configurable. In addition, the

NetServ controller can control the OpenFlow switch using the OpenFlow Protocol. This

sidecar approach has the performance advantage over the single-box approach, since multiple

NetServ nodes can be attached to a forwarding plane.

6.1.4 Service Container and Modules

Service containers are user space processes that run modules written in Java. Figure 6.5

shows our current implementation. The service container process can optionally be run

within lxc [18], an OS-level virtualization technology included in the Linux kernel.

When the container process starts, the container creates a JVM, and calls an entry point

Java function that launches the OSGi framework.

The service container starts with a number of preinstalled modules which provide essen-

tial services to the application modules. We refer to the collection of preinstalled modules as

the building block layer. The building block layer typically includes system modules, library

modules, and wrappers for native functions. System modules provide essential system-level

services like packet dispatching. Library modules are commonly used libraries like Servlet

engine or XML-RPC. The building block layer can also provide wrappers for native code

when no pure Java alternative is available. For example, our ActiveCDN application de-

scribed in Section 7.1 requires Xuggler [38], a Java wrapper for the FFmpeg [10] video

CHAPTER 6. NETSERV NODE IMPLEMENTATION 73

Building block layer

Library modulesSystem modules Wrappers for native

functions

Packet

processing

application

module 1

Server

application

module 1

Command

from

NetServ

controller

Client�server

data packets

dispatcher.addPktProcessor(this);

Packet dispatcher
�

Servlet API Xuggler
XML�RPC

� �

Packet

processing

application

module 2

NFQUEUE

Linux kernel

Building block layer

OS�level VM (lxc Linux Container)

JVM + OSGi

Forwarded

data

packets

libnetfilter_queue

Figure 6.5: User space service container process.

CHAPTER 6. NETSERV NODE IMPLEMENTATION 74

processing library.

The set of modules that make up the building block layer is determined by the node

operator. An application module with a specific set of dependencies can discover the pres-

ence of the required modules on path using PROBE signaling messages, and then include a

dependency header in the SETUP message to ensure the application is only installed where

the modules are available. We plan to develop a recommendation for the composition of

the building block layer.

Server application modules, depicted as the rightmost application module in Figure 6.5

use the TCP/IP stack and the building block layer to provide network services. An OSGi

bundle is event driven. The framework calls start() and stop()methods of the Activator

class of the bundle. Server modules typically spawn a thread in the start method. Packet

processing application modules, the two application modules on the left, implement the

PktProcessor interface, and register themselves with the packet dispatcher in order to

receive transiting data packets.

The container process uses libnetfilter queue to retrieve a packet, which is then

passed to the packet dispatcher, a Java module running inside the OSGi framework. The

packet dispatcher then passes the packet to each packet processing application module in

turn. This path is depicted by the arrow labeled forwarded data packets in Figure 6.5. We

avoid copying a packet when it is passed from C code to Java code. We construct a direct

byte buffer object that points to the memory address containing the packet. The reference

to this object is then passed to the Java code.

6.2 Security

We consider security risks that arise from the fact that multiple service containers belonging

to different users coexist in a NetServ node.

Resource control and Isolation : A single user should not be allowed to consume

more than his fair share of the system resources such as CPU, memory, disk space or network

bandwidth. Furthermore, a user’s execution environment must be isolated from the others’,

in order to prevent intentional or accidental tampering.

CHAPTER 6. NETSERV NODE IMPLEMENTATION 75

Authentication and Authorization : A user’s request to install or remove a module

must be verified to ensure that it is from a valid user. Installed modules are subject to

further restrictions. In particular, a packet processing module must not be allowed to

inspect or modify packets belonging to other users.

6.2.1 Resource Control and Isolation

We have multiple layers of resource control and isolation in the service container. First,

because the container is a user space process, we can use the standard Linux resource control

and isolation mechanisms, such as nice value, setrlimit(), disk quota, and chroot.

We control the application modules further using Java 2 Security [73]. It provides fine-

grained controls on file system and network access. We use them to confine the modules’

file system access to a directory, and limit the ports on which the modules can listen. Java

2 Security also allows us to prevent the modules from loading native libraries and executing

external commands.

In addition, the container can optionally be placed within lxc2, the operating system-

level virtualization technology in Linux. Lxc provides further resource control beyond that

which is available with standard operating system mechanisms. We can limit the percentage

of CPU cycles available to the container relative to other processes in the host system. Lxc

provides resource isolation using separate namespaces for system resources. The network

namespace is particularly useful for NetServ containers. A container running in lxc can be

assigned its own network device and IP address. This allows, for example, two application

modules running in separate containers to listen on “*:80” without conflict. At at the time

of this writing, a service container running inside lxc does not support packet processing

modules.

OSGi provides namespace isolation between bundles using a custom class loader. The

only method of inter-bundle communication is for a bundle to explicitly export a service

by listing a package containing the interfaces in the manifest file of its JAR file, and for

another bundle to explicitly import the service, also by using a manifest file. However, this

2 lxc is also referred to as “Linux containers” which should not be confused with NetServ service con-

tainers. References to containers throughout this paper mean NetServ service containers.

CHAPTER 6. NETSERV NODE IMPLEMENTATION 76

isolation mechanism is of limited use to us because a container contains modules from a

single publisher.

NetServ modules also benefit from Java’s language level security. For example, the

memory buffer containing a packet is wrapped with a DirectByteBuffer object and passed

to a module. The DirectByteBuffer is backed by memory allocated in C. However, it is

not possible to corrupt the memory by going out-of-bounds since such access is not possible

in Java.

6.2.2 Authentication and Authorization

SETUP request messages are authenticated using the signature header included in each mes-

sage. Currently, the NetServ node is preconfigured with the public key of each user. When a

user sends a SETUP message, it signs the message with a private key, this signature is verified

by the controller prior to module installation. The current prototype signs only the signal-

ing message–which includes the URL of the module to be downloaded. The next prototype

will implement signing of the module itself. As future work, we plan to develop a third

party authentication scheme which will eliminate the need to preconfigure a user’s public

key. A clearinghouse will manage user credentials and settle payments between content

providers and ISPs.

Authorization is required if the SETUP message for an application module includes a

request to install a packet filter in the forwarding plane. If the module wants to filter

packets destined for a specific IP address, it must be proved that the module has a right to

do so. The current prototype preconfigures the node with a list of IP prefixes that the user

is authorized to filter.

Our requirement to verify the ownership of a network prefix is similar to the problem

being solved in the IETF Secure Inter-Domain Routing working group [27]. The working

group proposes a solution based on Public Key Infrastructure (PKI), called RPKI. RPKI

can be used to verify whether a certain autonomous system is allowed to advertise a given

network prefix. We plan on using that infrastructure once it becomes widely available.

We also plan to support a less secure, but simpler verification mechanism that does not

rely on PKI. It is based on a reverse routability check. To prove the ownership of an IP

CHAPTER 6. NETSERV NODE IMPLEMENTATION 77

address, the user generates a one-time password and stores the password on the server with

that IP address. The password is then sent in the SETUP message. Before installing the

module, the NetServ controller connects to the server at the IP address, and compares the

password included in the SETUP message with the one stored on the server. A match shows

that the user of the module has access to the server. The NetServ node accepts this as

proof of IP ownership.

Security checks used by a NetServ router are a matter of local configuration policy and

will be determined by the administrator of the router.

6.3 Performance Evaluation of NetServ on Linux Netfilter

For NetServ signaling, we refer to previous work on the performance measurement of the

NSIS signaling suite. Fu et al. [69], analyzed an implementation of the GIST protocol.

Using a minimal hardware setup they measured the maximum concurrent signaling sessions,

finding that the GIST node was able to maintain over 50,000 concurrent sessions. The main

focus of our measurement results is not signaling but rather packet processing.

Regarding NSLP layer, there are previous performance measurements in [113] and [47].

From these papers, it is clear that the signaling architecture scales well with the complexity

of the NSLPs installed and that most of the performance penalties reside in the logic

complexity implemented in each NSLP. NetServ NSLP has been designed to keep at a

minimum the logic complexity and we believe it will certainly be suitable in handling the

amount of signaling requests needed to be processed in an average NetServ node.

We provide evaluation results for our Linux implementation. In particular, we measure

the overhead introduced by placing packet processing modules in user space JVM. First,

we measure the Maximum Loss Free Forwarding Rate (MLFFR) of a NetServ node with

a single service container. We show the overhead associated with each layer in a NetServ

node. Second, we perform a microbenchmark measurement to show the delay in each layer.

Lastly, we run 100 service containers in a NetServ node and measure the throughput and

memory consumption. Our results suggest that while there is certainly significant overhead,

it is not prohibitive.

CHAPTER 6. NETSERV NODE IMPLEMENTATION 78

6.3.1 Setup

Our setup consists of three nodes connected in sequence: sender, router, and receiver. The

sender generates UDP packets addressed to the receiver and sends them to the router, which

forwards them to the receiver.

All three machines were equipped with a 3.0GHz Intel Dual Core Xeon CPU, 4 x 4GB

DDR2 RAM, and an Intel Pro/1000 Quad Port Gigabit Ethernet adapter connected on

PCIe x 4 bus which provided 8Gb/s maximum bandwidth. All links ran at 1Gb/s. We

disabled Ethernet flow control which allowed us to saturate the connection.

For the sender and receiver, we used a kernel mode Click router version 1.7.9 running

on a patched 2.6.24.7 Linux kernel. The Ethernet driver was Intel’s igb version 1.2.44.3

with Click’s polling patch applied. For the router, we used Ubuntu Linux 10.04 LTS Server

Edition 64bit version, with kernel version 2.6.32-27-server, and the igb Ethernet driver

upgraded to 2.4.12 which supports the New API (NAPI) [108] in the Linux kernel.

6.3.2 Results

First, we measured the sender and receiver’s capacity by connecting them directly. The

sender was able to generate 64B packets and send them to the receiver at the rate of

1,400 kpps, which was well beyond the measured MLFFRs of each of our tests.

After verifying that the testbed had sufficient capacity, We measured the MLFFRs of

six different configurations of the router. Figure 6.6 shows the different configurations of

the router that were tested. Each configuration adds a layer to the previous one, adding

more system components through which a packet must travel.

Configuration 1 is the plain Linux router we described above. This represents the

maximum attainable rate of our hardware using a Linux kernel as a router.

Configuration 2 adds Netfilter packet filtering kernel modules to configuration 1. This

represents a more realistic router setting than configuration 1 since a typical router is likely

to have a packet filtering capability. This is the base line that we compare with the rest of

the configurations that run NetServ.

Configuration 3 adds the NetServ container, but with its Java layer removed. The packet

path includes the kernel mode to user mode switch, but does not include a Java execution

CHAPTER 6. NETSERV NODE IMPLEMENTATION 79

Linux Kernel

NetServ Container

NetMonitor KeepAlive

O
S

G
i

J
V

M

Conf 1

Conf 2

Conf 3

Conf 4

Conf 5

Conf 6

N
e

tf
ilt

e
r

Figure 6.6: Test configurations 1 to 6.

environment.

The packet path for configuration 4 includes the full NetServ container, which includes

a Java execution environment. However, no application module is added to the NetServ

container.

Configuration 5 adds NetMonitor, a simple NetServ application module with minimal

functionality. It maintains a count of received packets keyed by a 3-tuple: source IP address,

destination IP address, and TTL.

Configuration 6 replaces NetMonitor with the KeepAlive module described in Sec-

tion 7.2. KeepAlive examines incoming packets for SIP NOTIFY requests with the keep-alive

Event header and swaps the source and destination IP addresses. For the measurement,

we disabled the address swapping so that packets can be forward to the receiver. This test

represents a NetServ router running a real-world application module.

Figure 6.7(a) shows the MLFFRs of five different router configurations. The MLFFR of

configuration 1 was 786 kpps, configuration 2 was 641 kpps, configuration 3 was 365 kpps,

configuration 4 was 188 kpps, and configuration 5 was 188 kpps.

CHAPTER 6. NETSERV NODE IMPLEMENTATION 80

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800 900

F
or

w
ar

di
ng

 r
at

e
[k

pp
s]

Input rate [kpps]

Conf 1: Plain Linux
Conf 2: Linux with packet filter

Conf 3: NetServ Container with Java removed
Conf 4: NetServ Container with no module
Conf 5: NetServ Container with NetMonitor

(a) Configuration 1 to 5 with 64B packets.

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

F
or

w
ar

di
ng

 r
at

e
[k

pp
s]

Input rate [kpps]

Conf 1: Plain Linux
Conf 2: Linux with packet filter

Conf 3: NetServ Container with Java removed
Conf 4: NetServ Container with no module
Conf 5: NetServ Container with NetMonitor
Conf 6: NetServ Container with KeepAlive

(b) Configuration 1 to 6 with 340B packets.

Figure 6.7: Forwarding rates of the router with different configurations.

CHAPTER 6. NETSERV NODE IMPLEMENTATION 81

The large performance drop between configurations 2 and 3 can be explained by the

overhead added by a kernel-user transition. The difference between configurations 3 and 4

shows the overhead of Java execution. There is almost no difference between configurations

4 and 5 because the overhead of the NetMonitor module is negligible.

In configurations 3 through 5, we observed that there were some dips in the forwarding

performance before it reached the peak rate. For example, in configuration 3, the forwarding

rate of the router was 250 kpps when the input rate was between 200 kpps and 500 kpps, but

it increased to 364 kpps at 500 kpps. This increase can be explained as a result of switching

between the interrupt and polling modes of the NAPI network driver. Under heavy load,

the network driver switched to polling mode. Thus, the NetServ process could use more

CPU cycles without hardware interrupts. We verified this by comparing the number of

interrupts per interface. The total number of interrupts on the receiving interface was

11,137 per second at 400 kpps, but there were only 1.4 interrupts per second at 500 kpps.

Figure 6.7(b) shows the repeated measurement but with 340B packets, in order to com-

pare them with configuration 6. For configuration 6, we created a custom Click element to

send SIP NOTIFY requests, which are UDP packets. The size of the packet was 340B, and

we used the same SIP packets for configurations 1 through 5.

The MLFFR of configuration 1 was 343 kpps, configuration 2 was 343 kpps, configu-

ration 3 was 213 kpps, configuration 4 was 117 kpps, configuration 5 was 111 kpps, and

configuration 6 was 71 kpps.

There was no difference between the performance of configurations 1 and 2. The dif-

ference between configurations 2 and 3 is due to the kernel-user transition. The difference

seen between configurations 3 and 4 is due to Java execution overhead. Both of these were

previously seen above. Again, there is almost no difference between configurations 4 and

5. The difference between configurations 5 and 6 shows the overhead of KeepAlive beyond

NetMonitor. There is a meaningful difference between the modules because the KeepAlive

module must do deep packet inspection to find SIP NOTIFY messages, and further, we made

no effort to optimize the matching algorithm.

As the size of packets increases from 64B to 340B, the number of packets our setup can

generate decreases due to the bandwidth limitation. As a consequence, the forwarding rate

CHAPTER 6. NETSERV NODE IMPLEMENTATION 82

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Plain Linux
forwarding

Unprocessed packets
in NetServ

Processed packets
in NetServ

D
el

ay
 [m

ic
ro

se
co

nd
]

Linux kernel
Packet filter

NetServ container - C layer
NetServ container - Java layer

NetServ KeepAlive module

Figure 6.8: Microbenchmark.

of the router in configuration 1 and 2 reached the theoretical MLFFR of 343 kpps for the

1Gb/s link.

Figure 6.8 shows our microbenchmark result. It compares delays as a packet travels

through each layer in a NetServ node. The first bar shows only the delay in Linux kernel

(configuration 1 in our MLFFR graphs), the second bar adds the delay from the kernel

packet filter (configuration 2), and the third bar shows the delays in all layers up to the

KeepAlive module (configuration 6). The second bar represents the delay experienced by

packets transiting a NetServ node without being processed by a module. We note that the

additional overhead compared to the first bar, plain Linux forwarding, is very small. The

third bar, representing the full packet processing overhead, shows a significant amount of

delay, as expected.

The overhead is certainly significant. Packets processed by the KeepAlive module

achieve only 20% of throughput and incur 92microsecond delay, compared to unprocessed

CHAPTER 6. NETSERV NODE IMPLEMENTATION 83

 20

 40

 60

 80

 100

 120

 140

 160

 20 30 40 50 60 70 80 90 100
 2

 4

 6

 8

 10

 12

 14

 16

T
hr

ou
gh

pu
t [

kp
ps

]

M
em

or
y

us
ag

e
[G

B
]

Number of NetServ containers

Total peak throughput
Total throughput at saturation

Memory usage

Figure 6.9: NetServ node with many containers.

packets. However, we make a few observations in our defense. The KeepAlive through-

put of 71 kpps is on par with the average traffic experienced by a typical edge router [42].

Our tests were performed on modest hardware, and more importantly, a packet processing

module would only be expected to handle a small fraction of the total traffic. Our Linux

implementation, thus, is quite usable in low traffic environments. The OpenFlow extension

in Section 8.3 provides a solution for high traffic environments.

Lastly, we observe the behavior of a NetServ node running many containers. Incoming

traffic is equally distributed to each container. Figure 6.9 shows the total throughput and

memory consumption as we increase the number of containers in a NetServ node. The

total throughput gradually decreases, indicating the overhead of running many containers.

The line labeled “peak throughput” is the maximum throughput reported just before the

NetServ node started experiencing packet loss as the input rate increased. The line labeled

“throughput at saturation” is the throughput when it plateaued against the increasing input

CHAPTER 6. NETSERV NODE IMPLEMENTATION 84

rate. The overhead of running many containers, again, exacerbates the difference. Memory

consumption is proportional to the number of containers. Each container consumes about

110MB when the KeepAlive module is busy processing packets at the peak throughput.

Each container contains a JVM, OSGi framework, and a collection of building block mod-

ules. Figure 6.9 shows that a NetServ node scales reasonably well as we increase the number

of containers in it.

CHAPTER 7. ECONOMIC MODEL: NETSERV APPLICATIONS 85

Chapter 7

Economic Model: NetServ

Applications

We advocate NetServ as a platform that enables content providers and ISPs to enter into a

new economic alliance. In this chapter, we present four example applications–ActiveCDN,

KeepAlive Responder, Media Relay, and Overload Control–which demonstrate economic

benefit for both parties.

ActiveCDN provides publisher-specific content distribution and processing. The other

three applications illustrate how NetServ can be used to develop more efficient and flexible

systems for real-time multimedia communication. In particular, we show how Internet

Telephony Service Providers (ITSPs) can deploy NetServ applications that help overcome

the most common problems caused by the presence of Network Address Translators (NATs)

in the Internet, and how NetServ helps to make ITSPs’ server systems more resilient to

traffic overload.

7.1 ActiveCDN

We developed ActiveCDN, a NetServ application module that implements CDN functional-

ity on NetServ-enabled edge routers. ActiveCDN brings content and services closer to end

users than traditional CDNs. An ActiveCDN module is created by a content provider, who

has the full control of the placement of the module. The module can be redeployed to dif-

CHAPTER 7. ECONOMIC MODEL: NETSERV APPLICATIONS 86

End user

NetServ

router

NetServ

router

Regular

router

Regular

router

Content

provider

(1) User requests video: http://content�provider.com/?file=foo

(2) Content provider sends video file

(3) Content provider sends on�path signal to deploy ActiveCDN module

NN

(4) NetServ routers download the module

(3) Content provider sends on�path signal to deploy ActiveCDN module

(6) NetServ routers with ActiveCDN reply to probe

(7) Another user requests http://content� provider.com/?file=foo

(8) Content provider finds nearby ActiveCDN node, sends redirect message

(9) User requests http://netserv1.service�provider.com/?file=foo

(10) ActiveCDN downloads the video, simultaneously serving and caching it

(5) Content provider probes for installed ActiveCDN modules

(11) ActiveCDN can also process content

Figure 7.1: How ActiveCDN works.

ferent parts of the Internet as needed. This is in stark contrast to the largely preconfigured

topology of existing CDNs.

The content provider also controls the functionality of the module. The module can

perform custom processing specific to the content provider, like inserting advertisements

into video streams.

Figure 7.1 offers an example of how ActiveCDN works. When an end user requests

video content from a content provider’s server, the server checks its database to determine

if there is a NetServ node running ActiveCDN in the vicinity of the user. We use the

MaxMind GeoIP [19] library to determine the geographic distance between the user and

each ActiveCDN node currently deployed. If there is no ActiveCDN node in the vicinity, the

CHAPTER 7. ECONOMIC MODEL: NETSERV APPLICATIONS 87

server serves the video to the user, and at the same time, sends a SETUP message to deploy

an ActiveCDN module on an edge router close to that user. This triggers each NetServ node

on-path, generally at the network edge, to download and install the module. Following the

SETUP message the server sends a PROBE message to retrieve the IP addresses of the NetServ

nodes that have successfully installed ActiveCDN. This information is used to update the

database of deployed ActiveCDN locations. When a subsequent request comes from the

same region as the first, the content provider’s server redirects the request to the closest

ActiveCDN node, most likely one of the nodes previously installed. The module responds to

the request by downloading the video, simultaneously serving and caching it. The content

provider’s server can send a REMOVE message to uninstall the module, otherwise the module

will be removed automatically after the number of seconds specified in the ttl field of the

SETUP message. The process repeats when new requests are made from the same region.

7.2 KeepAlive Responder

The ubiquitous presence of Network Address Translators (NATs) poses a challenge to com-

munication services based on Session Initiation Protocol (SIP) [106]. After a SIP User

Agent (UA) behind a NAT box registers its IP address with a SIP server, the UA needs to

make sure that the state in the NAT box remains active for the duration of the registra-

tion. Failure to keep the state active would render the UA unreachable. The most common

mechanism used by UAs to keep NAT bindings open is to send periodic keep-alive messages

to the SIP server.

The timeout for UDP bindings appears to be rather short in most NAT implementations.

SIP UAs typically send keep-alive messages every 15 seconds [49] to remain reachable from

the SIP server.

While the size of a keep-alive message is relatively small–about 300 bytes when SIP

messages are used for this purpose, which is often the case–large deployments with hundreds

of thousand or even millions of UAs are not unusual. Millions of UAs sending a keep-alive

every 15 seconds represent a significant consumption of network and server resources. This

traffic wastes energy, adds to the operating cost of Internet Telephony Service Providers

CHAPTER 7. ECONOMIC MODEL: NETSERV APPLICATIONS 88

Figure 7.2: Operation of KeepAlive Responder.

(ITSPs), and serves no useful purpose–other than to fix a problem that should not exist in

the first place. A surprising fact is that the keep-alive traffic can be a bottleneck in scaling

a SIP server to a large number of users [49].

Figure 7.2 shows how NetServ could help offload NAT keep-alive traffic from the infras-

tructure of Internet Telephony Service Providers (ITSPs). Without the NetServ KeepAlive

Responder, the SIP UA behind a NAT sends a keep-alive request to the SIP server every 15

seconds and the SIP server sends a response back. The NAT keep-alive packets can be either

short 4-byte packets or full SIP messages. For our implementation, we are using full SIP

messages because, to the best of our knowledge, this is what most ITSPs use for reliability

reasons. When an NSIS-enabled SIP server starts receiving NAT keep-alive traffic from a

SIP UA, it initiates NSIS signaling in order to find a NetServ router along the network

path to the SIP UA. If a NetServ router is found, the router downloads and installs the

KeepAlive module provided by the ITSP.

After the module has been successfully installed, it starts inspecting SIP traffic going

through the router towards the SIP server. If the module finds a NAT keep-alive request,

it generates a reply on behalf of the SIP server, sends it to the SIP UA, and discards the

original request. Thus, if there is a NetServ router close to the SIP UA, the NAT keep-alive

traffic never reaches the network or the servers of the ITSP; the keep-alive traffic remains

local in the network close to the SIP UA.

The KeepAlive Responder spoofs the IP address of the SIP server in response packets

sent to the UA. IP address spoofing is not an issue here because the NetServ router is

on-path between the spoofed IP address and the UA.

CHAPTER 7. ECONOMIC MODEL: NETSERV APPLICATIONS 89

Figure 7.3: Operation of NetServ Media Relay.

7.3 Media Relay

ITSPs may need to deploy media relay servers to facilitate the packet exchange between

NATed UAs. However, this approach has several drawbacks, including increased delay,

additional hardware and network costs, and management overhead.

Figure 7.3 shows how NetServ helps to offload the media relay functionality from an

ITSP’s infrastructure. The direct exchange of media packets between the two UAs in the

picture is not possible. Without NetServ the ITSP would need to provide a managed media

relay server. When a NetServ router is available close to one of the UAs, the SIP server

can deploy the Media Relay module at the NetServ node.

When a UA registers its network address with the SIP server, the SIP server sends an

NSIS signaling message towards the UA, instructing the NetServ routers along the path to

download and install the Media Relay module. The SIP server then selects a NetServ node

close to the UA, instead of a managed server, to relay calls to and from that UA.

NetServ media relay servers that are deployed at the network edge nicely fit into the

Internet Connectivity Establishment (ICE) [105] framework and can be used as TURN

servers [96] within the framework. ICE-capable user agents (not necessarily SIP-based) can

CHAPTER 7. ECONOMIC MODEL: NETSERV APPLICATIONS 90

use the framework to discover whether a TURN server is required to establish a commu-

nication session. The algorithm to select an optimal server from publicly available TURN

servers across the Internet is left unspecified in the framework. NetServ-capable nodes can

facilitate deployment of media relay servers across the Internet. The capability of NSIS

signaling to select a relay server close to one of the communicating UAs helps select relay

servers that add no (or very low) additional delay to media packets.

The use of TURN-based media relay servers is not limited to SIP UAs. A large num-

ber of globally distributed media relay servers are required in many other communication

scenarios, such as peer-to-peer file sharing, high definition multimedia communication and

video streaming. NetServ nodes distributed across the Internet facilitates the deployment

of a media relay network.

7.4 Overload Control

Considerable amount of work has been done on overload of SIP servers [79]. SIP servers

are vulnerable to overload due to the lack of congestion control in UDP. The IETF has

developed a framework for overload control in SIP servers that can be used to mitigate the

problem [74,79]. The framework proposes to implement the missing control loop (otherwise

implemented in TCP) in SIP. Figure 7.4 illustrates the scenario. The SIP server under load,

referred to as the Receiving Entity (RE), periodically monitors its load. The information

about the load is then communicated to the Sending Entity (SE), which is the upstream

SIP server along the path of incoming SIP traffic. Based on the feedback from the RE, the

SE then either rejects or drops a portion of incoming SIP traffic.

We implemented a simple SIP overload control framework in NetServ. Our Receiving

Entity (RE) is a common SIP server based on the SIP-Router [31] project. We extended the

SIP server implementation with functions needed to initiate NSIS signaling and monitor the

load of the server. For the sake of simplicity we used a statically configured load threshold

in our prototype implementation. In real-world scenarios the load of the SIP server would

be calculated as a function of CPU load, memory utilization, database utilization, and other

factors that limit the total volume of traffic the server can handle. When the load on the

CHAPTER 7. ECONOMIC MODEL: NETSERV APPLICATIONS 91

Figure 7.4: NetServ as SIP overload protection.

SIP server exceeds a preconfigured threshold, the SIP server starts sending NSIS signals

towards the UAs in an attempt to discover a NetServ node along the path and install the

SE NetServ module on the node. Once the module is successfully installed, it intercepts all

SIP messages going to the SIP server. Based on the periodic feedback about the current

volume of traffic seen by the SIP server, the module adjusts the amount of traffic it lets

through in real time. The excess portion of incoming traffic is rejected with “503 Service

Unavailable” SIP responses.

Without NetServ, an ITSP’s options in implementing overload control are limited. The

ITSP can put both the SE and the RE in the same network. Such configuration only allows

hop-by-hop overload control, in which case excessive traffic enters the ITSP’s network before

it is dropped by the SE. Since all incoming traffic usually arrives over the same network

connection, using different control algorithms or configurations for different sources of traffic

becomes difficult.

With NetServ, the ability to run an SE implementation at the edge of the network makes

it possible to experiment with control algorithms and configurations for different sources of

traffic. Being able to install and remove a NetServ SE module dynamically makes it easy for

an ITSP to change the traffic control algorithm. Since the NetServ SE module is installed

outside the ITSP’s network, excess traffic is rejected before it enters the ITSP’s network,

protecting not only the SIP server, but also the network connection.

CHAPTER 7. ECONOMIC MODEL: NETSERV APPLICATIONS 92

7.5 Discussion on Signaling Mode

7.5.1 Reverse Data Path

The descriptions of the NetServ applications in this chapter assumed that the reverse data

path is the same as the forward path. On the Internet today, however, this is often not the

case due to policy routing.

For ActiveCDN and Media Relay, this is not an issue. The modules only need to be

deployed closer to the users, not necessarily on the forward data path. The module will still

be effective if the network path from the user to the NetServ node has a lower cost than

the path from the user to the server.

For KeepAlive Responder and Overload Control, the module must be on-path to carry

out its function. However, this is not a serious problem in general. First, NetServ routers

are located at the network edge. It is unlikely that the reverse path will go through a

different edge router. Even in the unlikely case that a module is installed on a NetServ

router which is not on the reverse path, if we assume a dense population of users, it is likely

that the module will serve some users, albeit not the ones who triggered the installation in

the first place. If a module is installed at a place where there is no user to serve, it will

time-out quickly.

If a reverse on-path installation is indeed required, there are two ways to handle it. First,

the client-side software can initiate the signaling instead of the server. But this requires

modification of the client-side software. Second, the server can use round-trip signaling.

We implemented TRIGGER signaling message in NetServ NSLP. The server encapsulates a

SETUP or PROBE in a TRIGGER, and sends it towards the end user. The last NetServ router

on-path creates a new upstream signaling flow back to the server. This approach, however,

assumes that the last NetServ node is on both forward and reverse path, and increases the

signaling latency.

7.5.2 Off-path Signaling

In addition to on-path signaling, we envision that certain cases of off-path signaling would

be useful for some NetServ applications. There is a proposal to extend NSIS to include

CHAPTER 7. ECONOMIC MODEL: NETSERV APPLICATIONS 93

epidemic signaling [67]. The proposed extension will enable three additional modes of signal

dissemination: (1) signaling around the sender (bubble), (2) signaling around the receiver

(balloon), and (3) signaling around the path between the sender and receiver (hose). The

bubble and balloon modes will be useful for NetServ module deployment within an enterprise

environment. The hose mode will be useful for the scenarios where NetServ nodes are not

exactly on-path, but a couple of hops away. This mode can mitigate the aforementioned

concerns about the divergent reverse path.

CHAPTER 8. SCALING NETSERV USING OPENFLOW 94

Chapter 8

Scaling NetServ using OpenFlow

8.1 Introduction

The Linux-based implementation that we described in Chapter 6 has a limitation in terms

of performance. Multiple layers present in our execution environment introduce significant

overhead when a packet is subject to DPI, as our evaluation has shown in Section 6.3. A

more serious limitation is the fact that the scalability is limited to a single Linux box, even

when no packet processing is performed. In general, a general-purpose PC cannot match

the forwarding performance of a dedicated router. This makes our Linux implementation

unsuitable for high traffic environment.

We can address this limitation by offloading the forwarding plane onto a physically

separate hardware element, capable of forwarding packets at line rate. The hardware device

must also provide dynamically installable packet filtering hooks, so that the packets that

need to be processed by NetServ modules can be routed appropriately to one or more

NetServ nodes which are attached to the hardware device.

The OpenFlow programmable switch architecture provides exactly the capabilities that

we need. In this chapter, we briefly explain the OpenFlow architecture, and describe our

prototype implementation of the OpenFlow extension of NetServ.

CHAPTER 8. SCALING NETSERV USING OPENFLOW 95

OpenFlow Switch

Flow Table

MAC

src

MAC

dst

IP

src

IP

dst

TCP

sport

TCP

dport
Action

10.0.0.1*
Output

port 1

OpenFlow

Controller

1st pkts
PKT

(4) (1)

(3)

(2)

subseq. pkts

dst: 10.0.0.1

1 pkts

dst: 10.0.0.1
PKT

(5)10.0.0.1

PKT
PKT
PKT

Figure 8.1: How OpenFlow works.

8.2 Overview of OpenFlow

An OpenFlow switch [99] is an Ethernet switch with its internal flow table exposed via a

standardized interface to add and remove flow entries. The OpenFlow Controller (OFC),

typically a software program running on a remote host, communicates with the switch over

a secure channel using the standard OpenFlow Protocol. An entry in the flow table defines a

mapping between a set of header fields–MAC/IP addresses and port numbers, for example–

and one or more associated actions, such as dropping a packet, forwarding it to a particular

port on the switch, or even simple modifications of header fields. When a packet arrives at

an OpenFlow switch, the switch looks up the flow table. If an entry matching the packet

header is found, the corresponding actions are performed. If no entry matches the packet

header, the packet is sent to the remote OFC, which will decide what to do with the packet,

and also insert an entry into the switch’s flow table so that subsequent packets of the same

flow will have a matching entry.

Figure 8.1 illustrates this process. (1) A packet destined for 10.0.0.1 arrives at an

OpenFlow switch, which contains no matching entry in its flow table. (2) A PacketIn

message is sent to the OFC. The OFC, after consulting its routing table, determines the

CHAPTER 8. SCALING NETSERV USING OPENFLOW 96

switch port to which the incoming packet should be output. (3) The OFC sends a FlowMod

command to the switch to add a flow table entry. (4) The command also include an

instruction to forward the incoming packet, which has been sitting in a queue waiting for

the verdict from the OFC. The packet goes out to the destination. (5) All subsequent

packets destined for 10.0.0.1 match the new flow table entry, so the packets are forwarded

by the hardware switch at line rate without incurring the overhead of making a round trip

to OFC.

8.3 NetServ on OpenFlow

NetServ on OpenFlow integrates the two technologies in two ways. First, one or more

NetServ nodes are attached to an OpenFlow switch. From NetServ’s point of view, the

OpenFlow switch provides a common forwarding plane for multiple NetServ nodes. From

OpenFlow’s point of view, the NetServ nodes are external packet processing devices. (The

OpenFlow paper [99] envisions such devices based on NetFPGA.)

Second, the OpenFlow Controller (OFC) is now implemented as a NetServ module. As

such, the OFC can be dynamically installed, updated, or moved to another node. Further-

more, there can be many OFCs, one per user, or even one per application. In conjunction

with FlowVisor–a special purpose OFC that acts as a transparent proxy for a group of

OFCs–NetServ-based OFCs will open up interesting possibilities like an in-network service

that reconfigures network topology as needed. Further exploration is planned as future

work.

Figure 8.2 shows what happens when a packet destined for 10.0.0.1 is being processed

by a NetServ node attached to an OpenFlow switch. First of all, the OFC running in

NetServ sends a proactive FlowMod command to direct all NSIS signaling messages to the

NetServ controller. (1) When the NetServ controller receives a SETUP message–thanks to

the proactive flow table entry–it installs the requested packet processing application module.

In addition, the NetServ controller tells the OFC that an application module has requested

a packet filter, and the OFC remembers the fact in preparation for incoming packets, but

it does not add a flow table entry at this point. (2) A packet matching the filtering rule of

CHAPTER 8. SCALING NETSERV USING OPENFLOW 97

OpenFlow Switch

Flow Table

OpenFlow

Controller

OSGi

NetServ

Controller

NetServ Node

Packet

Processing

Module

Linux kernel
SETUP

signaling

message Port 2

(1)

(4)
PKT

1st packet

Dst: 10.0.0.1

Subsequent

packets

Dst: 10.0.0.1

Flow Table

MAC

src

MAC

dst

IP

src

IP

dst

UDP

sport

UDP

dport
Action

2222*10.0.0.1*33:4411:22
Output

port 2

2222*10.0.0.1*55:6633:44
Output

port 1

Port 1

PKTPKTPKT

(5)
(3)

(4)

(8)

(2)

(6)(9)

(7)

10.0.0.1

Figure 8.2: NetServ with OpenFlow extension.

the NetServ application arrives. There is no flow table entry for it, so it goes to the OFC.

The OFC in NetServ, before it begins its usual OFC work of consulting its routing table,

notices that the packet matches the application filtering rule that the NetServ controller

has told the OFC earlier. (3) The OFC translates the NetServ application’s packet filter

into a flow table entry, and injects it into the OpenFlow switch so that the packet will be

routed to the NetServ node. (4) The packet is delivered to the NetServ node, and then

to the appropriate application module. (5) After processing the packet, the NetServ node

sends it back to the switch. At that point, however, the packet must go back to the OFC,

so that it can find its switching destination. When the OFC sees the packet the second time

around, it knows that it has been processed by a NetServ module (from the input switch

port), so it goes straight to the normal OFC work of consulting its routing table. (6) The

OFC injects another flow table entry in order to output the packet. (7) The packet goes to

the destination. (8) Subsequent packets matching the NetServ application’s filtering rule

are now routed directly to the NetServ node without going to the OFC first (because of

CHAPTER 8. SCALING NETSERV USING OPENFLOW 98

OpenFlow

Controller

OSGi

NetServ

Controller

NetServ Node

Signaling packets

OpenFlow Switch
First packet of a flow

NetServ

Controller

NetServ

Controller

NetServ Node

NetServ

Controller

NetServ Node

OpenFlow Switch
Subsequent packets

NetServ Node

Packet

Processing

Module

OSGi

Packet

Processing

Module

OSGi

Packet

Processing

Module

OSGi

Figure 8.3: Multiple NetServ nodes attached to an OpenFlow switch.

the flow table entry added in step (3).) (9) And when those subsequent packets come back

from the NetServ node to the switch, there is the flow table entry added in step (6) to guide

them to the correct output port.

Having a separate hardware-based forwarding plane eliminates the performance problem

for the packets that do not go through a NetServ node. For the packets that need to go

through NetServ, the OpenFlow extension does not reduce individual packet processing

time, but we can increase the throughput by attaching multiple NetServ nodes. Different

flows can be assigned to different NetServ nodes, or depending on applications, a single flow

can use multiple NetServ nodes. Figure 8.3 depicts this scenario.

CHAPTER 9. ACTIVE NETWORKING AND NETSERV 99

Chapter 9

Active Networking and NetServ

9.1 Introduction

Tennenhouse and Wetherall presented the vision of an active network architecture in their

seminal 1996 paper [116]. They noted that growing demand for in-network services resulted

in the proliferation of middleboxes, overcoming “architectural injunctions against them.”

By adopting active technologies already available at end systems–mobile code between web

server and client, for example–they proposed to activate network nodes, making in-network

computation and storage available to users.1 They argued that active networks not only

consolidate the ad hoc collection of middleboxes into a common programmable node, but

also accelerate the pace of innovation. The possibility of in-network deployment enables

new network-based services, and those new ideas are no longer shackled by the slow pace

of protocol standardization.

It is remarkable that, 15 years later, their voice rings even louder today. Middleboxes

have continued to proliferate. NAT boxes are everywhere, from enterprise networks to home

networks. Web proxies and load balancers are growing in numbers and capability, recently

coining a new term, application delivery controller, to refer to the most sophisticated breed.

Even traditional router vendors are jumping in with SDKs to allow third party packet

processing modules [87].

1 We use the term users broadly, referring not only end users, but also application service providers and

content providers.

CHAPTER 9. ACTIVE NETWORKING AND NETSERV 100

The ossification of the network layer has gotten to a point where researchers are no

longer hesitant to call for a clean-slate redesign of the Internet, but we have yet to see a

clear winner with a serious prospect of adoption. In the meantime, content and application

providers’ need for in-network services are filled by application-layer solutions that can make

suboptimal use of the network. Witness the emergence of the Content Distribution Network

(CDN) industry.

The rise of CDNs has also contributed to a recent trend: blurring of the lines between

content providers and Internet service providers (ISPs). Some very large content providers–

Google, for example–operate data centers at Internet exchange points. Some traditional

ISPs, on the other hand, are getting into CDN market–Level 3 hosting and delivering

Netflix’s streaming video, for example. This trend highlights the benefit of operating services

at the strategic points within the network.

Despite the far-reaching vision, however, the advocates of active networks ultimately

failed to win over the networking community at the time. The biggest objections were

the security risk and performance overhead associated with the extreme version of active

networks where every user packet carries code within it. Another important factor, in our

opinion, was the lack of compelling use cases.

Active networking was ahead of its time when it was proposed, but we believe its time

has arrived. The technology advances in the past fifteen years provides a solid ground on

which we can design an active networking system that strikes the right balance to address

both security and performance concerns. Moreover, we observe that active networks present

a compelling use case in today’s Internet economy.

In this chapter, we consider NetServ as an active network system. In fact, we claim

that NetServ can be viewed as a fully integrated active network system that provides all

the necessary functionality to be deployable, addressing the core problems that prevented

the practical success of earlier approaches.

In contrast to the earlier active network systems, NetServ has the following character-

istics:

• A hybrid approach that combines the best qualities from the two extreme ap-

proaches to active networking: integrated and discrete active networks. User-initiated

CHAPTER 9. ACTIVE NETWORKING AND NETSERV 101

on-path signaling allows user-code injection into the network without the danger of

code-carrying packets.

• The right balance between security and performance. User code modules run

in isolated user space JVMs for security. Packet processing in user space Java code

achieves a reasonable performance in low-traffic environments. Scalability in high-

traffic environments is achieved by the NetServ OpenFlow extension, where multiple

NetServ nodes can be attached to a hardware OpenFlow switch.

• A compelling economic model on top of the newly available in-network resources.

Content providers can operate closer to end-users by deploying code modules on eye-

ball ISPs’ network nodes. Eyeball ISPs find a new source of revenue. Four example

applications illustrate this model.

In Section 9.2, we describe how these three characteristics address the general challenges

faced by the earlier active network systems. In Section 9.3, we compare NetServ with other

active network systems, and examine other closely related work on providing in-networking

services, such as programmable routers, network testbeds, and content caching.

9.2 Addressing Three Challenges of Active Networks

9.2.1 Hybrid Approach: User Code, but Not in Data Packets

Active networking proposed two approaches to programming the network. In the integrated

approach, every packet contains user code that is executed by the network nodes through

which the packet travels. Many researchers attribute the ultimate demise of active networks

to the security risk and performance overhead associated with user packets carrying code.

In the more conservative discrete approach, network nodes are programmed by out-of-

band mechanisms which are separate from the data packet path. In other words, the discrete

active network nodes are programmable routers. Indeed, since the active network proposal,

the research community has seen many programmable router proposals [62,80,86,89] which

are either considered a platform for active networking, or at least heavily influenced by it.

CHAPTER 9. ACTIVE NETWORKING AND NETSERV 102

Notwithstanding the general view that associates programmable routers with active net-

works, we do not consider typical programmable routers an adequate platform to realize

the active network vision. Typical uses of programmable routers center around the net-

work functions required by the network operators, like QoS, firewall, VPN, IPsec, NAT,

web cache, and rate limiting. The variety and sophistication of available services on pro-

grammable routers is a boon for network management, but it is far from the active network

vision, where users inject custom functionality into the network. In fact, we argue that

programmable routers, despite their root in active networks, compound the problem that

motivated active networks in the first place: proliferation of middleboxes.

NetServ aims to be the vehicle to bring back the active networking vision of ubiquitous

in-network services, not just another programmable router. NetServ must provide a mech-

anism to inject user code into the network. At the same time, we cannot repeat the same

failure by adopting the integrated approach.

We take a hybrid approach. Like the discrete approach, we separate the data path and

the control channel through which the network nodes are programmed. Like the integrated

approach, however, it is the user who programs the network nodes. A user sends an on-path

signaling message towards a destination of his interest, which will trigger the NetServ nodes

on-path to download the user’s code module and install it dynamically.

We provide further comparisons between NetServ and previous active network systems

in Section 9.3.1.

9.2.2 Striking the Right Balance: Security and Performance

The user-driven software installation made security our top priority. Unlike previous pro-

grammable routers that ran service modules in (or very close to) kernel space for fast packet

processing, NetServ runs modules in user space. Specifically, user modules are written in

Java and executed on Java Virtual Machines (JVMs). A NetServ node hosts multiple JVMs,

one for each user.

Our choice of user space execution and JVM allows us to leverage the decades of technol-

ogy advances in operating systems, virtualization, and Java. NetServ makes use of isolation

and resource control mechanisms available in all layers: OS-level virtualization, process

CHAPTER 9. ACTIVE NETWORKING AND NETSERV 103

control, Java 2 security, and the OSGi component framework. We have discussed these

mechanisms in detail in Section 6.2.

Running service modules in user space, and in Java on top of that, inevitably raises the

eyebrows of performance-minded critics. In Section 6.3, we explored the most worrisome

case, namely, a Java service module sitting in the fast data path, and performing deep

packet inspection (DPI) and modification. Every processed packet incurs the overhead of

kernel packet filter, kernel-to-user (and back) transitions, transfer from native to Java code,

and application code running in JVM. The evaluation of our Linux-based implementation

shows that the overhead is indeed significant, but not prohibitively so. The throughput

achieved on a modestly equipped Linux server matches the average traffic seen by a typical

edge router, indicating that the solution is quite usable in a low traffic environment. And

this is with every single packet being processed. Typically only a small fraction of incoming

packets will be subject to DPI.

Our real defense against performance-related criticisms is the multi-box lateral expan-

sion of NetServ using the OpenFlow [99] forwarding engine, described in Section 8.3. In

this extended architecture, multiple Linux-based NetServ nodes are attached to an Open-

Flow switch, which provides a physically separate forwarding plane. The scalability of user

services is no longer limited to a single NetServ box.

We do not claim to have invented any of the individual technologies that we use for

NetServ. Our challenge, and thus our contribution, lies in combining the technologies to

strike the right balance between security and performance, culminating in a fully-integrated

active network system that can be deployed on the current Internet while remaining true

to the original active networking vision.

9.2.3 Economic Alliance between Content Providers and ISPs

It can be argued that active networks might have been more successful if there had been

economically compelling use cases. Fifteen years ago, the Internet was a much simpler place

with its actors playing well-defined roles. Perhaps it was difficult to imagine a workable

economic model for deploying services across ownership boundaries. Things are different

today. The stakeholders in the Internet market place are engaged in fierce competitions

CHAPTER 9. ACTIVE NETWORKING AND NETSERV 104

and swift alliances to occupy strategic positions as the lines between different actors begin

to disappear.

We identify two Internet actors that are currently in a tussle, and suggest a way to use

NetServ to enter into an economic alliance. We have already noted that the lines between

content providers and ISPs are blurring, which highlights the importance of occupying

strategic points in the network. Those strategic points are often at the network edge.

Content providers are motivated to operate at the network edge, close to end users, as

evidenced by the success of CDN operators like Akamai [1].

The network edge belongs to eyeball ISPs, as we explored in Chapter 5. NetServ can

enable an economic relationship between the ISPs and the content providers. We have

illustrated our vision using four example applications in Chapter 7. We envision that the

economic alliance between content providers and ISPs will be facilitated by brokers who

aggregate resources from different ISPs, arrange remuneration, and possibly provide value-

added services. This is already happening in cloud computing [25,35].

9.3 Earlier Active Network Systems and Other Related Work

9.3.1 Active Networks

The most radical active networking proposals–collectively called integrated active networks–

replace data packets with capsules, which carry code along with data [48,111,122]. Capsule-

based systems were either unable to alleviate the security concerns or, in an attempt

to secure the systems, limited in functionality. Some systems were catered to specific

applications–Smart Packet [111] were tailored for network management, for example. Some

systems were based on restricted programming languages specifically designed for active

networks–PLAN [78], for example–rather than a general purpose programming language.

NetServ uses on-path signaling to achieve the same objective as capsules, namely, in-

network user-code propagation and injection. However, the actual code modules are down-

loaded out-of-band, so they are not subject to size restrictions, and the code modules can go

through more extensive security checks. NetServ uses Java, a mainstream general-purpose

language. Performance improvements and the advances in resource control and isolation

CHAPTER 9. ACTIVE NETWORKING AND NETSERV 105

techniques in the past 15 years have made Java a viable proposition today.

Out-of-band code module download is not new. The more conservative active networking

proposals–collectively referred to as discrete active networks–download code modules out-

of-band. Packets in DAN [63] and ANTS [121] contain references to predefined functions

rather than actual executable code. When a packet transits an active node, the function

references in the packet triggers the invocation of the functions residing in the node. If the

code module for an invoked function is not present in the node, the module is downloaded

on demand. DAN uses client-server paradigm for code download, whereas ANTS uses

peer-to-peer.

The on-demand code downloading of discrete active networks may look similar to Net-

Serv. The critical difference is that the code modules for discrete active networks are not

arbitrary user code. They are predefined set of protocol or service implementations that

were prepared by the network administrator. Users select which function to invoke, but do

not create the functions.

SwitchWare combines integrated and discrete active networking by letting packets carry

restricted code for simple computations, but having them call predefined Switchlets for more

complex computations.

NetScript [61, 123] proposes an abstraction for the entire network, rather than individ-

ual nodes. NetScript Virtual Network (NVN) is an overlay network composed of Virtual

Network Engines (VNEs) and Virtual Links (VLs) between them. NetScript is a special-

ized language for data stream processing. NetServ’s packet processing framework provides

similar functionality. In fact, NetServ can be viewed as an alternate implementation of the

NetScript vision using a mainstream general-purpose programming language and operating

directly on the IP underlay rather a virtual overlay network.

The influence of active network concept can be felt in many areas of networking today.

The slice-level programmability in global testbeds such as PlanetLab [102] or GENI [12] can

be regarded as a form of discrete active networks. Software-Defined Networking (SDN) [32]

based on OpenFlow [99] is another call for the return to the active network idea. Geambasu

et al. [72] applied active network concept to overlay networks, allowing a common dis-

tributed hash table (DHT) substrate to be used for multiple applications that have diverse

CHAPTER 9. ACTIVE NETWORKING AND NETSERV 106

customization needs.

9.3.2 Programmable Routers

Many earlier programmable routers focused on providing modularity without sacrificing for-

warding performance, which meant installing modules in kernel space. Router Plugins [62],

Click [89], PromethOS [86], and Pronto [80] followed this approach. As we noted before,

NetServ runs modules in user space. These kernel-level programmable routers, in fact, can

be used as NetServ’s forwarding plane. We described alternate NetServ forwarding engine

based on Click router and JUNOS SDK in Section 6.1.3.

Another candidate for NetServ forwarding plane is Supercharged PlanetLab [117], a

system based on network processor.

LARA++ [109] is similar to NetServ in that the modules run in user space. However,

LARA++ focuses more on providing a flexible programming environment by supporting

multiple languages, XML-based filter specification, and service composition. It does not

employ a signaling protocol for dynamic code installation.

PromethOS [86] was the first to propose a signaling protocol for automatic deployment of

modules in routers that were defined in the source routing path of the signaling message. In

contrast, NetServ provides on-path signaling (no need to specify source routes). Moreover,

their approach does not provide isolation of execution environments.

9.3.3 GENI

GENI [12] is a federation of many existing network testbeds under a common management

framework. GENI is comprised of a diverse set of platform resources, which are shared

among many experimenters.

NetServ is becoming a resident tool of the GENI infrastructure. NetServ’s common

execution environment can accelerate development, deployment and testing of experiments.

NetServ’s Java-based API makes GENI a gentler environment for educational use.

The Million Node GENI project [26], which is a part of GENI, provides a peer-to-peer

hosting platform using Python-based sandbox. An end user can contribute resources from

his own computer in exchange for the use of the overlay network. The Million Node GENI

CHAPTER 9. ACTIVE NETWORKING AND NETSERV 107

focuses on end systems rather than in-network nodes.

9.3.4 Content Caching

Google Global Cache (GGC) [75] refers to a set of caching nodes located in ISPs’ networks,

providing CDN-like functionality for Google’s content. NetServ can provide the same func-

tionality to other content providers, as we have demonstrated with ActiveCDN module.

One of the goals of Content Centric Networking (CCN) [81] is to make the local storage

capacity of nodes across the Internet available to content providers. CCN proposes a re-

placement of IP by a new communication protocol, which addresses data rather than hosts.

NetServ aims to realize the same goal using the existing IP infrastructure. In addition,

NetServ enables content processing in network nodes.

108

Part III

Conclusions

CHAPTER 10. CONCLUSIONS 109

Chapter 10

Conclusions

This thesis presents NetServ, a node architecture for dynamically deploying in-network

services on edge routers. Network functions and applications are implemented as software

modules which can be deployed at any NetServ-enabled node on the Internet, subject to

policy restrictions. The NetServ framework provides a common execution environment for

service modules and the ability to dynamically install and remove the services without

restarting the nodes.

There are many challenges in designing such a system. The main contribution of this

thesis lies in meeting those challenges. First, to address the challenge of providing economic

incentives for enabling in-network services, we demonstrate how NetServ can facilitate an

economic alliance between content providers and ISPs. ISPs make their NetServ-enabled

edge routers available for hosting content providers’ applications and contents. Content

providers can operate closer to end users by deploying code modules on NetServ-enabled

edge routers. Second, to address the challenge of accommodating both server applications

and router functions in a single node, NetServ framework can host a packet processing

module that sits in the data path, a server module that uses the TCP/IP stack in the tradi-

tional way, or a combined module that does both. Third, in order to provide a deployment

mechanism where content providers can initiate module install without knowing the target

routers, we adopted on-path signaling. A NetServ signaling packet gets forwarded by IP

routers as usual, but when it transits a NetServ-enabled router, the message gets intercepted

and passed to the NetServ control layer. Fourth, to address the challenge of providing a

CHAPTER 10. CONCLUSIONS 110

robust multi-user execution environment, we chose to run NetServ modules in user space

JVM. This allows us to leverage the decades of technology advances in operating systems,

virtualization, and Java. Lastly, in order to provide scalability beyond a single-box, we

present a multi-box lateral expansion of NetServ using the OpenFlow forwarding engine.

In this extended architecture, multiple NetServ nodes are attached to an OpenFlow switch,

which provides a physically separate forwarding plane.

We built four NetServ applications: ActiveCDN, KeepAlive Responder, Media Relay,

and Overload Control. The applications demonstrate the economic benefits for the content

providers and the ISPs who enter into a cooperative relationship using NetServ. ActiveCDN

provides provider-specific content distribution and processing. The other three applications

illustrate how NetServ can be used to develop more efficient and flexible systems for real-

time multimedia communication. In particular, we show how Internet Telephony Service

Providers (ITSPs) can deploy NetServ applications that help overcome the most common

problems caused by the presence of Network Address Translators (NATs) in the Internet,

and how NetServ helps to make ITSPs’ server systems more resilient to traffic overload.

We compare NetServ with active networks. The idea to enable in-network services is

not new. Active networking articulated the same vision more than a decade ago. In fact,

active networks went even further, advocating the infamous integrated approach, where

every packet can carry a program that can alter the behavior of network nodes. We explain

how NetServ addresses the main challenges of active networks. We argue, in fact, that

NetServ can be viewed as the first fully integrated active network system that provides all

the necessary functionality to be deployable, addressing the core problems that prevented

the practical success of earlier approaches.

Additionally, this thesis presents our prior work on improving service discovery in local

and global networks. The service discovery work makes indirect contribution because the

limitations of local and overlay networks encountered during those studies eventually led

us to investigate in-network services, which resulted in NetServ. Specifically, we investigate

the issues involved in bootstrapping large-scale structured overlay networks, present a tool

to merge service announcements from multiple local networks, and propose an enhancement

to structured overlay networks using link-local multicast.

111

Part IV

Bibliography

BIBLIOGRAPHY 112

Bibliography

[1] Akamai. http://www.akamai.com/.

[2] Apache XML-RPC. http://ws.apache.org/xmlrpc/.

[3] Apple Inc. http://www.apple.com/.

[4] Avahi. http://avahi.org/.

[5] Bonjour for Windows. http://www.apple.com/support/downloads/

bonjourforwindows.html.

[6] Cygwin home page. http://www.cygwin.com/.

[7] Debian GNU/Linux. http://www.debian.org/.

[8] DNS-SD service types. http://www.dns-sd.org/ServiceTypes.html.

[9] Eclipse Equinox. http://www.eclipse.org/equinox/.

[10] FFmpeg. http://ffmpeg.org/.

[11] FreeNSIS. http://user.informatik.uni-goettingen.de/~nsis/.

[12] GENI. http://www.geni.net/.

[13] Gnutella protocol 0.6. http://rfc-gnutella.sourceforge.net/src/rfc-0_

6-draft.html.

[14] ISPs experimenting with new P2P controls. http://www.networkworld.com/news/

2008/061908-nxtcomm-isp-p2p.html?page=1.

http://www.akamai.com/
http://ws.apache.org/xmlrpc/
http://www.apple.com/
http://avahi.org/
http://www.apple.com/support/downloads/bonjourforwindows.html
http://www.apple.com/support/downloads/bonjourforwindows.html
http://www.cygwin.com/
http://www.debian.org/
http://www.dns-sd.org/ServiceTypes.html
http://www.eclipse.org/equinox/
http://ffmpeg.org/
http://user.informatik.uni-goettingen.de/~nsis/
http://www.geni.net/
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
http://www.networkworld.com/news/2008/061908-nxtcomm-isp-p2p.html?page=1
http://www.networkworld.com/news/2008/061908-nxtcomm-isp-p2p.html?page=1

BIBLIOGRAPHY 113

[15] Limelight Networks. http://www.limelightnetworks.com/.

[16] LimeWire. http://www.limewire.com/.

[17] LogMeIn Hamachi. https://secure.logmein.com/products/hamachi/vpn.asp.

[18] lxc Linux Containers. http://lxc.sourceforge.net/.

[19] MaxMind GeoIP. http://www.maxmind.com/app/ip-location/.

[20] NSIS-ka. https://projekte.tm.uka.de/trac/NSIS/wiki/.

[21] OIT filters mDNS. http://www.net.princeton.edu/filters/mdns.html.

[22] OSGi Technology. http://www.osgi.org/About/Technology/.

[23] OverSim: The overlay simulation framework. http://www.oversim.org/.

[24] Rendezvousproxy: Tutorial. http://ileech.sourceforge.net/index.php?

content=RendezvousProxy-Tutorial.

[25] RightScale Cloud Computing Management Platform. http://www.rightscale.com/

index.php.

[26] Seattle, Open Peer-to-Peer Computing. https://seattle.cs.washington.edu/

html/.

[27] Secure Inter-Domain Routing (sidr). http://datatracker.ietf.org/wg/sidr/

charter/.

[28] Simplify Media. http://www.simplifymedia.com/.

[29] Technical Q&A QA1311: Registering a Bonjour service multiple times. http://

developer.apple.com/qa/qa2001/qa1311.html.

[30] The Bamboo Distributed Hash Table. http://bamboo-dht.org/.

[31] The SIP-Router Project. http://sip-router.org/.

http://www.limelightnetworks.com/
http://www.limewire.com/
https://secure.logmein.com/products/hamachi/vpn.asp
http://lxc.sourceforge.net/
http://www.maxmind.com/app/ip-location/
https://projekte.tm.uka.de/trac/NSIS/wiki/
http://www.net.princeton.edu/filters/mdns.html
http://www.osgi.org/About/Technology/
http://www.oversim.org/
http://ileech.sourceforge.net/index.php?content=RendezvousProxy-Tutorial
http://ileech.sourceforge.net/index.php?content=RendezvousProxy-Tutorial
http://www.rightscale.com/index.php
http://www.rightscale.com/index.php
https://seattle.cs.washington.edu/html/
https://seattle.cs.washington.edu/html/
http://datatracker.ietf.org/wg/sidr/charter/
http://datatracker.ietf.org/wg/sidr/charter/
http://www.simplifymedia.com/
http://developer.apple.com/qa/qa2001/qa1311.html
http://developer.apple.com/qa/qa2001/qa1311.html
http://bamboo-dht.org/
http://sip-router.org/

BIBLIOGRAPHY 114

[32] TR10: Software-Defined Networking. http://www.technologyreview.com/

biotech/22120/.

[33] Ubuntu. http://www.ubuntu.com/.

[34] What happened on August 16, 2007. http://heartbeat.skype.com/2007/08/what_

happened_on_august_16.html.

[35] What is the cloud broker service market forcast? http://www.quora.com/

What-is-the-cloud-broker-service-market-forcast.

[36] XML-RPC for C and C++. http://xmlrpc-c.sourceforge.net/.

[37] XML-RPC home page. http://www.xmlrpc.com/.

[38] Xuggler. http://www.xuggle.com/xuggler/.

[39] Zero Configuration Networking. http://www.zeroconf.org/.

[40] Zero Configuration Networking (zeroconf) Working Group charter. http://www.

ietf.org/html.charters/OLD/zeroconf-charter.html.

[41] Zeroconf-to-Zeroconf Toolkit (z2z). http://sourceforge.net/projects/z2z/.

[42] Princeton University Router Traffic Statistics. http://mrtg.net.princeton.edu/

statistics/routers.html, 2010.

[43] K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information Sys-

tems. In CoopIS’01: Proceedings of the 9th International Conference on Cooperative

Information Systems, pages 179–194, London, UK, 2001. Springer-Verlag.

[44] K. Aberer, A. Datta, M. Hauswirth, and R. Schmidt. Indexing data-oriented overlay

networks. In VLDB ’05: Proceedings of the 31st international conference on very

large databases, pages 685–696. VLDB Endowment, 2005.

[45] D. Angluin, J. Aspnes, J. Chen, Y. Wu, and Y. Yin. Fast Construction of Overlay

Networks. In SPAA ’05: Proceedings of the seventeenth annual ACM symposium

http://www.technologyreview.com/biotech/22120/
http://www.technologyreview.com/biotech/22120/
http://www.ubuntu.com/
http://heartbeat.skype.com/2007/08/what_happened_on_august_16.html
http://heartbeat.skype.com/2007/08/what_happened_on_august_16.html
http://www.quora.com/What-is-the-cloud-broker-service-market-forcast
http://www.quora.com/What-is-the-cloud-broker-service-market-forcast
http://xmlrpc-c.sourceforge.net/
http://www.xmlrpc.com/
http://www.xuggle.com/xuggler/
http://www.zeroconf.org/
http://www.ietf.org/html.charters/OLD/zeroconf-charter.html
http://www.ietf.org/html.charters/OLD/zeroconf-charter.html
http://sourceforge.net/projects/z2z/
http://mrtg.net.princeton.edu/statistics/routers.html
http://mrtg.net.princeton.edu/statistics/routers.html

BIBLIOGRAPHY 115

on parallelism in algorithms and architectures, pages 145–154, New York, NY, USA,

2005. ACM Press.

[46] M. S. Artigas, P. G. Lopez, J. P. Ahullo, and A. F. G. Skarmeta. Cyclone: A Novel

Design Schema for Hierarchical DHTs. In P2P ’05: Proceedings of the Fifth IEEE

International Conference on Peer-to-Peer Computing, pages 49–56, Washington, DC,

USA, 2005. IEEE Computer Society.

[47] M. Arumaithurai, X. Fu, B. Schloer, and H. Tschofenig. Performance Study of the

NSIS QoS-NSLP Protocol. In GLOBECOM, 2008.

[48] A. Banchs, W. Effelsberg, C. Tschudin, and V. Turau. Multicasting Multimedia

Streams with Active Networks. In Local Computer Networks, 1998. LCN ’98. Pro-

ceedings., 23rd Annual Conference on, pages 150 –159, oct 1998.

[49] S. A. Baset, J. Reich, J. Janak, P. Kasparek, V. Misra, D. Rubenstein, and

H. Schulzrinne. How Green is IP-Telephony? In The ACM SIGCOMM Workshop on

Green Networking, 2010.

[50] I. Baumgart, B. Heep, and S. Krause. OverSim: A Flexible Overlay Network Simu-

lation Framework. In Proceedings of 10th IEEE Global Internet Symposium (GI ’07)

in conjunction with IEEE INFOCOM 2007, Anchorage, AK, USA, pages 79–84, May

2007.

[51] I. Baumgart and S. Mies. S/Kademlia: A Practicable Approach Towards Secure Key-

Based Routing. In ICPADS ’07: Proceedings of the 13th International Conference

on Parallel and Distributed Systems, pages 1–8, Washington, DC, USA, 2007. IEEE

Computer Society.

[52] D. Bryan, P. Matthews, E. Shim, and D. Willis. Concepts and Terminology for Peer

to Peer SIP. Internet draft, 2007.

[53] J. W. Byers, J. Considine, and M. Mitzenmacher. Simple Load Balancing for Dis-

tributed Hash Tables. In IPTPS, pages 80–87, 2003.

BIBLIOGRAPHY 116

[54] K. Calvert. Reflections on Network Architecture: an Active Networking Perspective.

ACM SIGCOMM Computer Communication Review, 36(2):27–30, 2006.

[55] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. Scribe: A Large-Scale and

Decentralized Application-Level Multicast Infrastructure. IEEE Journal on Selected

Areas in communications (JSAC), 20(8):1489–1499, 2002.

[56] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh.

SplitStream: High-Bandwidth Multicast in Cooperative Environments. In SOSP ’03:

Proceedings of the nineteenth ACM symposium on operating systems principles, pages

298–313, New York, NY, USA, 2003. ACM.

[57] S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of IPv4 Link-Local

Addresses. RFC 3927, May 2005.

[58] S. Cheshire and M. Krochmal. DNS-Based Service Discovery. Internet draft, 2006.

[59] S. Cheshire and M. Krochmal. Multicast DNS. Internet draft, 2006.

[60] S. Cheshire and D. H. Steinberg. Zero Configuration Networking: The Definitive

Guide, chapter 5. O’Reilly Media, Sebastopol, CA, 2005.

[61] S. da Silva, Y. Yemini, and D. Florissi. The NetScript Active Network System. Selected

Areas in Communications, IEEE Journal on, 19(3):538 –551, mar 2001.

[62] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router Plugins: A Software

Architecture for Next-Generation Routers. IEEE/ACM Transactions on Networking,

8(1):2–15, 2000.

[63] D. Decasper and B. Plattner. DAN: Distributed Code Caching for Active Networks.

In INFOCOM ’98. Seventeenth Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings. IEEE, volume 2, pages 609 –616 vol.2, mar-2

apr 1998.

[64] P. Faratin, D. Clark, P. Gilmore, S. Bauer, A. Berger, and W. Lehr. Complexity

of Internet Interconnections: Technology, Incentives and Implications for Policy. In

TPRC, 2007.

BIBLIOGRAPHY 117

[65] M. Femminella, R. Francescangeli, G. Reali, J. W. Lee, and H. Schulzrinne. An

Enabling Platform for Autonomic Management of the Future Internet. Network,

IEEE, 25(6):24–32, 2011.

[66] M. Femminella, R. Francescangeli, G. Reali, J. W. Lee, W. Song, and H. Schulzrinne.

Future Internet Autonomic Management Using NetServ. In Demonstrations of the

IEEE Conference on Local Computer Networks (LCN) (LCN-Demos 2011), pages

1081–1083, Bonn, Germany, Oct. 2011.

[67] M. Femminella, R. Francescangeli, G. Reali, and H. Schulzrinne. Gossip-based Sig-

naling Dissemination Extension for Next Steps in Signaling. Technical Report, paper

under review (available at: http://conan.diei.unipg.it/pub/nsis-gossip.pdf).

[68] M. Freedman, K. Lakshminarayanan, and D. Mazieres. OASIS: Anycast for Any

Service. In Proceedings of the 3rd Symposium on Networked Systems Design and

Implementation, San Jose, CA, May 2006.

[69] X. Fu, H. Schulzrinne, H. Tschofenig, C. Dickmann, and D. Hogrefe. Overhead and

Performance Study of the General Internet Signaling Transport (GIST) Protocol.

IEEE/ACM Transactions on Networking, 17(1):158–171, 2009.

[70] P. Ganesan, K. Gummadi, and H. Garcia-Molina. Canon in G Major: Designing

DHTs with Hierarchical Structure. In ICDCS ’04: Proceedings of the 24th Inter-

national Conference on Distributed Computing Systems (ICDCS’04), pages 263–272,

Washington, DC, USA, 2004. IEEE Computer Society.

[71] L. Garces-Erice, E. W. Biersack, K. W. Ross, P. A. Felber, and G. Urvoy-Keller.

Hierarchical P2P Systems. In Proceedings of ACM/IFIP International Conference on

Parallel and Distributed Computing (Euro-Par), Klagenfurt, Austria, 2003.

[72] R. Geambasu, A. Levy, T. Kohno, A. Krishnamurthy, and H. M. Levy. Comet: An

active distributed key/value store. In Proc. of OSDI, 2010.

[73] L. Gong. Java 2 Platform Security Architecture. http://download.oracle.com/

javase/1.4.2/docs/guide/security/spec/security-spec.doc.html.

http://conan.diei.unipg.it/pub/nsis-gossip.pdf
http://download.oracle.com/javase/1.4.2/docs/guide/security/spec/security-spec.doc.html
http://download.oracle.com/javase/1.4.2/docs/guide/security/spec/security-spec.doc.html

BIBLIOGRAPHY 118

[74] V. Gurbani, V. Hilt, and H. Schulzrinne. SIP Overload Control. Internet-Draft draft-

ietf-soc-overload-control-01, 2011.

[75] J. M. Guzmán. Google Peering Policy. http://lacnic.net/documentos/lacnicxi/

presentaciones/Google-LACNIC-final-short.pdf, 2008.

[76] R. Hancock, G. Karagiannis, J. Loughney, and S. Van den Bosch. Next Steps in

Signaling (NSIS): Framework. RFC 4080, 2005.

[77] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet: A Scal-

able Overlay Network with Practical Locality Properties. In Proceedings of the 4th

USENIX Symposium on Internet Technologies and Systems (USITS ’03), Seattle,

WA, March 2003.

[78] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. PLAN: A Packet

Language for Active Networks. In Proceedings of the third ACM SIGPLAN interna-

tional conference on Functional programming, ICFP ’98, pages 86–93, New York, NY,

USA, 1998. ACM.

[79] V. Hilt, E. Noel, C. Shen, and A. Abdelal. Design Considerations for SIP Overload

Control. Internet-Draft draft-ietf-soc-overload-design-04, 2010.

[80] G. Hjalmtysson. The Pronto Platform: a Flexible Toolkit for Programming Networks

Using a Commodity Operating System. In OPENARCH, 2000.

[81] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and R. Braynard. Net-

working Named Content. In CoNeXT, 2009.

[82] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. The Peer Sampling

Service: Experimental Evaluation of Unstructured Gossip-Based Implementations. In

Middleware’04: Proceedings of the 5th ACM/IFIP/USENIX international conference

on middleware, pages 79–98, New York, NY, USA, 2004. Springer-Verlag New York,

Inc.

http://lacnic.net/documentos/lacnicxi/presentaciones/Google-LACNIC-final-short.pdf
http://lacnic.net/documentos/lacnicxi/presentaciones/Google-LACNIC-final-short.pdf

BIBLIOGRAPHY 119

[83] M. Jelasity, A. Montresor, and O. Babaoglu. The Bootstrapping Service. In ICDCSW

’06: Proceedings of the 26th IEEE International Conference Workshops on Distributed

Computing Systems, Washington, DC, USA, 2006. IEEE Computer Society.

[84] B. Jennings, S. van der Meer, S. Balasubramaniam, D. Botvich, M. ó Foghlú, W. Don-

nelly, and J. Strassner. Towards Autonomic Management of Communications Net-

works. Communications Magazine, IEEE, 45(10):112–121, 2007.

[85] D. Katz. IP Router Alert Option. RFC 2113, 1997.

[86] R. Keller, L. Ruf, A. Guindehi, and B. Plattner. PromethOS: A Dynamically Exten-

sible Router Architecture Supporting Explicit Routing. In IWAN, 2002.

[87] J. Kelly, W. Araujo, and K. Banerjee. Rapid Service Creation using the JUNOS SDK.

ACM SIGCOMM Computer Communication Review, 40(1):56–60, 2010.

[88] W. Kho, S. A. Baset, and H. Schulzrinne. Skype Relay Calls: Measurements and

Experiments. Computer Communications Workshops, 2008. INFOCOM. IEEE Con-

ference on, pages 1–6, April 2008.

[89] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click Modular

Router. ACM Transactions on Computer Systems, 18(3):263–297, 2000.

[90] C. Law and K.-Y. Siu. Distributed Construction of Random Expander Networks.

INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer

and Communications Societies. IEEE, 3:2133–2143, April 2003.

[91] J. W. Lee, R. Francescangeli, J. Janak, S. Srinivasan, S. Baset, H. Schulzrinne,

Z. Despotovic, and W. Kellerer. NetServ: Active Networking 2.0. In Communi-

cations Workshops (ICC), 2011 IEEE International Conference on, pages 1–6. IEEE,

2011.

[92] J. W. Lee, R. Francescangeli, W. Song, J. Janak, S. Srinivasan, M. Kester, S. A. Baset,

E. Liu, H. Schulzrinne, V. Hilt, Z. Despotovic, and W. Kellerer. NetServ Framework

Design and Implementation 1.0. Technical Report cucs-016-11, Columbia University,

May 2011.

BIBLIOGRAPHY 120

[93] J. W. Lee, H. Schulzrinne, W. Kellerer, and Z. Despotovic. z2z: Discovering Zeroconf

Services Beyond Local Link. In Globecom Workshops, 2007 IEEE, pages 1–7. IEEE,

2007.

[94] J. W. Lee, H. Schulzrinne, W. Kellerer, and Z. Despotovic. mDHT: Multicast-

augmented DHT Architecture for High Availability and Immunity to Churn. In Con-

sumer Communications and Networking Conference, 2009. CCNC 2009. 6th IEEE,

pages 1–5. IEEE, 2009.

[95] J. W. Lee, H. Schulzrinne, W. Kellerer, and Z. Despotovic. 0 to 10k in 20 seconds:

Bootstrapping Large-scale DHT networks. In Communications (ICC), 2011 IEEE

International Conference on, pages 1–6. IEEE, 2011.

[96] R. Mahy, P. Matthews, and J. Rosenberg. Traversal Using Relays around NAT

(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN). RFC

5766, 2010.

[97] B. Manning and P. Vixie. Operational Criteria for Root Name Servers. RFC 2010,

October 1996.

[98] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-Peer Information System

Based on the XOR Metric. In International workshop on Peer-To-Peer Systems

(IPTPS), pages 53–65, 2002.

[99] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner. OpenFlow: Enabling Innovation in Campus Networks.

ACM SIGCOMM Computer Communication Review, 38(2):69–74, 2008.

[100] A. Montresor, M. Jelasity, and O. Babaoglu. Chord on Demand. In P2P’05: Proceed-

ings of the Fifth IEEE International Conference on Peer-to-Peer Computing, pages

87–94, Washington, DC, USA, 2005. IEEE Computer Society.

[101] G. Pandurangan, P. Raghavan, and E. Upfal. Building Low-Diameter Peer-to-Peer

Networks. IEEE Journal on Selected Areas in Communications, 21(6):995–1002, Aug.

2003.

BIBLIOGRAPHY 121

[102] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir. Experiences Building Plan-

etLab. In Proceedings of the 7th symposium on Operating systems design and imple-

mentation, OSDI ’06, pages 351–366, Berkeley, CA, USA, 2006. USENIX Association.

[103] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. Address

Allocation for Private Internets. RFC 1918, Feb. 1996.

[104] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica,

and H. Yu. OpenDHT: A Public DHT Service and Its Uses, 2005.

[105] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal for Offer/Answer Protocols. Internet-Draft draft-

ietf-mmusic-ice-19, 2007.

[106] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261, 2002.

[107] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location and

Routing for Large-Scale Peer-to-Peer Systems. In IFIP/ACM International Confer-

ence on Distributed Systems Platforms (Middleware), pages 329–350, Nov. 2001.

[108] J. Salim, R. Olsson, and A. Kuznetsov. Beyond Softnet. In The 5th Annual Linux

Showcase and Conference, 2001.

[109] S. Schmid, J. Finney, A. Scott, and W. Shepherd. Component-based Active Network

Architecture. In ISCC, 2001.

[110] H. Schulzrinne and R. Hancock. GIST: General Internet Signalling Transport. RFC

5971, 2010.

[111] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, R. D. Rockwell, and C. Par-

tridge. Smart Packets: Applying Active Networks to Network Management. ACM

Trans. Comput. Syst., 18:67–88, February 2000.

[112] S. Srinivasan, J. W. Lee, E. Liu, M. Kester, H. Schulzrinne, V. Hilt, S. Seetharaman,

and A. Khan. Netserv: Dynamically Deploying In-network Services. In Proceedings

of the 2009 workshop on Re-architecting the internet, pages 37–42. ACM, 2009.

BIBLIOGRAPHY 122

[113] N. Steinleitner, H. Peters, and X. Fu. Implementation and Performance Study of a

New NAT/Firewall Signaling Protocol. In ICDCS Workshops, 2006.

[114] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A

Scalable Peer-to-peer Lookup Service for Internet Applications. In SIGCOMM ’01:

Proceedings of the 2001 conference on Applications, technologies, architectures, and

protocols for computer communications, pages 149–160, New York, NY, USA, 2001.

ACM.

[115] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek, F. Dabek, and

H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service for Internet Appli-

cations. IEEE Transactions on Networking, 11, February 2003.

[116] D. L. Tennenhouse and D. J. Wetherall. Towards an Active Network Architecture.

ACM SIGCOMM Computer Communication Review, 26(2):5–17, 1996.

[117] J. S. Turner, P. Crowley, J. DeHart, A. Freestone, B. Heller, F. Kuhns, S. Kumar,

J. Lockwood, J. Lu, M. Wilson, C. Wiseman, and D. Zar. Supercharging Planetlab: A

High Performance, Multi-Application, Overlay Network Platform. ACM SIGCOMM

Computer Communication Review, 37(4):85–96, 2007.

[118] V. Vishnumurthy and P. Francis. On Heterogeneous Overlay Construction and Ran-

dom Node Selection in Unstructured P2P Networks. INFOCOM 2006. The 25th IEEE

International Conference on Computer Communications, pages 1–12, April 2006.

[119] S. Voulgaris and M. V. Steen. An Epidemic Protocol for Managing Routing Tables

in Very Large Peer-to-Peer Networks. In Proceedings of the 14th IFIP/IEEE Inter-

national Workshop on Distributed Systems: Operations and Management, (DSOM

2003), pages 41–54. Springer, 2003.

[120] D. Wessels and M. Fomenkov. Wow, That’s a Lot of Packets. In Proceedings of Passive

and Active Measurement Workshop (PAM), April 2003.

[121] D. J. Wetherall, J. V. Guttag, and D. L. Tennenhouse. ANTS: A Toolkit for Building

and Dynamically Deploying Network Protocols. In IEEE OPENARCH 98, 1998.

BIBLIOGRAPHY 123

[122] D. J. Wetherall and D. L. Tennenhouse. The ACTIVE IP Option. In Proceedings of the

7th workshop on ACM SIGOPS European workshop: Systems support for worldwide

applications, EW 7, pages 33–40, New York, NY, USA, 1996. ACM.

[123] Y. Yemini and S. D. Silva. Towards Programmable Networks. In in IFIP/IEEE

International Workshop on Distributed Systems: Operations and Management, 1996.

124

Part V

Appendices

APPENDIX A. MAKING REAL-WORLD IMPACT: NETSERV ON GENI 125

Appendix A

Making Real-world Impact:

NetServ on GENI

GENI [12] is a federation of many existing network testbeds under a common management

framework. GENI is comprised of a diverse set of platform resources, which are shared

among many experimenters.

We demonstrated NetServ, using two of our sample applications, at the plenary session

of the 9th GENI Engineering Conference (GEC9).1 Figure A.1 shows the screenshots from

the ActiveCDN demo. The ActiveCDN module performed custom processing on cached

content, watermarking a video stream with local weather information.

1The 14-minute demo video is at http://vimeo.com/16474575.

Figure A.1: ActiveCDN demo.

http://vimeo.com/16474575

APPENDIX B. AUTONOMIC MANAGEMENT USING NETSERV 126

Appendix B

Autonomic Management Using

NetServ

This appendix describes how NetServ can be used to implement autonomic network man-

agement. We demonstrated our idea at the 36th IEEE Conference on Local Computer

Networks (LCN) [66]. The implementation was based on our earlier proposal [65].

B.1 Introduction

This demo proposal shows how the NetServ platform can be used for implementing auto-

nomic management architectures for the Future Internet. This translates to capabilities

of automatically deploying, configuring, and removing at runtime both Policy Decision

Point (PDP) and Policy Enforcement Point (PEP) modules on network nodes, in order

to provide network management with effective autonomic capabilities. In fact, the usage

of programmable nodes able to host any service, made up by combining inferential, deci-

sional, monitoring, and actuator modules, represents a powerful instrument to implement

autonomic network management functions.

We present a novel solution for deploying autonomic network and service management

architectures. We do not aim at introducing new management paradigms, but rather to

increase the effectiveness of the existing ones by resorting to the potential provided by the

NetServ project, which is a framework designed to deploy and execute networked services

APPENDIX B. AUTONOMIC MANAGEMENT USING NETSERV 127

Figure B.1: NetServ node internal architecture.

at runtime over programmable routers. The use of the NetServ capabilities in the manage-

ment planes represents a step forward the state of the art, since it increases the flexibility

of management solutions, their dynamic response to event requiring management actions,

decreases the relevant traffic, and decreases the response time. In order to show the ef-

fectiveness of the proposed solution, we show a case study which highlights how NetServ

allows deploying self-protecting network functions. In this demo we show how the NetServ-

based management architecture is able to counteract a DoS attack by selectively deploying

monitoring and actuator modules at runtime.

B.2 Autonomic Management Architecture

The key element of our management architecture is the NetServ Autonomic Management

Element (NAME). It is inspired by the FOCALE architecture shown in [84], which has been

mapped into the service deployment architecture shown in Figure B.1, more details can be

found in [65]. This decision follows from the consideration that the FOCALE architecture

already includes most of enabling mechanisms for autonomic network management and

its modularity allows integrating the unique features of NetServ that, we believe, may

introduce significant dynamics in network and service management. The NetServ additional

functions are included in this architecture by implementing it as a NetServ service, and by

also introducing the PEP (policy enforcement point) deployment module, which can deploy

management programs over the selected NetServ managed resources at runtime. These

APPENDIX B. AUTONOMIC MANAGEMENT USING NETSERV 128

Figure B.2: Network topology for the DoS scenario.

Figure B.3: Signaling flow in the GENI experiment.

programs are stored in the NetServ repository.

B.3 Demo Scenario

This section describes the autonomic management scenario we show at the LCN demo

session. The demo highlights the effectiveness of NAME in protecting a network resource

from a DoS attack. The attack shown in the demo is a example of a generic DoS attack,

but it is sufficiently structured to show the NetServ dynamic properties brought to the

management architecture.

Figure B.2 shows the network topology in this experiment, which is deployed on GENI [12].

The victim, an application server, is protected by a NAME instance. The attack is a classic

DoS flooding attack, performed by a number of hosts in different networks.

APPENDIX B. AUTONOMIC MANAGEMENT USING NETSERV 129

A lightweight NetServ service module, called Rate Monitor, is executed in the NAME

itself and evaluates the rate of incoming traffic and notifies the PDP module. Figure B.3

shows that, when the attack starts at time t1, the local Rate Monitor notifies the NAME

engine the value of the incoming rate above the alarm threshold. This information reveals

that the network has entered an unacceptable state. The set of actions deemed necessary

for leading the system to an acceptable state are:

• the retrieval of a Rate Limiter module from the NetServ repository and its deployment

on the local interface, in order to protect the victim against the overwhelming service

requests;

• the deployment of a number of Rate Monitor modules in the NetServ nodes all around

the NAME instance, by means of epidemic signalling or directory service, so as to

identify the incoming attack directions and deploy additional Rate limiter modules

on nodes where the observed value of the incoming service requests are above a given

threshold.

The objective of the second action is twofold. First, any attack direction can be identified

and the attack can be faced upstream. Second, in this way we relieve the network from the

traffic generated by the attackers (denial of network service).

In order to execute the second action, the NAME instance starts sending NetServ

PROBE messages towards all directions from itself up to three IP hops, so as to iden-

tify the NetServ nodes able to host and execute an instance of the Rate Monitor module, at

shown in Figure B.3. Then, by using the NetServ deployment signaling, the NAME engine

deploys a Rate Monitor module on the selected nodes, which immediately start reporting

incoming rate values.

Note that in this phase the application server is protected by the Rate Limiter instance

executed by the NAME itself. On the basis of reported values, which are the portion of

interest of the new system state, the Action Planner of the NAME identifies the node N1

shown in Figure B.3 as the best candidate to deploy a remote Rate Limiter module, since it

is the most distant node (in terms of IP hops) from the NAME with an incoming rate above

the alarm threshold. Thus, by using the NetServ signaling, the NAME can instantiate the

APPENDIX B. AUTONOMIC MANAGEMENT USING NETSERV 130

Rate Limiter in N1. The Rate Limiter module interacts with the NAME, which receives

reports of all deployed Rate Monitor modules, and changes the acceptable incoming rate

threshold dynamically, depending on the number and frequency of detected requests. In

this way, a further control loop is created so that each management action enforced by the

NAME is dynamically adapted to possible context and state changes.

At time t2, the attacker adds additional sources of DoS packets in other networks, thus

bypassing the deployed shield. Nevertheless, since the NAME instance has been executing

the monitor and rate limiter module since attack beginning, it can both protect the server

and argue that the previous remote counteracting action has been bypassed. If the previ-

ously deployed Rate Monitor modules are still active, some of them start reporting values of

the observed incoming rate beyond acceptable values. This context information allows the

NAME to identify the NetServ node N2 as the best candidate to deploy another remote in-

stance of the Rate Limiter module. If the lifetime of the previously deployed Rate Monitor

modules has expired, they are redeployed.

Finally, the attacker starts a further attack session from another network at time t3.

The self-protecting procedure is repeated again, thus deploying a further instance of the

Rate Limiter on N3 that decreases the service request rate once again to a value as close

as possible to the target value. When the attack ends, all the monitor and rate limiter

instances are no longer refreshed. Hence, they are automatically removed, without any

additional signaling.

In order to actually estimate the end of attack condition at the NAME, the remote

monitor modules track both forwarded and dropped service requests, and report back the

relevant statistics.

	1 Introduction
	1.1 Main Contribution: Meeting the Challenges for In-Network Services Framework
	1.2 Overview of the Thesis

	I Prelude: Improving Service Discovery in Local and Global Networks
	2 Creating Global Networks: Bootstrapping Large-scale DHT networks
	2.1 Introduction
	2.2 Related work
	2.2.1 DHT construction proposals
	2.2.2 Common assumptions

	2.3 System model
	2.4 Simulation results
	2.4.1 Simulation setup
	2.4.2 Convergence time
	2.4.3 Aggressive join

	2.5 Conclusion

	3 Enhancing Global Networks Using Local Networks: Multicast-augmented DHT
	3.1 Introduction
	3.2 Background
	3.2.1 Evolution of P2P Architecture
	3.2.2 Zeroconf: Local Service Discovery Using Multicast
	3.2.3 Multicast-based Superpeer Architecture

	3.3 mDHT Architecture
	3.3.1 Overview
	3.3.2 Routing Table
	3.3.3 Host Set Maintenance
	3.3.4 Host Join and Leave
	3.3.5 Data Replication in Subnet

	3.4 Discussion
	3.4.1 Benefits of mDHT
	3.4.1.1 Immunity to Churn
	3.4.1.2 High Availability
	3.4.1.3 Easy Bootstrapping
	3.4.1.4 Parallel Queries and Load Balancing on Single Node
	3.4.1.5 Awareness of Physical Proximity

	3.4.2 Analysis of Assumption

	3.5 Conclusion

	4 Extending Local Services to Global Networks: Zeroconf-to-Zeroconf Bridging
	4.1 Introduction
	4.2 Background and Approach
	4.2.1 Zeroconf, mDNS, DNS-SD, and Bonjour
	4.2.2 OpenDHT
	4.2.3 Architecture Overview of z2z

	4.3 Design and Implementation
	4.3.1 Usage Examples
	4.3.2 Message Flow
	4.3.2.1 Exporting
	4.3.2.2 Importing

	4.3.3 Implementation
	4.3.3.1 C++ Prototype
	4.3.3.2 Open-source Java Implementation
	4.3.3.3 Implementation Issues

	4.4 Related Work
	4.5 Discussion

	II Enabling In-Network Services
	5 NetServ: Activating the Network Edge
	5.1 Motivation
	5.2 Design Goals
	5.3 Node Architecture
	5.4 End-to-end Service Scenario

	6 NetServ Node Implementation
	6.1 NetServ on Linux Netfilter Transport
	6.1.1 Signaling
	6.1.2 NetServ Controller
	6.1.3 Forwarding Plane
	6.1.4 Service Container and Modules

	6.2 Security
	6.2.1 Resource Control and Isolation
	6.2.2 Authentication and Authorization

	6.3 Performance Evaluation of NetServ on Linux Netfilter
	6.3.1 Setup
	6.3.2 Results

	7 Economic Model: NetServ Applications
	7.1 ActiveCDN
	7.2 KeepAlive Responder
	7.3 Media Relay
	7.4 Overload Control
	7.5 Discussion on Signaling Mode
	7.5.1 Reverse Data Path
	7.5.2 Off-path Signaling

	8 Scaling NetServ using OpenFlow
	8.1 Introduction
	8.2 Overview of OpenFlow
	8.3 NetServ on OpenFlow

	9 Active Networking and NetServ
	9.1 Introduction
	9.2 Addressing Three Challenges of Active Networks
	9.2.1 Hybrid Approach: User Code, but Not in Data Packets
	9.2.2 Striking the Right Balance: Security and Performance
	9.2.3 Economic Alliance between Content Providers and ISPs

	9.3 Earlier Active Network Systems and Other Related Work
	9.3.1 Active Networks
	9.3.2 Programmable Routers
	9.3.3 GENI
	9.3.4 Content Caching

	III Conclusions
	10 Conclusions

	IV Bibliography
	Bibliography

	V Appendices
	A Making Real-world Impact: NetServ on GENI
	B Autonomic Management Using NetServ
	B.1 Introduction
	B.2 Autonomic Management Architecture
	B.3 Demo Scenario

