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Abstract

A query to a web search engine usually consists of a list of keywords, to which the search engine responds

with the best or \top" k pages for the query. This top-k query model is prevalent over multimedia collections

in general, but also over plain relational data for certain applications. For example, consider a relation with

information on available restaurants, including their location, price range for one diner, and overall food

rating. A user who queries such a relation might simply specify the user's location and target price range, and

expect in return the best 10 restaurants in terms of some combination of proximity to the user, closeness

of match to the target price range, and overall food rating. Processing such top-k queries eÆciently is

challenging for a number of reasons. One critical such reason is that, in many web applications, the relation

attributes might not be available other than through external web-accessible form interfaces, which we will

have to query repeatedly for a potentially large set of candidate objects. In this paper, we study how to

process top-k queries eÆciently in this setting, where the attributes for which users specify target values

might be handled by external, autonomous sources with a variety of access interfaces. We present several

new algorithms for processing such queries, and adapt existing techniques to our scenario as well. We also

study the execution time of our algorithms analytically and present experimental results using both synthetic

and real web-accessible data. Index Terms: Top-k query processing, query optimization, web databases.

1 Introduction

A query to a web search engine usually consists of a list of keywords, to which the search engine responds with

the best or \top" k pages for the query. This top-k query model is prevalent over multimedia collections in

general, but also over plain relational data for certain applications where users do not expect exact answers

to their queries, but instead a rank of the objects that best match a speci�cation of target attribute values.

Additionally, some applications require accessing data that resides at or is provided by remote, autonomous

sources that exhibit a variety of access interfaces, which further complicates query processing.
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Top-k queries arise naturally in applications where users have relatively exible preferences or speci�cations

for certain attributes, and can tolerate (or even expect) fuzzy matches for their queries. A top-k query in this

context is then simply an assignment of target values to the attributes of a relation. To answer a top-k query,

a database system identi�es the objects that best match the user speci�cation, using a given scoring function.

Example 1: Consider a relation with information about restaurants in the New York City area. Each tuple

(or object) in this relation has a number of attributes, including Address, Rating, and Price, which indicate,

respectively, the restaurant's location, the overall food rating for the restaurant represented by a grade between

1 and 30, and the average price for a diner. A user who lives at 2590 Broadway and is interested in spending

around $25 for a top-quality restaurant might then ask a top-10 query fAddress=\2590 Broadway", Price=$25,

Rating=30g. The result to this query is a list of the 10 restaurants that match the user's speci�cation the closest,

for some de�nition of proximity.

Processing top-k queries eÆciently is challenging for a number of reasons. One critical such reason is that, in

many web applications, the relation attributes might not be available other than through external web-accessible

form interfaces. For instance, in our example above the Rating attribute might be available through the Zagat-

Review web site 1, which, given an individual restaurant name, returns its food rating as a number between

1 and 30 (random access). This site might also return a list of all restaurants ordered by their food rating

(sorted access). Similarly, the Price attribute might be available through the New York Times's NYT-Review

web site 2. Finally, the scoring associated with the Address attribute might be handled by the MapQuest web

site 3, which returns the distance (in miles) between the restaurant and the user addresses.

To process a top-k query over web-accessible databases, we then have to interact with sources that export

di�erent interfaces and access capabilities. In our restaurant example, a possible query processing strategy is

to start with the Zagat-Review source, which supports sorted access, to identify a set of candidate restaurants

to explore further. This source returns a rank of restaurants in decreasing order of food rating. To compute

the �nal score for each restaurant and identify the top-10 matches for our query, we then obtain the proximity

between each restaurant and the user-speci�ed address by querying MapQuest, and check the average dinner

price for each restaurant individually at the NYT-Review source. Hence, we interact with three autonomous

sources and repeatedly query them for a potentially large set of candidate restaurants.

Fagin et al. [10] have presented query processing algorithms for top-k queries for the case where all intervening

sources support sorted access (plus perhaps random access as well). These algorithms are not designed for

sources that only support random access (e.g., the MapQuest site), which abound on the web 4. In this paper,

1http://www.zagat.com
2http://www.nytoday.com
3http://www.mapquest.com
4Recently, in an expanded version of their paper, Fagin et al. introduced a variation of their algorithm for random-access sources.

See Section 2.
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we present novel processing strategies for top-k queries over sources that support just random access, or both

random and sorted access. We also develop improvements of Fagin et al.'s algorithms, and compare these

techniques experimentally using synthetic and real web-accessible data sets.

The rest of the paper is structured as follows. Section 2 de�nes our query and data models, notation

and terminology that we use in Section 3 to present our new techniques and our adaptations of Fagin et al.'s

algorithms. In Section 4 we introduce the data structures that we use to speed up the local processing of our

techniques, and in Section 5 we report a time and space complexity analysis of the algorithms. We evaluate

the di�erent strategies experimentally in Section 7 using the data sets and metrics in Section 6. In Section 8

we discuss generalizations of our data model. Finally, in Section 9 we review relevant work.

2 Data and Query Models

In traditional relational systems, query results consist of an unordered set of tuples. In contrast, the answer to

a top-k query is an ordered set of tuples, where the ordering is based on how close each tuple matches the given

query. Furthermore, the answer to a top-k query does not include all tuples that \match" the query, but rather

only the best k such tuples. In this section we de�ne our data and query models in detail.

Consider a relation R with attributes A0; A1; : : : ; An, plus perhaps some other attributes not mentioned in

our queries. A top-k query over relation R simply speci�es target values for the attributes Ai. Therefore, a

top-k query is an assignment of values fA0 = q0; A1 = q1; : : : ; An = qng to the attributes of interest. Note that

some attributes might always have the same \default" target value in every query. For example, it is reasonable

to assume that the Rating attribute in Example 1 above might always have an associated query value of 30. (It

is unclear why a user would insist on a lesser-quality restaurant, given the target price speci�cation.) In such

cases, we simply omit these attributes from the query, and assume default values for them.

Consider q = fA0 = q0; A1 = q1; : : : ; An = qng, a top-k query over a relation R. The score that each tuple

(or object) t in R receives for q is a function of t's score for each individual attribute Ai with target value qi.

Speci�cally, each attribute Ai has an associated scoring function ScoreAi
that assigns a proximity score to qi

and ti, where ti denotes the value of object t for attribute Ai. To combine these individual attribute scores into

a �nal score for each object, each attribute Ai has an associated weight wi indicating its relative importance in

the query. Then, the �nal score for object t is de�ned as a weighted sum of the individual scores 5:

Score(q; t) = ScoreComb(s0; s1; : : : ; sn) =

nX
i=0

wi � si

where si = ScoreAi
(qi; ti). The result of a top-k query is the ranked list of the k objects with highest Score

value, where we break ties arbitrarily.

5Our model and associated algorithms can be adapted to handle other scoring functions (e.g., min), which we believe are less

meaningful than weighted sums for the applications that we consider.
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Example 1: (cont.) We can de�ne the scoring function for the Address attribute of a query and an object as

the inverse of the distance (say, in miles) between the two addresses. Similarly, the scoring function for the Price

attribute might be a function of the di�erence between the target price and the object's price, perhaps \penalizing"

restaurants that exceed the target price more than restaurants that are below it. The scoring function for the

Rating attribute might simply be the object's value for this attribute. If price and quality are more important

to a given user than the location of the restaurant, then the query might assign, say, a 0:2 weight to attribute

Address, and a 0:4 weight to attributes Price and Rating.

Recent techniques to evaluate top-k queries over traditional relational DBMSs [1, 8] assume that all attributes

of every object are readily available to the query processor. However, in many applications some attributes

might not be available \locally," but rather will have to be obtained from an external web-accessible source

instead. For instance, the Price attribute in our example is provided by the NYT-Review web site and can only

be accessed by querying this site's web interface 6.

This paper focuses on the eÆcient evaluation of top-k queries over a (distributed) \relation" whose attributes

are handled and provided by autonomous sources accessible over the web with a variety of interfaces. Speci�cally,

we distinguish between three types of sources based on their access interface:

De�nition 1: [Source Types] Consider an attribute Ai with target value qi in a top-k query q. Assume

further that Ai is handled by a source S. We say that S is an S-Source if, given qi, we can obtain from S a

list of objects sorted in descending order of ScoreAi
by (repeated) invocation of a getNextS(qi) probe interface.

Alternatively, assume that Ai is handled by a source R that only returns scoring information when prompted

about individual objects. In this case, we say that R is an R-Source. R provides random access on Ai through

a getScoreR(qi; t) probe interface, where t is a set of attribute values that identify an object in question. (As a

small variation, sometimes an R-Source will return the actual attribute Ai value for an object, rather than its

associated score.) Finally, we say that a source that provides both sorted and random access is an SR-Source.

Example 1: (cont.) In our running example, attribute Rating is associated with the Zagat-Review web site.

This site provides both a list of restaurants sorted by their rating (sorted access), and the rating of a speci�c

restaurant given its name (random access). Hence, Zagat-Review is an SR-Source. In contrast, Address is

handled by the MapQuest web site, which returns the distance between the restaurant address and the user-

speci�ed address. Hence, MapQuest is an R-Source.

To de�ne query processing strategies for top-k queries involving the three source types above, we need to

consider the cost that accessing such sources entails:

6Of course, in some cases we might be able to download all this remote information and cache it locally with the query processor.

However, this will not be possible for legal or technical reasons for some other sources, or might lead to highly inaccurate or outdated

information.

4



De�nition 2: [Access Cost] Consider a source R that provides a random-access interface, and a top-k query.

We refer to the average time that it takes R to return the score for a given object as tR(R). (tR stands

for \random-access time.") Similarly, consider a source S that provides a sorted access interface. We refer to

the average time that it takes S to return the top object for the query as tS(S). (tS stands for \sorted-access

time.") We make the simplifying assumption that successive invocations of the getNext interface also take time

tS(S) on average.

Fagin et al. [10] presented \instance optimal" query processing algorithms over sources that are either of

type SR-Source (TA algorithm) or of type S-Source (NRA algorithm). In an expanded version of [10], Fagin

et al. introduced the TAz algorithm, a variation of TA that handles both SR-Sources and R-Sources. These

algorithms completely \process" one object before moving to another object. As we will see, by interleaving

random-access probes on di�erent objects, the query processing time can be dramatically reduced. In the

remainder of this paper, we will present eÆcient top-k query processing techniques that take advantage of the

interleaving of probes on objects, as well as adaptations of existing algorithms.

3 Evaluating Top-k Queries

In this section we present strategies for evaluating top-k queries, as de�ned in Section 2. Speci�cally, in

Section 3.1 we present a naive but expensive approach to evaluate top-k queries. Then, in Section 3.2 we

introduce our novel strategies. Finally, in Section 3.3 we adapt existing techniques designed for similar problems

to our framework.

We make a number of simplifying assumptions in our presentation. Speci�cally, we assume that the scoring

function for all attributes return scores between 0 and 1, with 1 denoting a perfect match. Also, we assume that

exactly one S-Source, denoted S and associated with attribute A0, and multiple R-Sources, denoted R1; : : : ; Rn

and associated with attributes A1; : : : ; An, are available. (The S-Source S could in fact be of type SR-Source.

In such a case, we will ignore its random-access capabilities in our discussion.) In addition, we assume that only

one source is accessed at a time, so all probes are sequential during query processing. We discuss relaxations

of this source model and present algorithms over one or more SR-Sources and arbitrarily many R-Sources in

Section 8.

Following Fagin et al. [9, 10], we do not allow our algorithms to rely on \wild guesses": thus a random

access cannot zoom in on a previously unseen object, i.e., on an object that has not been previously retrieved

under sorted access from a source. Therefore, an object will have to be retrieved from the S-Source before

being probed on any R-Source. Since we have exactly one S-Source S available, objects in S are then the only

candidates to appear in the answer to a top-k query. We refer to this set of candidate objects as Objects(S).

Besides, we assume that all R-Sources R1; : : : ; Rn \know about" all objects in Objects(S). In other words, given
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a query q and an object t 2 Objects(S), we can probe Ri and obtain the score ScoreAi
(qi; ti) corresponding to q

and t for attribute Ai, for all i = 1; : : : ; n. Of course, this is a simplifying assumption that is likely not to hold

in practice, where each R-Source might be autonomous and not coordinated in any way with the other sources.

For instance, in our running example the NYT-Review site might not have reviewed a speci�c restaurant, and

hence it will not be able to return a score for the Price attribute for such a restaurant. In this case, we use a

default value for ScoreAi
(qi; ti).

3.1 A Naive Strategy

A simple technique to evaluate a top-k query q consists of retrieving all partial scores for each object in

Objects(S), calculating the corresponding combined scores, and �nally returning k objects with the highest

scores. This simple procedure returns a correct answer to the given top-k query. However, we need to retrieve

all scores for each object in Objects(S). This can be unnecessarily expensive, especially since many scores are

not needed to produce the �nal answer for the query, as we will see. Using De�nition 2, this strategy takes time

jObjects(S)j � (tS(S) +
Pn

i=1 tR(Ri)).

3.2 Our Proposed Strategies

In this section we present novel strategies to evaluate top-k queries over one S-Source and multiple R-Sources.

Our techniques lead to eÆcient executions by explicitly modeling the time of random probes to R-Sources.

Unlike the naive strategy of Section 3.1, our algorithms choose both the best object and the best attribute on

which to probe next at each step. In fact, we will in general not probe all attributes for each object under

consideration, but only those needed to identify a top-k answer for a query.

Consider a top-k query q and an intermediate step in some execution of the query. Suppose that an

object t has been retrieved from S-Source S and that we have already probed some subset of R-Sources R0 �

fR1; : : : ; Rng for this object. Let si = ScoreAi
(qi; ti) if Ri 2 R0. (Otherwise, si is unde�ned.) Then, an upper

bound for the score of object t, denoted U(t), is the maximum possible score that object t can get, consistent

with the information from the probes that we have already performed. U(t) is then the score that t would get

for q if t had the maximum score of 1 for every attribute in the query that has not yet been processed for t:

U(t) = ScoreComb(s0; ŝ1; : : : ; ŝn), where ŝi = si if Ri 2 R0, and ŝi = 1 otherwise. If object t has not been

retrieved from S yet, then we de�ne U(t) = ScoreComb(s`; 1; : : : ; 1), where s` is the ScoreA0
score for the last

object retrieved from S, or 1 if no object has been retrieved yet. (t's score for A0 cannot be larger than s`,

since S-Source S returns objects in descending order of ScoreA0
.)

Similarly, a lower bound for the score of an object t already retrieved from S, denoted L(t), is the minimum

possible score that object t can get for q: L(t) = ScoreComb(s0; ŝ1; : : : ; ŝn), where ŝi = si if Ri 2 R0, and ŝi = 0

otherwise. If object t has not been retrieved from S yet, then we de�ne L(t) = 0.
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Finally, the expected score for an object t already retrieved from S, denoted E(t), is obtained by assuming

that the score for each attribute that has not yet been probed is some expected partial score e(Ai): E(t) =

ScoreComb(s0; ŝ1; : : : ; ŝn), where ŝi = si if Ri 2 R0, and ŝi = e(Ai) otherwise. If object t has not been retrieved

from S yet, then we de�ne E(t) = ScoreComb(e(A0); e(A1); : : : ; e(An)). In the absence of additional information

we set the expected partial score e(Ai) to 0:5 for i = 1; :::; n, while e(A0) =
s`
2 , where s` is the ScoreA0

score for

the last object retrieved from S, or 1 if no object has been retrieved yet 7. (ScoreA0
(q0; t0) can range between

0 and s`.)

In Section 3.2.1 we de�ne what constitutes an optimal query processing strategy in our framework. In

Section 3.2.2 we describe one new strategy, Upper, which can be seen as mimicking the optimal solution when

no complete information is available.

3.2.1 The Optimal Strategy

Given a top-k query q, the Optimal strategy for evaluating q is the most eÆcient sequence of getNext and

getScore calls that produce top-k objects for the query along with their scores. Furthermore, such an optimal

strategy must also provide enough evidence (in the form of at least partial scores for additional objects) to

demonstrate that the returned objects are indeed a correct answer for the top-k query. In this section we show

one such optimal strategy, built assuming complete knowledge of the object scores. Of course, this is not a

realistic query processing technique, but it provides a useful lower bound on the time of any processing strategy

without \wild guesses." Additionally, the optimal strategy provides useful insight that we exploit to de�ne an

eÆcient algorithm in the next section.

As a �rst step towards our optimal strategy, consider the following property of any top-k query processing

algorithm:

Property 1: Consider a top-k query q and suppose that, at some point in time, we have retrieved a set of

objects T from S-Source S and probed some of the R-Sources for these objects. Assume further that the score

upper bound U(t) for an object t 2 Objects(S) is strictly lower than the score lower bound L(ti) for k di�erent

objects t1; : : : ; tk 2 T . Then t is guaranteed not to be one of the top-k objects for q.

Using this property, we can view an optimal processing strategy as (a) computing the �nal scores for k top

objects for a given query, which are needed in the answer, while (b) probing the fewest and least expensive

attributes on the remaining objects so that their score upper bound for the query is no higher than the scores of

the top-k objects. (We can safely discard objects with upper bound matching the lowest top-k object score since

we break ties arbitrarily.) This way, an optimal strategy identi�es and scores the top objects, while providing

enough evidence that the rest of the objects have been safely discarded.

7Alternative techniques for estimating expected partial scores include sampling and exploiting attribute-score correlation if

known.
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Algorithm Optimal (Input: top-k query q)

1. Choose a set of k objects, Answerk, such that Answerk is a solution to the top-k query q 8. (Optimal
assumes complete knowledge of all object scores.)

2. Let scorek = mint2AnswerkfScore(q; t)g.

3. Repeat

(a) Get the best unretrieved object t for Attribute A0 from S-Source S: (t; s0) getNextS(q0).

(b) Set Uunseen = U(t) (no unretrieved object from S can have a score larger than Uunseen).

(c) If object t is one of the Answerk objects, probe all R-Sources to compute Score(q; t).

Otherwise, probe a subset R0 � fR1; : : : ; Rng for t such that:

� After probing every Ri 2 R0, it holds that U(t) � scorek .

� The time
P

Ri2R0 tR(Ri) is minimal among the subsets of fR1; : : : ; Rng with the property above.

Until Uunseen � scorek and we have retrieved all objects in Answerk.

The Optimal algorithm is only of theoretical interest and cannot be implemented, since it requires complete

knowledge about the scores of the objects, which is precisely what we are trying to obtain to evaluate top-k

queries.

3.2.2 The Upper Strategy

We now present a novel top-k query processing strategy that we call Upper. This strategy mimics the Optimal

algorithm by choosing probes that would have the best chance to be in the Optimal solution. However, unlike

Optimal, Upper does not assume any \magic" a-priori information on object scores. Instead, at each step Upper

selects an object-source pair to probe next based on expected object scores. This chosen pair is the one that

would hopefully have been in the optimal set of probes.

We can observe an interesting property:

Property 2: Consider a top-k query q and suppose that at some point in time we have retrieved some objects

from S-Source S and probed some of the R-Sources for these objects. Suppose that an object t 2 Objects(S) has

a score upper bound U(t) strictly higher than that of every other object (i.e., U(t) > U(t0) 8t0 6= t 2 Objects(S)).

Then, at least one probe will have to be done on t before the answer to q is reached:

� If t is one actual top-k object, then we need to probe all of its attributes to return its �nal score for q.

� If t is not one of the actual top-k objects, t requires further probes to decrease its score upper bound U(t)

since U(t) is higher than the score of each top-k object.

This property is illustrated in Figure 1 for a top-3 query. In this �gure, the possible range of scores for each

object is represented by a segment, and objects are sorted by their expected score. From Property 1, objects

8In the presence of score ties, to ensure optimality, this step picks the objects that would be the most expensive to discard in

Step 3(c).
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whose upper bound is lower than the lower bound of k other objects cannot be in the �nal answer. (Those

objects are marked with a dashed segment in Figure 1.) From Property 2, the object with the highest score

upper bound, noted U in the �gure, will have to be probed before a solution is reached: either U is one of the

top-3 objects for the query and its �nal score needs to be returned, or its score upper bound will have to be

lowered through further probes so that we can safely discard the object.

We exploit Properties 1 and 2 and the general structure of the Optimal algorithm to de�ne our Upper

algorithm:

Algorithm Upper (Input: top-k query q)

1. Initialize Uunseen = 1, Candidates = ;, and returned = 0.

2. While (returned < k)

(a) If Candidates 6= ;, pick tH 2 Candidates such that U(tH) = maxt2Candidates U(t).

Else tH is unde�ned.

(b) If tH is unde�ned or U(tH) < Uunseen (unseen objects might have larger scores than all candidates):

� Get the best unretrieved object t for attribute A0 from S: (t; s0) getNextS(q0).

� Update Uunseen = U(t) and insert t into Candidates.

Else If tH is completely probed (tH is one of the top-k objects):

� Return tH with its score; remove tH from Candidates.

� returned = returned+ 1.

Else:

� Ri SelectBestSource(tH , Candidates).

� Probe source Ri on object tH : si  getScoreRi
(qi; tH).

score
current top-k

x

x
x

x

x
x

x
x

x

x
x

x : expected value

U

threshold

: objects that cannot be
in final answer

Figure 1: Snapshot of the execution of the Upper strategy.

At any point in time, if the �nal score of the object with the highest upper bound is known, then this is the

best object in the current set. No other object can have a higher score and we can safely return this object as

one of the top-k objects for the query. As a corollary, Upper can return results as they are produced, rather

than having to wait for all top-k results to be known before producing the �nal answer.
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We now discuss how we select the best source to probe for an object t (function SelectBestSource in the

Upper algorithm). As in Optimal, we concentrate on (a) computing the �nal score of the top-k objects, and

(b) for all other objects, decreasing their upper bound to not exceed the scores of the top-k objects. However,

unlike Optimal, Upper does not know the actual object scores a priori and must rely on expected scores to make

its choices. In particular, we will estimate the value scorek used in the Optimal algorithm (i.e., the k-th top

score) using score0k, the k-th largest expected score in the set of candidates. Below, we introduce three versions

of Upper that di�er in their underlying variant of the SelectBestSource function.

Upper-Greedy. A simple and eÆcient implementation of SelectBestSource selects the next source to probe

for an object t as the R-Source with the highest expected \impact" in the smallest amount of time. Speci�cally,

the expected decrease of U(t) after probing source Ri is given by Æi = wi � (1� e(Ai)), where wi is the weight

of attribute Ai in the query (Section 2), and e(Ai) is the expected score for source Ri. The ratio Æi=tR(Ri) is

then a good indicator of the \eÆciency" of source Ri: a large value of this ratio indicates that we can reduce

the value of U(t) by a large amount (Æi) relative to the time that the associated probe insumes (tR(Ri)).

Sometimes we do not need large reductions Æi to discard a borderline candidate object; in this case, a fast

source Rj with a suÆciently large Æj value might be preferred to a slower source Ri with a larger Æi value. This

observation motivates the following de�nition of the \goodness" Rank(Ri) of a source Ri for a candidate object

t. Before introducing this de�nition, we consider two scenarios:

� Case 1: E(t) < score0k. In this case, t is not expected to be one of the top-k objects. Furthermore,

� = U(t) � score0k is the amount by which we need to decrease U(t) to \prove" that t is not one of

the top-k answers. (As discussed above, score0k is the kth largest expected score in the set of candidate

objects.) In other words, it does not really matter how large the decrease of U(t) is beyond � when

choosing the best probe for t. However, using the previous ratio, we might choose some source Ri with a

very large value of Æi, Æi � �, but not a particularly fast response time tR(Ri). In such a case, a better

choice would be some faster source Rj with tR(Rj) < tR(Ri) that is expected to decrease U(t) by at least

� as well, even if Æj=tR(Rj) < Æi=tR(Ri).

� Case 2: E(t) � score0k. In this case, t is expected to be one of the top-k objects. Hence, t needs to be

completely probed and then all probes are equally good for t.

We now de�ne the Upper-Greedy variation of our Upper algorithm. Upper-Greedy considers all R-Source

sources not yet probed for the current object t, and chooses a source with the highest value of rank:

Rank(Ri) =
Minf�; Æig

tR(Ri)

We extensively tested this modi�ed rank metric and found that it always resulted in faster executions than the

simpler Æi=tR(si) ratio did.
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Upper-Filter. Although the heuristic used in the Upper-Greedy technique to pick sources for probing is

eÆcient, it sometimes results in provably sub-optimal choices, as illustrated in the following example.

Example 2: Consider an object t and two R-Sources R1 and R2, with access times tR(R1)=1 and tR(R2)=10,

and query weights w1=0:1 and w2=0:9. Assume that score0k=0:5 and U(t) = 0:9, so the amount by which we

need to decrease t to prove it is not one of the top answers is � = 0:4. If we assume that e(A1)=e(A2)=0:5,

Upper-Greedy would choose source R1 (with rank
Minf0:4;0:05g

1 = 0:05) over source R2 (with rank
Minf0:4;0:45g

10 =

0:045). However, we know that we will need to eventually lower U(t) below score0k=0:5, and that R1 can only

decrease U(t) by 0.1 to 0.8, since w1=0:1. Therefore, in subsequent iterations, source R2 would need to be

probed anyway. In contrast, if we start with source R2, we might decrease U(t) below score0k = 0:5 thus avoiding

a probe to source R1 for t.

The previous example shows that, for a particular object t, a source Ri can be \redundant" independently

of its rankMinf�; Æig=tR(Ri). Therefore, such a source should not be probed for t before the \non-redundant"

sources. The set of redundant sources is not static, but rather depends on the execution state of the algorithm.

(In the example above, if score0k = 0:89, there are no redundant sources.) We now re�ne Upper-Greedy by �rst

identifying the subset of non-redundant available sources: if an object t is expected to be in the �nal answer

(i.e., E(t) � score0k), we need to compute its �nal score, so all available sources for t are non-redundant and

are kept as candidates, just as in Upper-Greedy . Otherwise, we identify redundant sources in the following way.

Let � = U(t)� score0k as above and let R = fR1; : : : ; Rng be the set of available sources. We say that source

Ri is redundant for object t at a given step of the probing process if:

1. wi < � (i.e., source Ri by itself cannot decrease the value of U(t) below score0k), and

2. 8Y � R�fRig : If wi +
P

j:Rj2Y
wj � � then

P
j:Rj2Y

wj � � (i.e., for every possible choice of sources

fRig [ Y that can decrease U(t) below score0k , Y by itself can also do it).

By negating the predicate above, replacing the implication with the equivalent disjunction, and manipulating

the resulting predicate, we obtain the following test to identify non-redundant sources: Ri is non-redundant if

and only if (wi � �) _ (9Y � R � fRig : � � wi �
P

j:Rj2Y
wj < �). It is not diÆcult to prove that for

any possible assignment of values to wi and �, there is always at least one available non-redundant source.

Therefore, after identifying the subset of non-redundant sources, Upper-Filter returns the non-redundant source

with the maximum rank Minf�;Æig
tR(Ri)

, just as Upper-Greedy does.

Upper-Subset. Finally, we report the alternative formulation for SelectBestSource that we presented in [2] 9.

Consider an object t. If t is expected to be in the �nal answer (i.e., E(t) � score0k), we need to get its �nal

9The experimental results show that Upper-Subset is slightly worse than Upper-Filter . However, Upper-Subset is an interesting

strategy in that it can be more easily adapted to handle a query execution scenario in which several probes can proceed in parallel.

11



score, so we consider all available sources just as Upper-Greedy does. Otherwise, we identify the fastest subset

of sources not yet probed for t that is expected to decrease U(t) to not exceed the value of score0k. (Since

E(t) < score0k , we are guaranteed to �nd at least one such set of attributes.) In other words, we identify

R0 � fR1; : : : ; Rng so that:

1. U(t) � score0k if each source Ri 2 R0 were to return the expected score for t, and

2. The access time
P

Ri2R0 tR(Ri) is minimal among the subsets of fR1; : : : ; Rng with the above property.

As with Upper-Filter , after we identify the subset R0 above, we return the source Ri 2 R0 with the maximum

rank Minf�;Æig
tR(Ri)

.

3.3 Existing Approaches

In Section 3.3.1 we adapt Fagin et al.'s TA algorithm [10] so that it also works over R-Sources 10, and in

Section 3.3.2 we extend the resulting algorithm so that it also incorporates ideas from the literature on processing

selection queries involving expensive predicates. As an important di�erence with our strategies of the previous

section, the techniques below choose an object and probe all needed sources before moving to the next object.

This \coarser" strategy can degrade the overall eÆciency of the techniques, as shown in Section 7.

3.3.1 Fagin et al.'s Algorithms

Fagin et al. [10] presented the TA algorithm for processing top-k queries over SR-Sources:

Algorithm TA (Input: top-k query q)

1. Do sorted access in parallel to each source. As each object t is seen under sorted access in one source, do

random accesses to the remaining sources and apply the Score function to �nd the �nal score of object t.

If Score(q; t) is one of the top-k scores seen so far, keep object t along with its score.

2. De�ne a threshold value as ScoreComb(s0; s1; : : : ; sn), where si is the last score seen in the i-th source.

The threshold represents the highest possible score of any object that has not been seen so far in any

source.

3. If the scores of the current top-k objects seen so far are greater than or equal to the threshold, return the

top-k objects and stop. Otherwise, return to step 1.

Although this algorithm is not designed for R-Sources, we can adapt it in the following way. In step 1, we

access the only S-Source S using sorted access. In step 2, we de�ne the threshold value as U(t), where t is

10Recently, Fagin et al. expanded their paper [10] to include a variation of TA, TAz, that works over any number of R-Sources

and SR-Sources. Our �rst adaptation of TA (i.e., TA-Adapt) is identical to TAz for the one-SR-Source case.
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the last object retrieved from S under sorted access. (The maximum possible score for any R-Source is always

1.) For each object retrieved from S, we probe all R-Sources to get its �nal score. For a model with a single

S-Source S, the modi�ed algorithm retrieves the objects in Objects(S) in order, one by one, and determines

whether each object is in the �nal answer by probing the remaining R-Sources. The complete procedure, called

TA-Adapt, is described next.

Algorithm TA-Adapt (Input: top-k query q)

1. Repeat

(a) Get the best unretrieved object t for attribute A0 from S-Source S: (t; s0) getNextS(q0).

(b) Update threshold T = U(t).

(c) For each R-Source Ri, retrieve score si for attribute Ai and object t via a random probe to Ri:
si  getScoreRi

(qi; t).

(d) Calculate t's �nal score for q: score = ScoreComb(s0; s1; : : : ; sn). If score is one of the top-k scores
seen so far, keep object t along with its score.

Until we have seen at least k objects and T is no larger than the scores of the current k top objects.

2. Return the top-k objects along with their score.

We can improve the algorithm above by interleaving the execution of steps (1-c) and (1-d) and adding a

shortcut test condition. Given an object t, we calculate the value U(t) after each random probe to an R-Source

Ri, and we skip directly to after step (1-d) if the current object t is guaranteed not to be better than k top

objects. That is, if U(t) is no higher than the score of k objects, we can safely ignore t (Property 1) and continue

with the next object. We call this algorithm TA-Opt, and we present it below:

Algorithm TA-Opt (Input: top-k query q)

1. Repeat

(a) Get the best unretrieved object t for attribute A0 from S-Source S: (t; s0) getNextS(q0).

(b) Update threshold T = U(t).

(c) For each R-Source Ri:

i. Retrieve score si for attribute Ai and object t via a random probe to Ri: si  getScoreRi
(qi; t).

ii. If U(t) is less than or equal to the score of k objects, skip to (1-d).

(d) If we probed t completely, calculate t's �nal score for q: score = ScoreComb(s0; s1; : : : ; sn). If t's
score is one of the top-k scores seen so far, keep object t along with its score.

Until we have seen at least k objects and T is no larger than the scores of the current k top objects.

2. Return the top-k objects along with their score.

3.3.2 Exploiting Techniques for Processing Selections with Expensive Predicates

Research on expensive-predicate query optimization [13, 15] has studied how to process selection queries of the

form p1^ : : :^pn, where each predicate pi can be expensive to calculate. The key idea is to order the evaluation

of predicates to minimize the expected execution time. The evaluation order is determined by the predicates'
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Rank, de�ned as Rank(pi) =
1�selectivity(pi)

cost�per�object(pi)
, where selectivity(pi) is the fraction of the objects that are

estimated to satisfy pi, and cost-per-object(pi) is the average time to evaluate pi over an object.

We can adapt this idea to our framework as follows. Let R1; : : : ; Rn be the R-Sources, with weights

w1; : : : ; wn in the Score function. Similarly to what we described in Section 3.2.2 for Upper-Greedy , if e(Ai) is

the expected score for source Ri, the expected decrease of U(t) after probing source Ri is Æi = wi � (1� e(Ai)).

The analogous de�nition for � in this situation is � = U(t) � U(tk), where tk is the k-th top object seen so

far. The magnitude of the decrease of U(t) beyond � is unimportant since our shortcut condition is precisely

U(t) < U(tk). We sort the R-Sources Ri in decreasing order of Rank, de�ned as: Rank(Ri) =
Minf�;Æig
tR(Ri)

. Thus,

we favor fast sources that might have a large impact on the �nal score of an object, i.e., those sources that are

likely to signi�cantly change the value of U(t) fast.

We combine this idea with our adaptation of the TA algorithm to de�ne the TA-EP algorithm:

Algorithm TA-EP (Input: top-k query q)

1. Repeat

(a) Get the best unretrieved object t for attribute A0 from S-Source S: (t; s0) getNextS(q0).

(b) Update threshold T = U(t).

(c) For each R-Source Ri in decreasing order of Rank(Ri):

i. Retrieve score si for attribute Ai and object t via a random probe to Ri: si  getScoreRi
(qi; t).

ii. If U(t) is less than or equal to the score of k objects, skip to (1-d).

(d) If we probed t completely, calculate t's �nal score for q: score = ScoreComb(s0; s1; : : : ; sn). If t's
score is one of the top-k scores seen so far, keep object t along with its score.

Until we have seen at least k objects and T is no larger than the scores of the current k top objects.

2. Return the top-k objects along with their score.

In this section we presented novel strategies and adapted existing ones for processing top-k queries. We gave

detailed descriptions for each algorithm, but not for the data structures needed to support these algorithms. As

we discuss next, a careful choice of data structures can result in eÆcient executions of the di�erent algorithms.

4 Supporting Data Structures

In this section we describe the data structures that we use to implement the algorithms of Section 3. In

particular, in Section 4.1 we show how we represent objects and combine score information returned by the

sources. Then, in Section 4.2 we present data structures to eÆciently maintain ranked object sets (e.g., according

to the score upper bounds of the objects).

4.1 Representing Objects

Our algorithms need to keep track of the objects retrieved and their partial score information. We maintain

this information in a hash table indexed by the object ids. Figure 2 shows the representation of an arbitrary
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object. This representation consists of an object id and n + 1 slots for the attribute scores returned by the

di�erent sources. A special value, denoted as �, is used when information about a particular source is not yet

available. These n + 1 values (along with the query weights) are suÆcient to calculate the score of an object,

or the lower and upper bounds of an object's score when some attribute scores are not available. However,

for eÆciency, we also incrementally maintain the lower and upper bounds as separate �elds in the same object

(shown as L and U in the �gure). Whenever the lower and upper bounds coincide (i.e., L = U), we know that

no additional probe is needed for this object and its �nal score is equal to the bounds. Finally, depending on

the algorithm, each object is augmented with a small number of pointers. As we will see in the next section,

these pointers help us to eÆciently maintain the rank of each object in di�erent ordered lists.

oid . . .. . . ULv1 vnv0

Figure 2: Representation of an object and its scores for a query.

4.2 Ranking Objects

During the execution of the algorithms of Section 3, each object can be part of multiple sorted lists. As an

example, all variations of the Upper algorithm of Section 3.2.2 need to keep track of the object with the largest

score upper bound (Step (2-a) in the algorithm). All variations of the SelectBestSource function also need

to identify the object with the k-th highest expected score. We implement each sorted list using heap-based

priority queues, which provide constant-time access to the �rst ranked element, and logarithmic-time insertions

and deletions. Later, we will show how to modify these standard priority queues to extract in constant time

the k-th ranked object in the list still with logarithmic-time insertions and deletions.

Standard Priority Queues: Each node in a priority queue consists of a pointer to the object it represents

(to avoid duplicate information) and the ranking for the priority queue. Figure 3 shows the representation of

object o1 and its corresponding node in a priority queue sorted by score upper bounds. Three out of the four

attribute scores for o1 are known. Assuming that all weights in the query are equal to one, the lower and upper

bounds for object o1 are 1.6 and 2.6, respectively. Since the priority queue is sorted by score upper bound, the

node representing o1 contains the value 2.6, in addition to a pointer back to object o1.

A bidirectional arrow connects o1 and the corresponding node in the priority queue (Figure 3). In fact,

each of the pointers included in an object (Section 4.1) references the node in a priority queue that represents

such object. These pointers let us identify in constant time whether a given object is included in some priority

queue, and if so, which node represents the object. Therefore, we can e�ectively delete and modify arbitrary

objects in logarithmic time, without an expensive search for the object id in all priority queues.
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oid scores L(o1) U(o1)

2.6

Object Node in Priority Queue

o1 0.5 0.8 * 0.3 1.6 2.6

Figure 3: Representation of an object and the corresponding node in a priority queue.

Whenever possible, we use the simple priority queues described above to implement the Section 3 algorithms

(e.g., to maintain the list of candidate objects sorted by U value in algorithm Upper). Unfortunately, this simple

data structure is not suÆcient to implement all our algorithms eÆciently. We describe additional data structures

that we require next.

Bounded Priority Queues: Consider the variations of the TA algorithm of Section 3.3. These algorithms

maintain a list of the k objects with the largest lower bounds seen at any given time in the execution. To decide

whether a new object should be included in the list (hence replacing an existing object), we cannot just compare

the new object against the top element in the list, i.e., the one with the largest score lower bound. Instead, we

need to compare the new object against the object in the list with the smallest lower bound, i.e., the object with

the k-th lower bound seen so far (see Step (1-d) in algorithm TA-EP). To support this operation eÆciently, we

can use a simple adaptation of the priority queues described above that still provides constant-time access to

the object with the k-th lower bound and logarithmic time for insertions and deletions. Moreover, this adapted

priority queue can be implemented with a bounded amount of memory (proportional to k) that is independent

of the size of the data sets.

We use a bounded priority queue (with capacity k) sorted in the inverse order of the intended one. Therefore,

the smallest of the k elements in the priority queue can be accessed in constant time. We modi�ed the insertion

algorithm in the following way. Suppose we want to insert object o in the priority queue. We �rst compare

o with the object ot at the top of the queue, which has the k-th lowest lower bound seen so far. If o's lower

bound is lower than that of ot, we know that o is not among the top-k elements, so we discard it. Otherwise, we

remove ot from the priority queue and replace it by inserting o, thus maintaining the invariant that the priority

queue contains the top-k seen objects according to their lower bound.

Combined Priority Queues: In some cases, the bounded priority queues described above are not appro-

priate to maintain the top-k objects seen at any given time in the execution. Speci�cally, sometimes the value

that is used to rank the objects can increase or decrease during the execution of the algorithms. Consider the

following objects and their associated expected scores: (o1; 10), (o2; 15), (o3; 12), (o4; 5), (o5; 9) and suppose

that we want to keep track of the 3rd highest expected score. (Such functionality is needed for example in the

di�erent SelectBestSource functions to get the value score0k.) A bounded priority queue with capacity three as
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described before will contain objects o1, o2, and o3, but not objects o4 and o5. Now suppose that we learn,

after a random probe, that the new expected score of object o1 is 8. In this case, it is not enough to restructure

the priority queue by removing object o1, changing its expected score and inserting it again. In fact, object o5,

with an expected score of 9, should replace object o1 in the priority queue. Unfortunately, we discarded object

o5 in a previous step. This example shows that when the information used to sort the list of top objects can

decrease, we need to keep track of all known objects.

... ... ...

o6 15

o8 12

o5 23 o4 26

o1 7o7 9

... ... ...

Top-PQ
(k objects)

Bottom-PQ
(remaining objects)

...o5

...o6

...o7

Figure 4: A combined priority queue keeps track of the object with the k-th largest expected score.

For this purpose, we implement a data structure that combines the standard and bounded priority queues.

The new data structure, which we call combined priority queue, consists of two synchronized priority queues.

The �rst one, denoted Top-PQ, is a bounded priority queue that keeps track of the current top-k objects. The

second, denoted Bottom-PQ, is a standard priority queue that keeps track of the remaining objects seen at some

point. The invariants in the combined priority queue are: all the objects in Top-PQ have a larger expected

score than any object in Bottom-PQ, and the size of Top-PQ is equal to k whenever there are at least k objects

in the combined queue. Figure 4 shows an instance of a combined priority queue. We implement the following

procedures on top of the functions supported by the priority queues:

Top: The top of the combined priority queue is de�ned as the top of Top-PQ, i.e., the k-th element of the

list. For instance, o6 is the k-th element in Figure 4.

Insert object o: If the score of o is smaller than that of the k-th element of the list (the top score of Top-PQ),

we insert o into Bottom-PQ. Otherwise (o is one of the top-k elements in the list), we (1) remove the top

element from Top-PQ and insert it into Bottom-PQ, and (2) insert o into Top-PQ. For instance, to insert

element o10 with score 18 to the combined queue in the �gure, we �rst \move" object o6 from Top-PQ to

Bottom-PQ and then insert o10 into Top-PQ. As a result, the data structure invariant is maintained.
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Delete object o: If o belongs to Bottom-PQ, we simply delete it. Otherwise (o is one of the top-k objects in

the list), we (1) remove o from Top-PQ, and (2) remove the top element from Bottom-PQ and insert it in

Top-PQ. For instance, after removing object o4 from the combined queue, we need to \move" object o8

from Bottom-PQ to Top-PQ. As a result, the data structure invariant is maintained.

It is easy to verify that both the insertion and deletion of objects take time logarithmic in the number of

elements in the combined priority queue, and the identi�cation of the k-th object takes constant time.

5 Cost Analysis

We now discuss the eÆciency of our algorithms both in terms of time and space. For our analysis, we divide the

algorithms into two families: the Upper family, which includes all variations of the Upper algorithm, and the

TA-Adapt family, which consists of all variations of the TA-Adapt algorithm. Sections 5.1 through 5.3 address

the execution time of the two families of algorithms: Section 5.1 shows that both Upper and TA-Adapt perform

the smallest number of sorted accesses that any correct top-k query processing algorithm can indeed do. Then,

Section 5.2 analyzes the number of random accesses that each algorithm requires. To complete the execution

time analysis, Section 5.3 studies the local processing time of the algorithms. Finally, Section 5.4 discusses the

space requirements of each algorithm.

5.1 Number of Sorted Accesses

The number of sorted accesses that an algorithm makes determines the number of objects that the algorithm

considers as candidates to be in the top-k query result. Any correct algorithm that does not rely on \wild

guesses" must perform suÆciently many sorted accesses to return the top-k solution with certainty. We now

show that the algorithms in the Upper and TA-Adapt families all perform the smallest number of sorted accesses

that any correct algorithm can do when only one S-Source is available:

Theorem 1: Consider a top-k query q over one S-Source S and multiple R-Sources. Then, all variations of

algorithms Upper and TA-Adapt from Section 3 retrieve exactly the smallest number of objects from S that any

correct algorithm needs in order to answer q without \wild guesses."

Proof: Assume that there is a hypothetical top-k query processing strategy W (for \wrong") that retrieves

fewer objects than TA-Adapt does, without \wild guesses". Consider a query q over attributes A0; A1; : : : ; An,

where A0 is associated with S-Source S. Let t1; : : : ; tj be the objects that one particular execution of W

retrieves from S in sorted order. Furthermore, suppose that TA-Adapt retrieves more objects for q from S than

W does. Speci�cally, the stopping condition of step 1 of TA-Adapt is not satis�ed after retrieving object tj

from S. Then, at this point the threshold T = U(tj) is larger than the actual score of some of the top-k objects
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in t1; : : : ; tj�1. (TA-Adapt completely probes the �nal score of an object as soon as it is retrieved via sorted

access.) Let ti1 ; : : : ; tik be the top-k objects returned by W as the result for q. Since W does not rely on \wild

guesses," it follows that tim 2 ft1; : : : ; tjg, for m = 1; : : : ; k. Then, it is the case that T > Score(q; tim) for

at least one m 2 f1; : : : ; kg. Now, let tj+1 be the top object from S not retrieved by W . (tj+1 is retrieved

by TA-Adapt because the algorithm's stopping condition does not hold after tj is accessed.) Assume that

ScoreA0
(q; tj+1) = ScoreA0

(q; tj). (This scenario is consistent with all scores \observed" by W and TA-Adapt.)

Then, before probing tj+1 on any of the R-Sources, U(tj+1) = T , and we know that T > Score(q; tim) for at least

one object tim returned by W as part of the top-k answer for q. Then, if ScoreAi
(q; tj+1) = 1 8i = 1; : : : ; n, the

�nal score of object tj+1 for the query is better than that of object tim (i.e., Score(q; tj+1) = T > Score(q; tim)).

(Again, this scenario is consistent with all scores \observed" by W and TA-Adapt.) Then, in this case W

returned an incorrect answer for the query. In summary, any algorithm that does not rely on wild guesses and

that retrieves fewer objects from the only S-Source than TA-Adapt does is incorrect.

We now show that the conditions to access the S-Source S for the variations of TA-Adapt and Upper are

equivalent. TA-Adapt keeps accessing S as long as the score upper bound of the unseen objects, Uunseen, is

greater than the score of any of the current top-k objects. Using TA-Adapt, the top-k scores among all previously

retrieved objects are known since TA-Adapt completely probes all objects it discovers. (The variations of TA-

Adapt presented in Section 3.3 might discard objects faster, but do not change the sorted-access condition.)

Upper keeps accessing S as long as the score upper bound of some of the top objects retrieved is lower than

Uunseen, which means that the score of some of the top retrieved objects is lower than Uunseen, and is hence

equivalent to the TA-Adapt condition for accessing S. Therefore, TA-Adapt and Upper perform the same number

of sorted accesses. (The variations of Upper presented in Section 3.2.2 di�er only in the random accesses that

they perform.)

5.2 Number of Random Accesses

In the previous section, we showed that the TA-Adapt and Upper algorithms perform the same number of

sorted accesses. To decide which algorithm is the most eÆcient, we have to also consider the number of random

accesses required by each algorithm.

As presented in the expanded version of [10], TAz is \instance optimal", where \instance optimality" is

de�ned as follows: 11

De�nition 3: [Instance Optimality] Let A be a class of algorithms and D be a class of source instances. An

algorithm B 2 A is instance optimal over A and D if there are constants c and c0 such that for every A 2 A

and D 2 D we have that cost(B;D) � c � cost(A;D) + c0, where cost(A;D) is, in our context, the combined

sorted- and random-access time insumed by algorithm A over the sources in D.

11We slightly adapted the de�nition in [10] to use the terminology of our paper.
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As discussed in Section 3.3, our TA-Adapt algorithm is a special case of TAz and thus is \instance optimal"

in the same sense.

An interesting observation is that the number of random accesses in TA-Adapt is an upper bound on the

number of random accesses in TA-Opt and TA-EP: these two algorithms are optimizations over TA-Adapt aimed

at reducing the number of random accesses. The shortcuts used in TA-Opt and TA-EP are only used to discard

objects sooner than in TA-Adapt and do not a�ect the number of sorted accesses performed by the algorithms.

Then, in the worst case, TA-Opt and TA-EP are equal to TA-Adapt. More interestingly, from Section 5.1,

we know that the Upper algorithms perform the same number of sorted accesses as TA-Adapt, and therefore

consider the same number of objects. Since TA-Adapt performs all random accesses for the objects considered,

the Upper algorithms, in the worst case, do as many random accesses as TA-Adapt. Hence, the TA-Adapt

\instance optimality" also applies to the TA-Opt, TA-EP, and Upper algorithms. Therefore, the experimental

section of the paper (Section 7), in which we compare the TA-Adapt and Upper algorithms, will evaluate the

algorithms with real-world and synthetic data to measure their \absolute" eÆciency (they are all \instance

optimal").

5.3 Running Time

In the time-complexity analysis we identify two components: the local running time used at each step in the

algorithms, and the external time incurred in probing the di�erent sources. As we will see, TA-Adapt is locally

more eÆcient, in the sense that it can process each object-source pair with less overhead than Upper. However,

as we show experimentally in Section 7, Upper is globally more eÆcient. That is, if we consider a complete

execution of both algorithms, Upper results in considerable smaller execution times than TA-Adapt because it

probes fewer random sources, which is likely to be the main bottleneck of any technique dealing with remote

sources. In fact, the design of Upper sacri�ces local eÆciency to minimize the number of expensive random

accesses needed to answer a top-k query. We now analyze the processing time of both families of algorithms.

Our implementation of Upper uses two main priority queues: a standard priority queue that maintains the

set of candidate objects sorted by their score upper bound, and a combined priority queue that keeps track

of the candidate object with the k-th expected score. At each iteration of the algorithm, we either retrieve a

new object from the sorted source, or probe a random source for the object with the largest upper bound. In

both cases we need to maintain the priority queues, either by adding a new object, or by modifying the relative

position of an existing object in the sorted list. As shown in Section 4, we can perform these operations in time

that is logarithmic in the number of already processed candidate objects. If nS is the number of sorted accesses

and nR is the number of random probes, the local processing time to maintain the priority queues for Upper

is O((nS + nR) � log(nS)), since nS is an upper bound on the number of candidate objects at each iteration of

the algorithm. The local processing time of Upper also includes the time spent in the SelectBestSource function
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(Section 3.2.2), which depends on the method selected. For instance, the function in Upper-Greedy is O(n),

and O(2n) in Upper-Filter and Upper-Subset , where n is the number of R-Sources. The local processing time

of Upper-Greedy is then O((nS + nR) � log(nS) + n � nR) and the local processing time of Upper-Filter and

Upper-Subset is O((nS + nR) � log(nS) + 2n � nR).

For TA-Adapt, we just maintain a bounded priority queue q that keeps track of the top k objects retrieved.

At each step of the algorithm, we retrieve a new element from the sorted source (step 1a). After probing all

needed random sources, we update q to include the current element (if necessary). If nS is the number of sorted

accesses and nR is the number of random probes, the local processing time for TA-Adapt is O(nS � log(k)+nR).

As discussed in Section 5.1, the number of sorted accesses nS is the same for both algorithms. Also, k � nS

(we need to retrieve at least k objects to return the top-k). If we assume that nUpperR = nTA�AdaptR , then we have

the following inequality: tlocalTA�Adapt � tlocalUpper , where tlocal is the local processing time. In other words,

TA-Adapt is asymptotically faster than Upper if we just consider the local processing time. However, to get the

total time taken by any algorithm, we need to add to the local processing time the time tS(S)�nS+
P

tR(Ri) � ni,

where ni is the number of random accesses to R-Source Ri, tR(Ri) is the time taken to do a random access to

Ri, and tS(S) is the time taken to do a sorted access to S-Source S. Since the values of tS(S) and tR(Ri) are

large in comparison to the local processing time, and, as we will show experimentally, nUpperR < nTA�AdaptR , for

real-world scenarios Upper results in considerable faster executions than TA-Adapt.

5.4 Space Requirements

We now analyze the space required by both families of algorithms. As explained in the previous section, Upper

uses two priority queues that grow linearly with the number of sorted accesses (both priority queues represent

all candidate objects seen at a given point in time). Therefore, the space needed for Upper is O(nS). In contrast,

since TA-Adapt only uses a bounded priority queue, the space needed is just O(k), independent of the number

of sorted accesses (i.e., TA-Adapt can be implemented using bounded bu�ers). Although TA-Adapt requires

less memory than Upper, TA-Adapt cannot be used as an incremental algorithm. In fact, if after retrieving the

top-k objects using TA-Adapt we decide we want the next k objects, we have to start TA-Adapt from scratch

with parameter 2k. In contrast, we can easily modify the queues in Upper on the y to get the next k objects.

6 Evaluation Setting

In the previous section, we showed that the number of sorted accesses is the same for all versions of TA-Adapt

and Upper. We also showed that the local running time is higher for Upper than for TA-Adapt. However, we have

not determined the relative performance of the Upper and TA-Adapt algorithms in terms of random accesses.

Since random accesses are likely to be expensive, we now turn to evaluating the time spent in random accesses
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experimentally to compare the total processing time of the di�erent techniques. In this section, we describe

the synthetic data sets (Section 6.1) we use to evaluate the strategies of Section 3, as well as the prototype we

implemented to test our strategies over real web-accessible sources (Section 6.2). Finally, we discuss the metrics

and other settings that we use in our experimental evaluation (Section 6.3).

6.1 Synthetic Sources

We generate di�erent synthetic data sets. Objects in these data sets have attributes from a single S-Source S

and several R-Sources (the default number of R-Sources is �ve). The data sets vary in the number of objects

in Objects(S) and in the correlation between attributes and their distribution. Speci�cally, given a query, we

generate individual attribute scores for each conceptual object in our synthetic database in three ways:

� Uniform data set: We assume that attributes are independent of each other and that scores are uniformly

distributed (default setting).

� Correlation data set: We assume that attributes exhibit di�erent degrees of correlation, modeled by a

correlation factor cf that ranges between -1 and 1 and that de�nes the correlation between the S-Source

and the R-Source scores. Speci�cally, when cf is zero attributes are independent of each other. Higher

values of cf result in positive correlation between the S-Source and the R-Source scores, with all scores

being equal in the extreme case when cf=1. In contrast, when cf<0, the S-Source scores are negatively

correlated with the R-Source scores.

� Gaussian data set: We generate the multiattribute score distribution by producing �ve overlapping mul-

tidimensional Gaussian bells [20].

The random-access time for each R-Source Ri (i.e., tR(Ri)) is a randomly generated integer ranging between 1

and 10, while the sorted-access time for S-Source S (i.e., tS(S)) is randomly picked from f0:1; 0:2; : : : ; 1:0g.

6.2 Real Web-Accessible Sources

We implemented a prototype in Python 12 to evaluate our strategies over real web-accessible sources. The

prototype implements (an expanded version of) our restaurant example of Section 2. Users input a starting

address, the type of cuisine in which they are interested (if any), and importance weights for the following

R-Source attributes: SubwayTime (handled by the SubwayNavigator site 13), DrivingTime (handled by the

MapQuest site), Popularity (handled by the AltaVista search engine 14; see below), ZFood, ZService, ZDecor,

and ZPrice (handled by the Zagat Review web site), and TRating and TPrice (provided by the New York

12http://www.python.org
13http://www.subwaynavigator.com
14http://www.altavista.com
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Source Attribute(s) Input

Verizon Yellow Pages (S) Distance type of cuisine, user address

Subway Navigator (R) SubwayTime restaurant address, user address

MapQuest (R) DrivingTime restaurant address, user address

AltaVista (R) Popularity free text with restaurant name and address

Zagat Review (R) ZFood, ZService restaurant name

ZDecor, ZPrice

NYT Review (R) TRating, TPrice restaurant name

Table 1: Real web-accessible sources used in the experimental evaluation.

Times at the New York Today web site). The Verizon Yellow Pages listing 15, which returns restaurants of the

user-speci�ed type sorted by shortest distance from a given address, is the only S-Source. Table 1 summarizes

these sources and their interfaces.

Popularity Attribute: The Popularity attribute requires further explanation. We approximate the \popu-

larity" of a restaurant with the number of web pages that mention the restaurant, as reported by the AltaVista

search engine. (The idea of using web search engines as a \popularity oracle" has been used before in the

WSQ/DSQ system [11].) Consider, for example, restaurant \Tavern on the Green," which is one of the most

popular restaurants in the United States. A query on AltaVista on \Tavern on the Green" AND \New York"

returns 2,326 hits. In contrast, the corresponding query for a much less popular restaurant on New York City's

Upper West Side, \Ca�e Taci" AND \New York," returns only �ve hits. Of course, the reported number of

hits might inaccurately capture the actual number of pages that talk about the restaurants in question, due to

both false positives and false negatives. Also, in rare cases web presence might not reect actual \popularity."

However, anecdotal observations indicate that search engines work well as coarse popularity oracles.

Naturally, the real sources above do not �t our model of Section 2 perfectly. For example, some of these

sources return scores for multiple attributes simultaneously (e.g., the Zagat Review site). Also, as we mentioned

before, information on a restaurant might be missing in some sources (e.g., a restaurant might not have an entry

at the Zagat Review site). In such a case, our system will give a default (expected) score of 0.5 to the score of

the corresponding attribute.

Adaptive Time: In a real web environment, source access times are usually not �xed and depend on several

parameters such as network traÆc or server load. Using a �xed approximation of the source response time

(such as an average of past response times) may result in degraded performance since our algorithms use these

times to choose what probe to do next.

15http://www.superpages.com
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Parameter k jSj n Data Set

Default Value 50 10,000 5 Uniform

Table 2: Default setting of some experiment parameters for synthetic sources.

To develop accurate adaptive estimates for the tR times, we adapt techniques for estimating the round trip

time of network packets. Speci�cally, TCP implementations use a \smoothed" round trip time estimate (SRTT )

to predict future round trip times, computed as follows:

SRTT i+1 = (�� SRTT i) + ((1� �)� si)

where SRTT i+1 is the new estimate of the round trip time, SRTT i is the current estimate of the round trip

time, si is the time taken by the last round trip sample, and � is a constant between 0 and 1 that controls

the sensitivity of the SRTT to changes. For better performance, Mills [16] recommends using two values for �:

� = 15=16, when the last sample time is lower than the estimate time (SRTT i), and � = 3=4, when the last

sample time is higher than the estimate. This makes the estimate more responsive to increases in the source

response time than to decreases. Our prototype keeps track of the response time of probes to each R-Source Ri

and adjusts the average access time for Ri, tR(Ri), using the SRTT estimates above. Since the accesses to the

S-Source S are decided independently of its access time, we do not adjust tS(S).

6.3 Other Experimental Settings

Our query processing strategies attempt to minimize the total processing time for top-k queries, both for random

and for sorted access to the sources. To measure the relative performance of the techniques over an S-Source S

and R-Sources R1; : : : ; Rn, we use the following metric:

tprobes = nS � tS(S) +
nX
i=1

ni � tR(Ri)

where nS is the number of objects extracted from S-Source S, ni is the number of random-access probes for

R-Source Ri, and tS and tR are as speci�ed in De�nition 2. tprobes then approximates the execution time for a

query without counting local processing time (Section 5.3). We also report results on the local processing time

tlocal of the techniques, and on the overall time ttotal = tlocal + tprobes, which includes both local execution and

probing times.

For the synthetic data sets and for each setting of the experiment parameters, we generate 100 queries

randomly with their associated weights, and compute the average tlocal and tprobes values. We report results

for top-k queries for di�erent values of k, jSj, cf and for various assignments of weights and times to sources.

In the default setting, k = 50 (i.e., queries ask for the best 50 objects), jSj = 10; 000, and we use the Uniform

data set. The default setting values are summarized in Table 2.
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For the real data sets, we use four queries, specifying addresses in three di�erent Manhattan neighborhoods

and di�erent restaurant type preferences. Attributes Distance, SubwayTime, DrivingTime, ZFood, ZService,

ZDecor, and TRating have \default" target values in the queries (e.g., a DrivingTime of 0 and a ZFood rating of

30). The target value for Popularity is arbitrarily set to 100 hits, while ZPrice and TPrice are set to the least

expensive value in the scale. In all four queries, the weight of the S-Source attribute (i.e., Distance) is roughly

twice the weight of any R-Source attribute. R-Sources access times are reevaluated during query processing

using the adaptive estimates presented in Section 6.2.

Next, we experimentally compare the algorithms that we discussed in Section 3, namely TA-Adapt and

TA-Opt (Section 3.3.1), TA-EP (Section 3.3.2), and Upper (Section 3.2.2). For all experiments we ran the three

versions of Upper introduced in Section 3, i.e., Upper-Greedy , Upper-Filter , and Upper-Subset . In general, the

three versions of Upper performed similarly. However, Upper-Filter resulted in the best performance among

all versions for virtually all cases. Therefore, we report results only for that version of Upper. Hence, in the

next section, we refer to Upper-Filter simply as Upper. We also report results for the Optimal technique of

Section 3.2.1. As discussed, this technique is only of theoretical interest, and serves as a lower bound for the

time that any strategy without \wild guesses" would take to process top-k queries.

7 Evaluation Results

We now present the experimental results for the techniques of Section 3, using the data sets and general settings

described in Section 6.

7.1 Results for Synthetic Data Sets

We �rst study the performance of the techniques when we vary the synthetic data set parameters.

E�ect of the Number of Objects Requested k: Figure 5 reports results for the default setting (Table 2),

as a function of k and for both the Uniform and Gaussian synthetic data sets. As k increases, the time needed

by each algorithm to return the top-k objects increases as well, since all techniques need to retrieve and process

more objects. The Upper strategy consistently outperforms all other techniques, with average tprobes time close

to that of the theoretical lower bound, Optimal. We can see that our optimizations over TA-Adapt, namely

TA-Opt and TA-EP, result in dramatic improvements in performance over TA-Adapt due to savings in random

accesses. We then remove TA-Adapt from further consideration in the remaining discussion.

E�ect of the Number of R-Source Sources: Figure 6 reports results for the default setting, as a function

of the total number of R-Sources for both Uniform data sets. Not surprisingly, the tprobes time needed by

all the algorithms increases with the number of available sources. When we consider a single S-Source and a
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Figure 5: Performance of the di�erent strategies for the default setting of the experiment parameters, as a

function of the number of objects requested k, and for two synthetic data-set distributions.

single R-Source, tprobes is almost the same for all algorithms. However, when more R-Sources are available,

the di�erences between the techniques become more pronounced, with Upper consistently resulting in the best

performance.
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Figure 6: Performance of the di�erent strategies for the Uniform data set, as a function of the number of

R-Sources.

E�ect of the Number of Objects in S-Source S: Figure 7 studies the impact of the size of S-Source S.

As the number of objects increases, the performance of each algorithm drops since more objects have to be

evaluated before a solution is returned. The tprobes time needed by each algorithm is approximately linear in

the number of objects in S. Upper gives faster execution results and scales better than the other techniques

since it only considers objects that need to be probed before the top-k answer is reached and therefore does not

waste resources on useless probes.
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Figure 7: Performance of the di�erent strategies for the Uniform data set, as a function of the number of objects

in S-Source S.

E�ect of Attribute Weights: Figure 8 reports results on the impact of attribute weights on the tprobes time.

We vary the weight of the S-Source S (Figure 8(a)) and the R-Source R5 (Figure 8(b)) relative to the weight

of the remaining sources. In particular, we set the varying weight as a multiple of the average of the remaining

weights. Figure 8(a) shows that all techniques improve their tprobes times when the weight of the S-Source

attribute is high, since fewer random probes are needed to identify the top-k objects. Also, the performance of

TA-Opt degrades as the weight of R-Source R5 increases (Figure 8(b)): TA-Opt does not use any information

about the relative weights of the sources to order the random probes, in contrast to the other techniques. We

note that we obtained analogous results when we varied the access times of the di�erent sources instead of their

weights.
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Figure 8: Performance of the di�erent strategies for the Uniform data set, and for various attribute-weight

combinations.
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E�ect of Attribute Correlation: We now turn to the Correlation data set (Section 6) and evaluate the

e�ect of attribute correlation on the performance of the query processing techniques. Figure 9 shows that

when the correlation factor cf is high and positive the performance of all techniques improves dramatically.

Interestingly, a negative correlation between the R-Sources and the S-Source attribute scores signi�cantly a�ects

the performance of the TA-Adapt algorithms. For correlation factors close to -1, the order of the objects in

the S-Source is close to the inverse of the order by �nal scores. Therefore, both TA-Opt and TA-EP need to

probe each object almost completely before proceeding to the next one, and have to consider almost all objects

in S-Source S before producing the �nal answer, which results in signi�cantly larger tprobes times compared to

Upper.
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Figure 9: Performance of the di�erent strategies for the Correlation data set, as a function of the correlation

factor cf.

To further understand the e�ect of attribute correlation on performance, we also generated data sets in which

groups of sources were correlated. In Figure 10(a) we show the performance of the di�erent algorithms when

a varying fraction of the six available R-Sources was correlated to the S-Source, with the remaining R-Sources

being inversely correlated to the S-Source. When all six R-Sources are correlated (or inversely correlated) to the

S-Source, the situation is similar to that of Figure 9 for cf near zero and one. The hardest case for the Optimal

algorithm is when half of the R-Sources are correlated and the other half is inversely correlated to the S-Source.

Even in this case, Upper performs signi�cantly better than the TA-Adapt variations and is close to the optimal

performance. Finally, we divided the R-Sources in two groups so that the scores of objects from R-Sources

in the same group was correlated (and uncorrelated to the S-Source). Figure 10(b) shows the performance of

the techniques when the groups have (1,5), (2,4), and (3,3) R-Sources each. The results are consistent with

previous experiments. When the number of correlated sources is high, it is easier to discard objects, and the

algorithms have better performance.

E�ect of Varying Expected Scores: In absence of reliable information on source-score distribution, our

techniques approximate expected scores with the constant 0:5 (see Section 3). This estimation can result in bad

28



0

50000

100000

150000

200000

250000

300000

0 1 2 3 4 5 6

Number of R-Sources correlated to the S-Source

t p
ro

be
s

Optimal Upper TA-EP TA-Opt

0

20000

40000

60000

80000

100000

1,5 2,4 3,3

Groups of correlated R-Sources

t p
ro

be
s

Optimal Upper TA-EP TA-Opt

Figure 10: Performance of the di�erent strategies for various degrees of correlation among sources.

performance when the actual expected scores are far from 0.5. To evaluate the e�ect of this choice of expected

scores on the performance of Upper, we generated data sets with di�erent score distributions and compared

the performance of Upper with and without knowledge of the actual expected scores. In particular, we �rst

evaluated 100 queries using Optimal, Upper, and TA-EP assuming that the expected scores were 0.5. Then, we

evaluated the same queries, but this time we let Upper use the actual expected scores to choose which sources

to probe. We refer to this version of Upper as Upper-E. (Note that Optimal and TA-EP do not rely on expected

scores.) The results are shown in Figure 11. For the �rst experiment, three out of the �ve R-Sources had scores

uniformly distributed between 0 and 1 (with expected score 0.5), the fourth R-Source had scores varying from

0 to 0.2 (with expected score 0.1), and the �fth R-Source had scores ranging from 0.8 to 1 (with expected score

0.9). For the second experiment, the expected scores for the R-Sources were random values between 0 and 1.

Not surprisingly, Upper-E results in smaller tprobes time than Upper (and close to the Optimal one), showing that

Upper can e�ectively take advantage of any extra information about expected sources in its SelectBestSource

routine. In any case, it is important to note that the performance of Upper is still better than that of TA-EP

even when Upper uses the default value of 0.5 as the expected attribute score.
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Figure 11: The performance of Upper improves when the expected scores are known in advance.
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7.2 Local Processing Time

In Section 5.3 we showed that the local time tlocal of the TA-EP algorithm is asymptotically smaller than that

of Upper. However, as we saw in the previous sections, Upper results in much fewer R-Source probes, which are

expensive. We now show experimentally that Upper results in considerable overall faster execution times than

TA-EP.

In this section, we also consider a variation of Upper that uses a �xed schedule to select which source to

access next in random access. This approach was introduced by Chang and Hwang [5], who presented the MPro

algorithm for evaluating top-k queries over expensive predicates. MPro is similar to Upper in that it always

probes the object with the highest score upper bound. However, a key di�erence between MPro and Upper is

that MPro assumes a �xed schedule of sources to access in random access, and does not base its choices on the

current query state. Additionally, MPro assumes that all accesses to the only sorted-access source are performed

�rst, and does not interleave sorted and random accesses. In the remainder of the discussion, we will consider

Upper-MPro, a variation of Upper that assumes a �xed schedule for random accesses, but takes advantage of

possible interleaving of sorted and random accesses. Upper-MPro can be considered as an execution of Upper for

which the SelectBestSource function returns sources in the same order for all objects, hence requiring less local

processing. As in TA-EP, we order sources for random accesses according to their Rank value (see Section 3.3.2).

Figure 12(a) shows the tlocal time for Upper, Upper-MPro, and TA-EP when using the default setting of the

experiments in Table 2 and varying the number of elements in S-Source S. TA-EP is locally more eÆcient than

both versions of Upper using around one third of the time of Upper, and Upper-MPro is slightly faster than

Upper in terms of local processing time since the SelectBestSource computation is much simpler. However, the

di�erence in local processing time between TA-EP and Upper is under half a second on average. If random

accesses are fast, then the extra processing time required by Upper is likely not to pay o�. In contrast, for

real web sources, with high latencies, the extra local work is likely to result in faster overall executions. To

understand this interaction between local processing time and random-access time, we vary the absolute value

of the time \unit" f with which we measure the random-access time tR for the R-Sources. Figure 12(b) shows

the total processing time of all three techniques for varying values of f (tR is randomly chosen between 1 and

10 time units), normalized with respect to the total processing time of TA-EP. From this �gure, it follows that

for TA-EP to be faster than Upper in total execution time, the time unit for random accesses should be less

than 0.05 msecs, which translates in random access times no larger than 0.5 msecs. For comparison, note that

the fastest real-web R-Source access time in our experiments was around 25 msecs. For all realistic values of f

(i.e., 0.025 seconds or larger) it follows that while TA-EP is locally faster than Upper, Upper is globally more

eÆcient. Additionally, Figure 12(b) shows that Upper outperforms Upper-MPro for f higher than 0.05 msecs,

which means that the extra computation in the SelectBestSource function of Upper results in savings in probing

time and thus in overall faster query execution times. Note that for high values of f , the local processing time
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of the techniques becomes negligible in comparison with the random-access time.
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Figure 12: Comparing local and total processing time for Upper, Upper-MPro, and TA-EP.

7.3 Results for Real Web-Accessible Data Sets

Our next results are for the six web-accessible sources, handling 10 attributes, which we described in Section 6.2

and summarized in Table 1. To model the initial access time for each source, we measured the response times

for a number of queries at di�erent hours and computed their average. We then issued four di�erent queries

to these sources and timed their total execution time. The source access time is adjusted at run time using

the SRTT value discussed in Section 6.2. Figure 13 shows the execution time for each of the queries, and for

the Upper, TA-EP, and TA-Opt strategies. Just as for the synthetic data sets, our Upper strategy performs

signi�cantly better than the two variations of the TA-Adapt algorithm. Figure 13 shows that real-web queries

have high execution time, which are a result of accessing the sources sequentially. Parallel versions of the

algorithms discussed in this paper result in lower overall running times (see Section 10). (The R-Sources we

used are slow with an average random access time of 1.5 seconds.)

In summary, our experimental results consistently show that Upper outperforms all other methods, with

performance close to that of the Optimal technique. Furthermore, our modi�cations of the TA-Adapt algorithm,

TA-EP in particular, resulted in signi�cant improvements in performance. As a �nal observation, note that

all the algorithms discussed in this paper correctly identify the top-k objects for a query according to a given

scoring function. Hence there is no need to evaluate the \correctness" or \relevance" of the computed answers.

However, the design of appropriate scoring functions for a speci�c application is an important problem that we

do not address in this paper.
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Figure 13: Experimental results for the real web-accessible data sets relevant to our New York City restaurant

scenario.

S1 S2

o1 1 o100 0.95

o2 0.1 o99 0.1

... ... ... ...

o99 0.1 o2 0.1

o100 0.1 o1 0

Table 3: A top-k query execution over two S-Sources (k = 1; jObjects(S1)j = jObjects(S2)j = 100; wS1 = wS2 =

0:5).

8 Relaxing the Source Model

In Section 3 we made a number of simplifying assumptions to present our query processing algorithms. Perhaps

the most severe of these assumptions is the restriction that there be only one S-Source and arbitrarily many

R-Sources. We now consider relaxations of this restriction: Section 8.1 discusses the implications of handling

multiple S-Sources on query processing eÆciency. Then, Section 8.2 presents an adaptation of our techniques

to work over multiple SR-Sources and R-Sources. Finally, Section 8.3 reports the results of an experimental

evaluation of this new algorithm.

8.1 Multiple S-Sources

In this paper we focus on algorithms that return the exact top-k objects for a query, together with their scores.

So far, our discussion has been restricted to one S-Source and arbitrarily many R-Sources. A scenario with

several S-Sources (with no random-access interface) is problematic: to return the top-k objects for a query

together with their scores, as required by our query model, we might have to access all objects in some of the
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S-Sources to retrieve the corresponding attribute score for a top-k object. This can be prohibitively expensive

in practice.

Fagin et al. presented the NRA algorithm [10] to deal with multiple S-Sources. NRA only identi�es the

top-k objects and does not compute their �nal scores: if a top-k object t has a low score for one of the

S-Sources, then NRA might output t without knowing t's score for this source. Identifying the top-k objects

without computing their �nal scores can then be much cheaper than returning the top-k objects along with

their scores. However, in some cases, even identifying the top-k objects over several S-Sources proves to be

expensive. For example, consider the two S-Sources S1 and S2 in Table 3. A top-1 query over these two

sources will have to access all objects in both sources to return o100 as the top object, since it is impossible

to decide which of o1 and o100 is best until both sources have been completely accessed. This will take time

jObjects(S1)j � tS(S1) + jObjects(S2)j � tS(S2).

Fagin et al.'s NRA algorithm could be easily adapted to a scenario with multiple S-Sources, SR-Sources,

and R-Sources: upon discovery of an object under sorted access in one of the S-Sources or SR-Sources, all

possible random accesses for the newly discovered object are performed. The stop condition is identical to

NRA's, and the algorithm returns the top-k objects without their �nal scores as soon as they are identi�ed.

The optimizations used in TA-Opt and TA-EP can be applied to this adaptation of NRA, to avoid performing

useless random probes and improve query execution eÆciency.

However, adapting Upper to a scenario with multiple S-Sources is not as simple: Upper focuses on the object

tH with the highest score upper bound. If tH is not completely probed, Upper selects a random-access probe

on tH to perform next; in the presence of S-Sources, there might be no random-access probes left on tH , even

if tH 's score for the query is not completely de�ned. An adaptation of Upper would then require a potentially

expensive strategy to retrieve needed information from the S-Sources. As a result, the adaptation of NRA

discussed above appears as a more promising strategy for handling a multiple-S-Source scenario.

8.2 Multiple SR-Sources

So far, we have presented eÆcient top-k query processing algorithms over a single S-Source (or SR-Source) and

multiple R-Sources. We will now discuss algorithms that can answer queries when multiple SR-Sources and

R-Sources are available. Speci�cally, we describe adaptations of a recently proposed algorithm for multiple

SR-Sources and R-Sources [10], as well as introduce two new variants of our Upper algorithm for this relaxed

source scenario.

TAz-EP and TAz-EP-Unbounded: TA sequentially accesses all SR-Sources in sorted access. When it

discovers a new object, it randomly accesses every other source to compute the �nal score of the object. TAz [10]

is an adaptation of TA to the scenario in which some of the sources do not provide sorted-access capabilities: the
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sorted access phase will only consider SR-Sources, while the random accesses will be done over all sources. (As

discussed, TA-Adapt is identical to TAz when only one S-Source is present.) Our optimizations over TA-Adapt,

namely TA-Opt and TA-EP, can still be used over TAz. For space eÆciency, TAz assumes bounded bu�ers,

which may lead to redundant random accesses, since TAz does not keep track of all the objects it has already

seen. In our experiments, we will present two versions of TAz: one with bounded bu�ers (TAz-EP), and one

with unbounded bu�ers (TAz-EP-Unbounded). The unbounded-bu�ers version of TAz gains in eÆciency by

avoiding redundant random accesses, but requires space that is linear in the number of objects retrieved nS .

(Note that the Upper algorithms also use unbounded bu�ers and need O(nS) space.)

Upper-Weight: Upper is designed for one S-Source and several R-Sources. A simple way to adapt Upper so

that it can operate on more than one SR-Source is to regard all sources but one as R-Sources. Hence one of

the SR-Sources is chosen to be the one contacted in sorted access, while the other SR-Sources are only probed

using random access. Di�erent approaches can be used to pick which SR-Source to access in sorted access. In

the experiments below, we report the performance for Upper-Weight, which chooses the SR-Source with the

highest associated query weight as the S-Source and otherwise proceeds as Upper-Filter (Section 3.2.2).

TA-Upper: The unbounded-bu�ers version of the TA algorithm can be slightly modi�ed to output the top

objects incrementally. The result of an execution of TA over several SR-Sources can then be regarded as a

single S-Source for which the getNext interface would return the next top object. We can then de�ne a hybrid

strategy that uses Upper to combine the R-Source attribute scores with the result of the execution of TA over

the SR-Sources. We call this technique TA-Upper.

Upper-Relaxed: Ideas from both TA and Upper can be combined to create an algorithm that deals with

multiple SR-Sources and R-Sources. The resulting algorithm is similar to Upper except that in the sorted

access step (when unseen objects might have larger scores than all \candidate" objects), SR-Sources are accessed

alternatively. The order in which SR-Sources are accessed in sorted access can be decided in several ways. The

simplest approach is to use a round-robin algorithm. G�untzer et al. [12] presented a variation of TA that uses

distribution information to order sorted accesses. Alternatively, we could access SR-Sources by decreasing order

of a Rank value similar to the one de�ned in Section 3.2.2. We de�ne the Rank of a sorted-access source S

as Rank(S) = wS:(1�e(S))
tS(S) , where e(S) is the expected score of an object not yet seen under sorted access. We

choose this last approach in the Upper-Relaxed algorithm that we present next. This algorithm returns the

top-k objects for a query q over nsr SR-Sources and nr R-Sources. We de�ne Uunseen as the upper bound of

any object not seen under sorted access.

Algorithm Upper-Relaxed (Input: top-k query q)

1. Initialize Uunseen = 1, Candidates = ;, and returned = 0.
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2. While (returned < k)

(a) If Candidates 6= ;, pick tH 2 Candidates such that U(tH) = maxt2Candidates U(t).

Else tH is unde�ned.

(b) If tH is unde�ned or U(tH) < Uunseen (unseen objects might have larger scores than all candidates):

� Choose an SR-Source Si (1 � i � nsr) to access next in sorted access such that Rank(Si) =
maxnsrj=1fRank(Sj)g.

� Get the best unretrieved object t from Si: (t; si) getNextSi(qi).

� Update Uunseen = ScoreComb(s`(1); : : : ; s`(nsr); 1; : : : ; 1| {z }
nr times

), where s`(i) is the last value seen

under sorted access in SR-Source Si, and insert t into Candidates.

Else If tH is completely probed (tH is one of the top-k objects):

� Return tH with its score; remove tH from Candidates.

� returned = returned+ 1.

Else:

� Ri  SelectBestSource(tH , Candidates).

� Probe source Ri on object tH : si  getScoreRi
(qi; tH).

8.3 Experimental Results

We implemented the �ve algorithms presented in the previous section and evaluated them experimentally.

For the evaluation, we used the synthetic data sets presented in Section 6.1. Our default setting consists of

six sources, divided in three SR-Sources and three R-Sources. For each experiment, we ran 100 queries and

averaged the resulting execution times.
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Figure 14: Performance of the di�erent strategies for the relaxed source setting.

We report the results for our �ve strategies in Figure 14. In Figure 14(a), we report the results as a function of

the number of objects requested k. TAz-EP-Unbounded performs better than TAz-EP since it does not perform

redundant random accesses. However, it requires more space than TAz-EP because it needs unbounded bu�ers.
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As expected, Upper-Relaxed, which is speci�cally designed for this relaxed source model, is more eÆcient than

Upper-Weight. However, Upper-Weight, a simple adaptation of Upper, outperforms the remaining strategies.

TA-Upper does not perform well, with probing times higher than those of TAz-EP. In Figure 14(b), we vary

the number of SR-Sources, while keeping the same total number of sources. Interestingly, both Upper-Relaxed

and Upper-Weight, which interleave probes on objects, perform better than TAz-EP-Unbounded and TAz-EP

even when all sources are SR-Sources, which is the original setting for the TA algorithms.

9 Related Work

Relevant work on top-k query processing can roughly be divided in two groups: evaluation strategies for

multiattribute top-k queries over multimedia repositories, and for top-k queries over relational databases.

To process queries involving multiple multimedia attributes, Fagin et al. proposed a family of algorithms [9,

10], developed as part of IBM Almaden's Garlic project. These algorithms can evaluate top-k queries that

involve several independent multimedia \subsystems," each producing scores that are combined using arbitrary

monotonic aggregation functions. In an expanded version of [10], Fagin et al. presented a variation of their

algorithms to handle R-Sources. We experimentally compared Fagin et al.'s algorithms with our new approach

in Sections 7 and 8.

Nepal and Ramakrishna [18] and G�untzer et al. [12] presented variations of Fagin's original FA algorithm [9]

for processing queries over multimedia databases. In particular, G�untzer et al. [12] reduce the number of random

accesses through the introduction of more stop-condition tests and by exploiting the data distribution. The

MARS system [19] also uses variations of the FA algorithm and views queries as binary trees where the leaves

are single-attribute queries and the internal nodes correspond to \fuzzy" query operators. More recently, Chang

and Hwang [5] presented MPro, an algorithm that is closely related to Upper. Unlike Upper, MPro assumes a

�xed schedule of accesses to R-Sources, and thus selects which object to probe next but ignores source selection

on a per-object level. Therefore, we can consider MPro as a special case of the Upper algorithm in which

the SelectBestSource function is �xed and always returns the same sequence of sources. We experimentally

compared MPro with Upper in Section 7.2.

Chaudhuri and Gravano also built on Fagin's original FA algorithm and proposed a cost-based approach for

optimizing the execution of top-k queries over multimedia repositories [6]. Their strategy translates a given top-

k query into a selection query that returns a (hopefully tight) superset of the actual top-k tuples. Ultimately,

the evaluation strategy consists of retrieving the top-k0 tuples from as few sources as possible, for some k0 � k,

and then probing the remaining sources by invoking existing strategies for processing selections with expensive

predicates [13, 15]. This technique is then related to algorithm TA-EP from Section 3.3.2.

Over relational databases, Carey and Kossmann [3, 4] presented techniques to optimize top-k queries when

the scoring is done through a traditional SQL order-by clause. Donjerkovic and Ramakrishnan [8] proposed
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a probabilistic approach to top-k query optimization. Chaudhuri and Gravano [1] exploited multidimensional

histograms to process top-k queries over an unmodi�ed relational DBMS by mapping top-k queries into tradi-

tional selection queries. Finally, Chen and Ling [7] used a sampling-based approach to translate top-k queries

over relational data into approximate range queries.

Additional related work includes the PREFER system [14], which uses pre-materialized views to eÆciently

answer ranked preference queries over commercial DBMSs. Recently, Natsev et al. proposed incremental algo-

rithms [17] to compute top-k queries with user-de�ned join predicates over sorted-access sources. Finally, the

WSQ/DSQ project [11] presented an architecture for integrating web-accessible search engines with relational

DBMSs. The resulting query plans can manage asynchronous external calls to reduce the impact of potentially

long latencies. The WSQ/DSQ ideas could be incorporated to speed up the execution of our top-k queries

further and depart from the sequential query plans on which we focused in this paper.

10 Conclusion

In this paper, we studied the problem of processing top-k queries over autonomous web-accessible sources with

a variety of access interfaces. We �rst focused on a scenario with multiple random-access sources and one

sorted-access source. We adapted and improved existing algorithms for top-k query processing to our scenario,

and also introduced a novel strategy, Upper, which is designed speci�cally for our query model. A distinctive

characteristic of our new algorithm is that it interleaves probes on several objects whereas other techniques

completely probe one object at a time. This interleaving has a strong e�ect on query processing eÆciency. We

analyzed the space and time requirements of our various techniques and described data structures to implement

them eÆciently. We conducted a thorough experimental evaluation of these techniques using both synthetic and

real web-accessible data sets. Our evaluation showed that Upper produces the best processing plans in terms of

execution time for a variety of data and query parameters, and for both synthetic and real data sets. Finally, we

relaxed our source model to handle any number of random-access sources and of sources supporting both sorted

and random access. We adapted our Upper technique to this relaxed model and experimentally compared it

to an existing algorithm, TAz [10]. Our results showed that adaptations of Upper perform signi�cantly better,

con�rming that interleaving probes on objects improves query processing eÆciency.
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