Home

Detecting local semantic concepts in environmental sounds using Markov model based clustering

Keansub Lee; Daniel P. W. Ellis; Alexander C. Loui

Title:
Detecting local semantic concepts in environmental sounds using Markov model based clustering
Author(s):
Lee, Keansub
Ellis, Daniel P. W.
Loui, Alexander C.
Date:
Type:
Articles
Department:
Electrical Engineering
Permanent URL:
Book/Journal Title:
2010 IEEE International Conference on Acoustics, Speech, and Signal Processing: Proceedings: March 14-19, 2010, Sheraton Dallas Hotel, Dallas, Texas, U.S.A.
Publisher:
IEEE
Publisher Location:
Piscataway, N.J.
Abstract:
Detecting the time of occurrence of an acoustic event (for instance, a cheer) embedded in a longer soundtrack is useful and important for applications such as search and retrieval in consumer video archives. We present a Markov-model based clustering algorithm able to identify and segment consistent sets of temporal frames into regions associated with different ground-truth labels, and simultaneously to exclude a set of uninformative frames shared in common from all clips. The labels are provided at the clip level, so this refinement of the time axis represents a variant of Multiple-Instance Learning (MIL). Evaluation shows that local concepts are effectively detected by this clustering technique based on coarse-scale labels, and that detection performance is significantly better than existing algorithms for classifying real-world consumer recordings.
Subject(s):
Electrical engineering
Applied mathematics
Publisher DOI:
http://dx.doi.org/10.1109/ICASSP.2010.5495915
Item views:
46
Metadata:
text | xml

In Partnership with the Center for Digital Research and Scholarship at Columbia University Libraries/Information Services | Terms of Use