Home

Improving Efficiency and Reliability of Building Systems Using Machine Learning and Automated Online Evaluation

Leon Li Wu; Gail E. Kaiser; David M. Solomon; Rebecca Lynn Winter; Albert Boulanger; Roger N. Anderson

Title:
Improving Efficiency and Reliability of Building Systems Using Machine Learning and Automated Online Evaluation
Author(s):
Wu, Leon Li
Kaiser, Gail E.
Solomon, David M.
Winter, Rebecca Lynn
Boulanger, Albert
Anderson, Roger N.
Date:
Type:
Technical reports
Department:
Computer Science
Permanent URL:
Series:
Columbia University Computer Science Technical Reports
Part Number:
CUCS-008-12
Publisher:
Department of Computer Science, Columbia University
Publisher Location:
New York
Abstract:
A high percentage of newly-constructed commercial office buildings experience energy consumption that exceeds specifications and system failures after being put into use. This problem is even worse for older buildings. We present a new approach, 'predictive building energy optimization', which uses machine learning (ML) and automated online evaluation of historical and real-time building data to improve efficiency and reliability of building operations without requiring large amounts of additional capital investment. Our ML approach uses a predictive model to generate accurate energy demand forecasts and automated analyses that can guide optimization of building operations. In parallel, an automated online evaluation system monitors efficiency at multiple stages in the system workflow and provides building operators with continuous feedback. We implemented a prototype of this application in a large commercial building in Manhattan. Our predictive machine learning model applies Support Vector Regression (SVR) to the building's historical energy use and temperature and wet-bulb humidity data from the building's interior and exterior in order to model performance for each day. This predictive model closely approximates actual energy usage values, with some seasonal and occupant-specific variability, and the dependence of the data on day-of-the-week makes the model easily applicable to different types of buildings with minimal adjustment. In parallel, an automated online evaluator monitors the building's internal and external conditions, control actions and the results of those actions. Intelligent real-time data quality analysis components quickly detect anomalies and automatically transmit feedback to building management, who can then take necessary preventive or corrective actions. Our experiments show that this evaluator is responsive and effective in further ensuring reliable and energyefficient operation of building systems.
Subject(s):
Computer science
Item views:
366
Metadata:
text | xml

In Partnership with the Center for Digital Research and Scholarship at Columbia University Libraries/Information Services | Terms of Use