Home

Effects of bottom boundary placement on subsurface heat storage: Implications for climate model simulations

M. Bruce Stevens; Jason E. Smerdon; Jesús Fidel González-Rouco; Marc Stieglitz; Hugo Beltrami

Title:
Effects of bottom boundary placement on subsurface heat storage: Implications for climate model simulations
Author(s):
Stevens, M. Bruce
Smerdon, Jason E.
González-Rouco, Jesús Fidel
Stieglitz, Marc
Beltrami, Hugo
Date:
Type:
Articles
Department:
Lamont-Doherty Earth Observatory
Volume:
34
Permanent URL:
Book/Journal Title:
Geophysical Research Letters
Abstract:
A one-dimensional soil model is used to estimate the influence of the position of the bottom boundary condition on heat storage calculations in land-surface components of General Circulation Models (GCMs). It is shown that shallow boundary conditions reduce the capacity of the global continental subsurface to store heat by as much as 1.0 x 10²³ Joules during a 110-year simulation with a 10 m bottom boundary. The calculations are relevant for GCM projections that employ land-surface components with shallow bottom boundary conditions, typically ranging between 3 to 10 m. These shallow boundary conditions preclude a large amount of heat from being stored in the terrestrial subsurface, possibly allocating heat to other parts of the simulated climate system. The results show that climate models of any complexity should consider the potential for subsurface heat storage whenever choosing a bottom boundary condition in simulations of future climate change.
Subject(s):
Atmospheric sciences
Paleoclimate science
Publisher DOI:
http://dx.doi.org/10.1029/2006GL028546
Item views:
197
Metadata:
text | xml

In Partnership with the Center for Digital Research and Scholarship at Columbia University Libraries/Information Services | Terms of Use