Home

Probing the Properties of the Molecular Adlayers on Metal Substrates: Scanning Tunneling Microscopy Study of Amine Adsorption on Au(111) and Graphene Nanoislands on Co(0001)

Hui Zhou

Title:
Probing the Properties of the Molecular Adlayers on Metal Substrates: Scanning Tunneling Microscopy Study of Amine Adsorption on Au(111) and Graphene Nanoislands on Co(0001)
Author(s):
Zhou, Hui
Thesis Advisor(s):
Heinz, Tony F.
Date:
Type:
Dissertations
Department:
Physics
Permanent URL:
Notes:
Ph.D., Columbia University.
Abstract:
In this thesis, we present our findings on two major topics, both of which are studies of molecules on metal surfaces by scanning tunneling microscopy (STM). The first topic is on adsorption of a model amine compound, 1,4-benzenediamine (BDA), on the reconstructed Au(111) surface, chosen for its potential application as a molecular electronic device. The molecules were deposited in the gas phase onto the substrate in the vacuum chamber. Five different patterns of BDA molecules on the surface at different coverages, and the preferred adsorption sites of BDA molecules on reconstructed Au(111) surface, were observed. In addition, BDA molecules were susceptible to tip-induced movement, suggesting that BDA molecules on metal surfaces can be a potential candidate in STM molecular manipulations. We also studied graphene nanoislands on Co(0001) in the hope of understanding interaction of expitaxially grown graphene and metal substrates. This topic can shed a light on the potential application of graphene as an electronic device, especially in spintronics. The graphene nanoislands were formed by annealing contorted hexabenzocoronene (HBC) on the Co(0001) surface. In our experiments, we have determined atop registry of graphene atoms with respect to the underlying Co surface. We also investigated the low-energy electronic structures of graphene nanoislands by scanning tunneling spectroscopy. The result was compared with a first-principle calculation using density functional theory (DFT) which suggested strong coupling between graphene pi-bands and cobalt d-electrons. We also observed that the islands exhibit zigzag edges, which exhibits unique electronic structures compared with the center areas of the islands.
Subject(s):
Nanoscience
Molecular physics
Materials science
Item views:
493
Metadata:
text | xml

In Partnership with the Center for Digital Research and Scholarship at Columbia University Libraries/Information Services | Terms of Use