Pathways for kidney triglyceride accumulation

Diego A. Scerbo

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2018
Kidney triglyceride accumulation in the fasted mouse is dependent upon serum free fatty acids and Krüppel-Like Factor 5 role in diabetic inflammation

Diego A. Scerbo

Abstract

Lipid accumulation is a pathological feature of every type of kidney injury. However, despite this striking histological feature, physiological accumulation of lipids in the kidney is poorly understood. We studied whether the accumulation of lipids in the fasted kidney is derived from lipoproteins or non-esterified fatty acids (NEFAs). Increasing circulating NEFAs using a beta adrenergic receptor agonist caused a 15-fold greater accumulation of lipid in the kidney, while mice with reduced NEFAs due to adipose tissue deficiency of adipose triglyceride lipase had reduced renal triglycerides. Fasting-induced kidney lipid accumulation was not affected by inhibition of lipoprotein lipase (LpL) with poloxamer 407 or by use of mice with induced genetic LpL deletion. Despite the increase in CD36 expression with fasting, genetic loss of CD36 did not alter fatty acid uptake or triglyceride accumulation. Our data demonstrate that fasting-induced triglyceride accumulation in the kidney correlates with the plasma concentrations of NEFAs but is not due to uptake of lipoprotein lipids and does not involve the fatty acid transporter CD36.

A second project was initiated to assess how diabetes causes increased systemic inflammation. Calgranulins S100A8 and S100A9 circulating levels are increased during diabetes and might instigate a sterile inflammatory response in the innate immune system. To determine whether krüppel-like factor 5 (KLF5) regulates S100A8 and S100A9 during hyperglycemia; we generated myeloid-specific KLF5 knockout mice (MKK) and found these mice had no change in circulating monocytes and neutrophils. We isolated neutrophils from these mice and found that S100A8 and S100A9 expression was not changed. We found similar null results when these mice were made diabetic. We conclude that this line of myeloid-deficient KLF5 knockout mice
do not have changes in S100A8 or S100A9 expression or in the numbers of circulating white cells.
# Table of Contents

List of Figures ........................................................................................................ iii
List of Tables .......................................................................................................... v
Abbreviations ....................................................................................................... vi

Chapter 1: Lipid Metabolism ................................................................................. 1
  1.1 Introduction ................................................................................................... 1
  1.2 Fatty Acid Transport .................................................................................. 1
  1.3 Fatty Acid Oxidation .................................................................................. 4
  1.5 Regulation of fatty acid metabolism by PPARs ............................................. 7
  1.6 Lipotoxicity .................................................................................................. 8

Chapter 2: Physiology, Metabolism, and Disease in the Kidney ......................... 11
  2.1 Kidney Anatomy & Physiology .................................................................. 11
  2.2 Diabetic Kidney Disease .......................................................................... 15
  2.3 Kidney Lipid Metabolism and Lipotoxicity in Health and Disease ............ 20

Chapter 3: Kidney triglyceride accumulation in the fasted mouse is dependent upon serum free fatty acids. ................................................................. 25
  3.1 Abstract ..................................................................................................... 25
  3.2 Introduction ............................................................................................... 26
  3.3 Material and Methods .............................................................................. 27
  3.4 Results ....................................................................................................... 33
  3.4 Discussion ................................................................................................. 56

Chapter 4: Krüppel-Like Factors and S100 proteins .............................................. 64
4.1 Introduction to Krüppel-like factors .............................................................................. 64
4.2 KLF5 in Health and Disease .......................................................................................... 66
4.3 S100 Proteins .................................................................................................................. 70
4.4 S100A8 and S100A9 in Health and Disease ................................................................. 72

Chapter 5: KLF5 does not regulate neutrophil maturation, S100A8, and S100A9. .............. 76
  5.1 Introduction .................................................................................................................. 76
  5.2 Materials and Methods .............................................................................................. 77
  5.3 Results ........................................................................................................................ 83
  5.4 Discussion ................................................................................................................... 99
  5.5 Conclusions ................................................................................................................ 101

Chapter 6: Conclusions and future directions ................................................................... 102
References ....................................................................................................................... 108
List of Figures

Figure 1. Sieving mechanism of the glomerulus is an intricate network of multiple cell types... 13
Figure 2. Segments and filtrate concentration along the nephron ............................................ 14
Figure 3. Nephrotic Syndrome leads to dyslipidemia................................................................. 18
Figure 4. Summary of mechanisms of lipid accumulation in the kidney during injury .......... 24
Figure 5. Kidney triglycerides increased in both male and female mice after an overnight fast.. 34
Figure 6. The kidney in the fasted state up regulates lipid oxidation genes and down regulates lipid synthesis genes .................................................................................................................. 38
Figure 7. The kidney in the fasted state up regulates lipid oxidation genes and down regulates lipid synthesis genes (cont.).............................................................................................................. 39
Figure 8. Four-hour refeeding does not significantly decrease lipid accumulation accrued during fasting........................................................................................................................................ 41
Figure 9. Ceramides and glycosphingolipids are lowered in the fasted kidney....................... 43
Figure 10. Plasma free fatty acids determine kidney triglyceride content............................ 45
Figure 11. Plasma free fatty acids determine kidney triglyceride content (cont.)............... 46
Figure 12. Kidney triglyceride accumulation do not require CD36 for transport fatty acid transport ............................................................................................................................................. 48
Figure 13. LpL is not required for triglyceride accumulation in the kidney........................... 50
Figure 14. Triglyceride-rich lipoproteins are not a significant source of triglyceride in the kidney .............................................................................................................................................. 53
Figure 15. Triglyceride-rich lipoproteins are not a significant source of triglyceride in the kidney (cont.) ............................................................................................................................................. 55
Figure 16. Neutrophils of MKK mice have increased expression of Klf4, 11, and 15 .............................. 85

Figure 17. Weight, glucose, and plasma lipids of MKK mice are comparable to Klf5fl/fl littermates................................................................................................................................. 86

Figure 18. MKK mice do not have any differences in peripheral white blood cells or bone marrow progenitors at baseline .................................................................................................................. 87

Figure 19. Neutrophils of MKK mice do not have lower expression of S100a8 and S100a9 at baseline ............................................................................................................................................... 88

Figure 20. MMK and Klf5fl/fl mice both present with leukocytosis during diabetes......................... 90

Figure 21. MKK mice do not have any differences in peripheral white blood cells or bone marrow progenitors during diabetes ......................................................................................... 91

Figure 22. Neutrophils of MKK mice do not have lower expression of S100a8 and S100a9 during diabetes ........................................................................................................................................ 92

Figure 23. HL-60 cells express lower KLF5 and more S100A8 and S100A9 as they differentiate into neutrophils ........................................................................................................................................ 94

Figure 24. Inhibition of KLF5 does increase HL-60 cells differentiation to neutrophils .......... 95

Figure 25. Hyperglycemia does not increase gene expression KLF5, S100A8 or S100A9 in neutrophils after 24 hours ...................................................................................................................................... 97

Figure 26. Hyperglycemia does not increase gene expression KLF5, S100A8 or S100A9 in neutrophils after 72 hours ...................................................................................................................................... 98
List of Tables

Table 1. Association between dyslipidemia and CKD ................................................................. 19
Table 2. Primer sequences of genes analyzed for quantitative PCR............................................. 31
Table 3. Ten most significantly altered pathways in the kidney between the fed and fasted state37
Table 4 (Supplemental) Genes Associated with ceramide biosynthesis....................................... 63
Table 5. A summary of the notable roles of KLF1-18................................................................. 65
Table 6. List of Flow Cytometry Antibodies................................................................................. 80
Table 7. Mouse primer sequences for quantitative PCR analysis................................................ 81
Table 8. Human primer sequences for quantitative analysis ......................................................... 82
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apo</td>
<td>apolipoprotein</td>
</tr>
<tr>
<td>ATGL</td>
<td>adipose tissue triglyceride lipase</td>
</tr>
<tr>
<td>ATRA</td>
<td>all-trans retinoic acid</td>
</tr>
<tr>
<td>BM</td>
<td>bone marrow</td>
</tr>
<tr>
<td>CD36</td>
<td>cluster of differentiation 36</td>
</tr>
<tr>
<td>CE</td>
<td>cholesteryl ester</td>
</tr>
<tr>
<td>CKD</td>
<td>chronic kidney disease</td>
</tr>
<tr>
<td>CM</td>
<td>chylomicron</td>
</tr>
<tr>
<td>CMP</td>
<td>common myeloid progenitor</td>
</tr>
<tr>
<td>DAMP</td>
<td>damage associated molecular pattern</td>
</tr>
<tr>
<td>Dnep</td>
<td>diabetic nephropathy</td>
</tr>
<tr>
<td>DNL</td>
<td>de novo lipogenesis</td>
</tr>
<tr>
<td>ESRD</td>
<td>end-stage renal disease</td>
</tr>
<tr>
<td>FAO</td>
<td>fatty acid oxidation</td>
</tr>
<tr>
<td>FATP</td>
<td>Fatty acid transport protein</td>
</tr>
<tr>
<td>GFR</td>
<td>glomerular filtration rate</td>
</tr>
<tr>
<td>GMP</td>
<td>granulocyte-macrophage progenitor</td>
</tr>
<tr>
<td>HDL</td>
<td>high-density lipoprotein</td>
</tr>
<tr>
<td>HSPC</td>
<td>hematopoietic stem/progenitor cell</td>
</tr>
<tr>
<td>KLF</td>
<td>krüppel-like factor</td>
</tr>
<tr>
<td>LCFA</td>
<td>long-chain fatty acid</td>
</tr>
<tr>
<td>LD</td>
<td>lipid droplet</td>
</tr>
<tr>
<td>LDL</td>
<td>low-density lipoprotein</td>
</tr>
<tr>
<td>LpL</td>
<td>Lipoprotein Lipase</td>
</tr>
<tr>
<td>M KK</td>
<td>myeloid-specific Klf5 knockout</td>
</tr>
<tr>
<td>MTP</td>
<td>microsomal triglyceride transfer protein</td>
</tr>
<tr>
<td>NEFA</td>
<td>non-esterified fatty acid</td>
</tr>
<tr>
<td>NepS</td>
<td>nephrotic syndrome</td>
</tr>
<tr>
<td>P407</td>
<td>poloxamer 407</td>
</tr>
<tr>
<td>PPAR</td>
<td>peroxisome proliferator-activated receptor</td>
</tr>
<tr>
<td>RAGE</td>
<td>receptor for advanced glycosylation end-products</td>
</tr>
<tr>
<td>STZ</td>
<td>streptozotocin</td>
</tr>
<tr>
<td>T1D</td>
<td>type 1 diabetes</td>
</tr>
<tr>
<td>T2D</td>
<td>type 2 diabetes</td>
</tr>
<tr>
<td>TG</td>
<td>triglyceride</td>
</tr>
<tr>
<td>TLR</td>
<td>toll-like receptor</td>
</tr>
<tr>
<td>VLDL</td>
<td>very low-density lipoprotein</td>
</tr>
</tbody>
</table>
Chapter 1: Lipid Metabolism

1.1 Introduction

Fatty acids are crucial molecules necessary for nearly all cell functions including membrane structure, intracellular signaling, and energy production. A fatty acid is a carboxylic acid bound to an aliphatic backbone. The degree of saturation and length of the aliphatic backbone can alter the function of fatty acids. Hydrophobic by nature, fatty acids must be bound to carrier molecules in order to be transported in the blood stream or in the cytoplasm of cells. Once transported within the cell, fatty acids take a number of paths. To name a few, they can be shuttled to the mitochondria to be used to generate ATP, act as cofactors for transcription, or become esterified to glycerol and stored in lipid droplets (LDs).

1.2 Fatty Acid Transport

Fatty acids circulate in the blood stream either bound to albumin or esterified into triglyceride (TG) and contained in lipoproteins. Serum albumin is a globular protein produced by the liver and maintains oncotic pressure. Albumin binds both hydrophilic molecules such as cations and hydrophobic molecules such as fatty acids, steroid hormones, and hemin (1).

Fatty acids also circulate in the blood while esterified to glycerol; three fatty acids are included in one TG molecule. Very low-density lipoproteins (VLDL) and chylomicrons (CM) are TG-rich lipoproteins synthesized in hepatocytes and enterocytes, respectively. Microsomal TG transfer protein (MTP) is essential for the formation of these lipoprotein particles (2). MTP binds to either ApoB48 (CM) or ApoB100 (VLDL) and transfers TGs to the nascent particle. Further modification to the nascent particle occurs via the additions of apolipoprotein E (ApoE), apolipoprotein CI and cholesteryl esters (CE). VLDL and CM gain apolipoprotein C-II (apoC-II)
in the circulation as they mature. ApoC-II is a required co-factor for activation of lipoprotein lipase (LpL) (3). LpL is synthesized as a monomer by parenchymal cells and transported to the surface of endothelial cells by glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein-1 (GPIHBP-1) (4). LpL is anchored to the endothelial surface by both GPIHBP-1 and heparan sulfate proteoglycans (5) (6). LpL is critical for TG clearance in the plasma. Familial LpL deficiency presents with severe hypertriglyceridemia causing lipemic plasma (7). LpL is regulated post-transcriptionally in many tissues. LpL is reported to be inhibited by apolipoprotein C-III (ApoC-III) (8), which can be found attached to TG-rich lipoproteins (9). Though inhibition of ApoC-III clears TG from the plasma, it may not be through LpL. Gordts et al. demonstrate Apo-CIII inhibits low-density lipoprotein receptor (LDLR) and LDL-like protein-1 (LRP-1) clearance of lipoproteins in the liver. In mice lacking both LDLR and LRP-1, antisense oligonucleotides targeting ApoC-III did not lower TG in the plasma (10). In order to function properly, LpL must form a homodimer in a head-to-tail fashion (11). Angiopoietin-like proteins (ANGPTL)-3,4, and 8 inhibit LpL, presumably by breaking the homodimer, which LpL requires to function (12) and by promoting intracellular degradation of LpL in the ER (13).

VLDL and CM particles are rid of their TG in the plasma by LpL and cholesterol ester transfer protein (CETP). CETP is a circulating enzyme that swaps TG for CE with high-density lipoproteins (HDL) and LDL. As VLDL loses TG and gains CE it turns into an intermediate density lipoprotein (IDL) and LDL. LDL is cleared from the circulation by binding to LDLR on hepatocytes via ApoB contained within the particle (14). The LDLR is regulated at the transcriptional level by sterol-regulatory element binding protein-2 (SREBP 2) (15) (16). A circulating protein called proprotein convertase subtilism/kexin type 9 (PCSK9) that is secreted by the small intestine and liver, binds to LDLR and initiates its intracellular degradation of the
protein (17). Although the proteins and lipids of all lipoproteins are susceptible to oxidative damage, oxidatively modified LDL (ox-LDL) is of particular interest because of its atherogenic properties (18). However, “ox-LDL” is a broad generalization of a heterogeneous population of particles, of which may have dissimilar physiologic properties (19).

After hydrolysis, fatty acids are freed from the lipoprotein and must be transported into the cell. This process may or may not require the assistance of a surface membrane receptor. In cases where it does not, fatty acids can diffuse through the membrane to the cytoplasm in a phenomenon called “flip-flop” (20). This may be the case for when the concentration of fatty acids is very high. When fatty acid concentration is low, a transporter is necessary. Several proteins have been reported to transport fatty acids across the cell surface including cluster of differentiation (CD) 36 (21) (22), plasma membrane fatty acid binding protein (FABPpm) (23), and the family of fatty acid binding proteins/ solute carrier family 27 A (FATP/SLC27A) (24). CD36 is a transmembrane scavenger receptor which binds a number of factors including ox-LDL (25), thrombospondin (26), collagen types I and IV (27) and long-chain fatty acids (LCFA) (28). The role of CD36 as a fatty acid transporter in a number of tissues such as heart, skeletal muscle and adipose tissue is highlighted in total body CD36 knockout studies (29) (30). CD36 null mice have a two-thirds decrease in fatty acid uptake and utilization in these tissues. Conversely, mice that overexpress CD36 in their skeletal muscle have increased rates of fatty acid oxidation during contractions (31). FATPs are a family of LCFAs transporters consisting of six other isoforms. FATPs share a large degree of sequence homology to long-chain acyl CoA synthetase 1 (ACSL1) (32). FATP1 and FATP4 have acyl-CoA synthetase as well as transport activity. (33) (34). FABPpm (also referred to as liver or L-FABP) was reported to transport LCFA to the nucleus when overexpressed in L-cells (35), as well as transferring fatty acyl CoAs to nuclear
transcription factors (36). This family of transporters also traffics fatty acids within the cytoplasm of the cell (35).

1.3 Fatty Acid Oxidation

Fatty acids enter the cell and are trapped by binding to coenzyme A (CoA). ACSLs form a thioester bond between a fatty acid and a CoA molecule using ATP to create fatty acyl-CoA. Once trapped in the cytoplasm fatty acyl-CoAs can be processed in downstream reactions. Fatty acyl-CoAs enter the mitochondria through the carnitine shuttle. This process requires the addition of carnitine to fatty acyl-CoAs by carnitine palmitoyltransferase I (CPT1), located on the mitochondrial outer membrane. Indeed, patients with CPT1 deficiency have an increased carnitine:palmitoylcarnitine ratio in the serum and low circulating ketones (37). Acyl-carnitine is transferred across the inner membrane of the mitochondria via a translocase called carnitine-acylcarnitine translocase/solute carrier family 25 member 20 (CACT/SLC25A20). Once across, CPTII, located on the inner membrane catalyzes the reverse reaction of CPT1, by reattaching CoA in place of carnitine to again form fatty acyl-CoA. In the mitochondria, β-oxidation cleaves fatty acyl-CoA to acetyl-CoAs that then enter the citric acid cycle/Krebs cycle. The citric acid cycle generates reducing agents, NADH and FADH$_2$, which delivers high-energy electrons to the electron transport chain. Intermediates of the citric acid cycle are used in other cellular processes as well. For example, α-ketoglutarate is generated from isocitrate oxidation and is the substrate for the synthesis of non-essential amino acids. Alanine transaminase converts α-ketoglutarate and alanine to glutamate. Glutamate is then converted to glutamine. Glutamine itself is a component and precursor for almost every other macromolecule. The electron transport chain uses the energy of electrons generated from NADH and FADH$_2$ to transport protons into the
Intermembrane space of the mitochondria. These protons then flow down their gradient via an ATP synthase to generate ATP by coupling inorganic phosphate to ADP.

1.4 *De Novo Synthesis of fatty acids*

Fatty acids can be synthesized from carbohydrate-derived acetyl-CoA, in what is known as *de novo* lipogenesis (DNL). Glucose and fructose are highly lipogenic substrates and provide the two-carbon substrate needed for DNL (38). This process begins by the formation of malonyl-CoA by acetyl-CoA carboxylase (ACC), a multifunctional rate-limiting enzyme (39). Fatty acid synthetase (FAS) is a network of enzymes that elongates fatty acids until they reach 16-18 carbons in length (40). DNL is regulated transcriptionally by SREBP1-c and carbohydrate response element binding protein (ChREBP). SREBP1-c is, in turn, transcriptionally regulated by the liver X receptor/retinoid X receptor (LXR/RXR) and insulin (41). SREBPs exist as a precursor protein in the ER. This protein is cleaved by SREBP cleaving-activating protein, when sterols are present. Once cleaved, SREBP translocates to the Golgi apparatus and undergoes another round or proteolytic cleavages before translocating to the nucleus. ChREBP is activated by an influx of glucose into the cell (42) and binds to carbohydrate response element, upstream of FAS and ACC promoters (43) (44). After synthesis, palmitate can undergo a number of modifications, most notably elongation and desaturation. Elongation occurs in similar fashion to DNL, however it occurs in the membranes of the endoplasmic reticulum (ER) and produces stearic acid. Monounsaturated fatty acids are produced by stearoyl-CoA desaturase (SCD), which introduces a double bond between C-9 and C-10 of stearic acid to generate oleic acid.

*De novo* synthesized fatty acids (as well as those obtained extracellularly) are stored by being esterified with a glycerol molecule forming monoacyl-glycerols, diacylglycerols, and TGs that are stored in LDs. In most tissues, save for enterocytes, TG synthesis begins with glycerol-3-
phosphate gaining a fatty acyl-CoA to form lysophosphatidic acid (LPA), catalyzed by glycerol-3-phosphate acyltransferase. LPA is a potent signaling molecule, notably for its mitogenic effects on cells (45). The enzyme 1-acylglycerol-3-phosphate O-acyltransferase adds another fatty acyl-CoA to LPA to form phosphatidic acid (PA), which is a precursor to many phospholipid species as well as diacylglycerol (DAG). DAG is synthesized from PA following removal of a phosphate by phosphatidic acid phosphatase. DAG is a potent intracellular second massager, activating protein kinase C (PKC) (46). DAG is converted to TG by the addition of the final fatty acyl-CoA by diacylglycerol acyl transferase 1 and 2 (DGAT1 and DGAT2). Phospholipids serve as an additional building block for TG synthesis. In enterocytes, monoacylglycerol is derived from hydrolysis of dietary TG by pancreatic lipase and is taken up by enterocytes with the aid of bile salts (47). Thus, enterocytes bypass several steps in TG synthesis by using monoacylglycerol as an initial molecule. DAG is synthesized from monoacylglycerol via addition of a fatty acyl-CoA by monoacylglycerol acyltransferase, which is then converted to TG by DGAT 1 and 2. Synthesized TG in enterocytes are then packaged into CM and released into the circulation.

TG and CE are stored in LDs within the cells. LDs are not inert storage vesicles, but an active participant cellular metabolism. Proteins are studded on the surface of LDs, most notable are perilipins (PLINs) (48). Phosphorylation of the perilipin proteins allows intracellular lipases, such as hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) to access TG in LDs for hydrolysis. As the name suggests, HSL is activated by hormones such as catecholamines and adrenocorticotropic hormone and is inhibited by insulin (49). Catecholamines cause a downstream signaling cascade leading to phosphorylation of HSL by protein kinase A (PKA) ATGL is transcriptionally downregulated by insulin and is transactivated by peroxisome proliferator-activated receptor (PPAR) γ in adipocytes (50).
1.5 Regulation of fatty acid metabolism by PPARs

PPARs are members of nuclear receptors superfamily. They are transcription factors that regulate many genes involved in lipid metabolism (51). Conversely, PPARs themselves require lipids and lipid derivatives to active gene expression (52). While PPARs play a role in many other cellular functions, their role in lipid metabolism will be discussed here. There are three PPARs; PPARα, PPARβ/δ, and PPARγ (of which there are three alternative splicing variants, γ1, γ2, and γ3). PPARs heterodimerize with RXR and bind PPAR response elements on DNA promoters of numerous genes (52).

PPARα is highly expressed in oxidative tissues such the heart, brown adipose tissue, liver and kidney (53). PPARα controls the transcription of many genes required for FAO including Cpt1a and Acox (12) as well as genes related to the transport of fatty acids such as Cd36 and Lpl (54,55). The role of PPARα has been extensively characterized in the liver and the heart (56). Ppara −/− mice have increased TG, long chain acyl-carnitines, and non-esterified fatty acids (NEFAs) in their livers, as well as decreased glycogen and free carnitine (12). Due to its role in fatty acid catabolism, PPARα is an attractive drug target for dyslipidemia. Fibrates constitute a class of drugs that exert their function by activating PPARα. Fibrates raise plasma HDL and lower plasma VLDL in humans (57).

PPARβ/δ similarly controls FAO in peripheral tissues such as skeletal muscle and adipose tissue (58). Over expression of PPARβ/δ in skeletal muscle caused an increase in fatty acid utilization and more type-1 muscle fibers (59). Cardiomyocyte specific deletion of PPARβ/δ leads to impaired ability of the heart to oxidize palmitate (60).

PPARγ is essential for adipocyte differentiation as well as lipid storage and lipolysis (61) in these cells (62). As a result, mice lacking PPARγ in adipocytes are protected from diet-
induced obesity and insulin resistance (63). PPAR\(\gamma\) controls the transcription of perilipins (64), which are critical for the structure and function of LDs. PPAR\(\gamma\) also drives the transcription of glycerol kinase (65), a key enzyme in the esterification process of fatty acids to a glycerol backbone and ATGL (61). Thiazolidinediones are PPAR\(\gamma\) agonist compounds used as anti-diabetic drugs (66). Due to PPAR\(\gamma\) role of increasing storage of fatty acids in adipose tissue, diabetic patients have reduced serum TG and increased glucose utilization by tissues–lowering serum glucose (67). Pan-PPAR agonists, those that activate all or more multiple PPARs, have been explored for therapeutic benefit. Bezafibrate, a pan agonist, ameliorates cardiomyopathy in a mouse model of Barth syndrome (68). Bavachinin lowers glucose without inducing weight gain or liver toxicity in obese mice (69). Bavachinin also worked synergistically with thiazolidinediones and fibrates to lower glucose and plasma TG in \(db/db\) mice (69).

### 1.6 Lipotoxicity

Lipotoxicity occurs when non-adipose tissues are unable to properly store lipids, causing buildup of toxic lipid species. (70) These lipid metabolites include NEFAs, free cholesterol, ceramides, and DAGs. Lipotoxicity is liable for a number of diseases and organ dysfunction such as non-alcoholic fatty liver disease, insulin resistance in muscle, cardiac dysfunction, and kidney dysfunction (71-74).

NEFAs, particularly saturated fatty acids, are damaging to cells (75). Specifically, cells incubated with saturated fatty acids undergo apoptotic death (76). On the other hand, cells incubated with unsaturated fatty acids accumulate TG without decreased viability. SCD 1 is the enzyme that converts saturated fatty acids to monounsaturated fatty acids. \(Scd-1^{-}\) mice put on a methionine-choline deficient diet accumulate less TG in their livers, but are more prone to liver injury (77), likely due to an increase in intracellular saturated fatty acids. The mechanisms by
which saturated NEFAs induce apoptosis are not entirely clear. ER-stress is induced in β-cells incubated with saturated fatty acids (78). It is worth noting that unsaturated fatty acids have also been shown to be toxic. Oleic acid is cytotoxic to cardiomyocytes when lipolysis from lipid droplets is stimulated in these cells (79). NEFAs may also cause an upregulation of death receptors such as Fas and TRAIL receptor 5 (80) (81). NEFAs are also susceptible to lipid peroxidation by free radicals. As all membranes of cells are made of fatty acids, lipid oxidation products can severely complicate the integrity of cells. Glutathione peroxidase 4 reduces lipid hydroperoxides to alcohols, and its absence is embryonically lethal in mice (82). While NEFAs are toxic to cells, these molecules are also building blocks for potent signaling lipids. NEFAs can cause an increase in cellular lipid intermediates such as ceramides and DAGs, which cause cellular dysfunction at high intracellular concentrations (83) (84) (85).

Ceramides are composed of a sphingosine and a fatty acid and predominantly constitute a component of the cellular membrane. Ceramides can be made de novo in the ER from palmitate and serine as the preliminary building blocks. Sphingosine is synthesized from palmitoyl CoA and a serine amino acid by serine palmitoyl transferase (SPT) (86). Ceramide synthase then combines sphingosine to a fatty acyl CoA to create a ceramide molecule. However, a majority of cellular ceramides come from the salvage pathway (87). The salvage pathway utilizes sphingosine released from the lysosome, which is then trapped by ceramide synthase (87). Targeting of the de novo pathway of ceramide synthesis has reversed lipotoxicity in tissues. In a dilated lipotoxic cardiomyopathy model, treatment with the SPT inhibitor myriocin, improved systolic function and prolonged survival rates (88). The exact mechanism by which ceramides induce apoptosis is not clear. Ceramides may induce apoptosis by increasing cytochrome c release from the mitochondria (89). Additionally, mitochondrial dysfunction and impaired fatty
Acid oxidation (FAO) only exacerbate lipid accumulation and lipotoxicity. Ceramides also cause insulin resistance by interfering with JAK/STAT signaling—increasing suppressor of cytokine signaling 3 in adipose tissue (90) (91).

DAG is generated as a metabolite of TG synthesis and from cleavage of phosphatidylinositol 4,5 bisphosphate, along with inositol triphosphate (IP3). IP3 opens Ca\(^{2+}\) channels on the mitochondrial membrane and ER and DAG activates PKC. Upon Ca\(^{2+}\) binding PKC translocates to the membrane and phosphorylates insulin receptor substrate 1, thereby inactivating it (92) and preventing GLUT4 translocation to the cell membrane (93). Therefore, a high amount of intracellular DAG can result in systemic insulin resistance. One method to increase intracellular DAG levels is via deletion of DGATs. Though \(Dgat1^{-/-}\) animals are healthy and resistant to obesity, heart-specific \(Dgat1\) null mice have increased DAG in their hearts and severe heart failure (94). This cardiac phenotype could be treated with glucagon-like peptide-1 (GLP-1) agonists, which reduced cardiomyocyte DAG and improved cardiac function (94). The extent to which DAG contributes to insulin resistance in humans is not clear. It may be that certain DAG species are more prone to causing insulin resistance than others. DAGs composed of saturated fatty acids or in a 1,2-DAG conformation are more prone to cause insulin resistance than other subspecies (95) (96). There are two isoforms DGAT, 1 and 2, and research suggests DGAT1 preferentially adds fatty acyl molecules in the 1,2-DAG position (97).
Chapter 2: Physiology, Metabolism, and Disease in the Kidney

2.1 Kidney Anatomy & Physiology

The kidney is a bean-shaped organ, which controls numerous homeostatic biological functions, including electrolyte and fluid balance, regulating blood pH, and blood pressure (98). The kidney is also an endocrine organ producing calcitriol (vitamin D3), erythropoietin, and renin (99). While comprising only 3% of one’s total mass, the kidney is richly supplied with blood, receiving up to a fifth of the cardiac output. This is essential for its principal function of filtering blood. Much of what is filtered is reabsorbed and what is not is released as waste. The efficiency of the filtration apparatus in the kidney is called the glomerular filtration rate (GFR). The functional unit of this filtration system is called the nephron and each nephron is segmented into specialized areas.

Blood enters the kidney through the afferent arteriole and travels through the glomerulus before exiting and re-entering the circulation through the efferent arteriole. The glomerulus (Figure 1) is found within Bowman’s capsule, a sac that collects glomerular filtrate. The glomerulus is a network of cell types that creates a sieving mechanism in the kidney. The endothelial cells are perforated with fenestrae. These fenestrae are lined by a negatively charged glycocalyx, which repel large, polar molecules. Enfolded around the endothelial cells are podocytes. These cells have long foot processes that inter-digitate, forming filtration slits. Mesangial cells are contractile intra-and extra-glomerular cells, which contract and change the shape of the glomerulus—adjusting the rate at which the glomerulus filters. GFR is the volume of fluid that enters Bowman’s capsule per unit time. The hydrostatic pressure of the afferent and efferent arterioles, as well as the other cell types mentioned, are crucial in determining the GFR (98). The pathophysiology of glomerular injury is characterized by sclerosis of the thin
capillaries, proliferation of mesangial cells, and podocyte effacement of endothelial cells (100). The compromised filtration apparatus causes a dramatic drop in GFR, which manifests clinically as proteinuria. A GFR of 60 mL/min per 1·73 m² for more than three months is considered chronic kidney injury (CKD) (101).

After the filtrate is drained into Bowman’s capsule, it enters the proximal tubule (Figure 2). The cells of the proximal tubule are polarized epithelial cells with a luminal brush border. The proximal tubule epithelial cells reabsorb a majority of what is filtered through by the glomerulus such as Na⁺, K⁺, PO₄³⁻, citrate, amino acids and glucose. Nearly all the glucose filtered through the glomerulus is taken up by the proximal tubules via the sodium/glucose co-transporter 2 (SGLT2). Using secondary active transport, SGLT2 transports Na⁺ and glucose into the cell. A Na⁺/K⁺ pump drives Na⁺ out of the cell and glucose leaves the cell and enters the bloodstream via the glucose transporter GLUT2. SGLT2 is a pharmacological target to lower plasma glucose for diabetic patients (102). By inhibiting this transporter, glucose is not reabsorbed but leaked out in the urine, thus lowering plasma glucose. The filtrate proceeds to the descending loop of Henle. The loop of Henle creates a concentration gradient in the medulla. This gradient becomes more permeable to water and the filtrate becomes more concentrated the further it descends downward—aiding in the reabsorption of water. The ascending loop of Henle is not permeable to water but permeable to ions. This allows for the reabsorption of ions from the filtrate in order to diluting it. The filtrate moves to the distal tubules, a portion of which is a specialized Na⁺ sensing cell called the macula densa. These cells communicate to local smooth muscle cells, which release renin and also control vasodilation or constriction of the afferent arteriole. The distal tubules participate in calcium homeostasis by reabsorbing Ca²⁺ in the presence of parathyroid hormone. Finally, the filtrate moves down the collecting ducts. The
collecting duct connects the nephron to the ureter and is responsive to aldosterone and vasopressin which allows for the regulation of total body blood pressure (103). Like the loop of Henle, the collecting ducts descend the medulla and osmotic gradient, which allows for the reabsorption of water from the renal filtrate (104).

**Figure 1. Sieving mechanism of the glomerulus is an intricate network of multiple cell types**

The glomerulus is a network of cell types that creates a sieving mechanism in the kidney. These include fenestrated endothelial cells lined with a glycocalyx and podocytes that exclude large polar molecules from passing through the filtrate. Weaved within the glomerular capillaries are mesangial cells which contract to control the flow of filtrate in glomeruli. (A) fenestrae, (B) podocytes, (C) podocyte foot processes, (D) filtration slits (E) mesangial cells.
Figure 2. Segments and filtrate concentration along the nephron

The nephron is the functional unit of the kidney. Each segment contains specialized cell-types for the reabsorption of water and nutrients as well as the production of hormones. Arrows indicate flow of filtrate; while the gradient conveys concentration of the filtrate (darker color indicates higher concentration of ions). (1) afferent arteriole, (2) glomerulus, (3) efferent arteriole, (4) Bowman’s Capsule, (5) proximal tubules, (6) descending loop of Henle, (7) ascending loop of Henle, (8) distal tubules, (9) collecting ducts.
2.2 Diabetic Kidney Disease

Nephrotic syndrome (NepS) describes a condition in which the kidney can no longer properly filter blood due to damage to the glomerulus (105). NepS is defined as when one presents with proteinuria, hypoalbuminurea/edema, and hyperlipidemia (106). NepS is either due to primary causes, such as genetic glomerulopathies and injuries that damage the glomerulus or secondary causes that result in renal injury. Secondary causes are brought on by systemic insults such as hepatitis B/C, HIV or lupus. NepS progresses to CKD and eventually end-stage renal disease (ESRD), which requires dialysis or kidney transplant (Figure 3). Currently, diabetes mellitus (DM) is the most common cause of NepS and ESRD in developed countries and is known as diabetic nephropathy (DNep) (107), for which there is currently no cure. About one fifth of patients with DM go on to develop DNep (108), but it is not known why some DM patients go on to develop DNep and other do not. Nonetheless, current therapies aim to slow the progress of DNep to ESRD in patients. Patients with DNep suffer from a trifecta of hypertension, hyperglycemia, and hyperlipidemia.

Currently, the most effective drugs for DNep block the renin-angiotensin system, such as angiotensin-converting enzyme inhibitors (ACEi) or angiotensin II type 1-receptor blockers (ARBs). These drugs slow the rate of GFR decline in rodents and humans (109). Clinical trials have shown that ACEi is renoprotective if patients with diabetes take them before the onset of renal decline. The Bergamo Nephrologic Diabetes Complications Trial (BENEDICT) showed that type 2 diabetes (T2D) patients with hypertension but without proteinuria given ACEi halved their risk of albuminuria after four years compared to non-ACEi therapy (110).

Microvascular complications of DNep are facilitated by chronic hyperglycemia. Patients with DM and DNep are advised to properly manage their glucose levels. Hyperglycemia has
been shown to cause sclerosis of the glomerulus, activation of the renin-angiotensin-aldosterone system in the kidney, and effacement of podocytes (111). Thus glycemic control of patients with DM has been explored as a therapeutic intervention aiming to slow or prevent ESRD. Several clinical trials show a significant reduction in albuminuria in patients with DM who were on aggressive glycemic control regiments (112). However, there was no evidence that intensive glucose management reduced risk for ESRD (111). Still though, the Kidney Disease Outcomes Quality Initiative recommends in their 2012 guidelines an HbA1C ≤7% in patients with DNep (113).

A relatively new class of glucose lowering drugs has been developed. This class of drugs inhibits SGLT2, which is expressed on the luminal surface of proximal tubule epithelial cells. The proximal tubule reabsorbs 180g glucose/day through SGLT2. Drugs that inhibit SGLT2 allow glucose to pass through the urine. Patients with T2D that were given SGLT2 inhibitors had a reduction in albuminuria and a slower decline of GFR (111). SGLT2 inhibitors are not used in patients who already have CKD or reduced renal function as these drugs have been shown to initially lower GFR through renal hemodynamic effects (114) However, research in animal models suggests that reducing the hyperfiltration in and intraglomerular pressure is beneficial for overall kidney function (115).

Dyslipidemia is highly associated with cardiovascular disease and patients with diabetic renal disease are at higher risk for cardiovascular disease than those with DM alone (116). Dyslipidemia is characterized by hypertriglyceridemia, low and poorly functioning HDL, and increased small dense LDL levels (117). Table 1 describes associations between the dyslipidemia and progress of CKD as well as possible causes. These data suggest that cholesterol-lowering techniques should be effective in preventing or slowing the progress of CKD. However, the
benefit of statins in preventing ESRD is not clear. A meta-analysis of 57 randomized clinical trials shows statin therapy does not reduce the risk for kidney failure events in adults but may reduce proteinuria and rate of eGFR decline (118). A second meta-analysis found that although treatment with statins did not slow the progression of ESRD, it did lower the rates of death (119). More research needs to be done to understand the role cholesterol plays in kidney pathogenesis and whether it can be targeted for treatment of CKD.
Figure 3. Nephrotic Syndrome leads to dyslipidemia
Table 1. Association between dyslipidemia and CKD

<table>
<thead>
<tr>
<th>Lipoprotein</th>
<th>Evidence for Renal Injury</th>
<th>Ref</th>
<th>Cause(s) of Dyslipidemia</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperlipidemia</td>
<td>In humans, hypertriglyceridemia is a risk factor associated with an increased risk of progression of CKD</td>
<td>(120)</td>
<td>Decreased LpL activity and GPIHB1 protein; increased Angptl4</td>
<td>(121)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increase VLDL production by liver</td>
<td>(122)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Downregulation of VLDL in skeletal muscle and adipose tissue</td>
<td>(123)</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td><em>ApoE</em>-/- mice develop morphological and pathological hallmarks of kidney injury</td>
<td>(125)</td>
<td>Upregulation of PCSK9 and increased degradation of LDL receptor protein (IDOL)</td>
<td>(130)</td>
</tr>
<tr>
<td></td>
<td>Dietary cholesterol cause glomerulosclerosis in the kidney in rodents; reversible with low cholesterol diet</td>
<td>(126)</td>
<td>Decrease in hepatic LDLR</td>
<td>(131)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(127)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(128,129)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysfunction HDL particles</td>
<td>Inverse correlation between plasma HDL in CKD and cardiovascular events</td>
<td>(132)</td>
<td>CE-poor HDL particles from systemic upregulation of ACAT and decreased serum LCAT</td>
<td>(134)</td>
</tr>
<tr>
<td></td>
<td>African American patients with HDL associated protein, APOL1 risk alleles progress to CKD more quickly.</td>
<td>(133)</td>
<td>APOL1 mutation causes HDL dysfunctional</td>
<td>(135)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19
2.3 Kidney Lipid Metabolism and Lipotoxicity in Health and Disease

The association of lipid accumulation and injury in the kidney is not a new notion, but has recently gained more attention. Kimmelstiel and Wilson, in their seminal work, described lipoid deposits during DNeP (137). Rudolf Vichow lectured on “fatty degeneration” as a stage of glomerulonephritis—a primary cause of NepS. Multiple animal models of kidney injury and DNeP, present with TG accumulation in the kidney tubules and glomeruli (138). Questions as to the cause and origin of lipid in the kidney during injury remain unanswered.

2.3.1 De Novo lipogenesis. Murine kidneys express both Apob and Mttp, and knockdown of Apob by antisense oligonucleotides increased fasting-induced lipid accumulation (139). These data suggest the kidney can release lipoproteins though the reason is unknown. One theory suggests this is a remnant of evolution from egg laying ancestors. In chickens, estrogen causes the liver to produce a modified VLDL targeted to the yolk (VLDLy). The kidney, however, continues to produce normal VLDL—suggesting that the kidney (and other extra-hepatic tissues such as the intestines) contributes TG-containing lipoproteins for lipid delivery to other tissues (140). Kidney lipoprotein formation may have also evolved as a mechanism to regulate excess intracellular lipid accumulation. Mice given a 0.12% cholesterol diet have increased expression of ApoB in the kidney (127). When mice were switched to a 0% cholesterol diet, ApoB protein in the kidney decreased (127). If the kidney is able to synthesize lipoproteins like the liver, it is plausible the kidney may be able to synthesize TG as well.

DNL is a major contributor to liver lipotoxicity and non-alcoholic fatty liver disease (42). It has been suggested that the same pathway contributes to kidney dysfunction. Obese db/db mice had more TG in their kidneys and developed glomerulosclerosis, tubulointerstitial fibrosis and proteinuria (141). These mice also had an increase in renal SREBP1 and SREBP-2, as well
as their downstream targets, *Acc* and *Fasn* (141). Similarly, rats made diabetic with streptozotocin (STZ) had an increase in SREBP-1 protein and lipid accumulation around the glomeruli (142). Upon treatment with insulin, this was reversed (142). *Srebp-1c*−/− given a HFD accumulated less TG in their kidney, less glomerulosclerosis and express less fibrosis related genes such as plasminogen activator inhibitor-1, vascular endothelial growth factor, type IV collagen and fibronectin (143). These data suggest that DNL may play a major role in lipid accumulation in mice during metabolic syndrome. It is not clear whether this is true in humans. The human kidney does not contain a very high amount of *FASN*, the rate-limiting enzyme in DNL (144). When compared to normal kidney samples, mRNA levels of *de novo* lipogenesis genes are lower in DNep samples, despite containing more lipid (145). However, FAO genes such as *PPARA* and *CPT1* are positively correlated with GFR in the kidney (145).

### 2.3.2 Fatty acid oxidation

The kidney is one of the most energy consuming tissues in the body, with approximately two-thirds of its oxidative substrate provided by fatty acids (146). Excess fatty acid in the cell is esterified to form TG and stored in LDs (139). While the entire kidney can utilize fatty acids, the cortex and the epithelial tubule cells depend primarily on FAO for ATP (138). The cortex has very little glycolytic capacity compared to the medulla (147). Oxidative metabolism genes in the tubule cells of the kidney are under transcriptional control of the PPARs, specifically PPARα (148).

Decreased PPARα expression and protein levels are a common phenomenon in kidney injury (145) (149-152). Analysis of kidney samples obtained from 95 CKD patients found that FAO related genes, such as *CPT1* and acyl-CoA oxidase, were downregulated compared to controls (152). Overexpression of *Ppargcla* or treatment with fenofibrate, a PPARα agonist, mitigated tubulointerstitial fibrosis and lipid accumulation in mice with acute renal injury (152).
Though PPARα is a regulator of FAO in the kidney, other hypotheses as to its role in renal fibrosis are present. Diabetic mice given fenofibrate had reduced Wnt signaling in the kidney, thus, decreasing fibrosis of the tubules (153). Diabetic Ppara−/− mice expressed more NADPH oxidase-4 compared with diabetic wild-type mice, suggesting that the inhibitory effect of PPARα on Wnt signaling may be due to its antioxidant activity (153). During kidney injury, an immune response is triggered in order to repair the area. Fenofibrate was shown to attenuate inflammation and fibrosis by suppressing nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB) and transforming growth factor-beta 1 (TGF-β1) in kidneys of Zucker diabetic rats (154). TGF-β1, while also being a pro-fibrotic factor, also suppresses FAO (152). These data suggest it is difficult to tease out the exact role PPARα is playing in preventing fibrosis in the kidney. Though PPARα is renoprotective in animal models, more research is needed to determine its efficacy for patients with CKD (155). However, Ang II receptor blocker, irbesartan, has been shown to activate PPARα and increase PPARα signaling in the kidney (156). Thus, this class of drug may be an effective way of targeting PPAR in the kidney.

### 2.3.3 Fatty Acid Uptake.

The source of fatty acids for kidney oxidation and the mechanism by which fatty acids are taken up is not fully understood. Fatty acids are either transported on albumin or sequestered in TG containing lipoproteins. Albumin passes through the glomerulus, albeit very little. Thus, the tubule cells are exposed to fatty acids on the luminal and basal lateral face. Albumin is taken up on the luminal surface by LDL-receptor related protein 2 (LRP2) also known as megalin. Indeed, when ligand binding to megalin was inhibited, less 125I-BSA was taken up by rat kidney tubules (157). Compromised glomerular filtration may lead to increased lipid-loaded albumin uptake on the luminal face of the kidney, causing lipotoxicity in the tubule (158). On the apical side, there several known LCFA transport proteins
expressed in the kidney, such as CD36 and FATPs, as well as lipoprotein transport proteins like VLDL receptor. LpL can take fatty acids from lipoproteins via TG hydrolysis. The kidney has high LpL expression and activity making it comparable to the heart (159). LpL activity in the kidney is nutrient dependent—being lower in the postprandial state (159). Lipid not oxidized by the kidney is stored in small LDs in the kidney (139).

A common manner by which TG can accumulate in tissues is by taking up more fatty acid than can be oxidized or used structurally. Fatty acids can enter the cell by diffusing through the membrane or via a cell surface receptor. A common LCFA in tissues is CD36. During DNep in humans, CD36 is upregulated almost three-fold (145), suggesting that the observed TG accumulation in the kidney may be accounted for by increased FA uptake. During kidney injury, the barrier of the glomerulus is compromised allowing albumin and other proteins to flow through. Albumin triggers Cd36 expression in the kidney (160). CD36 mediates uptake of albumin in proteinuria nephropathies (161). High glucose has also been shown to increase Cd36 expression of proximal tubule cells in vitro, via AKT-PPARγ signaling (162). Hyperglycemia in concert with hyperlipidemia induces renal disease more than either alone (163). GLP-1 agonists have been shown to have a protective role in animal models of DNep. However, outcome data for patients with CKD or ESRD is lacking (164) (165).

CD36 is an attractive target for tackling renal disease. CD36 binds oxLDL and causes a downstream pro-inflammatory and pro-fibrogenic signal cascade (166). CD36 and Na+/K+-ATPase-a1 form a pro-inflammatory loop in the kidney during a high fat western-diet (167). By deleting Cd36 in ApoE null background, mice were protected from kidney damage during a western diet (167). Blocking CD36 with an Apo-A1 mimetic prevented CKD in mice, but this effect was not seen in CD36 null mice (168). Similarly, CD36 null mice on a HFD did not
present with the same amount of glomerular damage or tubular fibrosis as wild-type mice. (169). Thus CD36, and by extension, lipid uptake, seems an important feature in the progression of renal disease.

From the research presented, it is clear there is no consensus in which way lipid accumulates in the kidney during injury or CKD. The three major mechanisms, DNL, decreased FAO, and increased fatty acid import are summarized in Figure 4.

**Figure 4. Summary of mechanisms of lipid accumulation in the kidney during injury**

Triglyceride accumulation in the kidney involves increased synthesis, decreased oxidation, or increased uptake. There are several theories available as to how the kidney accumulates triglyceride during injury. A) *De novo* lipogenesis mediated by sterol-regulatory element binding protein (SREBP). B) Decreased fatty acid oxidation (FAO) due to decrease in PPARα protein and mRNA. C) Increase in uptake of albumin-bound NEFA from the luminal surface by megalin and CD36 or NEFA uptake by CD36 from the basolateral surface.
Chapter 3: Kidney triglyceride accumulation in the fasted mouse is dependent upon serum free fatty acids.

This chapter has been published in the Journal of Lipid Research (170).


3.1 Abstract

Lipid accumulation is a pathological feature of every type of kidney injury. Despite this striking histological feature, physiological accumulation of lipids in the kidney is poorly understood. We studied whether the accumulation of lipids in the fasted kidney are derived from lipoproteins or non-esterified fatty acids (NEFAs). With overnight fasting, kidneys accumulated triglyceride but had reduced levels of ceramide and glycosphingolipid species. Fasting led to a nearly 5-fold increase in kidney uptake of plasma $[^{14}\text{C}]$oleic acid. Increasing circulating NEFAs using a beta adrenergic receptor agonist caused a 15-fold greater accumulation of lipid in the kidney, while mice with reduced NEFAs due to adipose tissue deficiency of adipose triglyceride lipase had reduced triglycerides. $Cd36$ mRNA increased 2-fold, and $Angptl4$, an LpL inhibitor, increased 10-fold. Fasting-induced kidney lipid accumulation was not affected by inhibition of LpL with poloxamer 407 or by use of mice with induced genetic LpL deletion. Despite the increase in CD36 expression with fasting, genetic loss of CD36 did not alter fatty acid uptake or triglyceride accumulation. Our data demonstrate that fasting-induced triglyceride accumulation in the kidney
correlates with the plasma concentrations of NEFAs, but is not due to uptake of lipoprotein lipids and does not involve the fatty acid transporter CD36.

3.2 Introduction

The kidney is one of the most energy consuming tissues in the body with approximately two-thirds of its oxidative substrate provided by fatty acids (146). Excess fatty acid in the cell is esterified to form triglyceride and stored in LDs. While the entire kidney can utilize fatty acids, the cortex and the epithelial tubule cells depend on fatty acid oxidation (FAO) for ATP (138).

The cortex is also the site of large accumulations of neutral lipids during kidney disease and injury (138). Pathways that contribute to lipid accumulation in the kidney are not well established. Some studies suggest that during obesity, diabetes, and aging, an increase in the sterol regulatory element proteins (SREBPs) leads to greater de novo fatty acid synthesis, which drives lipid accumulation and decreases renal function (141-143,171). Other studies have shown that renal failure causes decreased FAO (152,172), which could independently increase lipid accumulation.

Multiple pathways are dysregulated in chronic kidney disease (CKD)—making this issue difficult to study. On the other hand, neutral lipid accumulation also occurs during fasting (139). In many tissues such as the heart, muscle, and adipose tissue, lipoprotein lipase (LpL) and cluster of differentiation (CD) 36 are necessary for proper transport of fatty acids into the tissues (173,174). LpL is synthesized by parenchymal cells and translocates to the endothelial surface where it hydrolyses very-low density lipoprotein (VLDL) and chylomicron TGs to produce non-esterified fatty acids (NEFAs). NEFAs can then either diffuse through the membrane in a process called “flip-flop” (175) or transfer across the membrane by a saturable receptor-mediated process.
CD36 has been postulated to mediate active transport of NEFAs into cells (177). Like the heart, skeletal muscle, and adipose tissue, the kidney robustly expresses both LpL and CD36 (178,179). However, in an unbiased assessment of renal genes in mice with diabetic kidney disease, Cd36 was reduced; as were other genes associated with renal fatty acid oxidation (180). This suggests that FAO and lipid uptake into the kidney are coordinately regulated.

In the current study, we first determined NEFA uptake into the kidney during fasting and then modulated plasma NEFA levels and assessed whether this altered kidney TG accumulation. We then tested whether TG-rich lipoproteins or NEFAs were the source of kidney TG stores. In addition, we tested how kidney CD36 and LpL were affected by fasting and whether these known moderators of TG metabolism affect fasting-induced lipid accumulation in the kidney. Please note that figures and all references to them presented in section 3.4.2 were not published in the original article.

3.3 Material and Methods

3.3.1 Animal Studies: We used 10-16 week-old male and female C57BL/6 mice, Cd36<sup>-/-</sup> mice, floxed Lpl<sup>(beta/beta)</sup>, iLpl<sup>-/-</sup> mice, floxed Mttp<sup>(beta/beta)</sup> and liver-specific Mttp knockout mice (<i>L-Mttp</i><sup>-/-</sup>), and adipocyte specific Atgl knockout mice (AAKO) (181,182). Mice were raised on a normal chow diet. Littermates were used as controls for all studies. The NYULMC, Washington University, SUNY Downstate, and U. Pittsburgh Institutional Animal Care and Use Committees approved all procedures. Mice of each genotype were divided into two groups; one group was fasted 16 hours overnight and the other was allowed to feed ad libitum for the same time period. All mice were then euthanized with a lethal injection of 100mg/kg ketamine and 10 mg/kg xylazine. Animals were dissected open then perfused by cardiac
puncture in the heart with 5 mL of PBS until liver and kidneys blanched. Tissues were dissected out, snap frozen in liquid nitrogen and stored at -80°C for further use. Kidneys were also bisected and embedded into Tissue-Tek OCT compound (Sakura) for oil-red O histology.

Poloxamer 407 (P407) was prepared in PBS as previously described (183). Mice were injected intraperitoneal with 1mg/g bodyweight of P407 and then fasted for 16 h. Control mice were injected with an equivalent volume of PBS.

\(iLp^f\) animals were generated as described previously (184). Briefly, \(\beta\)-actin-driven tamoxifen-inducible-Cre (Mer/Cre/Mer) transgenic mice were crossed with LpL flanked loxP sites mice to obtain the \(\beta\)-actin-MerCreMer/Lp\(l^{fl/fl}\) offspring, designated inducible-\(Lp^f\) (\(iLp^f\)). The \(iLp^f\) mice were given an intraperitoneal injection of 1 mg of 4-hydroxytamoxifen (Sigma) in peanut oil for five consecutive days.

\(\beta_3\)-adrenergic receptor agonist CL 316,243 (Sigma) was dissolved in PBS and injected into C57BL/6 mice at 1mg/kg at two time points (2pm and 6pm) (185). The mice were allowed to feed \textit{ad libitum} and sacrificed the following morning.

MTTP was inhibited using BMS-212122 (MTTPi) as previously described (186). Briefly, the MTTPi was diluted in DMSO and given to mice orally at a dose of 1mg/kg bodyweight for seven consecutive days. Control mice were given an equivalent volume of DMSO. After the final dose, mice were divided into two groups and either fasted overnight for 16 h or allowed access to food \textit{ad libitum} and sacrificed.

3.3.2 \textbf{Measurement of Plasma Lipids and Glucose:} 100 µL of blood were drawn from each animal and then centrifuged at 10,000 rpm on a table top centrifuge for 10 min to obtain plasma. Plasma was used to measure TGs and NEFA using Thermo Scientific Infinity assay (Thermo Scientific) and Wako NEFA kit, respectively. Glucose was measured from whole blood
using a One Touch Ultra 2™ glucometer. TG-rich lipoproteins (density < 1.006 g/ml) were separated by sequential density ultracentrifugation of plasma in a TLA100 rotor as described in Kako Y et al. (187).

3.3.3 Lipid Extraction and Measurement: The lipid extraction protocol was adapted from the Folch method (188) and modified slightly from Trent et al. (173). Briefly, approximately 100mg of tissue was homogenized in 500 µL of ice-cold PBS using stainless steel beads for 30s in a bead beater homogenizer. From each sample, 50 µL were removed for protein analysis, and 1.5 milliliters of 2:1 chloroform: methanol was added to the rest of the homogenate in a glass test tube. Samples were then centrifuged for 10 min at 3,000 rpm at 4°C. The lower organic phase was separated with glass Pasteur pipette and blown dry with nitrogen gas. The dried lipid was then dissolved with 500 µL of 2% Triton X-100 in chloroform, further dried, and then dissolved in double distilled water. The sample of tissue lysate put aside was used to assay protein content using Bradford reagent (Bio-Rad) following manufactures instructions. Using the tissue lipid extract, assays for TG were performed using previously described assay for plasma lipid. Lipid measurements were normalized to protein content of each sample or milligram of tissue weight.

3.3.4 In vivo NEFA Uptake: NEFA uptake was assessed in C57BL/6 mice either fasted 16 h overnight or allowed access to food ad libitum for the same time and in Cd36<sup>−/−</sup> and Cd36<sup>0/0</sup> fasted 16 h overnight. [1-<sup>14</sup>C]oleic acid (PerkinElmer Life Sciences) was complexed to 0.6% fatty acid-free BSA (Sigma). Mice were injected intravenously with 1.5x10<sup>6</sup> cpm of [1-<sup>14</sup>C]oleic acid-BSA and blood was collected at 0.5, 2, and 5 min after injection after which the mice were sacrificed. Plasma was collected as previously described. The body cavity was perfused with 5 mL of PBS by cardiac puncture and tissues were extracted. Tissues were homogenized in 1 mL
of PBS and radioactive counts were measured using a LS 6500 multipurpose scintillation counter (Beckman Coulter). For C57BL/6 mice, radioactivity per gram tissue was normalized to average plasma NEFA levels in either the fed or fasted group. For \( Cd36^{+/−} \) and \( Cd36^{Δ/Δ} \), radioactivity per gram tissue was normalized to 2 min plasma cpm counts.

3.3.5 Renal Gene Expression: Total RNA was purified from approximately a 50 mg piece of kidney cortex using TRIzol reagent (Invitrogen) according to the instructions of the manufacturer. cDNA was synthesized using Verso cDNA Kit (Thermo Scientific) and quantitative real-time PCR were performed with Power SYBR Green PCR Master Mix (Life Technologies) using a Quant Studio 7 Flex analyzer (Life Technologies). Genes of interest were normalized against 18s rRNA. Primer sequences are listed in Table 2.
### Table 2. Primer sequences of genes analyzed for quantitative PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Orientation</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aox</td>
<td>forward</td>
<td>CAGGAAGAGCAAGGAAAGTGG</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>GACATCTGAGCCCCCTGTGAT</td>
</tr>
<tr>
<td>Cpt1a</td>
<td>forward</td>
<td>CATGTCAAGCCAGACGAAGA</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>TGTTAGGAGAGCCACCCCTTT</td>
</tr>
<tr>
<td>Acsl1</td>
<td>reverse</td>
<td>CTTGAACCCCTTCTGGAT</td>
</tr>
<tr>
<td></td>
<td>forward</td>
<td>TGACCCTCTCATGACGTCAG</td>
</tr>
<tr>
<td>Angptl4</td>
<td>forward</td>
<td>AGCAGAGATACTATCAAAGCAGAA</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>AGTCATCTCACAAGTTGACAAAAA</td>
</tr>
<tr>
<td>Atgl</td>
<td>forward</td>
<td>CGCCTTGCTGAATTGACCAT</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>AGTGAGTGCTGGTGAAAGGT</td>
</tr>
<tr>
<td>Cd36</td>
<td>forward</td>
<td>TTGGTTTGGAGGCAATTCTCA</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>TGGGITTTGCACATCAAAGA</td>
</tr>
<tr>
<td>Fatp2</td>
<td>forward</td>
<td>ATGCCGTGTCGCTTTTTAC</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>GACTGTGGTTCGCGAAAGTA</td>
</tr>
<tr>
<td>Hsd</td>
<td>forward</td>
<td>ACACAAATCCCCCTATG</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>CTGGTTGCGTTTTGTAG</td>
</tr>
<tr>
<td>Lpl</td>
<td>forward</td>
<td>GCTGGTGGGAAATGATGTG</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>TGGGITTTGCACATCAAAGA</td>
</tr>
<tr>
<td>18s rRNA</td>
<td>forward</td>
<td>CCATCCCAATCGGTAGTAGCG</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>GTAAACCGTTGAAACCCATT</td>
</tr>
<tr>
<td>Srebp1c</td>
<td>forward</td>
<td>GGAGCCATGGATGGCACATT</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>GGCCCCGGGAAAGTCACCT</td>
</tr>
<tr>
<td>Vldlr</td>
<td>forward</td>
<td>TGACGCAGACTTTCAGACC</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>GCCGTGGATACAGCTACCAT</td>
</tr>
<tr>
<td>Fasn</td>
<td>forward</td>
<td>TTGGCTGCCCTAACAGAAATGC</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>AACAGCCTCAAGGCACAAAT</td>
</tr>
<tr>
<td>Dgat1</td>
<td>forward</td>
<td>GTGCCCAAGTGTCGTACAG</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>CAGTTAGGATCTGAGCCATA</td>
</tr>
<tr>
<td>Dgat2</td>
<td>forward</td>
<td>CTGTACACCTCAGCTCAACAG</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>TATCGCCCAAGCTCTCTGTC</td>
</tr>
<tr>
<td>Plin2</td>
<td>forward</td>
<td>CTACGACGACACCAGG</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>CATTGCGGAACACG</td>
</tr>
<tr>
<td>Plin5</td>
<td>forward</td>
<td>GTGACGACGACACCTTGG</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>CGATCCACCACATTTCTGCTGG</td>
</tr>
</tbody>
</table>

#### 3.3.6 RNA Sequencing:

Raw sequencing data were received in FASTQ format and mapped against the hg19 human reference genome using Tophat 2.0.9. The resulting BAM alignment files were processed using the HTSeq 0.6.1 python framework and respective hg19 GTF gene annotation, obtained from the UCSC database. Differentially expressed genes (DEG)
were identified using Bioconductor package DESeq2 (3.2), which analyzes RNA sequencing data based on a negative binomial distribution model. To control for false discovery rate (FDR), resulting values were adjusted using the Benjamini and Hochberg method. Ingenuity Pathway Analysis was then performed on the DEG in order to determine top canonical pathways being altered. Genes with an adjusted p-value <0.05 were determined to be differentially expressed. Heat map was created in Microsoft Excel, normalizing all samples to the fed group and expressing the values as fold change.

3.3.7 Lipidomics: Long-chain fatty acyl-CoAs, acyl carnitines, and ceramides were analyzed by targeted metabolomics as previously described (189-191). Briefly, approximately 20 mg renal cortex was homogenized and extracted with cold 8:1:1 methanol:chloroform:water containing known amounts of C17:0 acyl-CoA (Sigma-Aldrich), isotope-labeled carnitines (Cambridge Isotope Laboratories), and C17:0 and C25:0 ceramide (Avanti Polar Lipids) internal standards. An equal volume from each tissue sample was combined to generate a pool sample to monitor analytical variability. Ceramides were extracted following the method of Bligh and Dyer (192) and the organic layer was dried under vacuum and resuspended in 60:40 acetonitrile:isopropanol. As an additional control, a mixture of seven standard ceramide compounds was simultaneously extracted and analyzed. Acyl-CoAs, acyl carnitines, and ceramides were quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) in the multiple reaction monitoring (MRM) mode using an Agilent 6410 triple quadrupole MS system equipped with an Agilent 1200 LC system. Concentrations were calculated by ratios of peak areas of samples to known concentrations of internal standards. Data were normalized to tissue weight. All solvents were LC-MS grade (Sigma Aldrich).
3.3.8 **Histology:** Frozen sections were cut to 10 µM, air dried, fixed with 4% paraformaldehyde and washed with double distilled water. Sections were rinsed with 60% isopropanol and stained with freshly prepared oil red O for 15 min and rinsed again with 60% isopropanol. Sections were then in modified Mayer’s Hematoxylin for 1 min and washed with distilled water. Slides were then mounted with cover slips using glycerin jelly. Images were taken using a Leica SCN400F Whole Slide Scanner.

3.3.9 **Statistics:** Data are expressed as mean ± SD. Data was analyzed by the use of unpaired Student's t-test or two-way ANOVA Tukey's multiple comparison tests.

3.4 Results

3.4.1 **FAO increases along with triglyceride accumulation in the kidney after a fast.**

To study lipid accumulation in the kidney, we used an overnight fast as a TG accumulation model (139). After an overnight fast, plasma glucose in both male and female mice decreased by nearly half, while TGs and cholesterol were not significantly altered (Figure 5A-C). NEFAs increased ~2-fold (Figure 5D). As in the heart and liver, an overnight fast induced TG accumulation in the kidney; average TG increase was ~3-fold in males and 5-fold in females (Figure 5E). This accumulation occurred primarily in the renal cortex, as shown by oil-red O staining of kidney sections (Figure 5F).
Figure 5. Kidney triglycerides increased in both male and female mice after an overnight fast

(A-E) Male and female mice were either fasted or given food ad libitum for 16 hs. Blood was drawn to measure glucose and plasma lipids. Lipids were extracted for intracellular triglyceride measurements. A) Plasma glucose. B) Plasma triglycerides. C) Plasma total cholesterol. D) Plasma non-esterified fatty acids (NEFAs). E) Kidney triglyceride content. F) Kidneys from male mice were formalin fixed and sectioned for oil-red O staining. Scale bar is representative of 100µM at 20X magnification. N=4-6/group. *: p<0.05. Results are presented as means ± SD. * indicated results compared by unpaired Student's t-test within each sex group, no significant differences were found between male and female groups using the two-way ANOVA Tukey's multiple comparison test.
To assess which lipid pathways were changed in kidneys from fasted animals, mRNAs of proteins involved in FAO, de novo lipid synthesis and lipid transport pathways were analyzed by RNA sequencing of whole kidney from fed and fasted mice. mRNA levels of genes that mediate de novo lipogenesis were decreased including fatty acid synthase (Fasn), squalene epoxidase (Sqle), acetyl-CoA carboxylase alpha (Acaca), and sterol regulatory element binding transcription factor 1 (Srebf1) and 2 (Figure 6A). However, despite greater lipid accumulation, mRNA levels of genes involved in lipid oxidation and mitochondrial pathways were increased, including those of pyruvate dehydrogenase kinase 4 (Pdk4), alternative oxidase (Aox), carnitine palmitoyltransferase 1 (Cpt1a), and carnitine O-acetyltransferase (Crat) (Figure 6A). Peroxisome proliferator-activated receptor alpha (Ppara) and Ppard were increased and Pparg remained unchanged (Figure 6A). Among the more oxidative portions of the kidney, PPARα is the dominantly expressed isoform (148) Ingenuity Pathway Analysis using the KEGG database showed that PPAR signaling was the most differentially regulated pathway, with 23 associated genes changed (Table 3). A majority of PPAR regulated genes were also increased after fasting (Figure 7A). In concordance with the RNA sequencing data, Aox, Cpt1a, and acetyl CoA synthetase long-chain 1 (Acsll) were all increased ~4-fold when assessed by quantitative PCR (Figure 7B). Genes associated with lipid uptake were also assessed. Cd36 mRNA levels increased almost 2-fold after fasting by quantitative PCR, though it did not quite reach significance. Fatty acid transport protein 2/solute carrier family member 27 member 2 (Fatp2/Slc27A2), a primarily intracellular enzyme that traps NEFAs by esterifying them to CoA (193), was unchanged (Figure 2C). In addition, lipoprotein receptors-LDL receptor, LDL receptor related protein 1 (Lrpl), Lrp2 (megalin), and very low-density lipoprotein receptor (Vldlr)-remained unchanged. While Lpl mRNA levels were unchanged, angiopoietin-like 4
(Angptl4), an LpL inhibitor, was increased 9-fold. LD associated protein perilipin (Plin) 2 increased 20-fold and Plin5 increased 10-fold. Intracellular lipases needed to utilize TG stored in LDs also increased; hormone sensitive lipase (Lipe/Hsl) mRNA increased 7-fold and adipose TG lipase (Pnpla2/Atgl) 2-fold. Others have reported that after a fast, both HSL and ATGL activation by phosphorylation increases in the kidney (194). Taken together, this gene expression profile suggests that despite increased mRNA levels of genes regulating FAO and decreased mRNA levels of genes mediating de novo lipogenesis, the kidney stores excess fatty acids in LDs during fasting. This suggests an excess of fatty acid transport into the kidney.
Table 3. Ten most significantly altered pathways in the kidney between the fed and fasted state

<table>
<thead>
<tr>
<th>KEGG Pathway</th>
<th>p-value</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPAR signaling pathway</td>
<td>8.36E-08</td>
<td>SLC27A1, ACOX1, CPT1B, SCD2, CPT2, ACADM, EHHADH, FADS2, PCK2, ACADL, DBI, CPT1A, PCK1, CYP4A10, ACSL1, CYP27A1, HMGCS2, CYP4A31, APOC3, FABP4, ACSL4, ACA1B, SLC27A2, ANGPTL4</td>
</tr>
<tr>
<td>Fatty acid metabolism</td>
<td>4.71E-06</td>
<td>ACOX1, CPT1B, ACA2, ACADM, CPT2, EHHADH, ACADL, HADHA, CPT1A, HADHB, ACADVL, CYP4A10, ACSL1, CYP4A31, ACSL4, ACA1B</td>
</tr>
<tr>
<td>Phosphatidylinositol signaling system</td>
<td>0.030783</td>
<td>PLCB4, PIK3C2G, PLCG1, INPP5K, PIK3CB, PI4KA, DGKZ, DGKH, DGKI, INPP5D, PLCB1, ITPR1</td>
</tr>
<tr>
<td>Biosynthesis of unsaturated fatty acids</td>
<td>1.99E-05</td>
<td>PECR, ACOX1, SCD2, FADS1, ACOT2, FADS2, ACOT1, ACA1B, ACOT4, HADHA, ACOT3</td>
</tr>
<tr>
<td>Adipocytokine signaling pathway</td>
<td>0.034582</td>
<td>CPT1B, ACSL1, LEPR, IKBKG, ACSL4, PCK2, STAT3, AKT3, CPT1A, AKT2, PCK1</td>
</tr>
<tr>
<td>Arginine and proline metabolism</td>
<td>0.020652</td>
<td>SAT1, ODC1, GATM, GLUD1, ARG2, MAOB, CKMT1, DAO, NOS3, CKB</td>
</tr>
<tr>
<td>Glycine, serine and threonine metabolism</td>
<td>0.002628</td>
<td>GLYCTK, GATM, MAOB, PHGDH, GCAT, DAO, PSAT1, CBS, GLDC</td>
</tr>
<tr>
<td>Amino sugar and nucleotide sugar metabolism</td>
<td>0.019358</td>
<td>GALK1, RENBP, GNPD1, MPI, GM8615, CMAH, UGDH, NAGK, UXS1, PMM1</td>
</tr>
<tr>
<td>Valine, leucine and isoleucine degradation</td>
<td>0.024859</td>
<td>ACA2, DBT, ACADM, BCAT2, HMGCS2, EHHADH, ACA1B, HADHA, HADHB</td>
</tr>
<tr>
<td>Terpenoid backbone biosynthesis</td>
<td>3.68E-05</td>
<td>DHDDS, MVD, HMGCS2, HMGCR, FDPS, MVK, ID1, PDSS1</td>
</tr>
</tbody>
</table>
RNA sequencing of fed and fasted male kidneys. Data presented as fold change normalized to the fed group. Differentially expressed genes were identified with Bioconductor package DEseq2 (3.2) and Benjamini and Hochberg's method was used to control for false discovery rate (FDR). A) Canonical genes in pathways related to lipid metabolism and mitochondrial membranes, lipid biosynthesis and lipid transport and lipolysis.
Figure 7. The kidney in the fasted state up regulates lipid oxidation genes and down regulates lipid synthesis genes (cont.)

A) Canonical genes in the PPAR pathway. B) Quantitative PCR of selected lipid metabolism genes, normalized to ribosomal 18s. Experiments were performed in male mice, N=3-5. *: p<0.05. Results are presented as means ± SD. Results for quantitative PCR were compared by unpaired Student's t-test.
3.4.2 Four-hour refeeding does not significantly decrease lipid accumulation accrued during fasting. Differences in arteriovenous NEFA concentrations in post-prandial rats suggest the kidney adds NEFA back to the circulation during the fed state (195). Thus, we asked whether TG accumulation in the kidney after an overnight fast would persist after 4 hours of refeeding. To test this, two groups of female mice were fasted overnight for 16 hours, with one group given food ad libitum for 4 hours after the fast. After 4-hours refeeding, these mice had a trending increase of plasma TGs (Figure 8A), a significant decrease in plasma NEFA (Figure 8B), but only a decreasing trend in kidney TG (Figure 8C) compared to mice that remained fasted. When gene expression analysis was performed (Figure 8D), we found an opposite pattern to the gene expression in Figure 7A. Cpt1a and Acsl1 were decreased by 50% in the refed state compared to the fasted. Srebp1c was increased several 3-fold, while lipid droplet associated proteins such as Atgl, Hsl, and Plin2 were all reduced in the refed state. Angptl4 was decreased by more than 10-fold, thus suggesting an increase in LpL activity. These data suggest 4-hour refeeding causes a metabolic shift in the kidney from fasting, however TG accumulation persists, albeit much reduced.
Figure 8. Four-hour refeeding does not significantly decrease lipid accumulation accrued during fasting

(A-D) 4-week old female mice were fasted for 16 hs, after which one group was refed ad libitum for 4 hs. Blood was drawn to measure plasma lipids. Lipids were extracted for intracellular triglyceride measurements. A) Plasma triglyceride. B) Plasma NEFA. C) Kidney triglyceride D) Quantitative PCR gene expression. N=5/group. Results are presented as means ± SD. *: p<0.05. Statistics were performed using unpaired Student's t-test.
3.4.3 Lipidomic changes. Lipidomics was performed to analyze fatty acid species in the kidney after an overnight fast. There was an overall increase in long fatty chain acyl-CoAs (Figure 9A), although significance for changes in individual fatty acids could not be shown due to wide variation in the fasted group. Levels of the long chain acyl-carnitine C16 decreased 10-fold (Figure 9B). This is opposite to what was reported by Koves et al. (196) to happen in skeletal muscles. Additionally, a decline in long-chain ceramides and their derivatives, glycosphingolipids, in the kidney was observed after fasting (Figure 9C-D). An excess of ceramides is toxic to cells (197,198). These data suggest that in order to compensate for increased lipid oxidation, uptake of either TG-rich lipoproteins or NEFAs is increased, leading to TG but not ceramide, accumulation.
Figure 9. Ceramides and glycosphingolipids are lowered in the fasted kidney

Lipidomics were performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) on kidneys of mice that were fasted or given food ad libitum for 16 hs. A) Long-chain Acyl CoAs. B) C16 Acyl-Carnitine. C) Ceramides. D) Glycosphingolipids. Experiments were performed in male mice, N=4-5/group. *: p<0.05 Results are presented as means ± SD. Results compared using unpaired Student's t-test.
3.4.4 Lipid accumulation in the kidney is dependent on serum NEFAs. To determine whether fasting increases uptake of albumin bound NEFAs we performed an uptake study of $[^{14}\text{C}]$oleic acid in the fed and fasted state. After five minutes, nearly all the $[^{14}\text{C}]$oleic acid tracer was cleared from the circulation (Figure 10A). The liver took up a majority of fatty acids in both fed and fasted mice and accumulated more NEFAs during fasting. Similarly, kidney uptake of NEFAs was increased ~4-fold with fasting (Figure 10B).

We next tested whether altered plasma NEFA levels would lead to parallel changes in kidney TGs. To increase NEFAs in the fed state, we used a beta-adrenergic receptor agonist, CL316, 238. Plasma NEFAs were increased 2-fold over time with two intraperitoneal injections (Figure 10C). This treatment increased kidney intracellular TG levels ~15-fold (Figure 10D); a similar TG increase was found in liver but not heart. To determine if reduced circulating fatty acid levels would reduce kidney TG after fasting, we studied mice with an adipocyte specific deletion of Atgl (mice are denoted AAKO). As had been shown previously (182), AAKO mice have lower circulating NEFAs (Figure 11A), and unlike floxed control mice (Atgl$^{fl/fl}$ littermates), NEFAs decreased with fasting. Plasma TGs are also reduced in this model (Figure 11B). Mirroring the liver, the kidney also had a ~40% reduction in fasting TG content compared to fasted controls (Figure 11C). Liver TG accumulation with fasting was reduced in AAKO mice as was reported previously (182). These data demonstrate that renal TG during fasting is modulated by plasma NEFA levels.
Figure 10. Plasma free fatty acids determine kidney triglyceride content

(A-B) $[^{14}C]$oleic acid (OA) was injected intravenously into male mice. Presence of radioactive signal was measured in plasma or tissue homogenate using a LS 6500 multipurpose scintillation counter. A) Plasma clearance of $[^{14}C]$OA over time. B) Liver and kidney $^{14}$C label 300s after injection. Experiments were performed in male mice, N= 4-5/group. (C-D) Male mice were injected with CL 316,243 at 2 and 6-h time points, and blood samples were drawn at indicated points in order to measure NEFA concentration in the blood. Mice were sacrificed at the 16-h time point to collect tissues, N=4-5/group. C) Plasma NEFAs over time after two CL 316,243 injections (indicated by arrows). D) Tissue triglyceride content 16 hs after first injection. *: p<0.05 Results are presented as means ± SD. Results compared using unpaired Student's t-test.
Figure 11. Plasma free fatty acids determine kidney triglyceride content (cont.)

(A-C) Female adipocyte Atgl knockout mice (AAKO) or littermate controls were fasted for 16 hs and sacrificed, N=6-8/group. A) Plasma NEFA and B) Triglyceride of AAKO and control mice in the fed and 16 h fasted state. C) Kidney and liver triglyceride of AAKO and control mice after a 16 h fast. *: p<0.05, # p<0.05. * indicate comparison between feeding status using unpaired Student's t-test. # Indicates comparison between genotype using the two-way ANOVA Tukey's multiple comparison test. Results are presented as means ± SD.
3.4.5 Lipid accumulation in the kidney is not dependent on CD36. We then asked whether NEFA uptake required CD36, a known fatty acid transporter highly expressed in the kidney and increased 2-fold with fasting (Figure 7B). However, uptake study of oleic acid into kidneys from Cd36<sup>−/−</sup> mice was not decreased (Figure 12A,B), and kidneys from Cd36<sup>−/−</sup> mice had the same amount of TG increase with fasting as did wild-type mice (Figure 12C) compared to Figure 5E). Thus, the kidney does not require CD36 for fasting-induced lipid accumulation.
Figure 12. Kidney triglyceride accumulation do not require CD36 for transport fatty acid transport

(A-C) \(^{1-14}\text{C}\)OA was injected intravenously into male mice. Presence of radioactive signal was measured in plasma or tissue homogenate as mentioned before. A) Plasma clearance of \(^{1-14}\text{C}\)OA over time, N=8-9/group. B) OA uptake in fasted \(Cd36^{+/+}\) and \(Cd36^{-/-}\) N= 8-9/group. Kidney lipids were extracted from kidneys of \(Cd36^{-/-}\) in the fed and fasted state using 2:1 methanol:chloroform. C) Kidney triglyceride in fed and fasted \(Cd36^{-/-}\) N=3/group. *: p<0.05, #: p<0.05. * indicates comparison between feeding status using unpaired Student's t-test. Results are presented as means ± SD.
3.4.6 Triglyceride accumulation in the kidney does not require LpL or circulating lipoproteins. LpL is required for fasting TG accumulation in the heart (173); like in the heart but not in the liver, LpL is amply expressed in the kidney (178,199). To assess whether LpL and lipoproteins are necessary for TG accumulation in the kidney, we injected mice with a surfactant compound, poloxamer 407 (P407). P407 blocks the clearance of lipoproteins from the circulation and causes lipemia (200). In our mice, TG increased from ~50 mg/dL to over 5000 mg/dL (Figure 13A). P407 also increased plasma NEFAs in both fed and fasted mice (Figure 13B), likely due to association with TG-rich lipoproteins (173). P407 did not decrease TG accumulation in the kidney after a fast, but led to a ~20% increase in TGs during the fed state (Figure 13C). Similar results were found in females (Figure 13D-F) as in males.

To further explore the role of LpL, we studied mice with a tamoxifen-inducible deletion of LpL (iLpL−/−) (184). We assessed the changes in renal TG accumulation before and after an overnight fast and compared them to floxed littermate (LpLfl/fl) controls also injected with tamoxifen. Two weeks after the final tamoxifen injections, plasma TGs increased more than 20-fold in both fed and fasted iLpL−/− mice (Figure 13G). Plasma NEFAs slightly increased as well in iLpL−/− mice after fasting (Figure 13H). TGs in the kidney did not decrease, but rather increased by 25% after fasting, compared to the fasting iLpLfl/fl group (Figure 13I). This might be due to the increased fatty acids in iLpL−/− mice after fasting.
Figure 13. LpL is not required for triglyceride accumulation in the kidney

(A-C) Male mice were injected with poloxamer 407 (P407) or PBS equivalent and fasted or given food ad libitum for 16 hs (Top Panel). A) Plasma triglycerides and B) plasma NEFAs. C) Kidney triglyceride content. N= 4-5/group. (D-F) P407 repeated in females (middle panel) with same conditions as males. (G-I) Tamoxifen Inducible LpL floxed (iLp\textsuperscript{fl/fl}) and knock out (iLp\textsuperscript{f/f}) male mice were fasted or given ad libitum access to food for 16 hs. Blood was drawn for measurement of plasma lipids and kidney lipids were extracted and measured (Bottom panel). G) Plasma triglycerides and H) NEFAs. I) Triglyceride content of kidneys. N= 4-6/group. *: p<0.05, # p<0.05. * indicates comparison between feeding status using unpaired Student's t-test. #
indicates comparison between genotype or treatment using the two-way ANOVA Tukey's multiple comparison test.
We further explored whether lipoproteins are the source of fatty acids in the kidney by blocking microsomal triglyceride transfer protein (MTTP), a key regulator of lipoprotein formation in the liver and small intestines (201). After a 16 h fast, BMS-212122, a MTTP inhibitor (MTTPi), decreased plasma VLDL TGs by approximately 40% (Figure 14A). MTTPi treatment increased liver TGs (Figure 14B), but unexpectedly, the kidney TG level trended toward an increase (Figure 14B). It has been previously shown that the kidney can synthesize and secrete lipoproteins (139).

To test whether some of the effects of plasma TG reduction were masked by intra-renal MTTP inhibition, we fasted mice with a liver-specific knockdown of Mttp (L-Mttp−/−) (202) for 16 h. Plasma TGs were decreased several fold (Figure 14C) while liver TGs in the L-Mttp−/− were increased. Fasting kidney TG levels were slightly affected by loss of Mttp in the liver (Figure 14D). These results suggest that circulating lipoproteins and LpL play a minimal role, if any, in lipid accumulation in the kidney during a fast.
Figure 14. Triglyceride-rich lipoproteins are not a significant source of triglyceride in the kidney

(A-B) Whole body blockade of microsomal triglyceride transfer protein (MTTP) was achieved using BMS-212122 (MTTPi, N=4-5/group) given orally for seven days or vehicle (DMSO) equivalent to mice. Data obtained after a 16 h fast. A) Very-low density lipoprotein (VLDL) triglyceride levels obtained from ultracentrifugation of plasma of mice treated with MTTPi or vehicle. B) Kidney and liver triglyceride content of fasted mice treated with either MTTPi or vehicle. (C-D) Liver-specific blockade of MTTP was achieved with a liver-specific knockout of MTTP (L-Mttpfl/fl, N=4-6/group). C) Plasma triglycerides of L-Mttpfl/fl mice versus floxed littermate controls. D) Kidney and liver triglyceride content of L-Mttpfl/fl mice versus littermate controls. Experiments were performed in male mice.*: p<0.05, # p<0.05. * indicates comparison.
between feeding status using unpaired Student's t-test. # indicates comparison between genotype using the two-way ANOVA Tukey's multiple comparison test.
Figure 15. Triglyceride-rich lipoproteins are not a significant source of triglyceride in the kidney (cont.)

Summary figure of research data: 1) During fasting Angptl4 inhibits LpL, so that triglycerides on lipoproteins cannot be hydrolyzed, thus fatty acid loaded albumin is the primary exogenous source of fatty acids for the kidney. 2) Though CD36 is amply expressed on the kidney, it is not required for the transport of fatty acids into the kidney during fasting, which might involve non-receptor diffusion across the member. 3) Though CD36 does not appear to act as a major transporter, it does not discount that other transporters may exist. 4) Once inside the cell, fatty acid is shuttled to the mitochondria where it can be oxidized for ATP. If the rate of fatty acid flux into the cells is far greater than the cells capacity for oxidization, excess fatty acids are stored in LDs. Stored fatty acids can also be released from the LDs and oxidized.
3.4 Discussion

Lipid accumulates in the kidney cortex during diseased and non-diseased states. The source of the lipids and the mechanism(s) by which they accumulate is unclear. In addition, little information is available to determine whether lipid accumulations are pathological or physiological. In this study, we evaluated the physiologic regulation of kidney lipids during fasting and explored the roles of lipid uptake processes that are known to affect TG storage in other tissues. Unlike muscles, kidney lipid storage is not dependent on either LpL or CD36 and correlates with plasma NEFAs. Further data indicated that kidney TG accumulation was dependent on NEFAs from the plasma. Using $[^{14}\text{C}]$oleic acid, we showed that the kidney indeed takes up more NEFAs during a fast (Figure 10B). We further showed that increasing serum NEFA levels in the fed state with CL 315,343, a $\beta_3$-adrenergic receptor agonist, markedly increased kidney TG accumulation (Figure 10C,D). At the same time, heart TGs were reduced with CL 315,343 treatment; these data are consistent with our previous studies indicating that circulating TGs and not NEFAs are the source of cardiac TG (173). Conversely, lowering circulating NEFAs using AAKO mice Figure 11B) led to reduced kidney TG (Figure 11C). Our results confirm studies which measured arterial versus venous blood and showed that the kidney takes up more fatty acid during fasting (203).

Fasting-induced lipid accumulation was associated with increased expression of genes that modulated fatty acid metabolism and TG storage and not with greater accumulation of ceramides. Upon refeeding, there was a reverse trend of metabolic genes in the kidney (Figure 8D), as well as decreased plasma NEFA (Figure 8B), however no change in kidney TGs (Figure 8C). This suggests after a fast, the kidney is slow to release TG or fatty acid uptake is curbed due to a decrease of circulating NEFAs. In many tissues, dysfunction is associated with the
accumulation of potentially toxic lipids such as ceramides. The non-pathological storage of NEFAs as TG components was suggested by an increase in the LD proteins Plin2 and 5 (Figure 7B). This data indicates a capacity for safely storing excess TG. Following fasting, our lipidomic analysis showed a trend to an increase in fatty acyl CoAs, a decrease in C16 acyl-carnitine, and a decrease in long chain ceramides and glycosphingolipids. An increase in skeletal muscle acyl-carnitines was associated with incomplete FAO in high-fat diet fed animals (204). Therefore, the decrease in renal acyl-carnitines in the fasted state could result from more complete beta-oxidation. An increase in ceramides is associated with cellular apoptosis as well as insulin resistance (90,197,198). There is a dearth of information on the role of ceramides in kidney injury and some of what is reported is conflicting. Sas et al. reported that in a diabetic obesity model of kidney injury, long chain ceramides and glycosphingolipids are reduced (190). Others have reported an increase in glycosphingolipids, a product of ceramides, associated with diabetic nephropathy and mesangial expansion (205).

To achieve a global perspective on the changes in kidney lipid metabolism during fasting, we performed RNA sequencing of the kidney. Several enzymes associated with increased ceramide production were reduced. mRNA levels of sphingomyelin phosphodiesterase1 (Table 4), which is responsible for hydrolyzing sphingolipids to form ceramides in the fasted kidney, were reduced (205) and serine palmitoyltransferase subunits 1 and 2 (Table 4) that control de novo synthesis of ceramide, were unchanged.

FAO appeared to increase with fasting, and de novo synthesis did not appear to increase. Though this was not measured directly, our indirect data strongly suggest this is the case. The mRNA levels of genes in the lipid synthesis pathway were down regulated, while genes in the lipid oxidation pathway, mitochondrial electron transport, and fatty acid transport were up
regulated (Figure 6A). The PPAR pathway was the most differentially regulated pathway amongst those in the KEGG database, which have been shown to regulate FAO genes (Table 3) (206). These data suggest that along with greater TG storage, the kidney is accumulating an excess supply of substrate for storage while catabolizing more lipids for energy. During fasting, many tissues burn fats rather than glucose, and like the kidney, some of these tissues also store lipids perhaps as a local energy supply to use in times of greater energy requirements (207). The gene expression profile in the kidney implies greater FAO during fasting. This differs from the heart, which also accumulates TGs during fasting, but does not show the same pattern of increased FAO genes (173).

The increase in FAO during fasting is contrary to what is reported in kidney injury. FAO-associated genes are down regulated in the kidneys of mice with folic acid-induced nephropathy as well as in humans with CKD (152). However, during early diabetic kidney disease, when eGFR is not significantly decreased, beta-oxidation is increased (190,191). Therefore, fasting and early diabetes may reflect a need for greater energy requirements by intact tubular cells in the kidney, while CKD illustrates an example of pathologic injury and lipid accumulation due to reduced lipid oxidation.

We sought to determine the transporter required for renal NEFA uptake. A logical transporter was CD36; our quantitative PCR showed an increased trend of Cd36 mRNA levels in the kidney during the fasted state Figure 7A). CD36 is a long-chain fatty acid transporter that is important for the uptake of fatty acids in various tissues (208). Surprisingly, [14C]oleic acid uptake in fasted Cd36−/− mouse kidneys was the same as in controls (Figure 12B). TG content in the kidney also tripled after a fast in Cd36−/− mice (Figure 12C). TG levels in the fasted Cd36−/− mouse kidneys were higher when compared to fasted wild-type mice (Figure 5E). This is likely
due to elevated NEFA in the plasma due to the defect in peripheral NEFA uptake by the heart and skeletal muscle (30). Our data has demonstrated that CD36 is not necessary for fatty acid uptake in kidneys from fasted mice and at first glance appear to contradict the studies of Kang, et al. who showed that overexpression of Cd36 in the proximal tubule increases TG accumulation in the kidney (152). While forced overexpression of Cd36 will lead to accumulation of TG in the kidney, we show that it is not necessary for fatty acid transport or TG accumulation in the kidney. It is possible that other fatty acid transporters, such as those from the fatty acid transport protein (FATP) family (209,210), are responsible for uptake in the kidney. However, these FATPs are predominantly intracellular and rather than being transmembrane transporters, are thought to trap intracellular fatty acids by acyl-CoA synthetase actions (193).

Another possible route of NEFA uptake into the kidney is via uptake of albumin. However, the very rapid turnover of NEFAs compared to that of albumin makes this hypothesis unlikely. Moreover, mRNA levels of purported albumin transporters such as Lrp2 (megalin) were decreased according to our RNA sequencing (Figure 6). Alternatively, fatty acids may enter the kidney via passive diffusion through the membranes, which can occur when fatty acid levels are high (20).

We tested whether fasting-induced renal TGs were derived from circulating lipoproteins and whether kidney TG accumulation requires LpL-mediated hydrolysis of TG to release NEFAs. Blocking or deleting LpL did not decrease TG accumulation in the kidney after a fast. Although LpL is abundant in the kidney during the fasted state there was an increase expression of Angptl4 may inhibit LpL actions (Figure 6C). Angptl4 is thought to dissociate the LpL dimer, thus inhibiting its enzymatic action (211). Our data are consistent with those of Ruge et al. who reported that kidney LpL activity is highest in the fed state and lowest in the fasted state of mice.
we now show that this is likely due to Angptl4. Since LpL loss did not play a role in lipid accumulation in the kidney in either the fed or fasted state, the role of LpL in the kidney is unclear.

In support of our finding that LpL does not play a major role in lipid accumulation, we found that circulating TG levels did not correlate with intracellular lipid content of the kidney. We lowered circulating TGs two ways: pharmacologically with an MTTPi (Figure 14A) and genetically by specifically knocking out Mttp in the liver (Figure 14C). The kidney, like the liver, is able to form and release lipoproteins (139). This is highlighted by our data showing that the kidney retains TGs when treated with MTTPi, with a trend to increased kidney TG content after a fast (Figure 10B). When we lowered circulating lipoprotein levels by deleting Mttp in the liver, plasma TG levels were markedly reduced, but TG content in the kidney remained mostly unchanged although some of the fasted L-Mttp−/− mice had reduced TGs (Figure 14D). Because some NEFAs associate with lipoproteins, this reduction in kidney TG may be due to fewer circulating lipoproteins carrying NEFAs. These MTTP inhibition studies showed that the kidney does not largely rely on exogenous lipoproteins for TGs.

In conclusion, we have found that the kidney primarily takes up NEFAs rather than lipoproteins, and high serum levels of NEFAs cause greater lipid accumulation in the kidney. Figure 15 summarizes the findings from our study. The kidney, despite having high levels of expression of Cd36 and Lpl, does not require either of these proteins for fatty acid uptake during fasting. During fasting, LpL actions in the kidney are likely inhibited by increased Angptl4. Taken together, our data shows that the kidney behaves similarly to the liver with respect to certain aspects of lipid metabolism (e.g. lipid uptake does not involve LpL or CD36). Both the liver and the kidney receive abundant cardiac output of blood, are intensely metabolically active,
and might not depend on a high affinity localized fatty acid uptake pathway. Rather, a lower affinity but higher capacity fatty acid uptake process may be sufficient to extract fatty acids from the circulation. This high volume of blood supply to the kidney may also be why NEFAs on albumin are sufficient for lipid accumulation in the kidney. Comparably less perfused tissues, such as skeletal muscle and adipose tissue, would require the large amounts of fatty acids, in the form of TG, and also the actions of a high affinity NEFA transporter such as CD36. It should be noted that the molecular events required for NEFA uptake by the liver are incompletely characterized and might require a number of known or unique transporters (212). The fatty acids are either shuttled to the mitochondria for oxidation or to LDs for storage in the form of TG. These stored TGs can also be hydrolyzed by HSL and ATGL to release fatty acids for oxidation. Little in the way of kidney lipid metabolism has been studied despite lipid accumulation being present in nearly all forms of kidney injury. Our data add to our understanding of lipid metabolism in the non-diseased kidney.
Acknowledgements

We would like to acknowledge NYULMC Office of Collaborative Science for their technical services, supported in part by the Cancer Center Support Grant P30CA016087, at the Laura and Isaac Perlmutter Cancer Center. We also acknowledge the editing assistance of Stephanie Chiang.

This work was supported by the following grants from the National Institutes of Health: HL45095 and HL73029 (IJG); DK094292, DK089503, DK082841, DK081943 and DK097153 (SP); 2UL1TR000433 (KMS); R56DK046900 (MMH); DK090166 (EEK); DK087635, DK105821, DK108220 (KS); DK33301 (NAA)

Disclosure: All the authors declared no competing interests
Table 4 (Supplemental) Genes Associated with ceramide biosynthesis

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Ensembl Gene ID</th>
<th>ΔLog2</th>
<th>padj</th>
<th>Fed</th>
<th>Fasted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acr2</td>
<td>ENSMUSG00000038007</td>
<td>0.392</td>
<td>0.121</td>
<td>500.898</td>
<td>776.04</td>
</tr>
<tr>
<td>Acr3</td>
<td>ENSMUSG00000037660</td>
<td>0.170</td>
<td>0.238</td>
<td>882.712</td>
<td>797.21</td>
</tr>
<tr>
<td>Arsa</td>
<td>ENSMUSG00000022620</td>
<td>0.161</td>
<td>0.347</td>
<td>361.718</td>
<td>323.52</td>
</tr>
<tr>
<td>Asoh1</td>
<td>ENSMUSG00000031591</td>
<td>-0.158</td>
<td>0.208</td>
<td>2952.544</td>
<td>2619.00</td>
</tr>
<tr>
<td>Asohp2</td>
<td>ENSMUSG00000024887</td>
<td>0.058</td>
<td>0.675</td>
<td>3059.720</td>
<td>3469.61</td>
</tr>
<tr>
<td>B4galt6</td>
<td>ENSMUSG00000056124</td>
<td>-0.409</td>
<td>0.016</td>
<td>770.326</td>
<td>812.86</td>
</tr>
<tr>
<td>Cerk</td>
<td>ENSMUSG00000038589</td>
<td>0.249</td>
<td>0.143</td>
<td>745.021</td>
<td>897.55</td>
</tr>
<tr>
<td>Cers2</td>
<td>ENSMUSG00000015714</td>
<td>0.071</td>
<td>0.721</td>
<td>5180.163</td>
<td>5217.76</td>
</tr>
<tr>
<td>Cers3</td>
<td>ENSMUSG00000030510</td>
<td>0.143</td>
<td>NA</td>
<td>2.233</td>
<td>4.60</td>
</tr>
<tr>
<td>Cers4</td>
<td>ENSMUSG00000028026</td>
<td>0.165</td>
<td>0.262</td>
<td>250.077</td>
<td>263.28</td>
</tr>
<tr>
<td>Cers5</td>
<td>ENSMUSG00000023021</td>
<td>0.039</td>
<td>0.833</td>
<td>1193.819</td>
<td>1264.10</td>
</tr>
<tr>
<td>Cers6</td>
<td>ENSMUSG00000027035</td>
<td>-0.082</td>
<td>0.526</td>
<td>2834.204</td>
<td>2773.76</td>
</tr>
<tr>
<td>Degs1</td>
<td>ENSMUSG00000038663</td>
<td>-0.383</td>
<td>0.001</td>
<td>5157.835</td>
<td>4875.31</td>
</tr>
<tr>
<td>Degs2</td>
<td>ENSMUSG00000021263</td>
<td>0.022</td>
<td>0.945</td>
<td>1215.403</td>
<td>1130.45</td>
</tr>
<tr>
<td>Delast1</td>
<td>ENSMUSG00000049721</td>
<td>-0.263</td>
<td>0.067</td>
<td>711.528</td>
<td>624.14</td>
</tr>
<tr>
<td>Delk</td>
<td>ENSMUSG00000021003</td>
<td>-0.234</td>
<td>0.127</td>
<td>2872.162</td>
<td>2861.06</td>
</tr>
<tr>
<td>Gbp</td>
<td>ENSMUSG00000028048</td>
<td>0.111</td>
<td>0.356</td>
<td>980.956</td>
<td>1013.54</td>
</tr>
<tr>
<td>Gbp2</td>
<td>ENSMUSG00000028467</td>
<td>-0.146</td>
<td>0.409</td>
<td>366.184</td>
<td>374.67</td>
</tr>
<tr>
<td>Gbo</td>
<td>ENSMUSG00000031266</td>
<td>0.117</td>
<td>0.559</td>
<td>191.312</td>
<td>208.05</td>
</tr>
<tr>
<td>Gb1</td>
<td>ENSMUSG00000045594</td>
<td>-0.256</td>
<td>0.109</td>
<td>4601.861</td>
<td>4988.32</td>
</tr>
<tr>
<td>Gdr</td>
<td>ENSMUSG00000009905</td>
<td>0.011</td>
<td>0.945</td>
<td>1079.945</td>
<td>1096.39</td>
</tr>
<tr>
<td>Neu1</td>
<td>ENSMUSG00000007038</td>
<td>-0.454</td>
<td>0.000</td>
<td>13635.005</td>
<td>17105.00</td>
</tr>
<tr>
<td>Neu2</td>
<td>ENSMUSG00000079434</td>
<td>-0.200</td>
<td>0.417</td>
<td>183.836</td>
<td>243.95</td>
</tr>
<tr>
<td>Neu3</td>
<td>ENSMUSG00000035239</td>
<td>0.116</td>
<td>0.674</td>
<td>113.130</td>
<td>167.54</td>
</tr>
<tr>
<td>Phlp1</td>
<td>ENSMUSG00000044340</td>
<td>0.044</td>
<td>0.767</td>
<td>1213.915</td>
<td>1462.78</td>
</tr>
<tr>
<td>Phlp2</td>
<td>ENSMUSG00000031732</td>
<td>-0.086</td>
<td>0.559</td>
<td>813.494</td>
<td>842.32</td>
</tr>
<tr>
<td>Pgapb2</td>
<td>ENSMUSG00000028517</td>
<td>0.065</td>
<td>0.609</td>
<td>1722.255</td>
<td>1812.59</td>
</tr>
<tr>
<td>Sgms1</td>
<td>ENSMUSG00000040451</td>
<td>0.299</td>
<td>0.000</td>
<td>2400.291</td>
<td>2515.90</td>
</tr>
<tr>
<td>Sgms2</td>
<td>ENSMUSG00000050931</td>
<td>0.061</td>
<td>0.621</td>
<td>6211.730</td>
<td>6336.24</td>
</tr>
<tr>
<td>Sgpl1</td>
<td>ENSMUSG00000020097</td>
<td>0.081</td>
<td>0.432</td>
<td>2632.505</td>
<td>2723.03</td>
</tr>
<tr>
<td>Sgpp1</td>
<td>ENSMUSG00000028105</td>
<td>0.283</td>
<td>0.029</td>
<td>5652.779</td>
<td>5315.34</td>
</tr>
<tr>
<td>Sgpp2</td>
<td>ENSMUSG00000023908</td>
<td>0.011</td>
<td>0.957</td>
<td>730.135</td>
<td>660.04</td>
</tr>
<tr>
<td>Smcpd1</td>
<td>ENSMUSG00000037049</td>
<td>-0.265</td>
<td>0.022</td>
<td>2962.260</td>
<td>2874.92</td>
</tr>
<tr>
<td>Smcpd2</td>
<td>ENSMUSG00000019822</td>
<td>0.079</td>
<td>0.697</td>
<td>1924.099</td>
<td>2077.71</td>
</tr>
<tr>
<td>Smcpd3</td>
<td>ENSMUSG00000031906</td>
<td>-0.169</td>
<td>0.677</td>
<td>22.328</td>
<td>11.05</td>
</tr>
<tr>
<td>Smcpd4</td>
<td>ENSMUSG00000050899</td>
<td>-0.038</td>
<td>0.751</td>
<td>788.932</td>
<td>793.53</td>
</tr>
<tr>
<td>Sphk1</td>
<td>ENSMUSG00000061878</td>
<td>0.627</td>
<td>0.000</td>
<td>117.596</td>
<td>150.05</td>
</tr>
<tr>
<td>Sphk2</td>
<td>ENSMUSG00000057342</td>
<td>0.037</td>
<td>0.883</td>
<td>1064.315</td>
<td>1197.65</td>
</tr>
<tr>
<td>Sptc1</td>
<td>ENSMUSG00000021468</td>
<td>-0.060</td>
<td>0.748</td>
<td>2166.588</td>
<td>2002.23</td>
</tr>
<tr>
<td>Sptc2</td>
<td>ENSMUSG00000021036</td>
<td>-0.140</td>
<td>0.204</td>
<td>3510.751</td>
<td>3695.14</td>
</tr>
<tr>
<td>Ugcg</td>
<td>ENSMUSG00000028381</td>
<td>-0.183</td>
<td>0.139</td>
<td>718.971</td>
<td>733.69</td>
</tr>
<tr>
<td>Ugtala</td>
<td>ENSMUSG00000032854</td>
<td>-0.461</td>
<td>0.033</td>
<td>5641.615</td>
<td>4114.00</td>
</tr>
</tbody>
</table>

Genes were identified using sphingolipid metabolism KEGG database (Pathway map mmu00600). Differentially expressed genes were identified with Bioconductor package DEseq2 (3.2) and Benjamini and Hochberg's method was used to control for false discovery rate (FDR).
Chapter 4: Krüppel-Like Factors and S100 proteins

4.1 Introduction to Krüppel-like factors

Krüppel-like factors (KLFs) are Zn$^{2+}$ finger transcription factors that control a variety of biological functions such as development, differentiation, proliferation, and metabolism. Humans express 18 isoforms of KLF between various cells types which are highly conserved amongst all mammals (213). However, it is not clear at the moment if KLF18 is a gene or pseudogene. Human KLFs are broadly divided into three groups of structural and functional homology. Group 1 (KLFs 3, 8, and 12) are transcriptional repressors when they interact with C-terminal binding protein (CtBP) (213). Group 2 (KLFs 1, 2, 4, 5, 6, and 7) are transcriptional activators (213). Finally, Group 3 (KLFs 9, 10, 11, 13, 14, and 16) are repressors when they interact with the co-repressor Sin3A (213). KLFs 15, 17, and 18 remain unclassified. However, some KLFs like KLF4 and KLF5 can act as both repressors and activators (214). All isoforms have a conserved C-terminus domain and variable N-terminal domain. This allows for post-translational modifications that influences both their translocation to the nucleus and activation or repressive roles (214). Table 5 summarizes the various KLF isoforms and their major functions in biology.
Table 5. A summary of the notable roles of KLF1-18

<table>
<thead>
<tr>
<th>KLF</th>
<th>Notable Roles</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLF1</td>
<td>Erythrocyte and megakaryocyte differentiation.</td>
<td>(215) (216)</td>
</tr>
<tr>
<td>KLF2</td>
<td>T-cell quiescence; response to shear stress in endothelial cells; lipid uptake in macrophages.</td>
<td>(217) (218) (219)</td>
</tr>
<tr>
<td>KLF3</td>
<td>Inhibits adipogenesis.</td>
<td>(220)</td>
</tr>
<tr>
<td>KLF4</td>
<td>Inhibits cell cycle progression; monocyte differentiation to macrophages; Stem cell pluripotency.</td>
<td>(221) (222) (223) (224)</td>
</tr>
<tr>
<td>KLF5</td>
<td>Promotes cell cycle progression; cardiac remodeling; adipose tissue differentiation.</td>
<td>(221)</td>
</tr>
<tr>
<td>KLF6</td>
<td>Tumor suppressor gene.</td>
<td>(225)</td>
</tr>
<tr>
<td>KLF7</td>
<td>Inhibits adipogenesis; SNPs associated with T2DM.</td>
<td>(226) (227) (228)</td>
</tr>
<tr>
<td>KLF8</td>
<td>Epithelial–mesenchymal transition in cancers.</td>
<td>(229)</td>
</tr>
<tr>
<td>KLF9</td>
<td>Negative regulator of estrogen receptor signaling in endometrial cancer.</td>
<td>(230)</td>
</tr>
<tr>
<td>KLF10</td>
<td>Regulatory T-cell development; osteoblast differentiation.</td>
<td>(231) (232)</td>
</tr>
<tr>
<td>KLF11</td>
<td>Pancreatic organogenesis; insulin production</td>
<td>(233) (234)</td>
</tr>
<tr>
<td>KLF12</td>
<td>Gastric tumor growth</td>
<td>(235)</td>
</tr>
<tr>
<td>KLF13</td>
<td>Cardiac development; T-cell activation</td>
<td>(236) (237)</td>
</tr>
<tr>
<td>KLF14</td>
<td>SNPs associated with cardiovascular disease; increase in macrophage efflux by regulation of ApoA-1</td>
<td>(238) (239)</td>
</tr>
<tr>
<td>KLF15</td>
<td>Hypertrophy in heart; expression of Glut4 in adipose tissue and skeletal muscle; gluconeogenesis in liver; de novo lipogenesis in the liver.</td>
<td>(240) (241) (242)</td>
</tr>
<tr>
<td>KLF16</td>
<td>Regulates dopamine receptor in the brain; out-growth of retinal ganglion cells</td>
<td>(243) (244)</td>
</tr>
<tr>
<td>KLF17</td>
<td>Tumor suppressor gene which mediates epithelial-mesenchymal transition</td>
<td>(245)</td>
</tr>
<tr>
<td>KLF18</td>
<td>No information as of yet on its biological role</td>
<td>(246)</td>
</tr>
</tbody>
</table>
4.2 KLF5 in Health and Disease

Translational research interest surrounding KLF5 stems from its pro-proliferative and anti-apoptotic activity. Its actions and downstream targets have been well characterized in the cells of the intestinal crypts, where it is most highly expressed (247). However, KLF5 controls many cellular pathways in a variety of tissues. KLF5 itself is regulated transcriptionally by Sp1, a transcription factor in a family of structural similarity to KLFs (248). KLF5 uniquely acts to repress or activate gene expression depending on its interaction with transcriptional co-regulators or post-translational modification (249). For example, acetylated KLF5 creates a complex with other co-repressors to repress p21 transcription (250). However, acetylated KLF5 can create another complex with co-activators to transactivate expression of p15 (251). KLF5 has promiscuous and flexible interactions that allow it to play a role in many biological processes and disease progression.

4.2.1 Proliferation and Cancers. KLF5 is a well-characterized regulator of cellular proliferation and apoptosis. In many cell types KLF5 works in opposition to KLF4, which acts to inhibit cellular proliferation(221) (252) (253) (254). Cell cycle progression proteins such as cyclins and cyclin-dependent kinases are transactivated by KLF5, while repressing transcription of cell cycle inhibitors p27 and p15 (255,256) (257) (258). KLF5 is upregulated by mitogens via MAPK/EGR-1 signaling pathway and repressed by activation of retinoic acid receptor (RAR) signaling (259) (260) (261) (262). KLF is most active in rapidly dividing cells such as epithelial cells in the crypts of the intestines (263). Total body deletion of Klf5 is embryonic lethal, however Klf5+/− are born with abnormal villi and intestinal fibrosis (264). Klf5+/− mice are sensitive to bacterial and inflammatory insults to the intestines as they are not able to reconstitute a healthy epithelium (265).
Taking into account its role in regulating the cell cycle, research interest in KLF5 and cancer progression has increased over the years. Much of this research has been done in solid tumors of the intestines. In colorectal cancer cells, KLF5 regulates proto-oncogene serine/threonine-protein kinase, a negative regulator of bcl-2-associated death promoter (266) (267). Therefore, knockdown of KLF5 in these cells made them susceptible to DNA-damaging agents (266). Induction of KLF5 by lysophosphatidic acid causes proliferation of several colon cancer cell lines (268). Immunohistochemistry analysis of human and mouse intestinal tumor samples with an oncogenic KRAS mutation contain increased levels of KLF5 (269) (270). KLF5 research in the intestine provided information regarding its role in proliferation as well as progression in many intestinal tumors.

4.2.2 Cardiac Remodeling and smooth muscle cell vasculature. Like KLF15 (Table 5), KLF5 plays a role in cardiac hypertrophy. While KLF15 inhibits cardiac hypertrophy (240), KLF5 promotes it. This is primarily due to the pro-fibrotic actions of KLF5. Following administration of AngII, Klf5+/− mice have less cardiac hypertrophy and fibrosis than wild-type controls (264). Cultured cardiac fibroblasts treated with AngII have increased expression of the tissue remodeling protein platelet-derived growth factor-A (PDGF-A) and KLF5 (264). When treated with Am80, a synthetic retinoid receptor agonist, mice have reduced cardiac hypertrophy after being given AngII (264), however this phenotype was due to fibroblasts, not cardiomyocyte, KLF5.

Smooth muscle cells (SMCs) line the walls of hallow organs and are sensitive to contraction and pressure. KLF5 has high expression in fetal SMCs and after vascular injury (271). KLF5 positive human coronary artery specimens were highly associated with restenosis compared with KLF5 negative arteries (271). KLF5 is induced during cardiac allograft
atherosclerosis, vein graft hyperplasia, and AngII hypertension (272) (273) (264). These studies suggest a role for KLF5 after vascular injury. Indeed, KLF5 activates inflammatory growth factors such as inducible nitric oxide synthase, plasminogen activator inhibitor-1, PDGF-A and vascular endothelial growth factor receptor to stimulate proliferation of SMCs (213). The mechanism by which KLF5 regulates SMC proliferation has been identified. AngII stimulates mitogen-activated protein kinase/extracellular signaling-regulated kinase-1 (MAPK/ERK)-1, which then phosphorylates KLF5 by allowing it to bind with other transcriptional regulators such as c-Jun and RARα (274).

4.2.3 Adipose Tissue Development Metabolism. Pre-adipocytes in the perivascular niche become adult adipocytes with a unilocular lipid droplet. This transition is thought to be due, in part, to activity of PPARγ (275). KLF5 has also been shown to control adipogenesis as well by regulating PPARγ via CEBP signaling (276). Kl/5+/− mice are lipodystrophic due to KLF5 regulating genes that promote adipogenesis, such as CCAAT/enhancer-binding protein alpha (Cebpa) and Pparg2 (276). Overexpression of Klf5 in 3T3-L1 pre-adipocytes induces differentiation of these cells (276).

Klf5+/− mice are resistant to diet induced obesity even though they consume more food. (277). However, Kl/5+/− mice have increased energy expenditure in their skeletal muscle as well. Sumoylated KLF5 forms a complex with unliganded PPARδ and co-repressors to suppress lipid oxidation and uncoupling genes in the skeletal muscle (277). Upon exposure to a PPARδ agonist, KLF5 is desumoylated and becomes associated with a transcriptionally active complex (277). Thus, metabolic regulation by KLF5 is dependent on its posttranslational state. KLF5 also regulates lipid and energy metabolism via regulation of PPARα. Cardiomyocyte-specific deletion of Klf5 results in reduced expression of Ppara and PPARα target genes, such as Lpl and Cd36.
The hearts of these mice had reduced FAO, increased glucose oxidation and develop cardiac dysfunction with age (278). During sepsis, c-Jun out competes KLF5 for the Ppara promoter, leading to reduce cellular ATP, FAO, and heart failure (278).

#### 4.2.4 Inflammation and Immunology.
Circulating white blood cells (WBCs) originate from stem cell progenitors in the bone marrow (BM). Cells of the adaptive immune system are descended from a common lymphoid progenitor while cells of the innate immune system are descended from a common myeloid progenitor (CMP). KLF5 has been shown to play a role in differentiation of granulocytes. Klf5 deleted specifically in the hematopoietic stem cell precursor causes a decrease in neutrophils in peripheral blood and an increase in eosinophils (279). KLF5, along with KLF6, has lower expression in acute myeloid leukemia (AML) blasts compared to normal granulocytes from healthy donors (280). Often, treatment with all-trans retinoic acid (ATRA) reduces KLF5 expression. However, in the case of NB4 cells (a promyeloblastic leukemia cell line), treatment of ATRA caused an induction of KLF5 (280). Knockdown of KLF5 in these cells attenuates differentiation into neutrophils (280). Elevated KLF5 expression in AML may be due to hypermethylation of the KLF5 promoter (281). These studies suggest that KLF5 is required for formation of granulocytes from stem cell precursors.

Regulation of inflammation and inflammatory cytokines by KLF5 is not well understood. Intestinal epithelial cells treated with LPS induce KLF5, which was associated with a concurrent increase in NF-κB (282). Conversely, when KLF5 is overexpressed in the myocardium, levels of inflammatory cytokines are lowered after oxygen-glucose deprivation/reperfusion (283). KLF5 has been shown to be directly associated with the transcriptional regulation of inflammatory calcium binding proteins S100A8 and S100A9. In a model of kidney injury, KLF5 acts in concert with C/EBPα to drive transcription of S100a8 and S100a9 in renal collecting duct
epithelial cells (284). During hyperglycemia in mice, neutrophils have increased expression of \textit{S100a8/a9}, which is associated with an increase in \textit{Klf5} expression (285). Thus, KLF5 may be an important mediator of inflammation in cells via control of S100A8 and S100A9.

4.3 S100 Proteins

The immune system can be triggered and mobilized by a variety of different molecules. Broadly, these molecules are either of host origin or foreign. Foreign molecules are referred to as pathogen-associated molecular patterns (PAMPs). Examples of PAMPs are lipopolysaccharide (LPS) from gram-negative bacteria, lipoteichoic acid from gram-positive bacteria, or viral nucleic acids (dsRNA or unmethylated CpG motifs) (286). These PAMPs are recognized by the innate immune system via toll-like receptors (TLRs) (286). Damage-associated molecular patterns (DAMPs) are nucleic or cytosolic proteins or nucleic acids released from host cells (286). When a cell is damaged, dying or injured it will release proteins or nucleic acid molecules that will signal the innate immune system. Of particular interest to our studies is the family of S100 proteins.

S100s are a 24-member family of relatively small (21kD), helix-loop-helix, calcium-binding proteins (287). S100 proteins are present in all vertebrates and expressed in epithelial, adipocytes, keratinocytes, and innate immune cells (287). These proteins have both intracellular and extracellular functions. Intracellular S100s have been shown to regulate enzyme activity, cytoskeletal dynamics and structure, cell growth, apoptosis and differentiation, and Ca\textsuperscript{2+} homeostasis (287). Some S100s are excreted and act as alarmins or DAMPs (288). As DAMPs, these molecules can bind to inflammatory receptors on immune cells such as the receptor for advanced glycation end products (RAGE) or TLRs (289).
4.3.1 Intracellular Roles of S100A8 and S100A9. S100A8 and S100A9 are often co-expressed and can function independently or together as a heterodimer complex (290) (291). S100A8 and S100A9 expression is induced by inflammatory molecules such as LPS, IL-1, TNF-α and interferon-gamma (IFN-γ) in a cell-type specific manner (292) (293). S100A8 and S100A9 play a role in managing reactive oxygen species (ROS) in innate immune cells for oxidative bursts. Phagocytic cells, like neutrophils and macrophages use oxidative bursts to neutralize bacteria or fungi. S100A8 and S100A9 make up approximately 40% of the cytosolic protein content of neutrophils and 1% of monocytes (294). In macrophages S100A8, but not S100A9, is induced by oxidative stress (295). S100A8 reduces ROS in cells by scavenging nitrous oxide (NO) and becoming S-nitrosylated S100A8 (296). S100A9 promotes ROS by activating NADPH oxidase (297).

Cells have a dynamic cytoskeletal system that allows for rapid changes of the plasma membrane. As a heterodimer, S100A8/A9 is involved in microtubule assembly, which is crucial for migration and degranulation of monocytes and neutrophils (298). Phosphorylation of S100A9 by MAPK inhibits S100A8/A9 microtubule assembly (298). Granulocytes of S100a9−/− mice contain less polymerized tubulin and less recruitment of granulocytes to during wound healing in vivo (298). Microtubule assembly and disassembly is regulated by intracellular Ca^{2+} levels (299). S100A8 and S100A9 indirectly regulate intracellular flux of Ca^{2+} by interacting with RAGE (300) or directly by binding and sequestering calcium. S100A8/A9 regulates Fc-receptor mediated phagocytosis by mediating Ca^{2+} depletion in cells (301).

4.3.2 Extracellular Roles of S100A8 and S100A9. S100A8 and S100A9 are secreted from cells as individual proteins or as components of a heterodimer complex called calprotectin. Calprotectin is released from cells after apoptosis/necrosis as molecular DAMPs and bind TLRs
and RAGE (302). S100A8 and S100A9 act as chemoattractant molecules for leukocytes (303) (304). In neutrophils, calprotectin promotes adhesion to fibronectin as well as degranulation (304) (305). Both S100A8 and S100A9 can act as anti-inflammatory molecules as well. As mentioned earlier, S100A8 and S100A9 manage intracellular ROS in cells. S100A8 acts as an anti-oxidant and suppresses mast cell activation by reducing intracellular ROS (306). S-glutathionylation of S100A9 suppresses adhesion rather than promoting it (307). As a heterodimer, high affinity Zn$^{2+}$-binding sites are exposed on the molecule, which give its antimicrobial properties, particularly against S. aureus (308) (309). Like its constituents, calprotectin is a chemoattractant for neutrophils. The release of calprotectin from granules in neutrophils requires intact microtubules and PKC activation (298). Calprotectin is a ligand for RAGE, where it potentiates an inflammatory signal mediated by myeloid differentiation primary response gene 88 (MyD88) (302) (285).

4.4 S100A8 and S100A9 in Health and Disease

4.4.1 Cancer. Tumors create a micro-environment that includes other somatic cell types including innate and adaptive immune cells (310). Tumors recruit myeloid-derived suppressor cells (MDSCs) resulting in T-cell tolerance and suppression of the anti-tumor immune response (291). Changes in expression and/or function of S100 proteins have been associated with cancer development clinically and experimentally. S100A8 and S100A9 are upregulated in skin, breast, lung, gastric colorectal, pancreatic and prostate cancer (291).

Calprotectin-positive myeloid cells are found within several epithelial cancers—suggesting a role for inflammation in cancer progression, mediated by these proteins. RAGE expression has been implicated in the progression of tumors and establishment of the tumor microenvironment (311). Tumors secrete inflammatory cytokines that attract MDSCs, amongst
other immune cell types. These MDSCs release calprotectin, activating RAGE on the tumor itself—promoting proliferation and survival. Calprotectin binds to RAGE on the surface of endothelial cells to facilitate migration of MDSCs. Calprotectin binding to RAGE on myeloid cells potentiates a downstream positive-feedback loop that activates transcription of S100A8 and S100A9, thus increasing further production of calprotectin in these cells (312). Therefore, calprotectin acts in concert with RAGE to create a tumor microenvironment that allows growth and proliferation while avoiding destruction by T-cells. Small molecule inhibitors that block the interaction of S100A9 with their receptors have been developed. Tasquinimod, which blocks the interaction of S100A9 with TLR4, improves progression-free survival of patients with metastatic prostate cancer (313) (314).

4.4.2 Obesity. There is conflicting data on whether calprotectin correlates with obesity. Some publications have reported a positive correlation between obesity and circulating calprotectin levels in the blood (315,316), others have not (317). BMI is a determinant of calprotectin plasma concentrations independent of diabetes status (318). Weight loss from Roux-en-Y gastric bypass leads to a decrease in circulating lipids as well as plasma calprotectin in human subjects (318). In adipose tissue from these subjects, calprotectin was increased mainly in the stromal vascular fraction and was positively associated with monocyte and macrophage markers (318). In db/db mice, circulating calprotectin levels were not significantly increased compared to lean animals (317). Neutrophil expression of S100a8/a9 was also unaffected by obesity (317). This discrepancy in the data may be due to difference of the WBC population in mice and humans. Neutrophils, the chief producers of calprotectin, are the largest population of WBCs in humans, while in mice lymphocytes are the largest population.
Obesity leads to systemic inflammation (319), as well as local inflammation of the adipose tissue. Inflammation of the adipose tissue is characterized, in part, by influx of immune cells and increased release inflammatory cytokines (320). *Ob/ob* mice have increased *S100a8* and *S100a9* mRNA expression in the mature adipocyte and stromal vascular cell fraction, respectively, compared to lean controls (321). Adipose tissue macrophages promote myelopoiesis during obesity when calprotectin binds TLR4 on their cell membranes (317). This leads to interleukin-1beta (IL-1β) production from adipose tissue macrophages (317). IL-1β stimulates myelopoiesis in the BM, causing an increase circulating WBCs (317). Higher leukocyte numbers in the circulation leads to increased flux of monocytes into the adipose tissue, thus exacerbating adipose tissue inflammation (317).

**4.4.3 Cardiovascular Disease and Diabetes.** The role of inflammation in metabolic diseases is becoming increasingly apparent. Research continues to show calprotectin is associated with cardiovascular risk (322). Monocytes infiltrate atherosclerotic lesions and become fat-laden foam cells (323). Rupture-prone lesions are associated with calprotectin expression in macrophages and in the plasma (324) (325). S100A8 and S100A9 are present in atherosclerotic plaques. Patients with T2D have increased circulating levels of calprotectin, which is correlated with coronary artery disease severity in these patients (326) (327). S100A8 and S100A9 were among the top differentially expressed genes in a study of over 900 type 1 diabetic (T1D) and control subjects’ peripheral blood mononuclear cells (328). Research using ultrasound analysis of plaques in T2D patients found a positive correlation between plaque vulnerability and plasma levels of calprotectin (329).

Mouse studies have afforded a glimpse into the direct role S100A8 and S100A9 play in atherogenic risk and progression. *S100a9<sup>-/-</sup>*/*ApoE<sup>-/-</sup>* mice have an approximate one-third
reduction in lesion area when given a HFD compared to ApoE−/− mice (330). The lesion area of the double knockout mice had less recruitment of monocytes and neutrophils as well (330). To determine whether WBCs were the source of calprotectin-mediated inflammation, BM S100a9−/− was transplanted into Ldlr−/− (331). The transplantation of deficient marrow into HFD-fed mice had no effect on lesion area (331). This may be due to non-myeloid cells production of S100A8 and S100A9, such as SMCs (331). An atherosclerotic lesion is a heterogeneous mix of immune cells and vascular SMCs. There is evidence to suggest that calprotectin instigates an inflammatory phenotype in a cell-type specific manner (322). For example, calprotectin induces neutrophil and monocyte chemotaxis, adhesion, and NADPH oxidase activity (332) (333). Calprotectin activates endothelial cells and increases the expression of adhesion molecules on the surface and the permeability of these cells (334). This ultimately leads to invasion of more immune cells into the lesion area. The exogenous role of S100A8, S100A9 and calprotectin in atherogenic progressions appears to be mediated by TLR4 and RAGE signaling (335). Indeed, TLR4 or MyD88 deficient mice have reduced plaque size (336). Glucose induced ROS leads to increased neutrophil secretion of calprotectin (285). Calprotectin binds to RAGE in BM progenitors, stimulating proliferation and differentiation of CMPs (285). Increased circulating neutrophils and Ly6chi monocytes exacerbate lesions in diabetic Ldlr−/− mice (285). Lowering glucose pharmacologically with an SGLT2 inhibitor lowers circulating calprotectin and BM derived leukocytosis (285). These data suggest hyperglycemia is a key mediator between S100A8 and S100A9 and leukocytosis.
Chapter 5: KLF5 does not regulate neutrophil maturation, S100A8, and S100A9.

5.1 Introduction

Hyperglycemia causes the dysregulation of the innate immune system which leads to complications such as cardiovascular disease, kidney disease, and periodontal disease, to name a few (337). Patients with DM often have more circulating innate immune cells such as monocytes and neutrophils (338) (339). These cells can move into tissues and blood vessels and release inflammatory cytokines, which damage the tissues over time. Glucose per se may not necessarily be inflammatory, however during hyperglycemia, proteins and lipids can become glycated to create advanced glycation end products (AGEs). These AGEs bind the RAGE, causing a downstream inflammatory cascade (340).

RAGE is expressed constitutively embryonically, but is relatively low in differentiated cells (341). RAGE has multiple ligands in addition to AGEs including S100 proteins (discussed in chapter 4) (340). In the BM, calprotectin binds to RAGE on common myeloid-progenitor cells (CMPs)—stimulating myelopoiesis and differentiation into monocytes and neutrophils (285). Calprotectin is released from neutrophils during hyperglycemia, thus indirectly causing a systemic immune response (285). It is not yet fully understood how glucose stimulates the up-regulation and release of calprotectin from neutrophils or how S100A8 and S100A9 are transcriptionally regulated in neutrophils exposed to high levels of glucose.

A potential transcriptional regulator of S100A8 and S100A9 is KLF5. Fujiu K. et al. demonstrated that, in the absence of KLF5 in the renal collecting duct, the production of calprotectin after renal injury was suppressed. Suppression of Klf5, and thus calprotectin production, mitigated the influx of monocytes into the damaged cells (284). KLF5 is also adequately expressed in hematopoietic stem cells (HPSC), and deficiency of KLF5 in the
pluripotent stem cell results in decreased circulating neutrophils (279). This suggests KLF5 is necessary for granulocyte lineage determination.

In the current study, we generated a myeloid-specific Klf5 KO (MKK) mouse to determine whether KLF5 regulates S100A8 and S100A9 production in streptozotocin (STZ)-induced diabetes. We hypothesized that absence of KLF5 will reduce gene expression of S100A8/S100A9 in neutrophils, which contain the most S100A8 and S100A9. This will, in turn, reduce hyperglycemia-induced leukocytosis. We found that absence of KLF5 had no effect on neutrophil gene expression of S100A8 or S100A9 in vivo or in vitro. Absence of KLF5 also did not have an effect on peripheral white cells or BM progenitors. However, these studies were complicated as the MKK and Klf5^fl/fl mouse colonies presented with a defect in breeding and weight gain not found by others. These defects may be due to a constant shifting of these colonies to various vivaria and attempts to rederive the line.

5.2 Materials and Methods

5.2.1 Animal Studies. Mice used for this experiment were raised in multiple vivaria including Columbia University, Charles River Laboratory, Memorial Sloan Kettering, New York University Langone satellite animal facility and Alexandria West Central Animal Facility (AWCAF). Mice were bred and re-derived at Charles River before being temporarily sent to Memorial Sloan Kettering Animal Facility. Mice from Memorial Sloan Kettering bred there and were shipped to NYUMLC satellite facilities for experiments. Finally, these mice were permanently transferred to AWCAF barrier facility where they are bred and used for further experiments.

Littermates were used as controls for all studies. The NYULMC, Institutional Animal Care and Use Committees approved all procedures. Mice with exons 2 and 3 of the mouse Klf5
gene flanked with loxP sites (Klf5\(^{fl/fl}\)) (342) were crossed with mice overexpressing Cre recombinase driven by the LysM promoter (LysM-Cre), generating mice with myeloid-specific Klf5 gene knockout (MKK). The control group was Klf5\(^{fl/fl}\) mice. All mice used were male mice 3-4 months of age. Mice were made diabetic by STZ treatment using the protocol adopted by the Diabetic Complications Consortium. Mice were divided into two groups; one group was treated with STZ (Milipore Sigma), the other group was treated with vehicle, or no treatment was given to examine baseline phenotype. STZ was dissolved in sterile citrate buffer and injected IP into mice (50 mg/kg) for five consecutive days. Ten days after the last STZ injection, glucose levels were measured using a One Touch Ultra 2\(^{TM}\) glucometer.

STZ-injected mice with glucose levels 250mg/dL were considered to be diabetic. These mice are being bred at Temple University with Klf5\(^{fl/fl}\) mice kindly provided by Konstantinos Drosatos and a LysM-Cre purchased from Jackson Laboratories.

5.2.2 Measurement of Plasma Lipids and Glucose. 100 µL of blood were drawn from each animal and then centrifuged at 10,000 rpm on a tabletop centrifuge for 10 minutes to obtain plasma. Plasma was used to measure TGs and NEFA using Thermo Scientific Infinity assay (Thermo Scientific) and Wako NEFA kit, respectively. Glucose was measured from whole blood using a One Touch Ultra 2\(^{TM}\) glucometer.

5.2.3 Flow Cytometry. Leukocyte subsets were identified from whole blood as previously described (285). EDTA anticoagulated blood was subjected to red blood cell (RBC) lysis. WBCs were resuspended in flow buffer (PBS + 0.5% BSA w/v, 5 mM EDTA) and stained with a cocktail of antibodies (Table 6) for 30 minutes in the dark. Monocytes were identified as CD45\(^{hi}\)CD115\(^{hi}\) and subsets as Ly6C\(^{hi}\) and Ly6C\(^{lo}\); neutrophils were identified as CD45\(^{hi}\)CD115\(^{lo}\)Ly6C/G\(^{hi}\). WBC differentials were obtained with a Genesis\(^{TM}\) hematology system
Hematopoietic stem and progenitor cells were analyzed by flow cytometry as previously described (285). BM was harvested from femurs and tibias, and the RBCs were lysed. The cell suspension incubation with a cocktail of antibodies against lineage-committed cells was performed. This was accompanied by markers to identify the stem and progenitor cells that were identified as hematopoietic stem/progenitor cells [(HSPC) lineage−, Sca1+, and ckit−], common myeloid progenitors [(CMPs) (lineage−, Sca1−, ckit+, CD34int, and FcγRIIint/FcγRIIIint)], and granulocyte myeloid progenitors [(GMPs) (lineage−, Sca1−, ckit+, CD34int, and FcγRIIhi/FcγRIIIhi)]. Flow cytometry was performed using and FACS Aria™ I (for analysis) or Beckman Coulter MoFLo™ XDP or BD FACS Aria™ IIu SORP (for sorting); both machines ran FACSDiva software. All flow cytometry data were analyzed using FlowJo software (Tree Star).

5.2.4 RNA extraction and Quantitative Real-Time PCR. RNA was extracted from neutrophils using RNeasy Micro Kit (Qiagen) and amplified using Ovation® Pico WTA System V2 (NuGEN) following manufacturers protocol. Quantitative real-time PCR was performed with Power SYBR Green PCR Master Mix (Life Technologies) using a Quant Studio 7 Flex analyzer (Life Technologies). Mouse quantitative primer sequences are listed in Table 7.

5.2.5 Cell Culture. HL-60 cells were purchased from the American Type Culture Collection (ATCC) and cultured in RPMI 1640 media (ThermoFisher) supplemented with L-glutamine and 25 mM HEPES (Fisher Scientific), 1% penicillin/streptomycin (Invitrogen) and 10% heat-inactivated fetal bovine serum (FBS) (Invitrogen). Cells were maintained in 37°C and 5% CO2. HL-60 cells were passaged when the cells reached a density between 1 and 2 million cells/mL. High and low glucose or KLF5 inhibitor (KLF5i) CID 5951923 (Milipore Sigma) experiments were conducted as follows. HL-60 cells were stimulated to differentiate by incubating with 1µM all-trans-retinoic acid (ATRA) in base medium for 72 hours. Non-attached
cells were aspirated out with the media. Cells were incubated with base media with 1% FBS containing high glucose (25mM) or low glucose (5mM) and 20mM of mannitol to maintain iso-osmotic balance. Cells were also incubated with or without KLF5i at a concentration of 10 µM. Cells were harvested for RNA 24 and 72 hours afterward. RNA was isolated with RNA mini kit (Life Technologies); cDNA was synthesized using Verso cDNA Kit (Thermo Scientific), and quantitative real-time PCR were performed with Power SYBR Green PCR Master Mix (Life Technologies) using a Quant Studio 7 Flex analyzer (Life Technologies). Human quantitative primers are listed on Table 8.

**Table 6. List of Flow Cytometry Antibodies**

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Reactivity</th>
<th>Color</th>
<th>Clone</th>
<th>Marker for:</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD115</td>
<td>Mouse</td>
<td>PE</td>
<td>AFS98</td>
<td>Monocyte</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD45</td>
<td>Mouse</td>
<td>Pe/Cy7</td>
<td>30-F11</td>
<td>Leukocyte</td>
<td>eBioscience</td>
</tr>
<tr>
<td>Ly-6C/Ly-6G</td>
<td>Mouse</td>
<td>APC</td>
<td>RB6-8CS</td>
<td>Granulocyte</td>
<td>BioLegend</td>
</tr>
<tr>
<td>CD45R</td>
<td>Mouse</td>
<td>FITC</td>
<td>RA3-6B2</td>
<td>Lineage</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD4</td>
<td>Mouse</td>
<td>FITC</td>
<td>GK1.5</td>
<td>Lineage</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD8a</td>
<td>Mouse</td>
<td>FITC</td>
<td>53-6.7</td>
<td>Lineage</td>
<td>eBioscience</td>
</tr>
<tr>
<td>Terr119</td>
<td>Mouse</td>
<td>FITC</td>
<td>Terr119</td>
<td>Lineage</td>
<td>eBioscience</td>
</tr>
<tr>
<td>Ly6G</td>
<td>Mouse</td>
<td>FITC</td>
<td>RB6-8CS</td>
<td>Lineage</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD11B</td>
<td>Mouse</td>
<td>FITC</td>
<td>M1/70</td>
<td>Lineage</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD19</td>
<td>Mouse</td>
<td>FITC</td>
<td>Ebio1D3</td>
<td>Lineage</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD3e</td>
<td>Mouse</td>
<td>FITC</td>
<td>145-2C1</td>
<td>Lineage</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD2</td>
<td>Mouse</td>
<td>FITC</td>
<td>RM2-5</td>
<td>Lineage</td>
<td>eBioscience</td>
</tr>
<tr>
<td>Sca-1</td>
<td>Mouse</td>
<td>Pe/Cy7</td>
<td>D7</td>
<td>HSPC</td>
<td>BioLegend</td>
</tr>
<tr>
<td>c-Kit</td>
<td>Mouse</td>
<td>APC/Cy7</td>
<td>2B8</td>
<td>HSPC, CMP, GMP</td>
<td>BioLegend</td>
</tr>
<tr>
<td>FcγRII/FcγRIII</td>
<td>Mouse</td>
<td>PE</td>
<td>93</td>
<td>CMP, GMP</td>
<td>BioLegend</td>
</tr>
<tr>
<td>CD34</td>
<td>Mouse</td>
<td>PerCP/Cy5.5</td>
<td>HM34</td>
<td>CMP, GMP</td>
<td>BioLegend</td>
</tr>
<tr>
<td>CD11B</td>
<td>Human</td>
<td>APC</td>
<td>ICRF44</td>
<td>Granulocyte</td>
<td>BioLegend</td>
</tr>
</tbody>
</table>
Table 7. Mouse primer sequences for quantitative PCR analysis

<table>
<thead>
<tr>
<th>Gene</th>
<th>Orientation</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>36b4</td>
<td>forward</td>
<td>A A T C T C C A G A G C A C A C A T T G</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>C C G A T C T G C A G A C A C A C A C T</td>
</tr>
<tr>
<td>Klf1</td>
<td>forward</td>
<td>A C A C T G G A C A T C G T C C C T T C</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>C C C T G A G G A C A T G T G A G G T T</td>
</tr>
<tr>
<td>Klf2</td>
<td>forward</td>
<td>G C C T G T G G T T C G T A T A A A</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>A A G G A A T G G T C A G C C A C A T C</td>
</tr>
<tr>
<td>Klf3</td>
<td>reverse</td>
<td>C C A T G T G C T C C C A T A G T G T G</td>
</tr>
<tr>
<td></td>
<td>forward</td>
<td>C T C T C G G T A T C C A G C T T T G C</td>
</tr>
<tr>
<td>Klf4</td>
<td>forward</td>
<td>C T G A A C A C A G G G A C T G T C A</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>G T G T G G G T G G C T T G T C T T T T T</td>
</tr>
<tr>
<td>Klf5</td>
<td>forward</td>
<td>A C C A G A C G G C A G T A A T G G A C</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>G A C T T T G G C T A G T G A C A G T G</td>
</tr>
<tr>
<td>Klf6</td>
<td>forward</td>
<td>T G C T A G T C A G C A T G G G C A A G</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>A A A C A A A T C C C T G T G T C A G C</td>
</tr>
<tr>
<td>Klf7</td>
<td>forward</td>
<td>T T G C T C T C T C G G G A C A A G T T</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>G A G C T G A G G G A A G C C T T C T T</td>
</tr>
<tr>
<td>Klf8</td>
<td>forward</td>
<td>C T A T C C T G G C C T C G T C T C A G</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>C C T C C A A T G A G T G G G A C A G T</td>
</tr>
<tr>
<td>Klf9</td>
<td>forward</td>
<td>T G C C C A C T G T G T G A A G A A G</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>G C C A A A A G A A G C A G T G A C C T C</td>
</tr>
<tr>
<td>Klf10</td>
<td>forward</td>
<td>G G T G T C A A G T G C T T C T G A A</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>G A A C T G A G C C C T G T C C T C T G</td>
</tr>
<tr>
<td>Klf11</td>
<td>forward</td>
<td>C A G C T G C A C C T G A T C T A C C A</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>G A C C A T G C A T C C T T T G G A G T</td>
</tr>
<tr>
<td>Klf12</td>
<td>forward</td>
<td>T C C C T G T G G T G T A C A G T C A</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>C T G C T C T G G C T A T G G A A A G G</td>
</tr>
<tr>
<td>Klf13</td>
<td>forward</td>
<td>G T G C T C T G A G T G A A G G G A A G</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>A T C T G G G G G A A C A G A C A G T G</td>
</tr>
<tr>
<td>Klf14</td>
<td>forward</td>
<td>C T G A T G C C C C A C C C T A A G T A</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>C T C T C A C C C C A A T C C A A G A</td>
</tr>
<tr>
<td>Klf15</td>
<td>forward</td>
<td>G A A G C A G G A G G C A G G T A C A G</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>G A A G T T T C T G C T G G G T G T C</td>
</tr>
<tr>
<td>Klf16</td>
<td>forward</td>
<td>A A G C C T A C C C C A C T C T T G T</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>G A G G G C A G A C A C T A T G G A C A</td>
</tr>
<tr>
<td>Klf17</td>
<td>forward</td>
<td>C T C C T G T C A A C C C A A G T G T</td>
</tr>
<tr>
<td>S100a8</td>
<td>forward</td>
<td>C C T T T G T C A G C T C C G T C T T C</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>A T C A C A T C G C A A G G A A C T C</td>
</tr>
<tr>
<td>S100a9</td>
<td>forward</td>
<td>C A G C A T A A C C A C C A T C A T C G</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>G T C C T G G T T T G T G T C C A G G T</td>
</tr>
<tr>
<td>Gene</td>
<td>Orientation</td>
<td>Sequence</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>CD11B</td>
<td>forward</td>
<td>G C T T G T T G G C C A A T A C</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>G T G C A C A C A C T G G C C A C A G</td>
</tr>
<tr>
<td>CD14</td>
<td>reverse</td>
<td>A G C C T A G A C T C A G C C A A A</td>
</tr>
<tr>
<td></td>
<td>forward</td>
<td>C T T G G C T G G C A G T C C T T T A G</td>
</tr>
<tr>
<td>CD66B</td>
<td>forward</td>
<td>T A C A T C C G G A G A C T C C C A A G</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>A G G A C A T T C A G G G T G A C T G G</td>
</tr>
<tr>
<td>GLUT1</td>
<td>forward</td>
<td>T C A C T G T G C T C C T G G T T C T G</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>C C T G T G C T C C T G A G A G A T C C</td>
</tr>
<tr>
<td>KLF5</td>
<td>forward</td>
<td>C C C T T G C A C A T A C A C A A T G C</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>A G T T A A C T G G C A G G G T G G T G</td>
</tr>
<tr>
<td>RPL19</td>
<td>forward</td>
<td>A C C T G A A G G T G A A G G G A A T</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>G C G T G C T T C C T T G G T C T T A G</td>
</tr>
<tr>
<td>S100A9</td>
<td>forward</td>
<td>A T T T C C A T G C C G T C T A C A G G</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>A C G C C C A T C T T T A T C A C C A G</td>
</tr>
<tr>
<td>S100A9</td>
<td>forward</td>
<td>C A G C T G A G C T C G A G G A G T T</td>
</tr>
<tr>
<td></td>
<td>reverse</td>
<td>C C A C A G C C A A G A C A G T T T G A</td>
</tr>
</tbody>
</table>
5.3 Results

5.3.1 Mouse breeding. Floxed *Klf5 (Klf5<sup>fl/fl</sup>)* (343) mice were bred with a *LysM*-cre mice to generate myeloid-specific KLF5 KO mice (MKK). Initially these mice were bred and raised in Columbia University’s barrier facility, but were transferred to Charles River Laboratory. This line of mice was rederived at Charles River Laboratory, brought to Memorial Sloan Kettering, followed by New York University Langone satellite animal facility, and Alexandria West Central Animal Facility (AWCAF). Mice were bred and rederived at Charles River before being temporarily sent to Memorial Sloan Kettering Animal Facility. Mice from Memorial Sloan Kettering were bred there and shipped to NYUMLC satellite facilities for experiments. Finally, these mice were permanently transferred to AWCAF barrier facility where they were bred and used for further experiments.

5.3.2. Baseline assessment of MKK glucose, lipid, and peripheral and bone marrow blood cells. We first confirmed our MKK had the expected knockout by testing gene expression *Klf5* by quantitative PCR (qPCR) and saw that it was decreased or not expressed at all in MKK mice (Figure 16). Neutrophils express the highest amount of *Klf5* amongst cells in the myeloid lineage; thus, we focused our studies on neutrophils (http://ds.biogps.org/?dataset=GSE10246&gene=12224). We asked whether deletion of *Klf5* would affect gene expression of other KLFs in neutrophils. We found an almost 100-fold increase in *Klf4*, and a 3-fold increase in *Klf15*. *Klf11* was not detected in the control mice, but was detectable in the MKK group (Figure 16). KLF4 and KLF5 work antagonistically to one another, and compete for the same cis-elements on promoters (221).

Next, we assessed the weight, glucose, and plasma lipids of MKK and *Klf5<sup>fl/fl</sup>* mice. Both genotypes had normal glucose and plasma lipids and mice averaged 23 grams at 3-4 months of
age. There was no significant difference between weight, glucose, plasma NEFA, total cholesterol or TG, between genotypes (Figure 17). To assess the baseline immune phenotype of MKK, 300µL of blood was drawn from each mouse for flow cytometry to assess circulating leukocytes. We assessed two populations of monocytes, Ly6C/G$^{hi}$ and Ly6C/G$^{lo}$ as it has been shown that Ly6C/G positive monocytes are considered more inflammatory and infiltrative (344), There was no difference between the number of circulating neutrophils and monocytes (both Ly6C/G$^{hi}$ and Ly6C/G$^{lo}$) (Figure 18A-C). Similarly, there was no change in the BM progenitor cells; hematopoietic stem/progenitor cells (HSPCs), CMPs, and granulocyte-macrophage progenitors (GMPs) between genotypes (Figure 18D-F). Thus, we conclude that, at baseline, there is no metabolic or immunologic phenotype in MKK mice.
Figure 16. Neutrophils of MKK mice have increased expression of Klf4, 11, and 15

Neutrophils were isolated from whole blood of MKK mice and Klf5<sup>fl/fl</sup> controls by flow cytometry and analyzed for gene expression. Expression of the gene of interest was normalized to expression of 36b4. Klf5<sup>fl/fl</sup> N=4, MKK N= 5. Results are presented as means ± SD. Statistics were performed using unpaired Student's t-test.
Figure 17. Weight, glucose, and plasma lipids of MKK mice are comparable to $Klf5^{fl/fl}$ littermates

Male mice aged 8-12 weeks were used for measurements of A) weight B) glucose. Blood was drawn and centrifuged in order to collect plasma to measure C) total cholesterol D) non-esterified fatty acids (NEFA) and E) TGs. Mice were postprandial for measurements. $Klf5^{fl/fl}$ N=9, MKK N= 8. Results are presented as means ± SD. Statistics were performed using unpaired Student's t-test.
Figure 18. MKK mice do not have any differences in peripheral white blood cells or bone marrow progenitors at baseline

Whole blood was sorted with flow cytometry for neutrophils and Ly6C/G\textsuperscript{lo} and Ly6C/G\textsuperscript{hi} populations of monocytes. A) Neutrophils, B) Ly6C/G\textsuperscript{lo} monocytes, and C) Ly6C/G\textsuperscript{hi} monocytes. Bone marrow was taken from mouse femurs and stem cell progenitors were sorted out of lineage\textsuperscript{+} cell populations to obtain E) hematopoietic stem/progenitor cells (HSPCs), common myeloid progenitors (CMP), and granulocyte-macrophage progenitors (GMPs). \textit{Klf5\textsuperscript{flo}} N=9, MKK N= 8. Results are presented as means ± SD. Statistics were performed using unpaired Student's t-test.
5.3.3 Neutrophils from MKK mice do not express less S100A8 and S100A9. Next, we isolated neutrophils from the circulation to analyze gene expression. Contrary to our hypothesis, we found that despite the absence of Klf5, MKK mice had a higher trend of mRNA levels of S100a8 and S100a9 (Figure 19A-C). Thus it appears KLF5 does not directly regulate S100a8 and S100a9 in neutrophils at baseline.

![Figure 19](image-url)

**Figure 19. Neutrophils of MKK mice do not have lower expression of S100a8 and S100a9 at baseline**

Neutrophils were isolated from whole blood of either MKK mice or Klf5fl/fl controls by flow cytometry and analyzed for gene expression. Expressions of the genes of interest were normalized to expression of 36b4. A) Klf5. B) S100a8. C) S100a9. Klf5fl/fl N=9, MKK N=8. Results are presented as means ± SD. Statistics were performed using unpaired Student's t-test.
5.3.4 Diabetic Klf5fl/fl and MKK mice peripheral and bone marrow blood cells are comparable. We then asked whether hyperglycemia would play a role in S100A8/S100A9 gene expression in MKK mice. To assess whether hyperglycemia plays a role in Klf5 regulation of neutrophil and S100a8 and S100a9, we made MKK mice diabetic with STZ. After two weeks of hyperglycemia, both MKK and Klf5fl/fl mice had glucose levels above 400 mg/dL (Figure 20A). The low number of Klf5fl/fl mice was caused by death after STZ injections, likely due to low body weights before injections. Complete blood counts also showed that there were higher circulating total WBCs, neutrophils, and monocytes compared to baseline in both Klf5fl/fl and MKK mice (Figure 20B-D). When circulating cells were assessed by flow cytometry, we again saw no difference between genotypes in the number of neutrophils and monocytes (Figure 21A-C). This corresponded to no change in BM stem cells between genotypes (Figure 21E-F). When neutrophil gene expression was assessed, MKK mice expressed less Klf5. However there was no change in gene expression in S100a8 and S100a9 between MKK and Klf5fl/fl mice (Figure 22A-C).
Figure 20. MMK and Klf5<sup>fl/fl</sup> mice both present with leukocytosis during diabetes

Male mice were made diabetic with five low-dose injections of streptozotocin. After two weeks, glucose was measured as well as complete peripheral blood count. These results were compared to that of similar, normoglycemic (baseline) mice. A) Glucose, B) total white bloods cells (WBCs), C) neutrophils and D) monocytes. Baseline Klf5<sup>fl/fl</sup> N=9, Baseline MKK N= 8 Diabetic Klf5<sup>fl/fl</sup> N=3, Diabetic MKK N=6. Results are presented as means ± SD. P values represent significant values when diabetic groups are compared to baseline. Statistics were performed using the two-way ANOVA Tukey's multiple comparison test.
Figure 21. MKK mice do not have any differences in peripheral white blood cells or bone marrow progenitors during diabetes

Whole blood was sorted with flow cytometry for neutrophils and Ly6C/G\textsuperscript{lo} and Ly6C/G\textsuperscript{hi} populations of monocytes. A) Neutrophils, B) Ly6C/G\textsuperscript{lo} monocytes, and C) Ly6C/G\textsuperscript{hi} monocytes. Bone marrow was taken from mouse femurs and stem cell progenitors were sorted out of lineage\textsuperscript{*} cell populations to obtain E) hematopoietic stem/progenitor cells (HSPCs), common myeloid progenitors (CMP), and granulocyte-macrophage progenitors (GMPs). \textit{Klf5}\textsuperscript{fl/fl} \textit{N}=3, MKK \textit{N}= 5. Results are presented as means ± SD. Statistics were performed using unpaired Student's t-test.
Figure 22. Neutrophils of MKK mice do not have lower expression of S100a8 and S100a9 during diabetes

Neutrophils were isolated from whole blood of either MKK mice or Klf5fl/fl controls by flow cytometry and analyzed for gene expression. Expressions of the genes of interest were normalized to expression of 36b4. A) Klf5. B) S100a8. C) S100a9. Klf5fl/fl N=3, MKK N= 5. Results are presented as means ± SD. Statistics were performed using unpaired Student's t-test.
5.3.5 Differentiating promyeloblasts lose KLF5 and gain S100A8 and S100A9. Next, we differentiated a human promyeloblastic cell line (HL-60) to neutrophils in order to assess the role of hyperglycemia on KLF5 in these cells. We determined 1µM of ATRA incubated for 3 days was sufficient to differentiate cells. At day 3, these cells highly expressed CD66B (Figure 23A), CD11B (Figure 23B), S100A8 and S100A9 (Figure 23E and F, respectively) — markers of neutrophil maturity. However, longer time periods further increased CD11B and CD14, a monocyte cell surface marker (Figure 23C), and decreased S100A8 and S100A9. KLF5 decreased with neutrophil differentiation (Figure 23D). Next, we assessed the role of a KLF5 small molecule inhibitor (KLF5i) on the role of differentiating neutrophils. This particular inhibitor mechanism is not yet known, however, it is shown to downregulate the EGFR/MEK/ERK pathway (345). This pathway is known to stimulate Klf5 expression and *vice versa* creating a positive feedback loop (346). At a concentration of 10µM, we found that there was no effect of the KLF5i on neutrophil differentiation based on CD11B expression or detection on the cell surface by flow cytometry (Figure 24A-B). 10µM, of KLF5i did not change expression of *KLF5*, *S100A8*, and *S100A9* (Figure 24C-E).
Figure 23. HL-60 cells express lower KLF5 and more S100A8 and S100A9 as they differentiate into neutrophils

HL-60 cells were differentiated to neutrophils using 1µM all-trans retinoic acid (ATRA) for either 1, 3 or 5 days. Cells were collected and gene expression was measure for A) CD66B, a cell surface marker for neutrophils, B) CD14, a cell surface marker for monocytes, and CD11B a cell surface marker phagocytic cells. We also analyzed expression of D) KLF5, E) S100A8, and F) S100A9. Each group represents experiments run in triplicate. Results are presented as means ± SD. Statistics were performed using unpaired Student's t-test and compare treatment of 0µM or 1µM.
**Figure 24. Inhibition of KLF5 does increase HL-60 cells differentiation to neutrophils**

HL-60 cells were differentiated to neutrophils using 1µM all-trans retinoic acid (ATRA) for 3 days ± a KLF5i at a concentration of 10µM. After which cells were collected and analyzed for expression of A) CD11B or with B) flow cytometry for CD11B surface marker. Cells were collected and gene expression was measure for C) KLF5, B) S100A8, and C) S100A9. Each group represents experiments run in triplicate. Results are presented as means ± SD. Statistics were performed using the two-way ANOVA Tukey's multiple comparison tests.
5.3.6 Hyperglycemia does not increase gene expression of KLF5, S100A8 or S100A9 in neutrophils. We assessed the role hyperglycemia plays on neutrophils with or without KLF5. HL-60 cells were differentiated to neutrophils and incubated in control low glucose media (5mM) or high glucose media (25mM) for 24 (Figure 25) of 72 hours (Figure 26). We found that high glucose concentration did not affect gene expression of CD11B, GLUT1, KLF5, or S100A8 (Figure 25 and Figure 26 A-D). However, the presence of the KLF5i created a trend towards increase of S100A9 after 24 hours (Figure 26E) and significantly increased S100A9 expression after 72 hours (Figure 26E). Hyperglycemia does not change KLF5 or S100A8/A9 in cultured neutrophils; but inhibition of KLF5 causes an increase in S100A9. Morris et al. demonstrates lentiviral overexpression of KLF4 in THP-1 cells (an acute monocytic leukemia cell line) induces expression of S100A8 and S100A9 (347). Thus, KLF5 might be inhibitory to S100A9 or its absence induces expression of KLF4 in these cells.
Figure 25. Hyperglycemia does not increase gene expression KLF5, S100A8 or S100A9 in neutrophils after 24 hours

HL-60 cells were differentiated to neutrophils using 1µM all-trans retinoic acid (ATRA) for 3 days ± a KLF5i at a concentration of 10µM. Unattached cells were aspirated out and remaining cells were incubated for 24 hours in media containing low glucose (black bars, 5mM) or high glucose (red bars, 25mM). Afterwards, cells were collected and analyzed for expression of A) CD11B, B) GLUT1, C) KLF5, B) S100A8, and C) S100A9. Each group represents experiments run in triplicates. Results are presented as means ± SD. Statistics were performed using the two-way ANOVA Tukey's multiple comparison test.
Figure 26. Hyperglycemia does not increase gene expression KLF5, S100A8 or S100A9 in neutrophils after 72 hours

HL-60 cells were differentiated to neutrophils using 1μM all-trans retinoic acid (ATRA) for 3 days ± a KLF5i at a concentration of 10μM. Unattached cells were aspirated out and remaining cells were incubated for 72 hours in media containing low glucose (black bars, 5mM) or high glucose (red bars, 25mM). Afterwards, cells were collected and analyzed for expression of A) CD11B B) GLUT1, C) KLF5, B) S100A8, and C) S100A9. Each group represents experiments run in triplicates. Results are presented as means ± SD Statistics were performed using the two-way ANOVA Tukey’s multiple comparison test.
5.4 Discussion

Calprotectin is a crucial component during the inflammatory response in diabetic hyperglycemia. Relative to other cell types, neutrophils have a higher proportion of their cellular protein content. Naggareddy and Murphy et al. demonstrate that hyperglycemia triggers the release of calprotectin and that these molecules are associated with uncontrolled glucose (285). KLF5 has been shown to regulate S100a8 and S100a9 in collecting duct cells during acute kidney injury (284). Therefore, we predicted KLF5 would regulate S100A8 and S100A9 in neutrophils. We generated a myeloid-Cre specific knock out of Klf5 that we refer to as MKK. By knocking out Klf5, we observed a 100-fold increase of Klf4 in neutrophils (Figure 16). KLF4 and KLF5 compete for binding on DNA binding sites as well opposing roles in regulating cellular proliferation (221). Feinberg et al. demonstrate that KLF4 is an essential regulator in monocyte differentiation in CMPs. Knockdown of Klf4 blocked phorbol ester-induced monocyte differentiation in HL-60 cells and increased differentiation to granulocytes (223). Thus, we predicted MKK mice would have lower circulating neutrophils and higher circulating monocytes compared the Klf5−/− littermates. However, at baseline, we found that MKK mice and Klf5−/− littermates had similar circulating neutrophils, Ly6C/Glo, and Ly6C/Ghi (Figure 18A-C). Conversely, BM progenitors HSPC, CMP, and GMP, were unchanged (Figure 18D-F). Shahrin et al. demonstrates a Klf5 deficiency in HPSC leads to decreased peripheral neutrophils—suggesting KLF5 is a determinant for neutrophil lineage. This discrepancy between our data and what is previously published may be due to selection of Cre (279). Shahrin et al. used a Vav-Cre, which abolishes KLF5 at the HSPC stage, rather than the CMP stage of LysM-cre.

We show that KLF5 is decreased when promyeloblastic cells differentiate into neutrophils with ATRA (Figure 23D). ATRA has been used as a treatment for certain AMLs and
causes a decrease in circulating promyeloblastic cells (348). ATRA has also been shown to decrease KLF5 expression in intestinal epithelial cells—inhbiting their proliferation (349). However, in NB-4 cells (a promyeloblastic cell line), Humbult et al. shows ATRA transactivated KLF5 expression (280). These data run contrary to what is in the literature and our own data, possibly because of differences in cell line origin or dosage protocol. HL-60 cells treated with 1µM of ATRA had a >50% decrease in KLF5 (Figure 23D) expression after 3 days and a 50-fold increase in CD66B, a neutrophil surface marker (Figure 23A). When we treated HL-60 cells with KLF5i and examined CD11B by flow cytometry, we found there was no effect of the KLF5 inhibitor (Figure 24B).

We observed no difference in peripheral WBCs (Figure 21A-C) or in BM progenitor cells (Figure 21E-F) when MKK and Klf5fl/fl mice were made hyperglycemic. When neutrophils were isolated from mice at baseline, we found that MKK mice expressed S100a8 and S100a9 similarly to Klf5fl/fl (Figure 19B-C). This is contrary to our hypothesis and what was shown in kidney collect ducts. When we isolated neutrophils from diabetic MKK mice and Klf5fl/fl mice, we found no change in S100a8 and S100a9 (Figure 22B-C). We differentiated promyeloblastic cells to neutrophils and found S100A8 and S100A9 increased by two orders of magnitude after 3 days (Figure 22E and F, respectively). When we challenged these differentiated with 25mM glucose, we observed no change in S100A8 and S100A9 expression. (Figure 25D-E; Figure 26D-E). Ultimately, these data suggest KLF5 in neutrophils, does not have a direct effect on S100A8 and S100A9 expression, and KLF5 may inversely affect S100A9 in neutrophils differentiated from HL-60 cells.
5.5 Conclusions

Our data cannot conclusively confirm a role of KLF5 in regulating S100A8 and S100A9 in neutrophils. As S100A8/A9 is a major protein in neutrophils, it may be that there are multiple redundant layers of regulation. Deletion of KLF5 is not sufficient to block S100A8/S100A9. Another aspect that may confound our conclusions is the multiple displacements of the mice. Compared to other wild-type mice, both \(Klf5^{fl/fl}\) and MKK mice were underweight for their age, which made performing STZ studies difficult. It was also difficult to reproduce immunophenotypes shown in previous data with these mice as well. We believe the constant shifting of vivaria and rederiving this line has changed their underlying phenotype in a yet undetermined way. Therefore, we will repeat these studies in another set of mice to definitively answer the question of whether KLF5 plays a role during diabetic inflammation in neutrophils by controlling the transcription of S100A8 and S100A9.
Chapter 6: Conclusions and future directions

This thesis has contributed to the pool of knowledge of lipid metabolism in the kidney, which is slowly growing. I demonstrate that serum NEFA is important in TG accumulation in the kidney—a significant finding because many metabolic diseases have elevated circulating NEFAs. Our data also indicates that the kidney can handle a 3-4 fold increase in TG content while still not accumulating lipotoxic species such as ceramides and sphingolipids (Figure 9C-D). More importantly, I demonstrate a role, or lack thereof, of LpL and CD36. In the context of fasting, LpL activity is lower (159). There is also an increase in kidney expression of Angplt4 (Figure 7B), an inhibitor of LpL (350). The kidney, like the heart, has a high demand for fatty acids and energy. However, unlike the heart, LpL does not seem to be necessary for TG accumulation (173). Even in the fed state, an absence of LpL does not affect overall TG content in the kidney (Figure 13I). There is high LpL activity in the kidneys of mice (159) and, as of yet, LpL has not been knocked out in any kidney cell type. Thus, it remains to be determined whether absence of LpL in the kidney is detrimental.

Interestingly, I show that CD36 is disposable for lipid accumulation in the kidney. CD36 has been widely shown to play a role in lipid accumulation and renal damage progression (Discussed in Chapter 2). While, not discounting a role for CD36 in taking up fatty acids, I show in the fasted state (Figure 12A-C) that it is not necessary for lipid uptake or lipid accumulation. Fatty acids can enter the cell through non-receptor mediated ways as well. During fasting and certain metabolic diseases (such as DM), plasma NEFAs are at least double. Thus, the higher substrate availability favors movement of NEFA into the cells at a rate that will lead to lipid accumulation. This is especially true in an organ, such as the kidney, that receives 20% of cardiac output. The kidney does have other fatty acid transport proteins such as FATP2. In our
In future research, I will explore the possible FATP2 (gene name Slc27a2) has on fatty acid uptake in the kidney.

In this research, I have established a better understanding of fatty acid uptake in the kidney during a healthy state. While it seems CD36 is not a major fatty acid transporter in the kidney, I will test whether FATP2 is important for fatty acid transport. In the liver, deletion of the liver-specific isoform, FATP5, resulted in lower hepatic TG content despite increased expression of Fasn (351). Therefore, it is plausible that a kidney tubule specific KO of Slc27a2 may produce similar results to that of the liver. To achieve this, I will knockdown Slc27a2 with an anti-sense oligonucleotide, an adenoviral vector, or proximal tubule specific gene KO. To test uptake and lipid accumulation in the presence or absence of Slc27a2, I will repeat the experiments outlined in this thesis using the fasted and fed model. Should FATP2 be required for fatty acid transport in the kidney, I expect to find fasting induced TG accumulation will be blunted when FATP2 is knocked down. FATP2 uptake of [14C]oleic acid would also be decreased in these mice. Conversely, by overexpressing Slc27a2, I would see an increase in TG accumulation in the kidney and [14C]oleic acid uptake.

I will next transition to how fatty acid uptake is altered in the diseased state. LpL is understudied in renal disease pathology and a continuation of this research would determine the contribution LpL plays in acute renal injury. Renal nephropathy and lipid accumulation can be induced with a high dose injection of niacin. Using this method in iLpL⁻/⁻ mice, I will gain insight into the role this protein plays in lipid accumulation and fatty acid uptake with kidney disease. I will also determine whether absence of LpL affects the progression of tubulointerstitial fibrosis. This is largely done through histology to stain for collagen (trichome or Sirius red) in the tubules and clinical metrics associated with nephropathy such as blood urea nitrogen, GRF, and
proteinuria. Finally, I will perform lipodomic analysis in the kidney to determine if lipotoxic species are present during nephropathy and whether \(iLpL^{−/−}\) mice contain less of these species. Of particular interest, I will want to probe for ceramides, sphingolipids, DAGs, and NEFAs. If I find FATP2 has a role in fatty acid uptake in the kidney, I will repeat these experiments in a FATP2 deficient model as well. I predict in these models that fatty acid uptake will be reduced during kidney injury and intracellular TG and toxic lipid species would be decreased in the absence of LpL or FATP2. Fenofibrate treatment in mice demonstrates oxidation of lipids, not access to fatty acid, leads to energy insufficiency in the kidney (152) (151). Thus, by blocking excess uptake of fatty acids, lipotoxicity will be allayed. A possible limitation with this study would be if the diseased state has lower LpL activity overall. Renal injury is associated with increased Angplt4 in the circulation and lower LpL activity in peripheral tissues (122) (352). Furthermore, LpL activity will already be decreased following renal injury and the absence of LpL will only provide null results.

In my study of diabetic inflammation, I concluded there is no perceivable effect of the transcription factor KLF5 on expression of S100A8 and S100A9 or circulating leukocytes. Calprotectin is elevated in cells during injury and inflammation (discussed in Chapter 4) and is particularly highly expressed in neutrophils. I found it important to explore how S100A8 and S100A9 are regulated in these cells. From my data, it appears there is no direct regulation of S100A8 and S100A9 by KLF5 on neutrophils. I observed no change in peripheral leukocytes or BM progenitors in MKK mice compared to \(Klf5^0/0\) mice at baseline (Figure 18) or with hyperglycemia (Figure 21). There was no relationship between the expression of \(Klf5\) and \(S100a8\) and \(S100a9\) in neutrophils at baseline (Figure 19) or during hyperglycemia (Figure 22). However, my \textit{in vivo} data needs to be redone on a different set of MKK mice. The constant
shifting of our colony to multiple vivaria as well as being rederived at Charles River may have affected the phenotype of these mice (explained in methods of Chapter 5). For my future studies, I am breeding MKK mice at Temple University with the help of Konstantinos Drosatos, using mice that have not been rederived or shuffled in vivaria (explained in methods of Chapter 5). In this, I hope to achieve reliable results concerning the effect of KLF5 in vivo. In my in vitro studies, I determined KLF5 and S100A8/89 are inversely regulated in promyeloblasts differentiated into neutrophils (Figure 23D-F). High glucose media has no effect on neutrophil KLF5 or S100A8/A9 (Figure 25 C-E; Figure 26 C-E). Use of a KLF5 inhibitor did not affect promyeloblastic differentiation (Figure 24B) or S100A8 and S100A9 expression (Figure 24 D-E) in neutrophils. In future studies, I will do western blots for KLF5 and post-translational modifications of KLF5 in these cells to determine the efficacy of the KLF5 inhibitor. As well as redoing these experiments on a new cohort of mice, I will explore future applications of this cell line in studying atherosclerosis as well as an alternative approach to uncover the transcriptional regulation of S100A8 and S100A9 in neutrophils.

After I establish a role for KLF5 (if one exists) in the production of S100A8/S100A9, I will explore whether absence of KLF5 in myeloid cells has an impact on atherosclerosis. Naggareddy and Murphy et al. have demonstrated the importance of S100A8 and S100A9 produced by neutrophils in atherosclerosis progression (285). My experiments would demonstrate that KLF5 is the transcriptional mediator in neutrophils that drives atherosclerotic progression. To do this I will cross MKK mice in an Ldlr−/− background and put the MKK/Ldlr−/− mice on a western diet to induce atherosclerosis. I will also make these mice diabetic, as it has been shown that glucose primarily drives production and release of S100A8/S100A9 from neutrophils. I predict that MKK/Ldlr−/− mice will have less circulating S100A8/S100A9,
monocytes, and neutrophils and less macrophage infiltration into aortic lesions (as determined by CD68 staining of en face aortas). I will also explore the mechanism behind glucose activation of KLF5. Sp1, a regulator of Klf transcription, is phosphorylated by ERK1/2 (353). When AGEs bind to RAGE, ERK1/2 is phosphorylated (354). Thus, RAGE may activate KLF5 transcription via an ERK/Sp1 pathway. To test this I will differentiate HL-60 cells to neutrophils and incubate these cells with AGEs. I will next probe these cells by western blot for phospho-ERK, phospho-Sp1, and Klf5. If this pathway determines KLF5 transcription, I would expect to see an increase in all three of these proteins after incubating with AGEs in a dose-dependent manner.

I will next explore in future in vitro studies whether KLF5 has a role in neutrophil migration. The role of neutrophils in atherosclerotic lesions is understudied compared to the role of macrophages. Neutrophils are the most abundant WBC in circulation and neutrophil count positively correlates with coronary artery stenosis (355). Neutrophils are also a major cellular component in atherosclerotic lesions in ApoE−/− mice (356). I discuss in Section 4.3 how S100A8 and S100A9 regulate microtubule assembly via affecting intracellular Ca\(^{2+}\). Thus by regulating these two proteins, I will determine whether KLF5 plays a role in neutrophil migration. To assess if KLF5 plays a role in microtubule assembly, I will knockdown KLF5 in neutrophils (differentiated from HL-60 cells) with an siRNA. Next, I will determine whether knockdown of Klf5 affects microtubule polymerization by measuring fluorescent intensity of diamindino-phenylindole (357). To determine if KLF5 affects cell migration I will place these cells on a transwell plate and measure their chemotaxis towards a stimulus such as IL-8 (358). If KLF5 plays a role in microtubule assembly and neutrophil migration, I predict that by knocking down KLF5 there will be less microtubule assembly and fewer cells migrating through the transwell.
A large limitation to these studies is that KLF5 may play no role in neutrophil S100A8/A9 production or cellular functions like microtubule assembly. If this is the case, I will continue to find a transcriptional regulator of S100A8 and S100A9 in the neutrophils by taking an unbiased approach. A technique that has been recently developed allows one to understand the regulation of expression at a molecular level. Hybridization Capture of Chromatin Associated Proteins for Proteomics (HyCCAPP) uses the principles of Chip-Seq, but in reverse (359). Single-stranded DNA oligonucleotides hybridize to genomic sequences of interest (in our case S100A8 and S100A9) of cross-linked chromatin fragments. Proteins associated with this region are identified with mass spectrometry. I identified that differentiation of HL-60 cells to neutrophils dramatically increases $S100A8$ and $S100A9$. Using this method, I can pinpoint the proteins involved in the transcription of S100A8 and S100A9 of HL-60 cells treated or not treated with ATRA. By finding the factors involved in S100A8 and S100A9 transcription, we will be able to elucidate the regulation of these DAMPs.

In conclusion, this thesis describes lipid metabolism in the kidney during the fasted state as well as sets a direction for future in vivo nephropathy studies. The thesis explored preliminary in vitro and in vivo data about KLF5 in neutrophils. Future studies will better elucidate how KLF5 affects neutrophil inflammation and function.
References


113


115


124


133


267. Xie, Y., and Bayakhmetov, S. (2016) PIM1 kinase as a promise of targeted therapy in prostate cancer stem cells. *Molecular and clinical oncology** 4, 13-17


smooth muscle cells: analysis of developmental and pathological expression profiles shows implications as a predictive factor for restenosis. *Circulation* **102**, 2528-2534


glucocorticoids in a c-Fos-dependent manner and overexpressed throughout skin carcinogenesis. *Oncogene* **21**, 4266-4276


140
of interacting alpha-helices can determine specific association of two EF-hand proteins. 


Increased levels of calprotectin in obesity are related to macrophage content: impact on inflammation and effect of weight loss. *Molecular medicine (Cambridge, Mass.)* **17**, 1157-1167


